The present invention relates generally to an irrigation solenoid valve switch assembly operable on a mesh network. More so, the present invention relates to a valve switch assembly that uses a mesh network to transmit commands that control the timing and amount of water discharged through a solenoid valve in multiple agricultural zones.
The following background information may present examples of specific aspects of the prior art (e.g., without limitation, approaches, facts, or common wisdom) that, while expected to be helpful to further educate the reader as to additional aspects of the prior art, is not to be construed as limiting the present invention, or any embodiments thereof, to anything stated or implied therein or inferred thereupon.
Often, In the field of crop irrigation, there is a natural need for automated software tools and applications that may assist an owner in site operation, proper irrigation of a site for proper delivery of nutrients or pesticides to plants, and accurate crop data collection. For example, it may be desirable to have access to an automated interactive system which could be used to optimize or update an irrigation schedule in real time based on data collected from a crop, metrological conditions, soil conditions, and type of crops being irrigated.
Irrigation systems supply water to soil. They are primarily used to assist in the growing of agricultural crops and maintenance of landscapes. Irrigation systems typically include valves, controllers, pipes, and emitters such as sprinklers or drip tapes. Irrigation systems are usually divided into zones based on the spatial resolution of the detection system, and irrigation is performed on that zone based on reflection from all the crop plants within that zone. Each zone may have a solenoid valve controlled via irrigation controller opening or closing irrigation zones. The irrigation controller may be a mechanical or electrical device signaling a zone to turn start irrigating a section of crop for a specific amount of time, or until it is turned off manually.
In many instances, command systems for commercial building and residential automation functions are available using a range of technologies. Among numerous technologies currently in use are X10®, Z-Wave® and Zigbee® technologies. Z-Wave technology is supported by a consortium of users and product developers, who have promulgated a set of Z-Wave communication standards that available through Zensys and the Z-Wave Alliance.
It is known in the art that Z-Wave is based on a mesh network topology. This means each (non-battery) device installed in the network becomes a signal repeater. Z-Wave is a wireless home automation protocol that operates in the 908.42 MHz frequency band. One of the features of Z-Wave is that it utilizes a type of network known as a “mesh network,” which means that one Z-Wave device will pass a data frame along to another Z-Wave device in the network until the data frame reaches a destination device. As a result, Z-Wave signals easily travel through most walls, floors and ceilings, the devices can also intelligently route themselves around obstacles to attain seamless, robust coverage.
Generally, Z-Wave has a range of 100 meters or 328 feet in open air, building materials reduce that range, it is recommended to have a Z-Wave device roughly every 30 feet, or closer for maximum efficiency. The Z-Wave signal can hop roughly 600 feet, and Z-Wave networks can be linked together for even larger deployments. Each Z-Wave network can support up to 232 Z-Wave devices provides the flexibility to add as many devices to the network.
Often, the Z-Wave network comprises a primary hub controller and at least one controllable device, known as a slave node, or more simply, a “node.” The controller establishes the Z-Wave network. The controller is the only device in a Z-Wave network that determines which Z-Wave nodes belong to the network. The primary hub controller is used to add or remove nodes from the network. The process of adding or removing nodes, also known as inclusion/exclusion, requires that the controller must be within direct radio frequency (RF) range of the node that is to be added or deleted from the network.
The user must interact with the controller and the device during this process. For example, to start the process, the controller and the device should be brought together in close physical proximity. Next, the controller is placed in an inclusion mode. Then the device is activated so that it will enroll in the Z-Wave network. After nodes are added to the network, the primary controller is responsible for determining communication routes to nodes, based on feedback from every node that the controller adds to the network. Additional nodes can be added at any time.
Other proposals have involved systems for controlling solenoid valves. The problem with these paging systems is that they do not utilize a flexible wireless communication system, such as Z-wave. Also, the hub controller cannot be controlled for powering on and restricting specific zones in the field. Even though the above cited systems for irrigating fields meet some of the needs of the market, a valve switch assembly that uses a mesh network to transmit commands that control the timing and amount of water discharged through a solenoid valve in multiple agricultural zones, is still desired.
Illustrative embodiments of the disclosure are generally directed to an irrigation solenoid valve switch assembly that is operable on a mesh network. The irrigation solenoid valve switch assembly uses a mesh network to transmit valve commands that control the timing and amount of water discharged through a solenoid valve in multiple agricultural zones.
In one embodiment, the irrigation solenoid valve switch assembly comprises a solenoid valve that is operable to regulate the flow of water. The irrigation solenoid valve switch assembly also comprises a clock that is operable to generate one or more valve command signals. The valve command signals are configured to control the timing and amount of water discharged through the solenoid valve.
