Irrigation spray nozzle and mold assembly and method of forming nozzle

Information

  • Patent Grant
  • 9314952
  • Patent Number
    9,314,952
  • Date Filed
    Thursday, March 14, 2013
    11 years ago
  • Date Issued
    Tuesday, April 19, 2016
    8 years ago
Abstract
A nozzle is provided having a low precipitation rate and uniform fluid distribution to a desired arcuate span of coverage. The nozzle has an inflow port having a shape corresponding to the desired arc of coverage and a size for effecting a low precipitation rate. The nozzle also has a deflector surface with a water distribution profile including ribs for subdividing the fluid into multiple sets of fluid streams. There are at least two fluid streams for distant and close-in irrigation to provide relatively uniform distribution and coverage. The nozzle may be a unitary, one-piece, molded nozzle body including a mounting portion, an inflow port, and a deflector portion. There is also provided a mold assembly and method for forming a unitary, one piece nozzle body.
Description
FIELD

This invention relates generally to irrigation spray nozzles and, more particularly, to an irrigation nozzle with a relatively low precipitation rate and uniform fluid distribution and a mold assembly and method of forming the nozzle.


BACKGROUND

Efficient irrigation is a design objective of many different types of irrigation devices. That objective has become increasingly important due to concerns and regulation at the federal, state and local levels of government regarding the efficient usage of water. Over time, irrigation devices have become more efficient at using water in response to these concerns and regulations. However, there is an ever-increasing need for efficiency as demand for water increases.


As typical irrigation sprinkler devices project streams or sprays of water from a central location, there is inherently a variance in the amount of water that is projected to areas around the location of the device. For example, there may be a greater amount of water deposited further from the device than closer to the device. This can be disadvantageous because it means that some of the area to be watered will be over watered and some of the area to be watered will receive the desired about of water or, conversely, some of the area to be watered will receive the desired amount of water and some will receive less than the desired about of water. In other words, the distribution of water from a single device is often not uniform.


Two factors contribute to efficient irrigation: (1) a relatively low precipitation rate to avoid the use of too much water; and (2) relatively uniform water distribution so that different parts of the terrain are not overwatered or underwatered. The precipitation rate generally refers to the amount of water used over time and is frequently measured in inches per hour. It is desirable to minimize the amount of water being distributed in combination with sufficiently and uniformly irrigating the entire terrain.


Some conventional nozzles use a number of components that are molded separately and are then assembled together. For example, U.S. Pat. No. 5,642,861 is an example of a fixed arc nozzle having a separately molded nozzle base for mounting the nozzle to a fluid source, base ring, and deflector for directing the fluid outwardly from the nozzle. Other nozzles are complex and have a relatively large number of parts. For example, U.S. Published Application No. 2009/0188991 discloses a nozzle that uses a number of inserts and plugs installed within ports. As an alternative, it would be desirable to have a nozzle having a simple one-piece, molded nozzle body that may reduce the costs of manufacture.


Accordingly, a need exists for a nozzle that provides efficient irrigation by combining a relatively low precipitation rate with uniform water distribution. Further, many conventional nozzles include a number of components, such as a nozzle base, nozzle collar, deflector, etc., which are often separately molded and are then assembled to form the nozzle. It would be desirable to reduce the cost and complexity of nozzles by reducing the number of separately molded components. It would be desirable to be able to form a one-piece, molded nozzle body that would avoid the need for separate component molds and the need for assembly after component molding.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a bottom perspective view of a first embodiment of a nozzle embodying features of the present invention;



FIG. 2 is a top perspective view of the nozzle of FIG. 1;



FIG. 3 is a cross-sectional view of the nozzle of FIG. 1;



FIG. 4 is a bottom plan view of the nozzle of FIG. 1;



FIG. 5 is a detailed perspective view of the ribs on the underside of the deflector portion of the nozzle of FIG. 1;



FIG. 6 is a top perspective view of a second embodiment of a nozzle embodying features of the present invention;



FIG. 7 is a bottom perspective view of the nozzle of FIG. 6;



FIG. 8 is a detailed perspective view of the ribs on the underside of the deflector portion of the nozzle of FIG. 6;



FIG. 9 is a perspective view of a third embodiment of a nozzle embodying features of the present invention;



FIG. 10 is a bottom plan view of the nozzle of FIG. 9;



FIG. 11 is an exploded view of the nozzle of FIG. 9;



FIG. 12 is a top plan view of the nozzle cap and base of FIG. 9;



FIG. 13 is a bottom plan view of the nozzle cap and base of FIG. 9;



FIG. 14 is a top perspective view of a fourth embodiment of a nozzle embodying features of the present invention;



FIG. 15 is a side elevational view of the nozzle of FIG. 14;



FIG. 16 is a bottom perspective view of the nozzle of FIG. 14;



FIG. 17 is a detailed perspective view of some of the ribs on the underside of the deflector portion of the nozzle of FIG. 14;



FIG. 18 is a top perspective view of a fifth embodiment of a nozzle embodying features of the present invention;



FIG. 19 is a bottom perspective view of the nozzle of FIG. 18;



FIG. 20 is a side elevational view of a sixth embodiment of a nozzle embodying features of the present invention;



FIG. 21 is a bottom plan view of the nozzle of FIG. 18;



FIG. 22 is a top perspective view of a seventh embodiment of a nozzle embodying features of the present invention;



FIG. 23 is a bottom perspective view of the nozzle of FIG. 22;



FIG. 24 is a side elevational view of a mold assembly embodying features of the present invention;



FIG. 25 is a cross-sectional view of the mold assembly of FIG. 24;



FIG. 26 is an exploded view of the cavity block and core units of the mold assembly of FIG. 24;



FIG. 27 is an enlarged perspective view of the top ends of the first, second, and third sleeves of the second core unit of the mold assembly of FIG. 24;



FIG. 28 is a bottom perspective view of the third core unit of the mold assembly of FIG. 24;



FIG. 29 is a bottom perspective view of the cavity block and first core unit of the mold assembly of FIG. 24; and



FIG. 30 is a top perspective view of the third core unit of the mold assembly of FIG. 24.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The exemplary drawings show a nozzle hat improves efficiency of irrigation by combining a relatively low precipitation rate with relatively uniform fluid distribution. The nozzle includes a small inflow port to allow a relatively small volume of water through the nozzle, i.e., to provide a low precipitation rate. The spray nozzle further includes a deflector with a profile including rib structures forming different types of flow channels that separate fluid into different streams in order to improve the overall water distribution, i.e., to provide relatively uniform fluid distribution. Many conventional irrigation nozzles have deflectors with a series of similarly shaped radial vanes that distribute one type of fluid spray. In contrast, the deflectors of the preferred embodiments have a series of ribs with structures disposed in the flow paths of the fluid resulting in different streams have different characteristics. The different sprays combine to provide a relatively uniform water distribution pattern.


