Related fields include hand-held irons for pressing fabric, and more specifically safety features and attachments for such irons.
A hand-held cloth iron consists essentially of a heated soleplate with an insulated handle. The operator grasps the handle and presses or slides the soleplate against a wrinkled fabric article—for example, a garment—to remove the wrinkles. The fabric is normally arranged for ironing on a purpose-built ironing board. Such a board typically has a flat working surface manufactured from sheet metal and covered by a fitted, padded ironing board cover. The padded cover functions as thermal insulation between the ironing board and the high-temperature iron so that heat is not dissipated by conduction through the metal of the board. The cover also fills in any unevenness in the metal surface of the board, providing a smooth and soft surface for the fabric, even if the metal board underneath the pad is honeycombed or otherwise perforated to reduce its weight and allow steam to flow through.
While ironing, the operator must often let go of the iron to reposition or exchange the wrinkled article, to apply starch or iron-on materials, or for some other reasons. If the soleplate of the iron remains in contact with the ironing board cover for too long, sufficient heat will accumulate to scorch, burn or ignite the cover. Furthermore, if the soleplate is accidentally left at rest on the wrinkled article—which can easily occur in a household or backstage environment where interruptions are many and varied—the article, which is typically less heat-resistant than the board cover, can sustain thermal damage in less than a minute.
To avoid such damage, the wider end of most irons, often called the “heel” or “heel rest,” is configured so that the iron can be balanced in an upright position with the soleplate substantially perpendicular to the ironing board surface. In this position, the soleplate delivers almost no heat to the article being ironed or the ironing board cover. To improve the stability of the iron resting on its heel, the soleplate (the heaviest component of the iron) forms a slightly acute angle with the heel rest so that the soleplate is tilted at slightly more than 90° to the board and “leans” on the handle or an extension of the handle or body. Nevertheless, because a standard iron soleplate is still significantly longer than the heel is wide, an iron resting on its heel has a high center of gravity, which makes it vulnerable to tipping if the iron or board is bumped, wobbled, or tilted. Ironing often takes place in close and busy quarters and most modern ironing boards are narrow, lightweight and collapsible; therefore mild to moderate perturbations in the form of bumps, wobbles, or tilting are far from rare.
Because an iron is heavy and pointed at one end, as well as very hot when in use, a falling iron can inflict a variety of injuries on nearby persons or domestic animals, as well as damages to properties. In addition, a steam iron left in its vertical position may tip and leak water from the pores of the soleplate onto an item, thus possibly staining the item. Accordingly, it is desirable to have an iron which will remain more stable in its upright position.
This need for ironing safety has long been recognized and addressed in various ways. For example, many electric irons have automatic shut-off devices that disconnect power from the soleplate heater when the iron has been idle for a fixed period of time, such as 10 minutes. The automatic shut-off cycle saves energy and prevents such accidents as being burned from touching an iron last used hours before and believed to be cold. However, as noted above, many fabrics and other surfaces can sustain thermal damage long before the expiration of the timing cycle if they are in direct, stationary contact with a hot soleplate. On the other hand, reducing the automatic shut-off time enough to avoid such damage would cause the iron to shut itself off almost constantly, prolonging the time to iron a batch of articles and frustrating the operator. Some irons use motion sensors or accelerometers to reset the automatic shut-off timer whenever the user moves the iron. One disadvantage of this type of iron is that it automatically shuts off when held motionless by the user, which is necessary for some operations such as activating fusible-web materials or setting fabric paints. Also, such an iron may not function properly on an uneven surface such as a wool jacket with pockets and cuffs.
Ironing board stability has been improved by widely-spaced and heavy-duty tubular steel legs and non-slip grip feet. Additionally, ironing boards with an iron keeper or holder topped or lined with heat-resistant materials such as high-temperature silicone are commercially available. However, the iron holder usually is positioned far away from the pointed end of the board where clothing must often be positioned to smooth areas near sleeves, legs, and necklines, so that it is inconvenient to use. In addition, the iron holder reduces the ironing surface at the square end of an ironing board, which is useful for pressing the backs of shirts and the like.