In some embodiments, the irrigation solenoid valve switch assembly also comprises a hub controller that is operatively connected to the clock. The hub controller is configured to transmit the valve command signals over a mesh network. The irrigation solenoid valve switch assembly also comprises a switch that operatively connects to the solenoid valve. The switch is configured to receive the valve command signals. The switch is operable to control the solenoid valve in correspondence to the valve command signals. The switch has a rechargeable battery that feeds direct current (D/C) to the switch for operation of the solenoid valve.
In another aspect, the assembly further comprises multiple signal repeaters operable to carry the valve command signals across the mesh network.
In another aspect, the switch comprises a rechargeable battery.
In another aspect, the switch operates with direct current from the rechargeable battery.
In another aspect, the switch comprises a pair of wires configured to couple to corresponding wires for the solenoid valve.
In another aspect, the hub controller, or the switch, or both comprise an Internet Wi-Fi transceiver.
In another aspect, the solenoid valve comprises a water valve and a solenoid.
In another aspect, the water valve comprises an electrically controlled water valve.
In another aspect, the water valve is configured to open for discharging water, and close for restricting the discharge of water.
In another aspect, the assembly comprises multiple switches operable with multiple solenoid valves across multiple agricultural zones.
In another aspect, the signal repeaters are operatively disposed across the agricultural zones.
In another aspect, the hub controller comprises multiple channels corresponding to the agricultural zones.
In another aspect, the switch comprises a waterproof housing.
In another aspect, the switch has dimensions up to 6 inches in length, 3 inches in width, and 2 inches in thickness.
In another aspect, the mesh network includes at least one following networks: a Z-wave network, a Zigbee network, a packet radio network, a thread network, a Smash network, a SolarMESH project network, and a WiBACK wireless technology network.
One objective of the present invention is to create a more efficient irrigation system by regulating water discharge across multiple agricultural zones over a mesh network.
Another objective is to provide a switch that is universally operable with multiple types of solenoid valves.
Another objective is to minimize the charging requirements of the switch through use of a long-lasting battery.
Yet another objective is to use DC current, so as to negate the need for constant electrical power, as needed with an A/C power source.
Additional objectives are to provide a mesh network that operates the simple switch.
An exemplary objective is to position the signal repeaters strategically around multiple agricultural zones, so as to optimize the mesh network.
Additional objectives are to provide a strong signal, even with walls, fences, and barriers segregating the agricultural zones.
Yet another objective is to make the assembly portable over different types of agricultural and non-agricultural environments.
Yet another objective is to provide an inexpensive to manufacture irrigation solenoid valve switch assembly.
Other systems, devices, methods, features, and advantages will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims and drawings.
The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Like reference numerals refer to like parts throughout the various views of the drawings.
The following detailed description is merely exemplary in nature and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims. For purposes of description herein, the terms “upper,” “lower,” “left,” “rear,” “right,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
An irrigation solenoid valve switch assembly 100 operable on a mesh network is referenced in
The solenoid valves 108a-c regulate the flow of water through the different zones 116a-c in the field 114. Any combination of solenoid valves can be used with one, or multiple zones in the field. For example, one solenoid valve can be used in one zone; or one solenoid valve can regulate water discharge in multiple zones; or multiple solenoid valves can regulate water discharge in one zone. For example,
The assembly 100 is unique in utilizing a clock 102, or agricultural controller, that generates valve command signals 104 that control the timing and amount of water discharged through the solenoid valves 108a-c. Continuing with assembly 100, a hub controller 106 operatively connects to the clock 102. The hub controller 106 transmits the valve command signals 104 over the mesh network 200.
Multiple signal repeaters 112a-c are operatively disposed across the field to relay the valve command signals 104. Another unique feature is the use of multiple switches 110a-c, with each switch 110a, 110b, 110c correlating, or operatively connected to a solenoid valve. The switches 110a-c receive the valve command signals 104 from the hub controller 106, and convert the valve command signal into another signal or mechanical action to control a corresponding solenoid valve.
In this manner, the valve command signal 104 can control one or more of the solenoid valves in the different agricultural zones. Significantly, the switches 110a-c include a rechargeable battery 400 that feeds direct current (D/C) to the switch for operation of the solenoid valve. And as is inherent with a mesh network, multiple relay signal repeaters 112a, 112b, 112c carry the valve command signals 104 across the mesh network 200. In this manner, the assembly 100 enables selective discharge or restriction of water for each agricultural zone in a field.
Looking now at
In one non-limiting embodiment, the mesh network 200 is a Z-wave wireless communication protocol that comprises of low-energy radio waves to communicate between signal repeaters 112a, 112b, 112c, i.e., relay points, across the zones 116a-c. The Z-wave network can be controlled via the Internet with intercommunication between multiple relay points positioned throughout the agricultural zones.
