a. Field of the Invention
The instant invention relates to ablation electrodes and/or electrode assemblies. The present invention further relates to ablation electrodes and/or assemblies having a mechanism for irrigating targeted areas. The present invention further relates to irrigated ablation electrodes and/or assemblies that allow for a parallel irrigation flow path through the use of polygonal shaped electrodes.
b. Background Art
Electrophysiology catheters have been used for an ever-growing number of procedures. For example, catheters have been used for diagnostic, therapeutic, and ablative procedures, to name just a few examples. Typically, a catheter is manipulated through the patient's vasculature and to the intended site, for example, a site within the patient's heart, and carries one or more electrodes, which may be used for ablation, diagnosis, or other treatments.
There are a number of methods used for ablation of desired areas, including for example, radiofrequency (RF) ablation. RF ablation is accomplished by transmission of radiofrequency energy to a desired target area through an electrode assembly to ablate tissue at the target site. Because RF ablation may generate significant heat, which if not controlled can result in excessive tissue damage, such as steam pop, tissue charring, and the like, it is desirable to include a mechanism to irrigate the target area and the device with biocompatible fluids, such as saline solution. The use of irrigated ablation catheters can also prevent the formation of soft thrombus and/or blood coagulation.
Typically, there are two classes of irrigated electrode catheters, open and closed irrigation catheters. Closed ablation catheters usually circulate a cooling fluid within the inner cavity of the electrode. Open ablation catheters typically deliver the cooling fluid through open outlets or openings on the surface of the electrode. Open ablation catheters use the inner cavity of the electrode, or distal member, as a manifold to distribute saline solution, or other irrigation fluids known to those skilled in the art, to one or more passageways that lead to openings/outlets provided on the surface of the electrode. The saline thus flows directly through the outlets of the passageways onto the distal electrode member. This direct flow of fluid through the electrode tip lowers the temperature of the tip during operation, rendering accurate monitoring and control of the ablative process more difficult. Accordingly, it is desirable to have a method that allows for cooling of the electrode while having accurate monitoring and control of the ablative process.
The irrigation of electrodes, especially those of longer length (i.e., for example, over 3 mm), have an increased likelihood of developing thrombus caused by protein aggregation and blood coagulation, due to angled irrigation flow away from the electrode tip. Moreover, as the length of the electrode increases, the angled fluid passageways provided by an electrode assembly, are less effective since the fluid is directed away from the electrode instead of along the body of the electrode to effectively cool the electrode and adequately irrigate in order to prevent the development of thrombus. Overall, open flush irrigated ablation catheters may improve the safety of RF catheter ablation by preventing protein aggregation and blood coagulation.
The present invention relates to ablation electrode assemblies. The present invention further relates to an irrigated ablation electrode assembly that includes a substantially polygonal shaped electrode. It is desirable to have an irrigated ablation catheter which aids in providing parallel irrigation fluid flow along the body of the electrode in order to cool the electrode tip effectively. Moreover, the positioning of the irrigation/fluid passageways allows fluid to flow in close proximity to the electrode body.
The present invention relates to an irrigated ablation electrode assembly. The electrode assembly includes a proximal member having an outer body portion including an outer distal end surface and an inner cavity within the outer body portion. The proximal member of the electrode assembly further includes at least one passageway for fluid. The passageway extends from the inner cavity of the proximal member to the outer distal end surface of the proximal member. The electrode assembly further includes a distal member. The distal member is defined by a substantially polygonal shaped body. The polygonal shaped body of the distal member is defined by a longitudinal axis and a radial substantially polygonal cross-section. Irrigation fluid flows from the inner cavity of the proximal member through the passageway and out an orifice provided on the outer distal end surface of the proximal member. The fluid that exits out of the passageways flows substantially parallel to the body of the distal member, therein improving or optimizing the irrigation of the substantially polygonal shaped electrode.
The present invention further relates to an ablation catheter system including an irrigated ablation electrode assembly connected to a catheter shaft, therein forming an irrigated catheter assembly connected to an energy source and a fluid source.
The foregoing and other aspects, features, details, utilities, and advantages of the present invention will be apparent from reading the following description and claims, and from reviewing the accompanying drawings.
In general, the instant invention relates to irrigated ablation electrode assemblies and to methods of using the irrigated ablation electrode assemblies in connection with catheter assemblies. For purposes of this description, similar aspects among the various embodiments described herein will be referred to by the same reference number. As will be appreciated, however, the structure of the various aspects may be different among the various embodiments.
As generally shown in the embodiment illustrated in
In accordance with an embodiment,
Electrode assembly 10 is generally defined by a proximal member 16 and a distal member 18. Proximal member 16 may also be referred to as a “proximal portion.” Similarly, distal member 18 may also be referred to as a “distal portion.” For some embodiments, electrode assembly 10 may be designed and configured to comprise a single unitary electrode assembly 10 that includes a proximal portion and a distal portion. In other embodiments, electrode assembly may comprise a multi-component electrode assembly 10 having separately-formed proximal and distal portions.
As shown in
Proximal member 16 is generally comprised of a thermally nonconductive or reduced thermally conductive material that serves to insulate the fluid from the remaining portions of electrode assembly 10, in particular, for example, distal member 18. Moreover, proximal member 16 may comprise an electrically nonconductive material. Proximal member 16 is lower in thermal conductivity than distal member 18. In an embodiment, proximal member 16 is made from a reduced thermally conductive polymer. A reduced thermally conductive material is one with physical attributes that decrease heat transfer by about 10% or more, provided that the remaining structural components are selected with the appropriate characteristics and sensitivities to maintain adequate monitoring and control of the process. One reduced thermally conductive material may include polyether ether ketone (“PEEK”). Further examples of reduced thermally conductive materials useful in conjunction with the present invention include, but are not limited to, HDPE, polyimides, polyaryletherketones, polyetheretherketones, polyurethane, polypropylene, oriented polypropylene, polyethylene, crystallized polyethylene terephthalate, polyethylene terephthalate, polyester, polyetherimide, acetyl, ceramics, and various combinations thereof.
Although not shown, proximal member 16 may be configured to receive a fluid delivery tube carried within catheter assembly 12. Moreover, proximal member 16 may include a plurality of passageways 26. Proximal member 16, also referred to as a manifold, distributes fluid throughout and along the outer surface of electrode assembly 10, through the use of passageways 26. In particular, passageways 26 extend from inner cavity 24 axially toward the outer distal end surface 22 of proximal member 16. In an embodiment, passageways 26 may be parallel to the respective outer distal end surfaces 22 of proximal member 16. In an embodiment, passageways 26 may be angled towards outer distal end surface 22 of proximal member 16. More specifically, passageways 26 are either straight or curved towards outer distal end surface 22 of proximal member 16. In an embodiment, a plurality of passageways 26 are substantially equally distributed around proximal member 16 to provide substantially equal distribution of fluid to the targeted tissue area and/or the outside of electrode assembly 10. Proximal member 16 may be configured to provide a single, annular passageway 26, or a number of individual passageways 26 equally distributed around the proximal member 16. Moreover, the passageways 26 may be generally tubular and may have a constant diameter along the length of the passageway. As shown in various Figures, passageways 26 may be substantially oval-shaped, therein providing a substantially oval cross-section and exit orifice. The oval-shaped passageways 26 may increase the flow of fluid surrounding distal member 18 as compared to circular passageways of a smaller cross-section. Alternate configurations of passageways having various diameters along all or portions of the length of the passageways may be used.
As shown in
As shown in
Distal member 18 is generally comprised of any electrically, and potentially thermally, conductive material known to those of ordinary skill in the art for delivery of ablative energy to target tissue areas. Examples of electrically conductive material include gold, platinum, iridium, palladium, stainless steel, and any mixtures thereof. In particular, a combination of platinum and iridium may be used in various combinations.
As seen in
Distal member 18 may be further provided with a cavity 36 for receiving a thermal sensor (not shown). Additional components, such as a power wire, a sensing wire or other types of components may be provided within distal member 18 or throughout electrode assembly 10 to enhance the overall performance and function of electrode assembly 10.
As shown in
Alternate configurations of distal member 18, in particular substantially polygonal shaped body 28, may be provided, such as shown, for example, in
As shown in
Although a number of embodiments of this invention have been described above with a certain degree of particularity, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. Other embodiments and uses of the devices and method of the present invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed therein.
All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Joinder references (e.g., attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5056517 | Fenici | Oct 1991 | A |
5230349 | Langberg | Jul 1993 | A |
5334193 | Nardella | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5423811 | Imran et al. | Jun 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5545161 | Imran | Aug 1996 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5792140 | Tu et al. | Aug 1998 | A |
5843152 | Tu et al. | Dec 1998 | A |
5893884 | Tu | Apr 1999 | A |
5913856 | Chia et al. | Jun 1999 | A |
5919188 | Shearon et al. | Jul 1999 | A |
6015407 | Rieb et al. | Jan 2000 | A |
6017338 | Brucker et al. | Jan 2000 | A |
6120476 | Fung et al. | Sep 2000 | A |
6171275 | Webster, Jr. | Jan 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6602242 | Fung et al. | Aug 2003 | B1 |
6611699 | Messing | Aug 2003 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6942661 | Swanson | Sep 2005 | B2 |
7166105 | Mulier et al. | Jan 2007 | B2 |
7331957 | Woloszko et al. | Feb 2008 | B2 |
7628788 | Datta | Dec 2009 | B2 |
7815635 | Wittkampf et al. | Oct 2010 | B2 |
20020198520 | Coen et al. | Dec 2002 | A1 |
20050177151 | Coen et al. | Aug 2005 | A1 |
20070156131 | Datta | Jul 2007 | A1 |
20100152727 | Gibson et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
2005048858 | Jun 2005 | WO |
2005112814 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090163912 A1 | Jun 2009 | US |