There have been many attempts in the prior art to provide iron keepers or holders as part of an ironing board to securely retain an iron on an ironing board in a temporarily unused position. Most of these attempts have been directed toward mechanical means which have required some additional movements, other than normal ironing hand motions, by the user to latch the iron to the ironing board to secure it and unlatch the iron from the ironing board to remove it. Other attempts at the use of magnetic force for iron rests are described in U.S. Pat. Nos. 3,443,780 and 3,599,358 and French Pat. No. 2,724,950. These patents show an ironing board which has a magnet acting as a keeper interacting with a conventional iron. The application of a magnetic plate would clearly create an obstruction to the user and thereby reduce either the area available for ironing or, where the keeper is cantilevered from the edge of the board, the free edge over which fabric may smoothly drape without acquiring more wrinkles. Most of the iron keepers are typically secured in one position on the ironing board, thus requiring the operator to reach for the iron keeper each time the iron is removed or replaced on the keeper. When ironing for a considerable period of time, much time and effort is wasted by these reaching movements. Many cycles of leaning and reaching while holding a heavy iron at arm's length may eventually cause the operator a repetitive-motion injury. When the ironing surface is so large the operator must stretch to reach the iron keeper, even a single unguarded motion may cause a muscle strain or even a fall. Therefore, mechanical or magnetic keepers mounted on ironing boards have not been commercially successful.
Other attempts at iron keepers have been made that do not require the operator to perform the extra motion to always return the iron to the same location. Some irons automatically disengage the soleplate from contact with the article being ironed or the ironing board cover when the iron is not being used. Specifically, U.S. Pat. No. 2,602,247 shows a self-tilting iron incorporating a strong electromagnet to work in conjunction with the ferromagnetic steel board of an ironing board to force the entire iron to tilt away from the ironing board and sit upon the inclined heel rest of the iron when it is not in use, and the magnetic attraction between the iron and the board then secures it against tipping. This attempt of using an electromagnet proved unsatisfactory because of the significant increases in the weight, cost and bulkiness of the iron.
In an effort to improve the heel rest of an electric iron, Perko et al in U.S. Pat. No. 6,321,472 and Hensel et al in U.S. Pat. No. 5,619,812 disclosed an iron with a heel rest having a recess of ˜2.5 mm in the outer surface so that the iron will be less likely to tip over while in its upright position on a soft surface. In such case, as the weight of the iron forces the soft surface downwards, the portion of the soft surface directly underneath the recess moves upward to fill in the recess. As a result, the soft surface in the recess interlocks with the recess in the heel to help prevent the iron from tipping over. Rubber feet are also placed on the heel rest to add stability. However, the improvement with this type of heel rest in preventing tipping is rather miniscule.
Various auto-lifting electric irons with different elevation mechanisms and support means to prevent tipping of the irons are disclosed in U.S. Pat. Nos. 7,546,701, 7,406,783, 6,925,738 and 6,453,587 issued to Alipour, U.S. Pat. No. 6,715,222 to Hecht, and U.S. Pat. Nos. 6,260,295 and 6,105,285 to Nickel. When a sensor indicates that the iron's handle is not being gripped, an elevating mechanism extends support means from the soleplate to lift the soleplate up off the ironing board. When the sensor senses that the handle is being gripped, the mechanism retracts the support means to a position inside the iron. The lifting or elevating mechanism is optimized so that it does not cause the iron to roll over on its side when the iron is laid flat on its soleplate. The iron always remains in a stable horizontal position irrespective whether the iron is in use or not. Unfortunately, the auto-lifting mechanism is mechanically and electrically complex and cumbersome, and it makes an iron much heavier. In a modern iron, the available space is generally taken up by controls for steaming, spraying, and the like and the remaining space is rather unsuitable to house complex mechanisms. Basic functions such as heating up water and soleplate quickly, fast steam generation and no leaking of water, can be easily compromised by the auto-lifting function. Reliability of the moving mechanical parts is also a concern considering the repeated uses of the iron for years. Furthermore, for many users the auto-lift function can be a nuisance unless the user manages to get used to leaving such iron with the heating surface down.