As shown in schematic diagram of a mesh network 200, a Z-wave wireless communication protocol forms a Z-wave network 250. The Z-wave network 250 enables communications in the zones. It is known in the art that the Z-wave network 250 comprises a mesh network defined by low-energy radio waves. In some embodiments, the Z-wave network 250 includes a hub controller 104. The Z-wave network 250 comprises of a mesh network of low-energy radio waves to communicate between signal repeaters 112a-c, i.e., relay points, across the zones 116a-c.
The Z-wave network 250 can be controlled via the Internet with intercommunication between multiple relay points positioned throughout the zones. In some embodiments, the Z-wave network 250 may also include an Internet Wi-Fi transceiver. The Z-wave network 250 may also include multiple signal repeaters 112a-c that are operatively disposed across the zones. In other embodiments, the signal repeaters 112a-c are operatively disposed between tables and across walls in the zones.
Those skilled in the art will recognize that the numerous fences, trees, and hills in a field 114 require a mesh network to optimize communications between switches and solenoid valves in which infrastructure nodes, i.e., bridges, switches, and other infrastructure devices, connect directly, dynamically, and non-hierarchically. One exemplary mesh network is shown in a schematic diagram of the mesh network 200 (
In one embodiment of the mesh network 200, a portal server 210 communicates with Z-wave networking device 140 through lower layer Internet protocols, such as Transmission Control Protocol/Internet Protocol (TCP/IP) or User Datagram Protocol/Internet Protocol (UDP/IP). Z-wave networking device 240 conducts radio frequency (RF) communications with Z-wave networking devices 260-263. It should be noted that some devices 260-263 may be in direct communication with Z-wave networking device 240. As Z-wave network 250 is a mesh network, some devices 260-263 may communicate with Z-wave networking device 240 indirectly, through other devices 260-263.
Looking ahead to
In some embodiments, the assembly 100 also comprises a hub controller 106 that is operatively connected to the clock 102. This connection may be through an NFC cord 606, or possibly through wireless means. The hub controller 106 is configured to transmit the valve command signals 104 over a mesh network. In some embodiments, the hub controller 106 comprises an Internet Wi-Fi transceiver to transmit the valve command signals 104.
In other embodiments, the hub controller 106 also comprises a processor, which may be operable with an algorithm. The algorithm in the processor is configured to calculate the timing of water discharge, and predetermined needs for specific plants. The processor is also configured to calculate the proximate position of the solenoid valves relative to each other, so as to optimize discharge of water onto the fields, and across the agricultural zones. In some embodiments, an algorithm, which is operable in hub controller 106, acts to regulate communications between the clock and the solenoid valve.
Looking at
In some embodiments, the switch 110a comprises a waterproof housing 304. This can be useful in an agricultural environment where rain, pests, and irrigation flow can disperse moisture and contaminants into the switch 110a electrical components. In one non-limiting embodiment, the housing 304 has dimensions up to 6″ in length, 3″ in width, and 2″ in thickness—approximately the size of a smart phone. However, the assembly 100 is scalable, such that any dimensions, smaller or larger may also be used. The simplicity of the switch 110a allows it to be universally adapted to numerous types of solenoid valves.
Looking now at
In one possible, the solenoid valve comprises a water valve and a solenoid. The water valve is configured to open for discharging water, and close for restricting the discharge of water. The water valve may be an electrically controlled water valve. The solenoid can include a coil of wire used as an electromagnet that creates a magnetic field from the direct current from the battery. The generated magnetic field creates linear motion to move the water valve between the open and closed positions.
In one embodiment, shown in
In some embodiments, the hub controller 106 transmits the generated valve command signals 104 from the clock 102. In one embodiment, multiple signal repeaters 112a-c are operatively disposed across the zones 116a-c, so as to transmit the appropriate signal 104 to the correlating solenoid valve. In yet another embodiment, shown in
In one possible embodiment, the channels 600 can be integrated or disconnected to selectively enable the solenoid valve to discharge or restrict water for the corresponding agricultural zone. For example, a channel #3 can be turned off to restrict communications between the hub controller 106 and the switch 110c for the solenoid valve in zone #3. Or, channels 1-4 can be turned on to initiate communications between the hub controller and switches and solenoid valves in agricultural zones 1-4. The channel can be manually switched on or off to enable or disable communications. This may include opening and closing a circuit for a transreceiver 608 in the hub controller 106; whereby the circuit regulates the transreceiver 608.
The switch 110a has a controller, or clock 102, that transmits commands across a mesh network. The switch 110a is a small, thin device, about the size of a smart phone that is configured to couple to a pair of outlet wires extending out from a solenoid that operates a valve. The switch 110a has a waterproof housing, a transreceiver, and a battery. The transreceiver receives the command signals 104 from the controller for operation of the valve, through the solenoid.
