Underground irrigation piping has been in use since about the 1940s to deliver water to arid areas or reduce the effects of droughts and heat waves. Most commonly, underground irrigation pipes deliver water below ground from a well, reservoir, or other water source to one or more sprinklers located in a field. The installation of irrigation pipes has become more frequent with changes in climate reducing available ground water in many parts of the world, including the West and Midwest of the United States. Further, as the world's population increases, the use of irrigation pipes has extended farming to relatively dry areas to deliver water for crops and livestock.
Since about the 1950s, irrigation pipes have been made from polyvinyl chloride (“PVC”). The use of PVC enables irrigation pipe to be flexible during installation while maintaining strength to endure over time with minimal water leakage. While PVC is the most prevalent material, some current irrigation pipes are made from other types of polymers or plastics. Irrigation pipes may be connected together through a number of different methods. For instance, some pipes are configured to be glued together. In other instances, some pipes (i.e., gasketed PVC pipes) are configured to be connected together via an elastomeric radial seal. The gasketed PVC pipes generally require fewer assembly steps and tools (e.g., glue is not applied) compared to pipes that are glued together. Further, the use of the gasket (elastomeric radial seal) is more forgiving regarding installation because pipes may be adjusted after being connected together. In comparison, pipes glued together cannot be easily adjusted because the glue sets relatively quickly. Further gaskets enable pipes to bend at greater angles without compromising the seal between the pipes.
Just as irrigation pipes have been available for about 70 years, the methods for installing or laying the pipe in the ground have been in use for almost the same amount of time. Most installations involve a group of workers tasked with manually connecting the pipes together in a trench. First, a trench digging machine (e.g., a trench excavator) or workers dig a trench in the ground. The workers then place the pipe in the trench and serially connect the pipe together. For example, the workers start at one end, often at the water source and work downstream connecting the pipes together. Each downstream pipe is connected to an open end of an upstream pipe until all of the irrigation pipes have been connected. With gasketed pipe, to make the actual connection, one worker generally holds the upstream pipe in place while one or more workers slide a spigot end of the downstream pipe into a bell end of the upstream pipe, often using a crowbar or pick axe to provide leverage. The bell end of the upstream pipe is inserted up to a line or mark on the spigot end of the downstream pipe. This can be a grueling labor intensive process since each pipe may weigh 20 to 100 pounds, with typically hundreds of pipes needing to be connected per day of a project.
A frequent issue with the connection of gasketed irrigation pipes is that the spigot end 108 may occasionally become over-inserted or under-inserted into the bell mouth 110. Over-inserting causes the spigot end 108 to extend deeper into the bell mouth 110 past a connection point, thereby increasing stress in the connection, particularly during thermal cycling or ground movement. The increased stress at the connection may cause the pipe to crack at the joint, which enables water to leak from the connection. Under-inserting irrigation pipes leads to gaps forming between the bell end 104 of the upstream pipe 102 and the spigot end 108 of the downstream pipe. Under-inserting irrigation pipes also increases the chances of the pipe ends 104 and 108 breaking apart. In either scenario, a great deal of water may be lost from a single misaligned or broken pipe joint. It should be noted that since the pipes are typically buried several feet under the ground after installation, locating a source of a leak, which may not occur until long after installation, is difficult and expensive.
A significant reason for over-inserted or under-inserted irrigation pipes is the manual labor involved in connecting the pipes. For instance, workers often connect the pipe in trenches, where there is not much room to maneuver. A typical trench is only slightly wider than the pipe it carries. Further, the pipe installation often occurs outdoors in hot and arid climates, which increases worker fatigue and the loss of concentration and focus. Additionally, with glued pipe, the adhesive used to bond or seal the connection is fast-setting, which is designed to prevent already connected downstream pipes from becoming over-inserted from the stress of connecting an upstream pipe. However, the fast-setting nature of the adhesive provides only one opportunity for the workers to make a proper connection. Otherwise an improperly set joint has to be cut apart and then a new pipe inserted. With gasketed pipe, to fix an improper connection, the workers have to use a great deal of force to separate the connected pipes. As one can appreciate, fixing an improper connection wastes time, energy, and ultimately money. For these reasons, workers generally disregard improper connections unless the over-insertion or under-insertion is severe.
To provide workers assistance making a proper connection, some irrigation pipe manufacturers apply a visual indicator 112 to the spigot end 108 of the pipe. In
The visual indicator 112 may reduce the occurrences of over-insertion and under-insertion, however, it does not entirely eliminate the issue. The visual indicator 112 does not physically prevent over-insertion or under-insertion. Additionally, workers may disregard the visual indicator 112.
As an alternative to manual labor, some companies offer machines to connect and install irrigation pipe. For example, one known company offers a backhoe shovel attachment that is configured to grip irrigation pipe. While this machine is able to move the pipe with relative ease, it is a relatively slow process to properly position the backhoe arm to connect the downstream pipe 106 to the upstream pipe 102. Further, the operator has relatively little feedback (other than visual confirmation) regarding whether the pipes are over-inserted or under-inserted, even with use of the visual indicator 112. Moreover, the use of the backhoe arm attachment may connect the pipes with such force that causes further upstream pipe connections to break or become over-inserted.
Other known machines are configured to enable workers (or mechanical equipment) to connect irrigation pipe above a trench. These machines then allow the connected pipe to be lowed into the trench as the machines move downstream. However, as shown in the diagram 200 of
SUMMARY
The present disclosure provides a new and innovative irrigation pipe laying machine that solves at least some of the issues discussed above by including functionality to automatically and consistently make a proper connection between an upstream pipe and a downstream pipe with minimal effort by workers. The example pipe laying machine disclosed herein includes a rail that guides and gradually lowers irrigation pipe into a trench. This gradually lowering of the pipe along the rail prevents the pipe from bending at unacceptably large angles, thereby preserving the integrity of the joint. The pipe laying machine also includes a clamp configured to grasp an upstream pipe at a bell mouth of a bell end. The pipe laying machine further includes a plunger configured to push an open bell end of a downstream pipe causing the spigot end of the same downstream pipe to connect with the clamped bell end of the upstream pipe. The example plunger is configured to operate in conjunction with the clamp such that the upstream pipe is held in place on the rail while the plunger inserts the downstream pipe into the bell end of the upstream pipe.
After a connection has been made, the clamp is opened, the plunger is reset, and the pipe laying machine moves downstream causing the connected pipe to be gradually lowered into the trench via the rail. After the pipe laying machine has moved approximately the length of an irrigation pipe, another downstream pipe is loaded onto the rail and the process is repeated to connect the next downstream pipe to the newly connected upstream pipe (i.e., the previously connected downstream pipe. The disclosed pipe laying machine accordingly operates as a conveyor system that continuously connects and lowers irrigation pipe into a trench.
In an example embodiment, an example pipe laying machine includes a platform including a first end and a second end, the platform being configured to move relative to the ground. The pipe laying machine also includes a clamp located adjacent to the first end of the platform and configured to grip a portion of a bell end of an upstream pipe to prevent the upstream pipe from moving, a spigot end of the upstream pipe being connected to a second upstream pipe. The pipe laying machine further includes a plunger located adjacent to the second end of the platform and configured to push against a face of a bell end of a downstream pipe causing a spigot end of the downstream pipe to connect to the bell end of the upstream pipe. The example plunger is configured to push against the face at the bell end of the downstream pipe when the clamp grips the portion of the bell end of the upstream pipe.
In another example embodiment, a method of laying pipe includes moving a platform to a first position adjacent to a trench, the platform including a first end and a second end, the first position corresponding to a location where a clamp is adjacent to a portion of a bell end of an upstream pipe. The method also includes closing the clamp on the portion of the bell end of the upstream pipe to prevent movement of the upstream pipe. Conditioned on closing the clamp, the method includes moving a plunger from an initial position to push against an end face at a bell end of a downstream pipe causing a spigot end of the downstream pipe to connect to the bell end of the upstream pipe. After making the connection, the method further includes opening the clamp, returning the plunger to the initial position, and moving the platform to a second position downstream from the first position adjacent to the trench causing the connected upstream pipe and the downstream pipe to remain stationary relative to the ground while being lowered into the trench.
Additional features and advantages of the disclosed system, method, and apparatus are described in, and will be apparent from, the following Detailed Description and the Figures.
The present disclosure relates in general to a method and apparatus for laying irrigation pipe. The example method and apparatus use a conveyor system to connect irrigation pipe above ground on a platform that is aligned with a trench. The pipe is connected on a rail that extends from the platform into trench. The example method and apparatus use a clamp to hold an upstream pipe while using a plunger to push or otherwise connect a downstream pipe with the clamped upstream pipe. After making a connection, the example method and apparatus disclosed herein move the platform and rail downstream along the trench causing the stationary upstream and downstream pipe to be gradually lowered into the trench.
The example rail used by the method and apparatus disclosed herein reduces an angle at which the irrigation pipes bend while being inserted into the ground. The reduced angle of the irrigation pipe prevents a joint breaking or otherwise becoming misaligned, resulting in water leakage. Further, the use of the clamp in conjunction with the plunger provides an automated pipe connection mechanism that consistently and quickly makes proper connections between upstream and downstream pipes with minimal effort required by workers. The consistent pipe connections reduces (or eliminates) the number of connection fixes that occur. Further, the relatively low effort required by the workers enables the process to continue for long periods of time, thereby enabling significant amounts of irrigation pipe to be laid during a day. Moreover, the relatively automated process enables pipe to be connected faster (e.g., 15 to 40 seconds), thereby increasing productivity and reducing installation costs.
The example pipe laying machine of the example method and apparatus is configured to connect irrigation pipe ranging in diameter from 6 inches to 27 inches. It should be appreciated that the method and apparatus may also be used (with some modification) for irrigation pipe with a diameter that is less than 6 inches or greater than 27 inches. The spacing of castors, wheels, or rollers (e.g., sliders) on the rail may be adjusted based on the diameter of the pipe being used. The pipe laying machine may use pipe of varying lengths from a few feet to twenty or thirty feet in length. In some instances, different pipe magazines may be used based on the length of the pipe. Further, as disclosed herein, the irrigation pipe is made from PVC. In other embodiments, the irrigation pipe may be made from other materials such as polymers, plastic, rubber, metal, etc. Further, while reference is made specifically to irrigation pipe, the example pipe laying machine may be used to connect and lay pipes for other uses below or above ground. For example, the pipe laying machine may be used for laying utility pipe, pipes for transporting oil or natural gas, and/or pipes for shielding wires.
As discussed above, each pipe has two ends, a bell end and a spigot end. The bell end (e.g., the bell end 104 of the upstream pipe 102 of
It should be appreciated that the example method and apparatus disclosed herein may also connect pipes having different shaped ends or other connection mechanisms. For example, the example method and apparatus may connect pipes secured together via joint sections, pipes connected via ring clamps, or pipes glued/welded together. Further, while the example method and apparatus are disclosed as pushing a spigot end of a downstream pipe into a bell end of an upstream pipe, in other embodiments, the example method and apparatus may push a bell end of a downstream pipe onto a spigot end of an upstream pipe.
Reference is made herein to upstream and downstream pipe. As discussed herein, upstream pipe refers to an irrigation pipe that has been connected to a chain of other irrigation pipes. An upstream pipe may be located on a rail of the pipe laying machine and/or within a trench. Also, as discussed herein downstream pipe refers to irrigation pipe that has yet to be connected or is in the process of being connected to an upstream pipe. The downstream pipe may be located on a rail during connection to an upstream pipe. The downstream pipe may also be located in a magazine on a pipe laying machine in queue to be connected.
In this embodiment, the trench 310 is formed by a trench digging machine or excavator prior to the platform 302 beginning to connect and lay irrigation pipe. The trench 310 is dimensioned based on a size of a shovel used to dig the trench 310. Generally, the trench 310 is just large enough to accommodate the irrigation pipe. In some embodiments, the platform 302 may be connected to a trench digging machine and/or be integrated with the functionality to dig the trench 310 while connecting and laying irrigation pipe.
The example platform 302 of
The example platform 302 of
The example rail 316 includes a first section 316a (e.g., a first end) that is connected or integrated with the platform 302, a second section 316b connected to the first section 316a, a third section connected to the second section 316b, and a fourth section 316d (e.g., a second end) connected to the third section 316c. The second section of the rail 316b through the fourth section of the rail 316d is disposed within the trench 310. The end of the fourth section 316d may be connected to a skid plate 317 to reduce friction with the trench. The example rail 316 is configured with respect to the platform 302 to be aligned with the trench 310. The rail 316 is inclined at an angle to enable the irrigation pipe 318 to be gradually lowered into the trench 310 as the platform 302 moves relative to the ground 308. The slope angle 319 of the rail 316 is set so as to reduce stress of the irrigation pipe 318 (and especially the stress experienced by the pipe joints 320 while being lowered in to the trench 310) to an acceptable level, as determined by the pipe manufacturer.
The slope angle 319 shown in
As shown in
The example platform 302 of
It should be appreciated that the irrigation pipe 318 does not move laterally along the trench 310. The movement of the platform 302 and the rail 316 relative to the ground 308 causes the stationary irrigation pipe 318 to be gradually lowered into the trench 310. For instance, as the platform 302 moves to the second position 324 (downstream), the rail 316 also moves downstream. The irrigation pipe 318a is aligned with, for example, the first section of the rail 316a when the platform 302 is at the first position 322 and aligned with the second section of the rail 316b when the platform is at the second position 324. At the second position the irrigation pipe 318a is closer to a bottom of the trench 310. As the platform 302 and the rail 316 move further downstream, the irrigation pipe 318a drops lower into the trench 310 until it is completely separate from the rail 316. At this point, the irrigation pipe 318a rests on a floor, base, or bottom of the trench 310.
To prevent the irrigation pipe 318 from moving while the platform 302 moves, the example rail sections 316a to 316d are configured to include castors 330 (e.g., wheels, rollers, sliders, bowtie rollers, etc.) to enable the irrigation pipe 318 to remain stationary with respect to the moving platform 302. As shown in
The castors 330, as shown in more detail in
Regarding rail connectivity,
The connector members 329a and 329b may be joined together by aligning a center hole of each of the connector members 329a and 329b and placing a pivot pin within the aligned holes. Such a configuration enables the fourth section of the rail 316d to pivot laterally with respect to the third section of the rail 316c. This lateral pivoting may compensate in instances when the platform 302 is misaligned with the trench 310. The use of the pivot pin also enables the section of the rail 316c and 316d to be easily disconnected. For example, at the end of a run, the rail 316d may be disconnected from the rail 316c by removing the pivot pin. The rail sections 316a, 316b, and 316c may then be moved to the next trench and connected to an awaiting rail section with skid plate. In other instances, the use of the pivot pin enables the fourth rail section 316d to be disconnected at the end of a run, lifted out of the trench 310, and reattached to the rail portion 316c above the trench 310 before the platform 302 is moved to the next trench.
Returning to
In addition to supporting the rail 316, the magazine 328, the compressor 332, and the pneumatic controller 334, the example platform 302 is also configured to provide a work area. For instance, the first end 304 of the platform 302 may include enough space to enable workers to cut pipe (e.g., remove a bell end of a pipe to accommodate a fitting) and/or install fittings such as Tees, elbows, reducers, etc. typical for an irrigation system. The fittings may be connected to the upstream irrigation pipe 318b via the clamp 326 and/or plunger 336 and gradually lowered into the trench 310 via the rail 316. Alternatively, the fittings may be glued to the upstream pipe 318b.
The controller 502 is configured to open/close the clamp 326 and to engage/disengage the plunger 336. As discussed herein, opening the clamp 326 refers to causing the clamp 326 to move away and release a grip on the irrigation pipe 318. Closing the clamp 326 refers to moving the clamp 326 toward and gripping the irrigation pipe 318. Further, as discussed herein, engaging the plunger 336 refers to moving the plunger 336 from a first end 504 of a track 505 to a second end 506 of the track 505 causing the downstream pipe 318a to connect to the upstream pipe 318b. Disengaging the plunger 336 refers to moving the plunger 336 from the second end 506 of the track 505 to the first end 504 of the track 505 to enable another downstream pipe to be placed on the rail 316 (as shown in
As discussed in more detail below, the controller 502 is configured to control the opening/closing of the clamp 326. For example, after connecting the downstream pipe 318a to the upstream pipe 318b, the controller 502 is configured to open the clamp 326, as shown in
Each of the first and second clamps 602 and 604 includes a respective clamp face 606a and 606b configured to grip the irrigation pipe 318. The clamp face 606 is shaped to accommodate the exterior surface of the irrigation pipe 318. In some examples, an interior portion of the clamp face 606 may be smooth (e.g., include a smooth rubber material) to enable the irrigation pipe 318 to move through the clamp 326 until the clamp 326 contacts an edge of a bell mouth of the irrigation pipe 318. Alternatively, the interior portion of the clamp face 606 may include small spikes (or serrated teeth) to provide an improved grip on the irrigation pipe 318. It should be appreciated that the spikes grip the PVC exterior of the irrigation pipe 318 and/or pierce a surface of the irrigation pipe 318 without penetrating or cracking the pipe. The small spikes may provide additional leverage or grip when the irrigation pipe 318 is wet, dirty, or otherwise slippery.
The first and second clamps 602 and 604 also include respective clamp arms 608a and 608b connected to clamp actuators 610a and 610b. The example clamp arm 608 is configured to move the clamp face 606 to and away from the irrigation pipe 318. The arm 608 may be removable to enable different sized clamp faces to be attached to the pipe laying machine 301 based on a diameter of the irrigation pipe 318. The example clamp actuator 610 is configured to rotate the clamp arm 608, thereby moving the clamp face 606 into an opened or closed position. The clamp actuator 610 may be pneumatically controlled, via the pneumatic controller 334.
The example clamp 326 may be closed by the controller 502 when the tractor 314 is stopped and the clamp face 606 is aligned with an edge 702 of a bell mouth 704 of a bell end 706 of the irrigation pipe 318, as shown in
After the tractor 314 is stopped, the controller 502 is configured to close the clamp 326. As shown in
After the clamp 326 is closed, the controller 502 is configured to actuate the plunger 336. In some instances, the controller 502 of
The example plunger 336 includes a plunger face 804 configured to contact a face of an end (e.g., a bell end) of a downstream pipe. The plunger face 804 is dimensioned to engage substantially the entire circumference of the pipe end face to evenly apply pressure to the irrigation pipe 318. The plunger face 804 may be replaced with a larger or smaller face depending, for example, on a diameter of the irrigation pipe 318.
The example plunger 336 is controlled via the pneumatic controller 334 and/or the controller 502. For instance, to place the plunger 336 against a bell end of a downstream pipe, an operator may depress a plunger control button (e.g., a pusher foot valve), which causes the controller 502 to instruct the pneumatic controller 334 to apply fluid pressure to a plunger controller 806. The example plunger controller 806 amplifies the applied pressure within pneumatic lines 808, causing the plunger 336 to move upstream along the track 505. The controller 502 continues to cause the plunger 336 to move until an operator sees that the pipe is inserted up to the visual indicator 112 and accordingly releases the button. The plunger 336 may also stop moving when it reaches the second end 506 of the track 505 (or stopper 802a).
The example track 505 may also include a spring (not shown) that returns the plunger 336 to the first end 504 when the pneumatic pressure is removed. For example, an operator may release the plunger control button, which causes the controller 502 to stop the pneumatic controller 534 from applying pressure to the pneumatic lines 808. The pneumatic controller 534 may also cause the plunger controller 806 to bleed the pneumatic lines 808, further reducing pressure. The spring pushes the plunger 336 to the first end 504 after the pressure within the pneumatic lines 808 is reduced. Alternatively, the plunger controller 806 may apply pneumatic pressure to the second end 506 of the track 505 while bleeding pressure applied at the first end 504 to cause the plunger 336 to return to the first end 504.
It should be appreciated that the pipe laying machine 301 shown in
As discussed, the use of the rail 316 in conjunction with the plunger 336 and the clamp 326 provides a conveyor system for connecting and laying irrigation pipe with consistent and proper joint alignment. Generally, it takes about 15 to 20 seconds to i) close the clamp 326, ii) apply adhesive/lubricant (if needed), iii) move the plunger 336 to connect a downstream pipe to an upstream pipe, and iv) open the clamp 326. Further, it takes about 20 to 30 seconds to move the pipe laying machine 301 to the next downstream position and load the next downstream pipe onto the rail 316. Accordingly, the example pipe laying machine 301 may connect and lay approximately 70 pipes an hour or 700 pipes during the course of a ten hour work day. In other words, the example pipe laying machine enables about 14,000 feet (i.e., 2.6 miles) of irrigation pipe (assuming irrigation pipe with a 20 foot length) to be connected and laid per day.
As shown in
Each of the halves 1202 and 1204 of
During use, the joint clamp 1200 is initially separated into the two joint clamp halves 1202 and 1204. As shown in
As shown in
In some embodiments, the joint clamp 1200 may include a connector 1212, which is connected via a chain or rope to the platform 302. The connector 1212 enables the joint clamp 1200 to be returned to the platform 302 after being removed from a joint. An operator (or mechanical reel) may pull the chain or rope back toward the platform 302 causing the joint clamp 1200 to be pulled up from the trench 310 onto the platform 302. In some embodiments, the chain or rope may include a pneumatic pressure line. In these embodiments, an operator may remotely disconnect the joint clamp 1200 from a joint and cause the joint clamp 1200 to be reeled back to the platform 302. It should be appreciated that multiple joint clamps 1200 may be used (as shown in
The example pipe laying machine 301 of
In other embodiments, the controller 502 may be in communication with a brake system on the undercarriage 312 of the platform 302 or the tractor 314. The controller 502 may cause the brakes to be applied when (or immediately before) the clamp 326 contacts a bell mouth of the upstream pipe. The controller 502 may also cause one or more lights to illuminate within a driver compartment of the tractor 314 to indicate whether the clamp 326 is closed.
In some instances, the controller 502 may operate in conjunction with a vision system and/or other sensors to align the clamp 326 with a bell mouth of an upstream pipe. For example, the controller 502 may begin applying the brake to the platform 302 (and/or cause the tractor 314 to disengage from a drivetrain) when the clamp 326 is close to the bell mouth. This configuration enables an operator to drive the platform 302 while enabling the controller 502 to determine the precise location to stop. In yet alternative embodiments, the clamp 326 may be moveable along a portion of the rail 316 to enable an operator to make adjustments so the clamp 326 closes at the proper location on the bell mouth of the upstream pipe. In some instances, the controller 502 may cause the clamp 326 to move along the rail 316 to the proper position.
The example pipe laying machine 301 of
Moreover, as discussed, the magazine 328 may be configured to output downstream pipes when the plunger 336 is in the retracted or disengaged position. The controller 502 may cause the joint clamp half 1202 to be connected to the downstream pipe. The controller 502 may also cause the inside of the bell end of the upstream pipe and the outside of the spigot end of the downstream pipe to be cleaned. The controller 502 may also cause lubricant and adhesive (when necessary) to be applied to the outside of the spigot end of the downstream pipe.
Additionally, the controller 502 may be connected to a vision system that senses when a bell mouth of a bell end of an irrigation pipe is aligned with the clamp 336. Conditioned on aligning the clamp 336 with the bell mouth, the controller 502 may cause the tractor 314 (or otherwise the self-propelled platform 302) to stop, cause the clamp 326 to close, and cause the plunger 336 to push the spigot end of the downstream pipe into the bell end of the upstream pipe. The vision system may also determine when a leading edge of the bell mouth has reached a visual indicator on the downstream pipe. Responsive to making a connection (e.g., when the bell mouth of the upstream pipe reaches the visual indicator on the downstream pipe), the controller 502 may cause the clamp 328 to open, cause the joint clamp half 1204 to be closed on at the spigot end of the upstream pipe, cause the joint clamp halves 1202 and 1204 to be connected, and cause the plunger 336 to be returned to the first end 504 while causing the tractor 314 to move the platform 302 to the next position. The controller 502 may also be connected to sensors on the magazine 328 to sense when a supply of irrigation pipes is low and request additional pipes.
The example procedure 1400 of
However, conditioned on the clamp 326 being aligned, the clamp 326 is closed on the bell end of the upstream pipe (block 1406). During this time that the clamp 326 is closed, a downstream pipe is loaded onto the rail 316 (block 1408). The joint clamp half 1202 of
After the upstream and downstream pipes have been prepared for connecting, the plunger 336 is engaged to push the downstream pipe toward the upstream pipe such that the spigot end of the downstream pipe is inserted into the bell mouth of the upstream pipe (block 1414). A check is performed to determine if a leading edge of the bell mouth is adjacent to or otherwise aligned with the visual indicator on the spigot end of the downstream pipe (block 1416). Conditioned on the bell mouth not being aligned, the plunger 336 continues to push the downstream pipe until there is an alignment of the bell mouth and the visual indicator (block 1414). Alternatively, the plunger 336 may push the downstream pipe into the upstream pipe until the bell mouth of the upstream pipe contacts the joint clamp half 1302 on the downstream pipe. In some of these alternative instances, a force sensor or vision system may detect when the bell mouth of the upstream pipe contacts (or becomes adjacent to) the joint clamp half 1202 on the downstream pipe.
However, conditioned on the bell mouth being aligned with the visual indicator on the downstream pipe, the plunger 336 is stopped and the clamp 326 is opened (block 1418). The joint clamp half 1204 is closed on the bell end of the upstream pipe (block 1420). The two joint clamp halves 1202 and 1204 are then connected together (block 1422). Further, the plunger 336 is disengaged and returned to the first end 504 of the track 505 of
It should be understood that various changes and modifications to the example embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.