It would, therefore, be highly desirable to provide an iron that is extremely stable against tipping without adding excessive weight, size or complexity, and without requiring operators to learn new methods or perform extra motions. Preferably the iron would also be convenient to use, aesthetically pleasing, inexpensive to manufacture, simple and compact in size, and capable of incorporating popular performance features found in contemporary irons. However, in view of the art considered as a whole at the time of the present invention was made, it was not obvious to those of ordinary skill in this art how to provide an iron meeting all these requirements.
A need exists for an iron that overcomes the aforementioned deficiencies of prior art irons. An iron described herein has an improved heel rest to prevent tipping. This iron can rest securely on the improved heel, anywhere on the top surface (ironing surface) of an ironing board in a vertical orientation that removes the heated soleplate from the board cover and article being ironed. The stable heel rest is inexpensive to fabricate. Because it adds no significant extra weight and requires no major change in iron size, iron shape, or operators' accustomed ironing motions, consumer acceptance is highly likely. Therefore, iron manufacturers will probably find this heel rest attractive to incorporate into their products.
An improved iron includes a soleplate, a water tank mounted to the soleplate for supplying steam to the soleplate, a handle joined with the water tank, a heel rest connected to the rear end of the water tank, a rear plate as a part of the heel rest and in covering relation to the rear portion of the iron, and one or more magnets embedded in the rear plate to generate a magnetic field, producing a magnetic pull force between the magnets and the magnet-attracting, ferromagnetic steel top of an ironing board and thus stabilize an iron standing on its heel. The magnetic rear plate can either be coplanar or slightly recessed with respect to the outer surface of the heel rest, and the amount of recess can be made adjustable by mechanical means so that the magnetic pull force between the magnetic heel rest and the ferromagnetic steel top of an ironing board can be adjusted by a user to suit his or her preference.
A stand-alone magnetic heel rest with its size and shape fitting the heel of an existing electric iron is provided, which can be attached to the heel of the iron using conventional fastening means.
The magnetic heel rest presents a feasible solution to all of the problems which the prior art foresaw but could not correct, or that it created itself. Compared to conventional irons or irons with heel-rests relying on weight, contours, or cushioning (e.g. rubber feet), the magnetic heel rest more effectively prevents an iron from tipping and falling from a vertical idle position. Unlike the solutions incorporating specially constructed iron-keepers, the magnetic heel rest does not require the user to always rest the iron in the same place, nor does it reduce the area or edge length of the board available for draping an article being ironed. Unlike the mechanical iron-lifting apparatus, the magnetic heel rest adds no significant size or complexity to the iron, nor does it change the motions required of the operator.
In conclusion, the present invention provides a technologically feasible, non-obstructing, convenient heel rest for an iron. Advantages include the prevention of damage to garments and work surfaces, and improved overall safety of use. Other aspects and example embodiments are provided in the figures and the detailed description that follow.
These drawings illustrate some of the possible variations of magnetic heel rests. However, the claims are intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosed concepts.
In the following description, similar components are referred to by the same reference numeral in order to simplify the understanding of the sequential aspect of the drawings.
An improved heel rest enables an iron to rest securely, in a vertical orientation, anywhere on the top surface of an ironing board during those frequent rest periods in the ironing process while the article being ironed is shifted or changed, or while the operator momentarily attends to something else. The heel rest prevents the iron from tipping, no matter where on the ironing board the iron is placed, using the attraction of permanent magnet pieces to the ferromagnetic steel top of an ironing board
A magnetic heel rest 44 is coupled to the body 26 at the heel end of the iron. The heel, which is the end perpendicular to the axis of handle 32 and closest to the center of gravity, is the surface on which operators are accustomed to resting an idle hot iron. When iron 20 is tilted out of the ironing position in that direction, the next stable resting position is for the iron to balance on the bottom of heel rest 44. In this position, the back end of heated soleplate 22 is lifted far enough off the ironing board to prevent delivering a potentially damaging amount of heat to the board under some defined worst-case condition (e.g., 30 minutes with the iron at its highest heat setting).
Heel rest 44 prevents the iron from tipping because one or more magnets 46, mechanically coupled to heel rest 44, are attracted to the steel in the top of a typical ironing board when the iron is resting vertically as in
Experiments have shown that magnet parameters can be calculated such that the attraction is strong enough, even through a padded ironing board cover, to hold the iron steady if the board wobbles or tilts or if the iron is casually bumped. However, unlike weighted heels and iron lifters, the magnetic heel rest does not impede the operator's normal ironing motions. The magnetic force F from a magnet with vector magnetic moment m in a magnetic field B goes as F=∇(m·B). The dot product at any point in space is a scalar mB cos(θ), where θ is the angle between m and B. For the heel rest, θ is 90° minus the angle between the magnet-attracting steel top of the ironing board and the dipole of the heel-rest magnet. When the iron rests on its heel, the dipole is perpendicular to the steel top of the board; θ=0 and cos(θ)=1 for the strongest possible magnetic force to prevent the iron from tipping by itself. Additionally, magnetic field B between the magnet and the steel top of the ironing board diminishes as the inverse square of the distance between them.
Operators returning the iron to horizontal to resume ironing typically do so by tilting the iron off its heel rather than lifting straight up. As long as the maximum force exerted by the magnet is less than about 50 N, an operator purposefully gripping the handle exerts much more force than a typical moderate bump, wobble, or tilt of the board and can easily tilt the iron off its heel. As θ decreases, the magnetic force falls off approximately as cos (θ) (approximate because the magnet may not be precisely at the iron's pivot point). At the same time, the distance between the magnets and the board increases. When the iron is horizontal as in
The heel rest 44 in
The rear plate assembly 48 may be adapted to be fastened to any type of iron. In addition, the rear plate assembly having the magnet 46 may be made of any material such as ABS plastic, polypropylene, wood, metal, etc. In embodiments with more than one magnet 46, the magnets may be aligned with matching or opposing polarities. When ferromagnetic material is selected for the rear plate assembly 48, shunting effect of the magnetic field by the ferromagnetic plate material is expected if magnetic pieces aligned to opposite polarities are used together.
Numerous other ironing surfaces besides ironing boards are occasionally used for ironing when space or time is tight. Many such surfaces, however, are likewise ferromagnetic: the tops of washers, dryers, and many utility counters or carts. The operator typically uses a towel or blanket to pad the alternative ironing surface; just as the magnets hold the iron to the board through the board cover, they will hold the iron to the alternative surface through the improvised pad. As another alternative, a cover for a non-steel ironing board could incorporate a magnet-attracting layer such as steel mesh or a sewn-in array of thin steel plates.
Available materials for the magnet 46 include ferrite, neodymium iron boron, samarium cobalt, and Alnico (metal alloys composed primarily of aluminum, nickel and cobalt, and iron). In one particular embodiment, a ferrite magnet, also known as a ceramic magnet, may have the following benefits: inexpensive yet high magnetic pull strength, resistant to demagnetization, and non-rusting. The major raw material used to manufacture ferrite magnets is iron oxide, more commonly known as “rust”, which is very inexpensive. High-temperature magnetic materials are not required in embodiments like those in
The number and size of the magnet pieces used in the heel rest depends on the magnetic strength of the magnet pieces and the available surface area of rear plate assembly 48. Magnets of various sizes can be embedded in rear plate assembly 48 to maximize the usage of its surface area for encasing as much of the magnetic material as possible. In one embodiment, fewer magnet pieces of larger sizes may be less cost-effective than more magnet pieces of the smaller size. In another embodiment, thicker magnet pieces may be used to produce a stronger magnetic field and reduce the surface area required for rear plate assembly 48, for example in a compact travel iron.
In one embodiment, a ceramic disc magnet may be used as the magnet in the magnetic heel rest 44. In an example of this embodiment, multiple ceramic disc magnets having a particular magnetic strength were used in the iron rest to provide an electric iron that is very resistant to tipping. For a ceramic disc magnet measuring 19 mm diameter by 4.8 mm thick with magnetic strength Br of 2,000 gauss, the magnetic flux density on the centerline of a disc magnet is 403 gauss at 1.5 mm distance, and 351 gauss at 2.5 mm distance from the surface of the magnet. The outer surface area of a typical iron rest is 40-100 cm2 and such an iron rest can easily fit 10 pieces of ceramic disc magnets with each piece measuring 19 mm diameter and a total surface area of approximately 28.5 cm2. The pull force between 10 pieces of the ceramic disc magnets of the size mentioned above and a flat, ground mild steel sheet or plate is approximately 12 N when they are in direct contact. However, with a gap of typically 1-3 mm between the magnetic heel rest and the steel top of the ironing board due to the recess of the magnet pieces inside the heel rest and the thickness of the fabric cover and padding layer on the top of the flat steel board, the actual pull force when using those 10 ceramic magnet pieces will be less, say 5-10 N, which is still sufficient to make an iron very resistant to tipping.
Magnet pieces 46 may be mounted onto the rear plate 48 of the magnetic heel rest 44 by, for example, press-fitting, epoxy bonding, or any other conventional means for fastening. If using magnets that can withstand the required temperatures, the rear plate may be blow-molding or injection-molded around them. They can either be flush with the flat exterior surface of the rear plate 48 and visible in the final assembled form, or slightly recessed (a>0 mm in
Additionally, a user does not feel any significant difference between using an iron with a magnetic heel rest and an iron with a conventional non-magnetic heel rest. This is because embodiments of this invention maintain the compact size and light weight of a cloth iron with integrated magnetic heel rest 44. A typical magnetic heel rest 44 has similar surface area as that of the rear surface of a conventional iron, and it is typically 6-12 mm thick to accommodate the height or thickness of the permanent magnet pieces and the fastening means.
The appropriate amount of magnetic pull force between the magnetic heel rest 44 of an iron and the steel top 56 of an ironing board can be a personal preference for the user. The amount of recess, up to 10 mm, of the magnetic heel rest 44 with respect to the outer surface of the magnetic heel rest 44 can be made adjustable, with the shallowest recess providing the strongest magnetic pull force for keeping an iron from tipping. The recess can be adjusted by making at least a magnet-containing part of the rear plate movable relative to an outer frame of the heel rest. The magnetic pull force decreases with both distance and angle away from the dipole. Therefore, adjusting the position of one or more magnets relative to the rear plate, or the recess depth, changes the peak magnetic pull strength but preserves the desirable angular dependence of the magnetic pull force: that is, strong attraction between the iron and board when the iron rests on its heel, little or no attraction when the iron rests on its soleplate.
For existing irons which do not have a magnetic heel rest 44 as disclosed in this invention, a stand-alone prefabricated magnetic plate of suitable size and shape can be attached to the heel rest of an existing iron by conventional fasteners. For example, durable double-sided mounting tape or bolt/screw joints already present in the heel rest of the iron can be used to attach the magnetic rear plate to the heel rest. The bolts or screws may have to be replaced with longer ones to accommodate the newly added magnetic heel rest, and clearance holes have to be added on the magnetic plate accordingly.
One distinct advantage of using magnetic forces to keep iron from tipping over is that the magnetic pull force, different from a constant dead weight added to the iron, decreases dramatically as the user tilts/lifts the iron and increases the gap between the magnetic heel rest of an iron and the ferromagnetic steel top of an iron board. In other words, the magnetic pull force is momentary while the iron is lifted away from the ironing board, and the user does not feel the need for much extra effort for lifting an electric iron with the magnetic heel rest from the ironing board as compared with lifting a regular iron without the magnetic heel rest.
Another advantage of using magnetic force to keep iron from tipping over is that much smaller magnetic pull force can counterbalance greater gravitational force of the iron. The magnetic pull force distributed over the surface area of an iron rest in contact with the ironing board is always on the same side of the pivoting point in the case of iron tipping irrespective of which way the iron is tipping over. By contrast, the gravitational forces (i.e., weight) of different components of the iron can be at either the same side or the opposite sides of the pivoting point in the case of iron tipping, i.e., there is some degree of self-balancing of an iron resting vertically on an ironing board. Typical electric irons weigh 1.5-3 kg including the weight of the water in a fully filled tank (typically ˜0.3 kg). In the event of likely tipping of an iron, magnetic pull force of 4-10 N is generally adequate to counterbalance the gravitational force of the iron with its high center of gravity and keep iron securely on the ironing board. Greater magnetic pull force can help hold the iron more firmly on the ironing board, but it will present some challenges for a user with arthritis or weak arms to lift up the iron from the ironing board by overcoming the magnetic pull force and the weight of the iron.
A cloth iron with a magnetic heel rest as described herein is not likely to cause the operator any additional strain while using or transporting the iron, compared to a conventional model. If an iron with a magnetic heel rest is left standing vertically on a washer or drier in the laundry room or in close proximity with any other ferromagnetic steel or iron surfaces (e.g. a steel utility shelf), the magnetic pull force is generally less than 50 N which is not too large for a user to overcome and iron can be pulled away with ease. Likewise, when an article containing ferromagnetic material is accidentally brought into contact with the magnetic heel rest, the magnetic pull force is not strong enough to pinch and hurt the fingers and hands of the user of the iron. It is further noted that the magnetic field near the soleplate surface is too weak to produce any noticeable magnetic pull force between the soleplate and an ironing board during ironing.
An experiment has been performed to determine the improved degree of stability on a tilting ironing board of an iron using a magnetic heel rest. Two brands of commercially available irons have been tested, and are designated as R1 and R2. As is typical of current household irons, they each weighed about 2 kg and their tip-to-heel length was about 2.5× the heel width. They were initially tested without any modification. Then a magnetic plate of the same size as the heel rest of the iron was glued to the heel rest of each iron. Irons R1 and R2 with the magnetic heel rest installed (designated as M1 and M2, respectively) were then subjected to the same test to evaluate the effect of the magnetic heel rest.
As shown in
The description above should not be construed as limiting the scope of the invention, but as merely providing illustrations to some example embodiments. In light of the above description and examples, various other modifications and variations may naturally occur to those skilled in the art without departing from the spirit and scope of the appended claims. Accordingly, the scope of the invention should be determined solely by the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2418020 | Finlayson | Mar 1947 | A |
2449318 | Pitman et al. | Sep 1948 | A |
2602247 | Cochran | Jul 1952 | A |
3443780 | Bruening | May 1969 | A |
3599358 | Butts et al. | Aug 1971 | A |
3760149 | Harsanyi | Sep 1973 | A |
5619812 | Hensel et al. | Apr 1997 | A |
5721418 | Hazan et al. | Feb 1998 | A |
6321472 | Perko et al. | Nov 2001 | B1 |
Number | Date | Country |
---|---|---|
2724950 | Mar 1996 | FR |
Number | Date | Country | |
---|---|---|---|
20120023790 A1 | Feb 2012 | US |