Client 702 may communicate bi-directionally with local network 706 via a communication channel 716. Client 704 may communicate bi-directionally with local network 708 via a communication channel 718. Local network 706 may communicate bi-directionally with global network 710 via a communication channel 720. Local network 708 may communicate bi-directionally with global network 710 via a communication channel 722. Global network 710 may communicate bi-directionally with server 712 and server 714 via a communication channel 724. Server 712 and server 714 may communicate bi-directionally with each other via communication channel 724. Furthermore, clients 702, 704, local networks 706, 708, global network 710 and servers 712, 714 may each communicate bi-directionally with each other.
In one embodiment, global network 710 may operate as the Internet. It will be understood by those skilled in the art that communication system 700 may take many different forms. Non-limiting examples of forms for communication system 700 include local area networks (LANs), wide area networks (WANs), wired telephone networks, wireless networks, or any other network supporting data communication between respective entities.
Clients 702 and 704 may take many different forms. Non-limiting examples of clients 702 and 704 include personal computers, personal digital assistants (PDAs), cellular phones and smartphones. Client 702 includes a CPU 726, a pointing device 728, a keyboard 730, a microphone 732, a printer 734, a memory 736, a mass memory storage 738, a GUI 740, a video camera 742, an input/output interface 744 and a network interface 746.
CPU 726, pointing device 728, keyboard 730, microphone 732, printer 734, memory 736, mass memory storage 738, GUI 740, video camera 742, input/output interface 744 and network interface 746 may communicate in a unidirectional manner or a bi-directional manner with each other via a communication channel 748. Communication channel 748 may be configured as a single communication channel or a multiplicity of communication channels.
CPU 726 may be comprised of a single processor or multiple processors. CPU 726 may be of various types including micro-controllers (e.g., with embedded RAM/ROM) and microprocessors such as programmable devices (e.g., RISC or SISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general purpose microprocessors.
As is well known in the art, memory 736 is used typically to transfer data and instructions to CPU 726 in a bi-directional manner. Memory 736, as discussed previously, may include any suitable computer-readable media, intended for data storage, such as those described above excluding any wired or wireless transmissions unless specifically noted. Mass memory storage 738 may also be coupled bi-directionally to CPU 726 and provides additional data storage capacity and may include any of the computer-readable media described above. Mass memory storage 738 may be used to store programs, data and the like and is typically a secondary storage medium such as a hard disk. It will be appreciated that the information retained within mass memory storage 738, may, in appropriate cases, be incorporated in standard fashion as part of memory 736 as virtual memory.
CPU 726 may be coupled to GUI 740. GUI 740 enables a user to view the operation of computer operating system and software. CPU 726 may be coupled to pointing device 728. Non-limiting examples of pointing device 728 include computer mouse, trackball and touchpad. Pointing device 728 enables a user with the capability to maneuver a computer cursor about the viewing area of GUI 740 and select areas or features in the viewing area of GUI 740. CPU 726 may be coupled to keyboard 730. Keyboard 730 enables a user with the capability to input alphanumeric textual information to CPU 726. CPU 726 may be coupled to microphone 732. Microphone 732 enables audio produced by a user to be recorded, processed and communicated by CPU 726. CPU 726 may be connected to printer 734. Printer 734 enables a user with the capability to print information to a sheet of paper. CPU 726 may be connected to video camera 742. Video camera 742 enables video produced or captured by user to be recorded, processed and communicated by CPU 726.
CPU 726 may also be coupled to input/output interface 744 that connects to one or more input/output devices such as such as CD-ROM, video monitors, track balls, mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting recognizers, or other well-known input devices such as, of course, other computers.
Finally, CPU 726 optionally may be coupled to network interface 746 which enables communication with an external device such as a database or a computer or telecommunications or internet network using an external connection shown generally as communication channel 716, which may be implemented as a hardwired or wireless communications link using suitable conventional technologies. With such a connection, CPU 726 might receive information from the network, or might output information to a network in the course of performing the method steps described in the teachings of the present invention.
In conclusion, irrigation solenoid valve switch assembly 100 is operable on a mesh network. The assembly uses a mesh network to transmit valve command signals that control the timing and amount of water discharged through a solenoid valve in multiple agricultural zones. A solenoid valve regulates the flow of water. A clock, or agricultural controller, generates valve command signals that control the timing and amount of water discharged through the solenoid valve. A hub controller operatively connects to the clock. The hub controller transmits the valve command signals over the mesh network. A switch operatively connects to the solenoid valve. The switch receives the valve command signals to control the solenoid valve, in correspondence to the valve command signals. The switch has a rechargeable battery that feeds direct current to the switch for operation of the solenoid valve. Multiple relay signal repeaters carry the valve command signals across the mesh network.
These and other advantages of the invention will be further understood and appreciated by those skilled in the art by reference to the following written specification, claims and appended drawings.
Because many modifications, variations, and changes in detail can be made to the described preferred embodiments of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalence.