The invention generally relates to the field of medical devices, and more particularly to an irradiator apparatus and system utilizing a single radiation source, such as X-rays to irradiate materials.
In the irradiation of materials, for example, U.S. Pat. No. 6,212,255 to Kirk (Rad Source Technologies) discloses an irradiator having two X-ray sources located in opposing directions to allow sample irradiation from top and bottom simultaneously to provide dose coverage of the sample. A two X-ray source irradiator can be advantageous, such as in promoting alleviating X-ray absorption and attenuation typically associated with using a single radiation source X-ray irradiator. However, a two radiation source X-ray irradiator having two X-ray tubes can be disadvantageous in certain respects, such as its relative size as to suitability for confined locations, more shielding requirements are typically needed for radiation emitted, and the relative complexity of the powering and cooling systems used to operate the two tubes.
Also, a two-source irradiator typically has an irradiator configuration that can limit the effectiveness of an irradiation reflector, as it can be typically be located to the sides of the irradiated product, such as a collar mounted around the sample canister to reflect the X-rays, such as disclosed in U.S. Pat. No. 6,614,876 to Kirk. In addition, an X-ray beam from a two-source irradiator can exhibit a profile asymmetry and dose non-uniformity in irradiated samples, and precise sample irradiation typically requires a high dose uniformity throughout the irradiated sample, for example.
In U.S. Pat. No. 6,389,099 to Gueorguiev an irradiation system is disclosed that uses a single X-ray source and a radiation reflector comprised of low Z material, high density material, with the reflector being positioned to receive radiation penetrating and exiting the product sample to reflect the radiation back to the product sample. Such disclosed single source irradiation system can promote addressing irradiator complexity typical with plural radiation sources and can advantageously use the reflector to allow X-ray radiation to be reflected back to the product sample being irradiated, such as can help compensate partly for the radiation attenuated from the top of the product sample. However, such single source irradiation system is believed to not fully address providing dose uniformity in the irradiated sample in that, for example, X-ray beam profile asymmetry may exist, such as an anode heel effect, typically at the sample edges and the efficiency of the X-ray reflection may be not as efficient for deeper product sample containers, such as can result in a lack of dose coverage at the bottom of the product sample.
Therefore, an irradiator apparatus or system utilizing a single radiation source would be desirable, such as having a single X-ray source, to irradiate materials. It would further be desirable to have a single X-ray source irradiator apparatus or system that has a radiation reflector in conjunction with a moving mechanism to allow product sample container rotation and reflector movement to facilitate radiation distribution. In addition, it would be desirable for an irradiator apparatus or system to have a radiation filter associated with the X-ray source to facilitate allowing optimal dose distribution throughout the irradiated product sample.
It is also desirable to provide an irradiator apparatus or system that can provide a relatively better dose uniformity throughout the irradiated material, while enabling the irradiator apparatus or system to be compact and portable.
Thus, a single radiation source irradiator apparatus and system to deliver radiation to a product sample addressing the aforementioned needs is desired.
Embodiments of the present invention include an irradiator apparatus or system having a single radiation source, such as a single X-ray source, to deliver radiation to a product sample to be irradiated, a reflector assembly to reflect radiation delivered by the single radiation source to the product sample back to the product sample, a sample holder associated with the reflector assembly configured to hold a product sample container or canister that receives the product sample to be irradiated, and a rotation device associated with the sample holder and configured to rotate, flip or orient the product sample container to a plurality of positions or orientations to deliver radiation to the product sample at each of the plurality of positions or orientations to facilitate a substantially uniform irradiation of the product sample and a substantially uniform radiation exposure delivered to the product sample providing a substantial dose profile uniformity in the irradiated product sample. The rotation device in embodiments of the irradiator apparatus or system can be configured with the reflector assembly to flip, orient or rotate the rotatable product sample container to facilitate delivery of radiation to the product sample at different positions or orientations of the rotatable sample container.
Embodiments provide methods for product sample irradiation including providing a plurality of radiation deliveries to a product sample delivered at each of a plurality of positions or orientations of the product sample in an irradiator apparatus or system. The method includes providing a plurality of irradiation deliveries from a single radiation source to a product sample, such as desirably a two-step radiation delivery to the product sample. The plurality of radiation deliveries includes initially positioning a product sample to be irradiated in a product sample container or canister, positioning the product sample container or canister positioned in association with a sample holder at an initial position or orientation in the irradiator apparatus or system, irradiating the product sample by delivering radiation from a single radiation source, such as a single X-ray source, to the product sample positioned at the initial position or orientation, reflecting the radiation delivered to the product sample at the initial position or orientation by a reflector assembly back to the product sample, successively positioning the product sample in the product sample container or canister in the sample holder at a predetermined one or more other positions or orientations in the irradiator apparatus or system by flipping, rotating or orienting the product sample container to a corresponding one other position or orientation, successively delivering to the product sample at each other position or orientation of the plurality of positions or orientations radiation from the single radiation source, such as an X-ray source, to the product sample positioned at a corresponding one of each other position or orientation, and reflecting by the reflector assembly the radiation delivered to the product sample positioned at the corresponding one of each other position or orientation of the plurality of positions or orientations back to the product sample, the plurality of radiation deliveries to the product sample positioned at the initial position or orientation and at the one or more other positions or orientations of the plurality of positions or orientations delivering radiation to the product sample facilitating a substantially uniform irradiation of the product sample and a substantially uniform radiation exposure delivered to the product sample providing a substantial dose profile uniformity in the irradiated product sample. Hence, beam profile asymmetry and the lack of dose profile uniformity can be better resolved by employing embodiments of the methods for irradiating a product sample including a plurality of radiation deliveries at each of a plurality of positions or orientations of the product sample in an irradiator apparatus or system.
In embodiments of methods for irradiating a product sample, the methods can also desirably include moving at least a part of or all of the reflector assembly away from the product sample container or canister to enable positioning or orienting the product sample container or canister, such as by rotating or orienting the product sample container or canister including the product sample to the initial orientation or position or to a corresponding other one of a predetermined plurality of positions or orientations for irradiation of the product sample. Hence, the beam profile asymmetry and the lack of dose profile uniformity can be better resolved by embodiments of methods for sample irradiation including a plurality of radiation deliveries.
Also, embodiments of methods can include desirably include associating the sample holder with a rotation device and rotating the sample holder by the rotation device to flip, orient or rotate the rotatable product sample container to position or orient the product sample to facilitate delivery of radiation to the product sample at different positions or orientations. Also, embodiments of methods can desirably include providing the sample holder for the product sample container as a part of the reflector assembly to flip, orient or rotate the product sample container to facilitate delivery of radiation to the product sample at different positions or orientations of the rotatable product sample container.
Also, embodiments of the irradiator apparatus can desirably include a reflector assembly to reflect the delivered radiation, the reflector assembly including or formed of material having a low-Z number, Z being the atomic number of the material, and can desirably include the reflector assembly being formed of or including material having high density, d, for efficient X-ray reflection. Such materials of a low or a relatively low Z number and having a high or relatively high density can facilitate a scattered radiation beam to be reflected towards the product sample, and can therefore promote reducing the time of radiation exposure of the product sample. Examples of low Z materials include but are not limited to beryllium, boron, carbon or some combination thereof, and higher density forms of these materials are desirable, but other factors to consider in material selection can include, for example, availability, cost, safety, etc. of the material, and as can depend on the use or application, and should not be construed in a limiting sense. Embodiments of a reflector assembly in embodiments of an irradiator system and apparatus can desirably include a reflector assembly that is movable in full or in part for the irradiation to allow the product sample container or canister and the product sample positioned in a product sample container or canister to rotate or move to position or orient the product sample for irradiation. For example, the product sample container or canister can be placed inside a reflector assembly and irradiated from one side, then the irradiation cycle is paused while the reflector assembly is moved out of the way for rotation or orientation of the product sample container or canister including the product sample, and then the reflector assembly is moved back and positioned over or in a surrounding relation to the product sample container or canister including the product sample to then be irradiated from the other side.
Embodiments of an irradiator apparatus or system can desirably include an X-ray filter positioned at the X-ray source output to facilitate better dose uniformity in the irradiated product sample. The X-ray filter is desirably formed of, for example, copper or other suitable material that can provide the desired filtering and, desirably, the X-ray filter has a suitable configuration or profile, such as flat, stepped or domed configuration or profile, as can depend on the irradiation application, and should not be construed in a limiting sense. For example, a metallic X-ray filter in embodiments of irradiation apparatuses and systems can desirably have a step profile or configuration at the filter's center, as can allow for better dose uniformity in the irradiated product sample.
Embodiments also include methods for controlling irradiation of a product sample in an irradiator system or apparatus, the methods including providing a controlled workflow to control a radiation amount to be delivered to a product sample at each of a plurality of radiation deliveries by a single radiation source, such as a single X-ray source, to provide a total radiation amount delivered to the product sample for the plurality of radiation deliveries having a substantial dose profile uniformity in the irradiated product sample, determining a beam on-time in the controlled workflow for each of the plurality of radiation deliveries corresponding to a radiation amount to be delivered to a product sample at each of a plurality of radiation deliveries by a single radiation source, determining in the controlled workflow a position or orientation of the product sample for each of the plurality of radiation deliveries, synchronizing in the controlled workflow movements of a sample holder configured to hold the product sample to be irradiated, movements of at least a portion of a reflector assembly, the reflector assembly configured to reflect radiation delivered by the single radiation source to the product sample back to the product sample, and the determined beam on-time for each of the plurality of radiation deliveries to deliver radiation to the product sample at each corresponding one or the plurality of radiation deliveries, and controlling the single radiation source in the controlled workflow to deliver radiation to the product sample for each corresponding determined beam on-time for each of the plurality of radiation deliveries at each corresponding determined position or orientation of the product sample to provide a substantially uniform irradiation of the product sample and a substantially uniform radiation exposure delivered to the product sample to provide a substantial dose profile uniformity in the irradiated product sample.
Embodiments of methods including a controlled workflow to control a radiation amount to be delivered to a product sample desirably include on-time control and synchronization of radiation delivery with sample holder and reflector assembly movement. Embodiments of the controlled workflow to control a radiation amount to be delivered to a product sample can also include timer setting and irradiator and radiation dose data recording, data transfer or the radiation delivery through a network, and data printing and reporting of the radiation delivery.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
FIG. 1E1, FIG. 1E2, FIG. 1E3, FIG. 1E4 and FIG. 1E5 are schematic top view illustrations of an embodiment of an a irradiator apparatus or system illustrating an exemplary plurality of delivery positions or orientations, radiation deliveries at these positions or orientations and rotations or orientations of the product sample in relation to an X, Y and Z coordinate axis system to position or orient the product sample at a plurality of radiation positions or orientations for irradiation of the product sample to provide a substantially uniform dose distribution throughout the volume or the product sample, according to the present invention.
Unless otherwise indicated, similar reference characters denote corresponding features consistently throughout the attached drawings.
The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses and/or systems described herein. Accordingly, various changes, modifications, and equivalents of the systems, apparatuses, and/or methods described herein will likely suggest themselves to those of ordinary skilled in the art. Also, descriptions of well-known functions and constructions are omitted to increase clarity and conciseness.
In
The irradiator apparatus or system 100 desirably also includes a suitable controller/processor 15 that is communicatively associated with a suitable memory 16 for operation and control of the irradiator apparatus or system 100 and recording and monitoring of the radiation delivery process to the product sample 2, the controller/processor 15 and the suitable memory 16 can be powered by a suitable power source, such as the power source 9. The controller/processor 15 that is communicatively associated with the memory 16 can be associated with or a part of a network N for providing a controlled workflow for radiation delivery by embodiments of irradiator apparatus or systems, such as the irradiator apparatus or system 100. As illustrated in
The controller/processor 15, the memory 16, the internal and external network 18 including the data storage/memory 18a as can communicate with one or more controller/processors 18c through one or more suitable interfaces 18b for a controlled workflow for the radiation delivery by the irradiator apparatus or system 100, can represent, for example, a stand-alone computer, computer terminal, portable computing device, networked computer or computer terminal, or networked portable device, such as a cell phone, tablet, pad or other wireless communication device. Data and control information for the radiation delivery, monitoring and recording can be entered into the network N for radiation delivery by the irradiator apparatus or system 100 by a user or operator of the irradiator apparatus or system 100 or the associated network N via any suitable type of user interface 17, 18b, and can be stored in computer readable memories, such as the memory 16 and the data storage/memory 18a, which may be any suitable type of computer readable and programmable memory. Calculations, processing and analysis are performed by the controller/processor 15 or the controller/processor 18c or other processors of system components of the irradiator apparatus or system 100 and the associated network N, which can be any suitable type of computer processor, and can be displayed to the user on the interface display of the interface 17, 18b, either of which can be any suitable type of computer/processor or networked portable device, as can have a suitable display, for example.
The controller/processor components of the irradiator apparatus or system 100 and of the associated network N including the controller/processor 15, the controller/processor 18c and other controllers/processors of the network N can be associated with, or incorporated into, any suitable type of computing device, for example, a personal computer or a programmable logic controller (PLC) or an application specific integrated circuit (ASIC) as can include hardware, software and firmware for the radiation delivery, monitoring and recording process. The interface/display 17, 18b, the controller/processor components of the irradiator apparatus or system 100 as can include the associated network N, including the controller/processor 15, the controller/processor 18c, the memory 16 and the data storage/memory 18a of the network 18, and any associated computer readable media are in communication with one another by any suitable type of data bus or other wired or wireless communication, as is well known in the art.
Examples of computer readable media include a magnetic recording apparatus, non-transitory computer readable storage memory, an optical disk, a magneto-optical disk, and/or a semiconductor memory (for example, RAM, ROM, etc.). Examples of magnetic recording apparatus that may be used as or in addition to memory 16, the data storage/memory 18a and other data storage components of the irradiator apparatus or system 100 and the associated network N, include a hard disk device (HDD), a flexible disk (FD), and a magnetic tape (MT). Examples of the optical disk include a DVD (Digital Versatile Disc), a DVD-RAM, a CD-ROM (Compact Disc-Read Only Memory), and a CD-R (Recordable)/RW.
After a first of a plurality of irradiations of the product sample 2, such as illustrated in
Referring to
As illustrated in
Also, it is desirable that the described motor movement of the reflector assembly 3 through the shaft assembly 7 by the motor 14 and the described motor movement of the rotation device 5a associated with the sample holder 5 though the shaft assembly 6 by the motor 13 be implemented in an automated systems of the Network N, such as under control of the controller/processor 15, or other suitable automated control, for example, as such automated control can enhance the radiation throughput delivered to the product sample 2. However, manual movement of the rotation device 5a associated with the sample holder 5 though the shaft assembly 6 and manual movement of the reflector assembly 3 through the shaft assembly 7 can also be performed, either with or without the use of the motors 13 and 14, as can be desirable for certain uses or applications, and, therefore, the manner of movement of the reflector assembly 3 and the rotation device 5a associated with the sample holder 5 should not be construed in a limiting sense.
Referring to
Continuing with reference to
In the irradiation of the product sample 2 in a second radiation delivery position of
Referring to FIG. 1E1, FIG. 1E2, FIG. 1E3, FIG. 1E4 and FIG. 1E5 there are illustrated top views of schematic illustrations of an embodiment of an irradiator apparatus or system 100 illustrating a plurality of delivery positions or orientations of the product sample canister or container 2a including the product sample 2 and positioning or orienting the product sample canister or container 2a including the product sample 2 at corresponding positions or orientations for radiation delivery, with reference to an X, Y and Z coordinate axis system, to provide a substantially uniform dose distribution throughout the volume of the product sample 2.
Continuing with reference to FIG. 1E1, the product sample canister or container 2a including the product sample 2 in FIG. 1E1 is in a first position or orientation and radiation is delivered to the product sample 2 in this first position or orientation, such as described with reference to
FIG. 1E4 and FIG. 1E5 further illustrate that, depending on the use or application, the product sample canister or container 2a including the product sample 2, can be rotated or oriented in other axes or orientations, such as with reference to the X, Y and Z coordinate axis system, so as to be positioned or oriented in other suitable positions or orientations within the X, Y and Z coordinate axis system for radiation delivery. For example, FIG. 1E4 illustrates the product sample canister or container 2a including the product sample 2a being rotated or oriented with respect to the Y axis to another orientation or position for radiation delivery and the radiation being delivered to the product sample 2 in the another orientation or position, such as illustrated in FIG. 1E5, for example.
As is evident from FIGS. 1E1-1E5, in embodiments of the irradiator apparatus or system, such as irradiator apparatus or system 100, and in embodiments of methods of product sample irradiation, the product sample 2 can be irradiated after being rotated or oriented to any of various suitable positions or orientations for radiation delivery, such as various suitable rotations or orientations in reference to the X, Y and Z coordinate axis system by same or similar suitable mechanisms to those described, as can depend on the use or application, and should not be construed in a limiting sense. It is however desirable to rotate or orient the product sample canister or container 2a including the product sample 2 in or about the Z axis direction, with reference to the X, Y and Z coordinate axis system, which can facilitate a relatively more uniform dose distribution throughout the volume of the product sample 2, for example.
The reflector assembly 3 can include a metal holder 23 that attaches to the mobile reflector 22 and to a moving bearing of the shaft assembly 7 to ensure substantially full movement of the mobile reflector 22. Mobile reflector 22 when closed with the cradle 21 constitutes a closed hollow cylinder cover with walls having a suitable thickness, such as a one inch thickness or more, for example, to provide a relatively effective reflector assembly 3. The cradle 21 is rotated or oriented, such as by using a bearing mounted to the rotation device 5a driven by shaft assembly 6 and the motor 13. The rotation device 5a desirably can be a worm gear and worm. However, spur gears, miter gears, bevel gears, a chain and sprocket or direct drive could be used for or included in the rotation device 5a, for example, as can depend on the use or application, and should not be construed in a limiting sense.
Continuing with reference to
Also, it is desirable for the product sample canister or container 26 and the lid 27 to be secured to each other with a suitable locking mechanism or latches to keep product samples 2 in place during rotation or orientation of the product sample canister or container 26. Also, the product sample canister or container 26 can, in addition to having a generally cylindrical shape or configuration, can also have an oval or ellipsoidal shape or configuration, or other suitable configuration, and such latches can be designed to fit, for example, in a disc shape, to allow or facilitate relatively easy sliding of the product sample canister or container 26 into the cradle 21a and to be surrounded by the mobile reflector 22a of reflector assembly 3a. The product sample canister or container 26 can hold liquid specimens or bags of liquids such as blood products, or live laboratory animals such as mice, or biological samples such as tissue or bone, etc. as the product sample 2, for example. Also, what constitutes the product sample 2 can be any of various suitable product samples, as can be various materials, liquids, objects, compositions, organisms, etc., as can depend on the use or application, and should not be construed in a limiting sense. One application, among others, is use of embodiments of irradiator apparatus and systems, such as the irradiator apparatus or system 100, to irradiate blood for the prevention of Transfusion Associated Graft-Versus-Host Disease (TA-GvHD), for example.
In
In
The material used for reflector assemblies 3, 3a, 3b and 3c can be formed of any of various suitable materials, desirably a sintered graphite, manufactured as cylindrical rods, and machined for various desirable shapes or configurations, such as those described in
In the irradiator apparatus or system 100, unwanted and residual radiation scattering from the irradiated material and reflector assembly, such as the reflector assemblies 3, 3a, 3b and 3c, can be substantially stopped and absorbed using lead protective sheets or shielding in surrounding relation to the irradiator apparatus or system 100, appropriate to the X-ray energy used. Desirably, the shielding material typically has a 1 inch range thickness or other suitable range of thickness, and is attached to the X-ray irradiator apparatus or system outer walls or in the reflector assembly vicinity, or both, and such shielding can facilitate providing protection from radiation to users of the irradiator apparatus or system, such as the irradiator apparatus or system. 100. Also, the irradiator apparatus or system design, such as described herein in relation to the irradiator apparatus or system 100, facilitates providing a self-contained compact irradiator design, construction and configuration, such an in comparison to a two X-ray source irradiator, for example.
Also,
In embodiments of filters, such as the filter 33 of
In embodiments of filters, such as the filters 30, 32 and 33, for use with irradiator apparatus and systems, such as the irradiator apparatus and system 100, various other suitable combinations of filter thicknesses, such as typically up to 400 microns, can provide a relatively practical beam filtration, as well as can facilitate providing desirable dose rates and desirable dose distributions throughout the product sample, such as the product sample 2. Various suitable materials, such as copper or aluminum, and various suitable compositions, thicknesses, shapes, configurations and profiles for embodiments of radiation filters can be used, as can depend on the use or application, and should not be construed n a limiting sense.
In
The x-axis in the graph of
Also, the filter 33 could be manufactured using two thin sheets of copper of different areas and thicknesses that can be bonded each other using glue (bonding polymers or metallic glue, etc.). For example a step filter, such as the step filter 33, can be formed of a 50 micron ( 1/1000 inch) thick copper disk, 3 cm in radius, centered on the x-ray beam, bonded to a full sheet of 80 micron ( 3/1000 inch) thick copper, with the center of the filter being a 5/1000 inch thick sheet of copper with the edges of the filter remaining a 3/1000 inch thick sheet of copper, for example. Also, for relatively precise filter manufacturing of the step filter, various processes can be used in forming the step shape filter, such as chemical etching or sputtering with proper masking can be desirable using a single sheet of material such as copper, to achieve the step shape of the filter, for example. Also, as described, other suitable materials, such as Aluminum, Tungsten, and other metals, for example, can be used optimally in single or combined material sheets in forming the filter, such as the step shape filter 33, to shape the radiation beam to facilitate creating an optimal or desirable lateral beam distribution, such as that shown in the graph of
Before discussing embodiments of an exemplary process flow diagram of methods for irradiation a product sample of
In
In
After a first of a plurality of irradiations of the product sample 2, such as illustrated in
Similar to that described in relation to
Also, it is desirable that the described motor movement of the reflector assembly 603 through the shaft assembly 607 by the motor 614 and the described motor movement of the rotation device 605a associated with the sample holder 605 though the shaft assembly 606 by the motor 613 be implemented in an automated system of the Network N, such as under control of a controller/processor 615, or other suitable automated control, for example, as such automated control can enhance the radiation throughput delivered to the product sample 602. However, manual movement of the rotation device 605a associated with the sample holder 605 though the shaft assembly 606 and manual movement of the second part or portion 622 of the reflector assembly 603 through the shaft assembly 607 can also be performed, either with or without the use of the motors 613 and 614, as can be desirable for certain uses or applications, and, therefore, the manner of movement of the reflector assembly 603 and the rotation device 605a associated with the sample holder 605 should not be construed in a limiting sense.
Similar to that described with reference to
The radiation beam generated by the single radiation source 601, such as the X-ray beam 8, is applied to the product sample 602 from the back or rear side 612 allowing back irradiation of the product sample 602. The X-ray tube 601 is now facing the back or rear side 612 of the product sample canister or container 602a and the product sample 602 to deliver radiation to the product sample 602 to irradiate the product sample 602, the radiation passing though the radiation filter 630, such as the X-ray filter 30, 32, 33. The reflector assembly 603 reflects X-rays providing the radiation in the beam, such as the X-ray beam 8, delivered by the single radiation source 601, filtered by the radiation filter 630, such as the X-ray filter 30, 32, 33, to the product sample 602 back to the product sample 602. The sample holder 605 associated with the reflector assembly 603 is configured to hold the product sample canister or container 602a that receives the product sample 602 to be irradiated and the product sample 602.
In the irradiation of the product sample 602 in a second radiation delivery position or orientation, such as illustrated in
In embodiments of the irradiator apparatus or system 600, as described, the reflector assembly 603 can be formed in two parts, with the first part or portion 621, such as a cradle 621, attached to a turntable assembly forming the sample holder 605, and the second part or portion 622, a mobile reflector 622, of the reflector assembly 603 configured to selectively slide laterally away from and toward the cradle 621 driven by the shaft assembly 607 associated with the lead screw assembly 668 on the linear rail carriage 664 positioned in sliding relation on the pair of linear rails 666, controlled and driven by the motor 614 in a linear motion, to allow space for rotation or orientation of the product sample 602. Shaft assembly 607 can desirably have screw indents and slides precisely and desirably using the stepper motor 614 and suitable bearings as known in the art on a linear guide, with a limit switch detect, such as a limit switch 660 to detect the product sample container 602a or a limit switch 662 to detect a syringe or similar configured product sample container, to ensure that a correct or acceptable distance or position of the opening and closing of the second part or portion 622 is achieved or facilitated for the second part or portion mobile reflector 622.
The reflector assembly 603 can include a metal holder 623 that attaches to the mobile reflector 622 and to a moving bearing of the shaft assembly 607 associated with the lead screw arrangement 668 to ensure substantially full movement of the mobile reflector 622. Mobile reflector 622 when closed with the cradle 621 constitutes a closed hollow cylinder cover with walls having a suitable thickness, such as a one inch thickness or more, for example, to provide a relatively effective reflector assembly 603. The cradle 621 is rotated or oriented, such as by using a bearing mounted to the rotation device 605a driven by the shaft assembly 606 and the motor 613. The rotation device 605a desirably can be a worm gear and worm. However, spur gears, miter gears, bevel gears, a chain and sprocket or direct drive could be used for or included in the rotation device 605a, for example, as can depend on the use or application, and should not be construed in a limiting sense.
Similar to embodiments of the irradiator apparatus or system 100 of
Also, the product sample canister or container 626 can also have other types of product samples 602 placed inside the product sample canister or container 626, such as by removing the lid 627 and then placing the product sample canister or container 626 in association with the sample holder 605, for example. Also, the mobile reflector 622 of the reflector assembly 603 can have a corresponding aperture 622a that aligns with the aperture 626a, when included in the product sample canister or container 626a, when the mobile reflector 622 is moved to a position aligned with the cradle 621, for example. Also, the mobile reflector 603 can be configured similar to the mobile reflector 22 of the reflector assembly 3 and the cradle 621 can be constructed similar to the cradle 21, similar to that illustrated in
Also, it is desirable for the product sample canister or container 626 and the lid 627 to be secured to each other with a suitable locking mechanism 627a, such as latches or a latch mechanism 627a, to keep product samples 602 in place during rotation or orientation of the product sample canister or container 626. Also, the product sample canister or container 626 can, in addition to having a generally cylindrical shape or configuration, can also have an oval or ellipsoidal shape or configuration, or other suitable configuration, and such latches 627a can be designed to fit, for example, in a disc shape, to allow or facilitate relatively easy sliding of the product sample canister or container 626 into the cradle 621 and to be surrounded by the mobile reflector 622 of reflector assembly 603. The product sample canister or container 626 can hold liquid specimens or bags of liquids such as blood products, or live laboratory animals such as mice, or biological samples such as tissue or bone, etc. as the product sample 602, for example. Also, what constitutes the product sample 602 can be any of various suitable samples, as can be various materials, liquids, objects, compositions, organisms, etc., as can depend on the use or application, and should not be construed in a limiting sense. One application, among others, is use of embodiments of irradiator apparatus and systems, such as the irradiator apparatus or system 600, to irradiate blood for the prevention of Transfusion Associated Graft-Versus-Host Disease (TA-GvHD), for example.
The irradiator apparatus or system 600 desirably also includes a suitable controller/processor 615 that is communicatively associated with a suitable memory 616 for operation and control of the irradiator apparatus or system 600 and recording and monitoring of the radiation delivery process to the product sample 602, the controller/processor 615 and the suitable memory 616 can be powered by a suitable power source, such as the power source 609. The controller/processor 615 that is communicatively associated with the memory 616 can be associated with or a part of the network N for providing a controlled workflow for radiation delivery by embodiments of irradiator apparatus or systems, such as the irradiator apparatus or system 600. As illustrated in
The controller/processor 615, the memory 616, the internal/external network 618 including the data storage/memory 618a as can communicate with one or more controller/processors 618c through one or more suitable interfaces 618b for a controlled workflow for the radiation delivery by the irradiator apparatus or system 600, can represent, for example, a stand-alone computer, computer terminal, portable computing device, networked computer or computer terminal, or networked portable device, such as a cell phone, tablet, pad or other wireless communication device. Data and control information for the radiation delivery, monitoring and recording can be entered into the network N for radiation delivery by the irradiator apparatus or system 600 by a user or operator of the irradiator apparatus or system 600 or the associated network N via any suitable type of user interface 617, 618b, and can be stored in computer readable memories, such as the memory 616, 618a, which may be any suitable type of computer readable and programmable memory. Calculations, processing and analysis are performed by the controller/processor 615, 618c, or other processors of system components of the irradiator apparatus or system 600 and the associated network N, which can be any suitable type of computer processor, and can be displayed to the user on the interface display of the interface 617, 618b, either of which can be any suitable type of computer/processor or networked portable device, as can have a suitable display, for example.
The controller/processor components of the irradiator apparatus or system 600 and of the associated network N including the controller/processor 615, 618c, and other controllers/processors of the network N can be associated with, or incorporated into, any suitable type of computing device, for example, a personal computer or a programmable logic controller (PLC) or an application specific integrated circuit (ASIC) as can include hardware, software and firmware for the radiation delivery, monitoring and recording process. The interface/display 617, 618b, the controller/processor components of the irradiator apparatus or system 600 as can include the associated network N, including the controller/processor 615, the memory 616 and the data storage/memory 618a and the controller/processor 618c of the network 618, and any associated computer readable media are in communication with one another by any suitable type of data bus or other wired or wireless communication, as is well known in the art.
Examples of computer readable media include a magnetic recording apparatus, non-transitory computer readable storage memory, an optical disk, a magneto-optical disk, and/or a semiconductor memory (for example, RAM, ROM, etc.). Examples of magnetic recording apparatus that may be used as or in addition to memory 616, the data storage/memory 618a and other data storage components of the irradiator apparatus or system 600 and the associated network N, include a hard disk device (HDD), a flexible disk (FD), and a magnetic tape (MT). Examples of the optical disk include a DVD (Digital Versatile Disc), a DVD-RAM, a CD-ROM (Compact Disc-Read Only Memory), and a CD-R (Recordable)/RW.
Referring now to
Referring now to
The process 500 then proceeds to step 504 of placing the product sample 2, 602 into an irradiation canister or container, such as the product sample canister or container 2a, 602a, 626. The process 500 then proceeds to step 506 of placing the product sample canister or container 2a, 602a, 626 including the product sample 2, 602 into the sample holder 5, 605, as can be associated with the reflector assembly 3, 603 inside an irradiation chamber (the interior of the irradiator apparatus or system 100, 600) of the irradiator apparatus or system 100, 600, such as by opening the sliding door or cover of the irradiator apparatus or system 100, 600, and positioning the product sample canister or container 2a, 602a, 626 including the product sample 2, 602 in association with the sample holder 5, 605. The process 500 then proceeds to step 508 of closing the sliding door or cover of the irradiation chamber of the irradiator apparatus or system 100, 600 and automatically moving, such as under control of the controller/processor 15, 18c, 615, 618c, a movable reflector 22, 622 of the reflector assembly 3, 603 to fully surround the product sample canister or container 2a, 602a, 626 including the product sample 2, 602, such as by moving the second part or portion 22, 622 of the reflector assembly 3, 603 toward the first part or portion 21, 621 of the reflector assembly 3, 603 that is in communication with the product sample canister or container 2a, 602a, 626 including the product sample 2, 602.
The process 500 then proceeds to step 510 of verifying, such as under control of the controller/processor 15, 18c, 615, 618c, the presence of the product sample canister or container 2a, 602a, 626 including the product sample 2, 602 in the sample holder 5, 605, as can be associated with the reflector assembly 3, 603 inside an irradiation chamber (the interior of the irradiator apparatus or system 100, 600) of the irradiator apparatus or system 100, 600, such as by the limit switches 660, 662 and then turning on the X-ray tube or source 1, 601, such as under control of the controller/processor 15, 18c, 615, 618c, to generate radiation to irradiate the product sample 2, 602.
The process 500 then proceeds to step 512 of irradiating the product sample 2, 602, such as under control of the controller/processor 15, 18c, 615, 618c, for a predetermined time, such as for a half set time of a total irradiation time, by the generated radiation that has passed through the filter 30, 32, 33, 630, and then through the front side 11, 611 of the product sample canister or container 2a, 602a, 626 including the product sample 2, 602.
The process 500 then proceeds to step 514 of automatically turning off the radiation source 1, 601, such as the X-ray tube 1, 601, and automatically sliding of the second part or portion 22, 622 of the reflector assembly 3, 603 away from the first part or portion 21, 621 of the reflector assembly 3, 603 that is in communication with the product sample canister or container 2a, 602a, 626 including the product sample 2, 602 until the limit switches 660, 662 detect the second part or portion 22, 622 of the reflector assembly 3, 603 is positioned away from the first part or portion 21, 621 of the reflector assembly 3, 603 and away from the product sample canister or container 2a, 602a, 626 including the product sample 2, 602.
The process 500 then proceeds to step 516 of automatically rotating or orienting by the rotation device 5a, 605a, such as under control of the controller/processor 15, 18c, 615, 618c, the sample holder 5, 605 to selectively rotate, flip or orient the product sample canister or container 2a, 602a, 626 and the product sample 2, 602 by one hundred eighty (180) degrees from the front side 11, 611 position or orientation of the product sample canister or container 2, 602a, 626 including the product sample 2, 602 to the rear side 12, 612 position or orientation of the product sample canister or container 2a, 602a, 626 including the product sample 2, 602 so that the rear side 12, 612 of product sample container 2a, 602a, 626 including the product sample 2, 602 is now positioned in facing relation to the radiation beam, such as the radiation beam 8, generated by the single radiation source 1, 601, for example.
The process 500 then proceeds to step 518 of automatically sliding of the second part or portion 22, 622 of the reflector assembly 3, 603 again toward the first part or portion 21, 621 of the reflector assembly 3, 603 that is in communication with the product sample canister or container 2a, 602a, 626 including the product sample 2, 602 until the limit switches 660, 662 detect the second part or portion 22, 622 of the reflector assembly 3, 603 is in a position over or in communication with the first part or portion 21, 621 of the reflector assembly 3, 603 and over or in surrounding relation to the product sample canister or container 2a, 602a, 626 including the product sample 2, 602, such as under control of the controller/processor 15, 18c, 615, 618c, for example.
The process 500 then proceeds to step 520 of again automatically continuing irradiating the product sample 2, 602, such as under control of the controller/processor 15, 18c, 615, 618c, for a predetermined another time, such as for a remaining half set time of a total irradiation time, by the generated radiation that has passed through the filter 30, 32, 33, 630, and then through the rear side 12, 612 of the product sample canister or container 2a, 602a, 626 including the product sample 2, 602, for example.
The process 500 then proceeds to step 522 of automatically turning off the radiation source 1, 601, such as the X-ray tube 1, 601, and automatically sliding of the second part or portion 22, 622 of the reflector assembly 3, 603 away from the first part or portion 21, 621 of the reflector assembly 3, 603 that is in communication with the product sample canister or container 2a, 602a, 626 including the product sample 2, 602 until the limit switches 660, 662 detect the second part or portion 22, 622 of the reflector assembly 3, 603 is positioned away from the first part or portion 21, 621 of the reflector assembly 3, 603 and away from the product sample canister or container 2a, 602a, 626 including the product sample 2, 602, such as under control of the controller/processor 15, 18c, 615, 618c, for example.
The process 500 then proceeds to step 524 of opening the sliding door or cover of the irradiation chamber of the irradiator apparatus or system 100, 600, such as can be under control of the controller/processor 15, 18c, 615, 618c, and removing the product sample canister or container 2a, 602a, 626 including the now irradiated product sample 2, 602 from the irradiator chamber of and from the irradiator apparatus or system 100, 600, for example.
The process can then desirably proceed to step 526 of displaying or providing, such as under control of the controller/processor 15, 18c, 615, 618c, the final machine session parameters, such as can be stored in the memory 16, 18a, 616, 618a, for the radiation delivery, such as being displayed or provided on a control console screen, such as on the interface 17, 18b, 617, 618b, such parameters as can include confirmation of successful completion of the irradiation, the irradiation set time, the actual irradiation time and the radiation beam or X-ray beam parameters as set during opening of the irradiation session for irradiation the product sample 2, 602 by the irradiator apparatus or system 100, 600, for example.
The process can then also desirably proceed to step 528 of logging the session parameters in an internal data base of the irradiator apparatus or system 100, 600 or of the network N, such as can be provided by the memory 16, 18a, 616, 618a under control of the controller/processor 15, 18c, 615, 618c, and such parameters can also desirably be one or more of printed, such as by a printer, and transferred through the network N to a remote LIMS (Laboratory Information Management System), for example, such as thorough the interface 17, 18b, 617, 618b, to suitable data storage, such as stored in the memory 16, 18a, 616, 618a, under control of the controller/processor 15, 18c, 615, 618c, for later review, record-keeping and analysis, for example. Also, in step 528, the irradiation session parameters can be optionally printed so as to provide a printout of the irradiation session parameters on a label to be attached to the irradiated product sample 2, 602 or its product sample canister or container 2a, 602a, 626, for example. The process 500 then proceeds to step 530 to end the irradiation cycle and can then selectively return to step 502 for a new product sample irradiation session.
Embodiments of the described irradiator apparatus and systems, such as irradiator apparatuses and systems 100 and 600, can be desirable and advantageous in their use of a single radiation source, such as an X-ray tube. Such irradiator apparatuses and systems by using a single radiation source, such as a single X-ray tube for radiation delivery for irradiation of the product sample, can desirably have a relatively more compact design and relatively increased portability for use in smaller rooms, as compared to known two X-ray source irradiators, such as a Raycell MK2 model irradiator, which includes two X-ray tubes for delivery of radiation to a product sample, for example.
Also, embodiments of the described irradiator apparatus and systems, such as the irradiator apparatuses and systems 100 and 600, can desirably simplify cooling system requirements for the irradiator apparatus or system, such as in relation to external cooling using a continuous water supply or an external refrigeration system, for example. Also, by using only a single radiation source, such as a single X-ray tube, for irradiation of the product sample, embodiments of the irradiator apparatuses and systems, such as the irradiator apparatuses and systems 100 and 600, desirably can consume relatively less power and can use a relatively small and efficient integrated cooling system, such as a closed loop liquid circulating system with or without air ventilation to facilitate achieving the required cooling and heat transfer to operate the single irradiation source, such as a single X-ray tube, at relatively high power and at room temperature, for example.
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
This application claims priority under 35 U.S.C. § 119 to U.S. Provisional Patent Application No. 62/569,450, filed on Oct. 6, 2017, hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6212255 | Kirk | Apr 2001 | B1 |
6389099 | Gueorguiev | May 2002 | B1 |
6452200 | Kotler | Sep 2002 | B1 |
6614876 | Kirk | Sep 2003 | B1 |
7346147 | Kirk et al. | Mar 2008 | B2 |
7515686 | Kirk | Apr 2009 | B2 |
20040264647 | Graf et al. | Dec 2004 | A1 |
20120140230 | Miller | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1336973 | Aug 2003 | EP |
2412388 | Feb 2012 | EP |
Entry |
---|
Best Theratronics, product overview, blood & research irradiators—Raycell Mk1, Best Theratronics, Ltd., 2008-2018, 2 pages. |
Best Theratronics, product overview, blood & research irradiators—Raycell Mk2, Best Theratronics, Ltd., 2008-2018, 2 pages. |
Best Theratronics, Raycell Mk1 X-ray Blood Irradiator, Best Theratronics, Ltd., 2017-2018, 2 pages. |
Best Theratronics, Raycell Mk2 X-ray Blood Irradiator, 2.0 L or 3.5 L Canisters, Best Theratronics, Ltd., 2011, 6 pages. |
RS 3400 X-ray Blood Irradiator, Rad Source, 2017, 5 pages. |
The RS 3400 X-Ray Blood Irradiator, Rad Source, 2017, 2 pages. |
RS 3400 X-ray Blood Irradiator, Rad Source, 2018, 7 pages. |
International Search Report and Written Opinion of the International Searching Authority, PCT International Application No. PCT/CA2018/051238, Dec. 21, 2018, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190108925 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
62569450 | Oct 2017 | US |