One embodiment of a nozzle 100 is shown in FIGS. 1-5. In this form, the nozzle 100 generally comprises a compact unit, preferably made primarily of lightweight molded plastic, which is adapted for convenient thread-on mounting onto the upper end of a stationary or pop-up riser (not shown). The nozzle 100 preferably includes a one-piece nozzle body 102 and a flow throttling screw 104. In operation, fluid under pressure is delivered through the riser to the nozzle body 102. The fluid preferably passes through an inflow port 106 controlled by the throttling screw 104 that regulates the amount of fluid flow through the nozzle body 102. The nozzle 100 also preferably includes a filter (not shown) to screen out particulate matter upstream of the inflow port 106. Fluid is directed generally upwardly through the inflow port 106, along a generally conical transition surface 108, and then along ribs 110 formed in the underside surface of a deflector 112.


As can be seen, the nozzle body 102 is preferably generally cylindrical in shape. It includes a bottom mounting end 114 forming an inlet 115 and with internal threading 116 for mounting of the nozzle body 112 to corresponding external threading on an end of piping, such as a riser, supplying water. The nozzle body 102 also defines a central bore 118 to receive the flow throttling screw 104 to provide for adjustment of the inflow of water into the nozzle body 102. Threading may be provided at the central bore 118 to cooperate with threading on the screw 104 to enable movement of the screw 104. The nozzle body 102 also preferably includes a top deflecting end 120 defining the underside surface of the deflector 112 for deflecting fluid radially outward through a fixed, predetermined arcuate span. Further, the nozzle body 102 includes a recess 122 defined, in part, by a boundary wall 124 and with the conical transition surface 108 disposed within the recess 122.


As can be seen in FIG. 4, for the half-circle nozzle 100, the inflow port 106 is preferably generally semi-circular in cross-section. The semi-circular shape may be modified slightly to be more C-shaped to seek to improve fluid flow at the edges of the flow pattern. The inflow port 106 is preferably disposed in a plate 126 located downstream of the internal threading 116 and is preferably located adjacent the central bore 118 that receives the throttling screw 104. The nozzle body 102 may also include support ribs 128 connecting the central bore 118 to the outer cylindrical wall 130.


Although in this embodiment the threading is shown as internal threading 116, it should be evident that the threading may be external threading instead. Some risers or fluid source are equipped with internal threading at their upper end for the mounting of nozzles. In this instance, the nozzle may be formed with external threading for mounting to this internal threading of the riser or fluid source.


The radius of the inflow port 106 may be modified in different models to match the precipitation rate. In one preferred form, the radius is about 0.032 inches, which results in a low precipitation rate of that is less than 1 inch per hour, preferably about 0.9 inches per hour. The radius of the inflow port 106 is preferably increased to match this precipitation rate for nozzles intended to have a longer maximum throw radius. FIGS. 1-5 shows an embodiment intended to have a maximum throw radius of about 8 feet, and FIGS. 6-8 show another embodiment with a larger inflow port 206 and intended to have a maximum throw radius of about 15 feet. The radius of the 15-foot nozzle 200 is preferably about 0.057 inches to achieve the matched precipitation rate of about 0.9 inches per hour. As should be evident, the radiuses of inflow ports of other models having different throw radiuses would preferably be selected so as to match this precipitation rate.


Further, as addressed below, the shape of the inflow port may be modified to achieve different fixed arcuate spans. For example, the cross-section of the inflow port may be in the shape of a quarter-circle for quarter-circle (or 90 degree) irrigation, or two opposing semi-circular inflow ports may be used to achieve close to full circle (or 360 degree) irrigation. Alternatively, two inflow ports (one semi-circular in cross-section and the other quarter-circle in cross-section) may be used to achieve roughly three-quarters (or 270 degree) irrigation, or two inflow ports of approximately the same size may be formed to achieve this three-quarters irrigation. Again, these models with different arcuate spans would preferably have matched precipitation rates of about 0.9 inches per hour.


As can be seen in FIGS. 1-5, once fluid flows through the inflow port 106, it then flows along the conical transition surface 108 to a water distribution profile on the underside of the deflector 112. The transition surface 108 is intermediate of the port 106 and the profile, which includes a plurality of ribs 110, and guides flow directed through the port 106 to the flow channels defined by the ribs 110. The transition surface 108 is aligned with and expands smoothly outwardly in the direction of the plurality of ribs 110 and reduces energy loss experienced by fluid flowing from the port 106 to the flow channels. The transition surface 108 is generally conical in shape having a vertex 134 disposed near the port 106 expanding into smoothly curved sides 136 having increasing curvature in the direction of the deflector 112 and terminating in a base 132 near the plurality of ribs 110. For the half-circle nozzle 100, the conical transition surface 108 is preferably in the shape of an inverted half-cone with a generally semi-circular base 132 on the underside of the deflector 112 and a vertex 134 offset slightly from the boundary wall 124. The curved sides, or edge surface 136, of the conical transition surface 108 is preferably curved to smoothly guide upwardly directed fluid radially and outwardly away from the central axis of the nozzle body 102 to the ribbed deflector surface. The portion of the cone near the vertex 134 is preferably inclined closer to vertical with less curvature, and the portion of the cone near the base 132 preferably has greater curvature. Various different form of curvature may be used for the conical transition surface 108, including catenary and parabolic curvature. Also, as should be evident, the surface 108 need not be precisely conical.


The dimensions of the conical transition surface may be modified in different models to provide different flow characteristics. For example, the vertex may be located at different vertical positions along the boundary wall, the semi-circular base may be chosen with different diameters, and the curved edge surface may be chosen to provide different degrees of curvature. These dimensions are preferably chosen to provide a more abrupt transition for shorter maximum throw radiuses and a gentler transition for longer maximum throw radiuses. For instance, for the 8-foot nozzle 100 (in comparison to the 15-foot nozzle 200), the vertex 134 may be located higher along the boundary wall 124, the semi-circular base 132 may be smaller, and the curved edge surface 136 may have less curvature. Thus, for the 8-foot nozzle 100, the upwardly directed fluid strikes the underside surface of the deflector 112 more squarely, which dissipates more energy and results in a shorter maximum throw radius than the 15-foot nozzle 200.


Further, as with the inflow port, the shape of the conical transition surface may be modified to accommodate different fixed arcuate spans, as addressed further below. For example, the conical transition surface may be in the shape of an inverted quarter conical portion with a vertex and a quarter-circle base for quarter-circle (or 90 degree) irrigation. Alternatively, the nozzle body may include two inverted half-conical portions facing opposite one another to achieve close to full circle (or 360 degree) irrigation. Further, the nozzle body may include one inverted half-conical portion and one inverted quarter-conical portion facing opposite one another for three-quarters (or 270 degree) irrigation, or the nozzle body may include two conical portions of approximately the same size for this three-quarters irrigation.


As shown in FIGS. 1-5, the deflector 112 is generally semi-cylindrical, and in this form, the deflector 112 has a diameter of about 0.475 inches and a depth of about 0.074 inches (from the top of the deflector 112 to the start of the ribs 110). The deflector 112 has an underside surface that is contoured to deliver a plurality of fluid streams generally radially outwardly therefrom through a predetermined arcuate span. In the half-circle nozzle 100, the arcuate span is preferably about 180 degrees, although other predetermined arcuate spans are available. As shown in FIGS. 1-3 and 5, the underside surface of the deflector 112 preferably defines a water distribution profile that includes an array of ribs 110. The ribs 110 subdivide the water into multiple flow channels for a plurality of water streams that are distributed radially outwardly therefrom to surrounding terrain. As addressed further below, the ribs 110 include grooves (or notches) 138 therein, and successive ribs 110 are separated by grooves 140, to form flow channels that provide different trajectories with different elevations for the water streams. These different trajectories allow water distribution to terrain relatively close to the nozzle 100 and to terrain relatively different from the nozzle 100, thereby improving uniformity of water distribution.


In view of this deflector configuration, the nozzle 100 shown in FIGS. 1-5 is known as a multi-stream, multi-trajectory nozzle. As can be seen in FIG. 5, the deflector 112 is contoured to create flow channels for water streams having at least three different types of trajectories: (1) a distant trajectory with a relatively high elevation (A); (2) an intermediate trajectory with an intermediate elevation (B); and (3) a close-in trajectory with a relatively low elevation (C). These three different water trajectories allow coverage of terrain at different distances from the nozzle 100 and thereby provide relatively uniform coverage.


First, the ribs 110 are preferably separated by grooves 140 that allow one set of water streams to travel the most distant trajectory (A). More specifically, the grooves 140 extend into the underside surface of the deflector 112 such that water streams flow within these grooves 140 and are distributed the furthest from the nozzle 100. The grooves 140 slope upwardly as one proceeds radially outwardly from the conical transition surface 108 to the outer end of the groove 140. These grooves 140 may be cut to a desired depth within the underside surface to achieve a desired trajectory. For nozzle 100, in one form, the grooves 140 may have a depth of about 0.034 inches at their outer ends, which defines the outer height of ribs 110, and a groove width of about 0.013 inches. FIGS. 1-3 and 5 show that the grooves 140 of nozzle 100 are preferably rectangular in cross-section.


The grooves can be of other shapes and dimensions. For example, in the 15-foot nozzle 200, in one form, the grooves 240 are not rectangular in cross-section, but instead, are arched in shape, as can be seen in FIGS. 6-8. In other words, the grooves 240 are curved in shape (because the bases of the ribs 210 are wider than the tips of the ribs 210).


Further, the nozzle body 102 also preferably includes two edge grooves 142 disposed between the boundary wall 124 and a rib 110 on each side of the deflector 112. These edge grooves 142 define and reinforce the edges of the 180 degree water distribution arc. Without these edge grooves 142, the water distribution pattern may not have clearly defined and aesthetically pleasing edges and may not provide sufficient irrigation at the edges of the pattern. The nozzles 100 and 200 preferably include 16 grooves 140 to accommodate 16 streams for the most distant trajectory (A).


Second, alternating ribs 144 preferably have grooves (or notches) 138 extending within them to allow water streams to travel the intermediate trajectory (B). These notches 138 extend within the ribs 144 but are not as deep as grooves 140 so water streams flowing along these notches 138 do not have a trajectory as distant as water streams flowing within the grooves 140. In other words, the notches 138 slope upwardly as one proceeds radially outwardly but not as steeply as the grooves 140. Again, as should be evident, the depth of the notches may be tailored within different models to provide different intermediate trajectories. Nozzle 100 preferably includes eight notches 138 to accommodate eight streams for the intermediate trajectory (B), and in one form, each notch 138 may have a diameter of about 0.025 inches at their outer ends.


Third, a second set of alternating ribs 146 are provided for the 8-foot nozzle 100, as can be seen in FIGS. 1-3 and 5, that have no notches within them at all. This second set of alternating ribs 146 allows water streams to travel to the close-in trajectory (C). As can be seen, water streams traveling along or adjacent the tips of these ribs 146 have a shorter trajectory than streams flowing within the notches 138 or grooves 140. The nozzle 100 preferably includes seven ribs 146 (without notches) to accommodate seven streams for the close-in trajectory (C). These alternating ribs 146 preferably have downwardly-inclined ramps 147 at their outer ends to deflect fluid downwardly. For the 8-foot nozzle 100, in view of the relatively short throw radius, the ramps 147 may be desirable to cause a sharp abrupt transition and lower elevation for fluid streams to facilitate close-in irrigation.


As an alternative, as shown for the 15-foot nozzle 200, the second set of alternating ribs 246 may have a groove (or notch) 246 cut into each of them, but this notch 246 is not as deep as for the first set of alternating ribs 244. So, there are two different types of grooves or notches (a deep notch 238 and a shallow notch 239) defining flow channels for two different water streams with different trajectories. This is shown in FIGS. 6-8 for nozzle 200 and may be desirable for nozzles having a longer maximum throw radius. The depth of the first and second set of grooves (or notches) may be tailored to achieve a desired overlap of coverage and to seek to improve uniformity. For the 15-foot nozzle 200, the shallow notches 246 provide a basic downward channel shape that is not as abrupt or downwardly-inclined as the ramps 147. For the 15-foot nozzle, in view of the relatively longer throw radius, a less abrupt transition and relatively higher elevation may be desirable.


Also, the grooves/notches may be of different shapes. For example, for the 8-foot nozzle 100, the notch 138 is generally semi-circular in cross-section. In contrast, for the 15-foot nozzle 200, the notches 238 and 239 are trapezoidal in shape. As should be evident, other shapes may be used as well.


Further, as addressed below, the shape of the deflector may be modified to accommodate different fixed arcuate spans, i.e., 90, 270, and 360 degrees. For example, the deflector may include ribs disposed within 90 degrees for quarter-circle irrigation. Additionally, the nozzle body may include two 180 degree deflector surfaces facing opposite from one another to achieve close to full circle (or 360 degree) irrigation. The nozzle body may also include a 90 degree deflector surface combined with a 180 degree deflector surface to achieve 270 degree irrigation. Alternatively, the nozzle body might include two deflector surfaces of approximately the same size to achieve this three-quarters irrigation. For these modified embodiments, it is preferable to have edge grooves to provide a more distant trajectory for water streams at the edges of the pattern.


The nozzle 100 also preferably includes a flow throttling screw 104. The flow throttling screw 104 extends through the central bore 118 of the nozzle body 102. The flow throttling screw 104 is manually adjusted to throttle the flow of water through the nozzle 100. The throttling screw 104 includes a head 148, is seated in the central bore 118 and may be adjusted through the use of a hand tool. The opposite end 150 of the screw 104 is in proximity to the inlet 115 protected from debris by a filter (not shown). Rotation of the head 148 results in translation of the opposite end 150 for regulation of water inflow into the nozzle 100. The screw 104 may be rotated in one direction to decrease the inflow of water into the nozzle 100, and in the other to increase the inflow of water into the nozzle 100. In one preferred form, the screw 104 may shut off flow by engaging a seat of the filter. As should be evident, any of various types of screws may be used to regulate fluid flow.


In operation, when fluid is supplied to the nozzle 100, if flows upwardly through the filter and then upwardly through the inflow port 106. Next, fluid flows upwardly along the conical transition surface 108, which guides the fluid to the ribs 110 of the deflector 112. The fluid is then separated into multiple streams, flow along the rib structures (notches 138, grooves 140, and downwardly-inclined ramps 147) and is distributed outwardly from the nozzle 100 along these flow channels with different trajectories to improve uniformity of distribution. A user regulates the maximum throw radius by rotating the flow throttling screw 104 clockwise or counterclockwise.


Although the nozzles 100 and 200 shown in FIGS. 1-8 distribute fluid in a fixed 180 degree arc, i.e., nozzles 100 and 200 are half-circle nozzles, the nozzle may be easily manufactured to cover other predetermined water distribution arcs. Figures showing nozzles with other fixed distribution arcs are addressed below. Further, the top surface 152 of the top deflecting end 120 indicates the nature of the nozzle 100, i.e., half-circle, and the direction of spray from the nozzle 10. This top surface 152 is visible to the user during operation of the nozzle 100. As can be seen in FIG. 2, the top surface 152 has approximately one-half of its outer circumference covered with indicia, i.e., a series of radial lines 154, indicating that the nozzle 100 is a half-circle nozzle and indicating that spray is in the direction of the radial lines 154. Similarly, other nozzle models can include radial lines, serrations, or other indicia on the top surface to signify a quarter-circle, three-quarter circle, or full circle nozzle and the direction of water distribution.


Although the nozzles 100 and 200 addressed above include a one-piece, unitary nozzle body, other embodiments may have a nozzle body that includes several components. An example of such an embodiment is shown in FIGS. 9-13. In this preferred form, the nozzle 300 has a nozzle body 302 that includes a separate nozzle base 356 and nozzle cap 358. The nozzle 300 also includes a flow throttling screw 304 that operates in generally the same manner as described above for nozzles 100 and 200. The nozzle 300 preferably has a maximum intended throw radius of 15 feet, although other models with other throw radiuses are contemplated.


As shown in FIGS. 9-13, the nozzle base 356 is generally cylindrical in shape with a bottom mounting end 314 having internal threading 316 for coupling to external threading of a riser or other fluid source (although this threading may easily be reversed in other embodiments). The base 356 has a central bore 360 for receiving the flow throttling screw 304 and also preferably includes four other bores 362. The central bore 360 is defined by a central hub 364 that is received by the nozzle cap 358 (as described below). The four other bores 362 extend through an annular plate 366 and are preferably spaced circumferentially and equidistantly about the central bore 360. These bores 362 receive posts 368 of the nozzle cap 358 (as described below) to hold the cap 358 in a fixed relationship with respect to the base 356. As should be evident, a different number and arrangement of bores may be used in the nozzle base 356.


Further, as can be seen in FIGS. 9-13, the nozzle cap 358 is also generally cylindrical in shape and is fashioned for mating engagement with the corresponding nozzle base 356. More specifically, the cap 358 includes a central bore 370 that receives both the central hub 364 of the base 356 and the throttling screw 304 and that includes downwardly-projecting posts 368 that are received within the bores 362 of the base 356. As shown in FIGS. 10, 11, and 13, one of the four posts is preferably in the form of a half-post 372 so as to define inflow port 306 having a generally semi-circular cross-section when the half-post 372 is inserted into its corresponding bore 362. The cap 358 also includes a deflector 312 for deflecting fluid radially outward through a fixed, predetermined arcuate span. Further, the cap 358 includes a recess 322 defined, in part, by a boundary wall 324 and with an inverted conical transition surface 308 disposed within the recess 322. As can be seen, the inflow port 306, the conical transition surface 308, the deflector 312, and rib structures are similar structurally to those described above for nozzles 100 and 200 and include similar characteristics.


In operation, fluid flows upwardly from a fluid source into the nozzle base 356. The posts 368 block upward fluid flow through three of the bores 362, and the half-post 372 allows upward fluid flow only through inflow port 306. Fluid flows through the inflow port 306, along the conical transition surface 308, and is guided to the ribs 310 of the deflector 312. The ribs 310 define flow channels that divide the water streams into three separate groups having three different trajectories with different elevations: (1) streams flowing within grooves 340; (2) streams flowing within notches 338; and (3) streams flowing adjacent tips of the ribs 310.


As should be evident, the nozzle 300 may be modified to irrigate different fixed arcs of terrain. For example, the nozzle may be fashioned as a quarter-circle nozzle by forming a quarter-circle inflow port (by changing the half-post into a post with a three-quarter circle cross-section), a quarter-circle conical transition surface, and a quarter-circle deflector with ribs. Alternatively, a full-circle nozzle may be fashioned by forming two half-circle inflow ports (by using two oppositely facing half-posts), two oppositely facing conical transition surfaces, and two oppositely facing deflectors with ribs. Further, a three-quarter circle nozzle may fashioned by forming two inflow ports (a half-circle and a quarter-circle inflow port), two conical transition surfaces (a half-circle and a quarter-circle transition surface), and two deflectors (a half-circle and a quarter-circle deflector). As another alternative, a three-quarter circle nozzle may be formed by forming two identical (or nearly identical) sets of inflow ports, conical transition surfaces, and deflectors.


Another preferred embodiment of a nozzle 400 with a one-piece nozzle body 402 is shown in FIGS. 14-17. The nozzle 400 preferably includes an inflow port 406, a conical transition surface 408, and a flow throttling screw (not shown) similar to those described in the above embodiments. The inflow port 406 is preferably disposed in a plate 426 located downstream of internal threading 416 in a bottom mounting end 414 and is preferably located adjacent the central bore 418 that receives the throttling screw. Like nozzle 100, nozzle 400 is preferably intended to have a maximum throw radius of about 8 feet and has some similar structural features. More specifically, the conical transition surface 408 is preferably in the shape of an inverted half-cone with a generally semi-circular base 432 on the underside of the deflector 412 and a vertex 434 disposed on the boundary wall 424. In one preferred form, the inflow port 406 has a radius of about 0.032 inches, and the nozzle 400 has a precipitation rate of about 0.9 inches per hour. The dimensions of the inflow port 406 and conical transition surface 408 may be altered to change fluid distribution characteristics, including the precipitation rate, the maximum intended throw radius, and the predetermined arcuate span of coverage. A flow throttling screw may be adjusted by the user to move it toward or away from the inlet 415 to decrease or increase the maximum throw radius. However, as addressed below, unlike nozzle 100, the underside of the deflector 412 has a water distribution profile that includes different rib features to provide different water sprays from those described above for other embodiments to achieve relatively uniform fluid distribution.


As shown in FIGS. 14-17, the deflector 412 includes a plurality of radially-extending ribs 410 that form part of its underside. Grooves 440 for water are formed between adjacent ribs 410 and have rounded bottoms 462 coinciding with the underside of the upper deflector surface 458. The ribs 410 are each configured to divide the fluid flow through the grooves 440 into different channels for different sprays directed to different areas and thereby having different characteristics.


As the ribs 410 are each generally symmetric about a radially-extending line, only one of the sides of a representative rib 410 will be described with it being understood that the opposite side of that same rib 410 has the same structure. With reference to FIG. 17, the rib 410 has a first step 466 forming in part a first micro-ramp and a second step 468 defining in part a second micro-ramp. The first step 466 is generally linear and positioned at an angle closer to perpendicular relative to a central axis of the deflector 412 as compared to the bottom 462 of the upper deflector surface 458, as shown in FIG. 17. The second step 468 is segmented, having an inner portion 468a that extends closer to perpendicular relative to the central axis as compared to an outer portion 468b, which has a sharp downward angle.


The geometries of the ribs 410 and the bottom 462 of the of the upper deflector surface 458 cooperate to define a plurality of micro-ramps which divide the discharging water into sprays having differing characteristics. More specifically, the first and second steps 466 and 468 divide the sidewall into four portions having different thicknesses; a first sidewall portion 463 disposed beneath an outward region of the bottom 462 of the upper deflector surface 458; a second sidewall portion 465 disposed beneath the first sidewall portion 463 and at the outer end of rib 410; a third sidewall portion 467 disposed beneath the first sidewall portion and radially inward from the second sidewall portion 467, and a fourth sidewall portion 469 disposed beneath the first and second sidewall portions 465 and 467, as depicted in FIG. 17. As addressed further below, these four sidewall portions result in fluid flow along the ribs 410 in multiple water streams that combine to provide relatively uniform fluid distribution.


The half-circle nozzle 400 preferably includes 16 ribs 410. These ribs 410 produce a total of 76 water streams in three sets of general flow channels having general trajectories for relatively distant (16 streams), intermediate (30 streams), and short (30 streams) ranges of coverage. More specifically, and with reference to FIG. 15, there is a distant spray A, a mid-range spray B, and a close-in spray C. However, rather than being distinct trajectories, these secondary and tertiary streams (B and C) are deflected or diffused from the sides of the relatively distant, nominal streams (A). Accordingly, this type of nozzle 400 is known as a multi-stream, multi-diffuser nozzle. Of course, the number of streams may be modified by changing the number of ribs 410.


The flow channels for the relatively distant streams (A) are formed primarily by the uppermost portion of the grooves 440 between successive ribs 410. More specifically, these streams (A) flow within the uppermost portion of the groove 440 defined by the rounded bottoms 462 at the underside of the upper deflector surface 458 and extending downwardly to the first steps 466. As can be seen in FIGS. 14-17, this uppermost portion is generally curved near the base of the groove 440, such as in the shape of an arch. There is one stream (A) between each pair of ribs 410 and between the two edge ribs 410 and the boundary wall 424, so there are 16 streams (A) for nozzle 400.


The flow channel for the mid-range spray (B) is defined generally by the side of each rib 410 between the first step 466 and the second step inner portion 468a. More specifically, these streams (B) flow within an intermediate portion of the discharge channel 440 and have a lower general trajectory than the distant streams (A). These mid-range streams (B) may be deflected laterally to some extent by the second step outer portion 468b. There is one stream (B) corresponding to the side of each rib 410, totaling 30 mid-range streams (B) for nozzle 400.


The flow channels for the close-in streams (C) are formed generally by the lowermost portion of the groove 440 on each side of rib 410. More specifically, these streams (C) flow beneath the second step 468 and along the lowermost portions of the ribs 410. These streams (C) generally have a lower trajectory than the other two streams (A and B) and impact and are directed downwardly by the second step outer portion 468b. The sharply inclined end segment 468b is configured to direct the water spray more downwardly as compared to the spray from the first micro-ramp. There is one stream (C) corresponding to the side of each rib 410, totaling 30 close-in streams (C) for nozzle 400.


As addressed above, these three general trajectories are not completely distinct trajectories. The relatively distant water stream (A) has the highest trajectory and elevation, generally does not experience interfering water streams, and therefore is distributed furthest from the nozzle 400. However, the secondary and tertiary streams (B and C) are deflected or diffused from the sides of the ribs 410, have lower general trajectories and elevations, and experience more interfering water streams. As a result, these streams (B and C) fill in the remaining pattern at intermediate and close-in ranges.


The positioning and orientation of the first and second steps 466 and 468 may be modified to change the flow characteristics. It will be understood that the geometries, angles and extend of the micro-ramps can be altered to tailor the resultant combined spray pattern. Further, while it is presently believed to be preferable to have all or nearly all of the ribs 410 with the micro-ramps, it is foreseeable that in some circumstances it may be preferable to have less than all of the ribs 410 include micro-ramps. For instance, the micro-ramps may be on only one side of each of the ribs 410, may be in alternating patterns, or in some other arrangement.


In the exemplary embodiment of a nozzle 400, the ribs 410 are spaced at about 10 degrees to about 12 degrees apart. The first step 466 is preferably triangular in shape and between about 0.004 and 0.008 inches in width at its outer end from the sidewall of the adjacent portion of the rib 410, such as about 0.006 inches. It preferably has a length of about 0.080 inches and tapers downwardly about 6 degrees from a horizontal plane defined by the top of the nozzle 400. The second step 468 may be between about 0.002 inches in width, an inner portion 468a may be about 0.05 inches in length, and an angle of the inner portion 468a may be about 2 degree relative to a horizontal plane. The angle of the bottom portion 470 of rib 410 may be about 9 degrees downwardly away from a horizontal plane coinciding with the top of the nozzle 400. While these dimensions are representative of the exemplary embodiment, they are not to be limiting, as different objectives can require variations in these dimensions, the addition or subtraction of the steps and/or micro-ramps, and other changes to the geometry to tailor the resultant spray pattern to a given objective.


Other deflector and rib feature are described in U.S. patent application Ser. No. 12/757,912, which is assigned to the assignee of the present application and which application is incorporated herein by reference in its entirety. The deflector surface disclosed in U.S. patent application Ser. No. 12/757,912 may be incorporated into the nozzle embodiments disclosed in this application. More specifically, the deflector surface and water distribution profile including rib features of that application may be used in conjunction with the inflow ports, conical transition surfaces, and other parts of the nozzle embodiments disclosed above.


Another embodiment of a multi-stream, multi-diffuser nozzle 500 is shown in FIGS. 18 and 19. The nozzle 500 has a longer intended maximum throw radius of about 15 feet. As can be seen, the 15-foot nozzle 500 has similar features and structures relative to the 8-foot nozzle 400. More specifically, the nozzle body 502, conical transition surface 508, ribs 510, deflector 512, bottom mounting end 514, central bore 518, and other structures are similar to the nozzle 400. However, although the inflow port 506 has the same general shape as inflow port 406, it is larger to accommodate a larger flow of fluid and a longer maximum throw radius. The radius of the inflow port 506 is preferably about 0.057 inches to achieve a 15-foot throw radius and a matched precipitation rate of about 0.9 inches per hour.


Further, although the nozzles 400 and 500 shown in FIGS. 14-19 distribute fluid in a fixed 180 degree arc, i.e., is a half-circle nozzle, the nozzle may be easily manufactured to cover other predetermined water distribution arcs. For example, in FIGS. 20-23, there are illustrated two additional embodiments 600 and 700 to achieve irrigation at different fixed arcs. FIGS. 20 and 21 show a full-circle nozzle 600 that is generally symmetrical about a planar axis. More specifically, it includes two inflow ports 606, two conical transition surfaces 608, two deflectors 612, and two boundary walls 624 that are preferably identical in shape but facing opposite directions. As another example, FIGS. 22 and 23 show a quarter-circle nozzle 700 that is formed with an inflow port 706, conical transition surface 708, deflector 712, and boundary wall 724 each defining a generally 90 degree cross-section. It should be evident that a nozzle may be fashioned covering any desired fixed arc of coverage by modifying the shape of the inflow port, conical transition surface, deflector, and boundary wall to achieve the desired fixed arc.


Generally, an arc of coverage in excess of 180 degrees can be achieved through the use of two sets of ports, conical transition surfaces, boundary walls, and deflectors. As addressed, FIGS. 20-21 show a full-circle nozzle 600 with two sets of each of these features. Near the nozzle 600, the two boundary walls 624 define two sets of water distribution edges (or a total of four edges). However, the gap between the two boundary walls 624 is preferably very small (or on the order of 0.2 or 0.3 inches) such that, even at short distances from the 15-foot nozzle 600, there is a full 360 arcuate span of coverage. Similarly, for other nozzles with two sets of features, there is no meaningful gap in coverage such that the full range of coverage from 180 to 360 degrees can be achieved with two sets of features.


For all embodiments, the flow characteristics of the fluid emitted from the nozzles may be modified by changing certain dimensions of the nozzles. For example, the radius of the inflow port may be modified to increase or decrease the precipitation rate. Also, the curvature of the conical transition surface may be abrupt to provide for more dissipation of energy when striking the deflector to decrease the throw radius. Alternatively, the curvature may be decreased to allow a more gentle transition to the deflector and less dissipation of energy. Finally, the rib surfaces, including inclination, notches within the rib surfaces, grooves separating the ribs, steps along the ribs, etc., may be modified to change the flow channels, trajectory, elevation, and distribution of water.


It is generally understood that the terrain most distant from a single nozzle receives less water than terrain closer to the nozzle. In order to improve uniformity of coverage, it is generally desirable to operate several nozzles in concert close enough to one another such that their spray patterns overlap. This overlap is intended to ensure that terrain relatively distant from an individual nozzle is sufficiently irrigated. It is contemplated that this general approach may be applied to the nozzles described herein in any of various overlapping arrangements.


Other aspects of this disclosure are a molding assembly and method for forming spray nozzles, such as those addressed herein. More specifically, the method generally involves forming a single-piece molded nozzle body that includes both a mounting portion and a deflecting portion all in one unitary body. In contrast, many other conventional nozzles require the formation and assembly of several separately molded components. By forming a single-piece nozzle in a molding process, the need for multiple molds and component assembly may be avoided such that complexity and manufacturing costs may be reduced.



FIGS. 24-29 illustrate the improved molding assembly 800 and method for making a single-piece, unitary spray nozzle body. In general, mold members designed for use in a standard injection molding machine (not shown) are movable to a closed position within a cavity block 802 defining a mold cavity 804 having a size and shape conforming to the geometry of the nozzle body to be molded. A set of retractable core units 806, 808, 810, 812 are advanced into the cavity block 802 to define the geometry of features to be formed in the nozzle body, as addressed further below. Once the core units 806, 808, 810, 812 have been advanced to their closed positions, the cavity block 802 is injected with appropriate plastic material or other suitable molding material, the plastic material hardens to form the nozzle body, and some or all of the core units 806, 808, 810, 812 may be retracted to allow the newly-formed nozzle body to be removed. This process is repeated to form additional nozzle bodies.


As shown in FIGS. 24-29, the molding assembly 800 and method make use of a cavity block 802 that serves to hold the nozzle body as it is being molded and to define the molding cavity 804. In this example, the 15-foot half-circle multi-stream, multi-trajectory nozzle body 502 (FIG. 26) is shown as being molded, although other types of unitary, one-piece nozzle bodies, such as those addressed herein, may be formed according to this process. In describing the mold assembly 800, reference is therefore made to the nozzle body 502 addressed above. In one preferred form, the cavity block 802 may have multiple internal stations to allow the simultaneous molding of two or more nozzle bodies. Here, as can be seen, the cavity block 802 shown in FIGS. 24-26 allows the molding of two nozzle bodies at the same.


For each nozzle body being molded, the cavity block 802 preferably includes windows, or openings 814, to allow the advancement of core units 806, 808, 810, 812 to the closed molding positions and to allow retraction of some or all of the core units 806, 808, 810, 812 to the open molding positions. In this preferred form, there are preferably four windows 814 in the cavity block 802 corresponding to each station (a top window, a bottom window, a front window, and a rear window) to accommodate advancement and retraction of some or all of the core units 806, 808, 810, 812. Although the terms top, bottom, front, and rear are used for the sake of illustration, it should be evident that the orientation of the cavity block 802, core units 806, 808, 810, 812, and windows 814 may be modified to suit individual needs, such as, for example, by changing the orientation of the cavity block 802 so that its “top” is a “side,”etc.


As shown in FIG. 26 and as addressed below, the cavity block 802 and core units 806, 808, 810, 812 are arranged to achieve interference-free insertion and retraction from the cavity block 802. The cavity block 802 also preferably includes knurling 816 on an internal station wall to provide a knurled surface 515 on the bottom mounting end 514 of the nozzle body 502. The cavity block 802 also includes an indented surface 817 adjacent the top window 814 to define the flanges 503 at the top end of the nozzle body 502. As addressed further, below, the core units 806, 808, 810, 812 generally include surfaces with profiles that mirror features of the nozzle body 502 to be molded.


In this preferred form, there are four core units 806, 808, 810, 812. The first or top core unit 806 advances vertically downwardly to a closed position to provide the molded features for the top end of the nozzle body 502 and generally includes structure to define the top end of the nozzle body 502. More specifically, it includes a central cylindrical post 818 with a conical protrusion 820 to define part of the central bore 518, a conical portion 822 to define a top portion of the deflector 512, and indicia (such as radial lines 824) to designate the type of nozzle and other information. The shape of the conical portion 822 may be modified to form nozzle bodies having different fixed arcs of coverage. The first core unit 806 also preferably defines a sprue or channel 826 for plastic material to be poured into the cavity block 802 when the core units 806, 808, 810, 812 are in a closed position.


As can be seen in FIGS. 24-27, the molding process also uses a second or bottom core unit 808, which is an assembly of nested components. The second core unit 808 provides the molded features for the bottom mounting end 514 of the nozzle body 502 and generally includes structure to define the bottom end 514. The second core unit 808 preferably includes the following nested components as one proceeds outwardly from a central axis; a core pin 828, a mold core sleeve 830, a threaded core sleeve 832, and a support core sleeve 834. As can be seen in FIG. 25, in the closed position, the upper end of the mold core sleeve 830 extends upwardly beyond the upper end of the threaded core sleeve 832, which in turn extends upwardly beyond the upper end of the support core sleeve 834.


The mold core sleeve 830 defines part of the nozzle body central bore 518 and inflow port 506. The mold core sleeve 830 receives the pin 828 and, at its top end, includes a raised cylindrical button 836 that preferably engages the lower end of the central cylindrical post 818 of the first core unit 806 when both are in a closed position. The button 836 preferably includes a central depression 838 for receiving the conical protrusion 820 of the post 818. The button 836 and post 818 collectively define the central bore 518 of the nozzle body 502. The top end of the mold core sleeve 830 also includes a raised half-cylindrical boss 840 that defines the semi-circular inflow port 506 of the half-circle nozzle body 502. Of course, the shape of this raised half-cylindrical boss 840 may be changed for inflow ports of nozzle bodies having different arcs of coverage.


The threaded core sleeve 832 defines the nozzle body mounting threading 516. More specifically, the threaded core sleeve 832 has external threading 841 at its top end to define the internal threading 516 for mounting of the nozzle body 502. This threaded core sleeve 832 is preferably rotatable so that it can be disengaged from the nozzle body 502 once the molding process is completed. The support core sleeve 834 is the outermost nested component and supports the bottom of the nozzle body 502. It includes dogs 842 on its upper surface to hold the nozzle body 502 and to facilitate disengagement of the threaded core sleeve 832 from the nozzle body 502. Disengagement of the threaded core sleeve 832 is preferably coordinated with ejection of the nozzle body 502 through the top window 814 of the first core unit 806 when molding is completed. There are various conventional methods and assemblies for forming internal threads within a molded body and these methods and assemblies may also be used.


Further, although in this embodiment the threading being molded is internal threading for nozzle 500, it should be evident that the threading may be formed as external threading instead. Some risers or fluid source are equipped with internal threading at their upper end for the mounting of nozzles, and therefore, for some embodiments, the nozzle may be preferably formed with external threading. Accordingly, the second core unit 808 may be modified so as to form a nozzle having an externally threaded bottom mounting end.


The third core unit 810 can be seen in FIGS. 26 and 28. In one preferred form, the third core unit 810 is a compound slide 844 that forms one side of the nozzle body 502 and that provides the mold structure to define part of the outer wall of the bottom mounting end 514, boundary wall 524, and underside of the deflector 512. A first slide 846 includes a half-cylindrical cut-out portion 848 to define part of the bottom mounting end 514. The second slide 850 is disposed above the first slide 846 and provides the mold structure to define part of the boundary wall 524, the underside of the deflector 512, and the transition surface 508. More specifically, as shown in FIG. 30, the second slide 850 includes a boundary wall profile 866, a rib structure profile 868, and a transition surface profile 870 that mirror the corresponding features of the nozzle body 502. As should be evident, the first and second slides 846 and 850 may be modified to form nozzle bodies having other fixed arcs of coverage, such as those described above. Further, as should be evident, the second slide 850 may be modified to accommodate the water distribution profile, including number of ribs, grooves, notches, and steps of different deflector types, such as the various deflectors 112, 212, 312, 412, 512, 612, and 712 addressed above.


The first and second slides 846 and 850 are preferably in sliding engagement with respect to one another. More specifically, following completion of the molding process, the first slide 846 is retracted first and slides beneath the second slide 850 an initial distance without causing the second slide 850 to move laterally. The second slide 850 includes two inclined surfaces 852 and 854 that ride along two corresponding inclined surfaces 856 and 858 of the first slide 846. As the first slide 846 is initially retracted, the inclined surfaces 852, 854, 856, 858 allow the second slide portion defining the water distribution profile with rib features to initially move downwardly away from the molded rib features so as not to break or distort these molded features. In other words, the second slide 850 moves vertically downward to clear the fine rib features before it is moved laterally. Once the first slide 846 has been retracted the initial distance, a wall 860 of the first slide 846 engages a corresponding wall 862 of the second slide 850 to cause the first and second slides 846 and 850 to move together and to cause lateral retraction of the second slide 850.


Accordingly, the third core unit 810 includes a compound slide 844 having a first slide 846 and a second slide 850 having a surface with a profile that mirrors at least in part the deflector and the deflector's water distribution profile. Further, the first and second slides 846 and 850 each have a wall 860 and 862 and each have guide surfaces 852, 854, 856, 858 inclined relative to the first and second slides 846 and 850. The first slide guide surfaces 856 and 858 slide relative to the second slide guide surfaces 852 and 854 upon initial retraction of the first slide 846 from the advanced position to allow the first slide 846 to move relative to the second slide 850 with the walls 860 and 862 engaging one another at a certain distance from the advanced position to allow the first and second slides 846 and 850 to move together relative to the mold cavity 804. the first slide wall 860 is moveable to at least three positions, a first position for molding in the advanced position, a second position disengaged from the second slide wall 862 and in which the second slide 850 is disengaged from the deflector 512, and a third position in which the first and second slide walls 860 and 862 engage one another.


The fourth core unit 812 defines the other side of the nozzle body 502 and is shown in FIG. 26. For the half-circle nozzle body 502, the fourth core unit 812 simply includes a half-cylindrical cut-out blank 864 to define part of the cylindrical outer wall of the nozzle body 502. As should be evident, the mold structure of this fourth core unit 812 may be modified to achieve different nozzle body types. For example, for a full-circle nozzle body (such as nozzle 600), the fourth core unit 812 would be the same as the third core unit 810 described above (compound slide 844) in order to achieve oppositely-facing boundary walls and deflector surfaces.


Another aspect of this disclosure is a method of molding a unitary, one-piece spray nozzle body, such as a nozzle body having some of the features of nozzle body 502, using the above-described mold assembly. The method generally involves: forming a cavity block defining in part a mold cavity and having a plurality of openings; inserting a first core unit having a first surface with a profile to mirror the top of the nozzle body through a first opening in the cavity block; inserting a second core unit having a second surface with a profile to mirror the bottom end mounting portion of the nozzle body through a second opening in the cavity block; inserting a third core unit having a third surface with a profile to mirror at least in part the at least one deflector profile through a third opening in the cavity block; injecting plastic material into the mold cavity to form the nozzle body; and retracting at least two of the core units from the cavity block. The method may use some or all of the characteristics of the mold assembly addressed above.


It will be understood that various changes in the details, materials, and arrangements of parts and components which have been herein described and illustrated in order to explain the nature of the nozzle may be made by those skilled in the art within the principle and scope of the nozzle and the flow control device as expressed in the appended claims. Furthermore, while various features have been described with regard to a particular embodiment or a particular approach, it will be appreciated that features described for one embodiment also may be incorporated with the other described embodiments.

Claims
  • 1. A nozzle comprising: a nozzle body defining a mounting portion, at least one deflector, and a base surface facing the at least one deflector and defining at least one port, the mounting portion defining an inlet, the at least one port reducing fluid flowing through the nozzle body from the inlet to a predetermined precipitation rate, and the at least one deflector contoured to deliver fluid radially outwardly from the nozzle through a predetermined arcuate span; anda recess extending radially between the at least one deflector and the base surface;wherein the base surface is spaced upstream of the at least one deflector;wherein the at least one port comprises: at least one opening formed independent of the at least one deflector and with a cross-sectional shape corresponding to the shape of the predetermined arcuate span; anda bore upstream of the at least one opening and oriented to guide fluid from the at least one opening across at least a portion of the recess towards the at least one deflector.
  • 2. A nozzle comprising: a nozzle body defining a mounting portion, at least one port, and at least one deflector, the mounting portion defining an inlet, the at least one port reducing fluid flowing through the nozzle body from the inlet to a predetermined precipitation rate, and the at least one deflector contoured to deliver fluid radially outwardly from the nozzle through a predetermined arcuate span;wherein the at least one deflector comprises a surface having a profile forming part of the deflector and wherein the profile includes at least two sets of flow channels that subdivide fluid into a plurality of fluid streams with at least two different elevations;wherein the nozzle body comprises at least one transition surface intermediate of the at least one port and the profile guiding flow directed through the at least one port to the at least two sets of flow channels, the at least one transition surface aligned with and expanding smoothly in the direction of the profile.
  • 3. The nozzle of claim 2 wherein the at least one transition surface is generally conical in shape having a vertex directed to the at least one port expanding into smoothly curved sides having increasing curvature in the direction of the at least one deflector.
  • 4. The nozzle of claim 1 wherein the at least one port is configured to provide a predetermined precipitation rate of fluid through the nozzle body less than or equal to one inch per hour.
  • 5. The nozzle of claim 2 wherein the at least one port comprises an opening with a cross-sectional shape corresponding to the shape of the predetermined arcuate span.
  • 6. The nozzle of claim 2 comprising two ports, two transition surfaces, and two deflectors delivering fluid through a predetermined arcuate span greater than 180 degrees.
  • 7. The nozzle of claim 1 wherein the nozzle body further comprises at least one boundary wall defining edges of the predetermined arcuate span.
  • 8. The nozzle of claim 2 wherein the at least one deflector and the at least one transition surface each have a shape corresponding to the predetermined arcuate span.
  • 9. The nozzle of claim 1 wherein the at least one deflector includes a plurality of ribs arranged radially to define at least two sets of flow channels, one set having a first elevation defined by a first set of grooves between successive ribs and the second set having a second different elevation defined by a second set of grooves of a predetermined depth formed within at least one rib.
  • 10. The nozzle of claim 9 wherein the plurality of ribs define a third set of flow channels, the third set having a third elevation defined by a third set of grooves formed within at least one rib having a different predetermined depth than the second set of grooves, the third elevation being different from the first and second elevations.
  • 11. The nozzle of claim 9 wherein the plurality of ribs define a third set of flow channels, the third set having a third elevation defined by a bottom edge of at least one rib.
  • 12. The nozzle of claim 1 wherein the at least one deflector includes a plurality of ribs arranged radially to define at least two sets of flow channels, one set having a first elevation defined by grooves between successive ribs and the second set having a second different elevation defined by a first step formed at least partially along the length of at least one rib.
  • 13. The nozzle of claim 12 wherein the plurality of ribs define a third set of flow channels, the third set having a third elevation defined by a second step formed at least partially along the length of at least one rib and the third elevation being different from the first and second elevations.
  • 14. The nozzle of claim 1 wherein the nozzle body defines a bore therethrough, the bore receiving a flow throttling screw that may be advanced toward the inlet to reduce the flow rate through the nozzle and that may be withdrawn away from the inlet to increase the flow rate through the nozzle.
  • 15. A nozzle comprising: a nozzle base including a mounting portion defining an inlet; and a nozzle cap in mating engagement with the nozzle base, the nozzle cap comprising:at least one port reducing fluid flowing through the nozzle body from the inlet to a predetermined precipitation rate;at least one deflector contoured to deliver fluid radially outwardly from the nozzle through a predetermined arcuate span, the at least one deflector comprising a surface having a profile forming part of the at least one deflector and wherein the profile includes at least two sets of flow channels that subdivide fluid into a plurality of fluid streams with at least two different elevations; andat least one transition surface intermediate of the at least one port and the profile guiding flow directed through the at least one port to the at least two sets of flow channels, the at least one transition surface aligned with and expanding smoothly in the direction of the profile.
  • 16. The nozzle of claim 15 wherein one of the nozzle base and the nozzle cap comprises a plurality of bores for receiving a corresponding plurality of posts of the other of the nozzle base and the nozzle cap.
  • 17. The nozzle of claim 16 wherein one of the plurality of posts in conjunction with the corresponding bore defines the shape of the at least one port, the shape of the at least one port corresponding to the shape of the predetermined arcuate span.
  • 18. The nozzle of claim 15 comprising two ports, two transition surfaces, and two deflectors delivering fluid through a predetermined arcuate span greater than 180 degrees.
  • 19. A mold assembly for making a spray nozzle body having a bottom end with a mounting portion defining an inlet and at least one deflector contoured to deliver fluid radially outwardly from the nozzle body through a predetermined arcuate span and at least one port, the at least one deflector comprising a profile including at least two sets of flow channels that subdivide fluid into a plurality of fluid streams with at least two different elevations, the at least one port comprising at least one opening with a cross-sectional shape corresponding to the shape of the predetermined arcuate span, the mold assembly comprising: a cavity block defining in part a mold cavity and having a plurality of openings;a first core unit having a first surface with a profile to mirror the top of the nozzle body and moveable through one opening between an advanced position protruding into the cavity block and a retracted position substantially withdrawn from the cavity block;a second core unit having a second surface with a profile to mirror the bottom end mounting portion of the nozzle body and configured for insertion through a second opening; anda third core unit having a third surface with a profile to mirror at least in part the at least one deflector profile and moveable through a third opening between an advanced position protruding into the cavity block and a retracted position substantially withdrawn from the cavity block.
  • 20. The mold assembly of claim 19 wherein the first core unit comprises a post for defining in part a central bore of the body.
  • 21. The mold assembly of claim 19 wherein the second core unit comprises a threaded core sleeve for defining threading of the body.
  • 22. The mold assembly of claim 19 wherein the second core unit comprises a mold core sleeve for defining the at least one port of the nozzle body.
  • 23. The mold assembly of claim 22 wherein the third core unit further comprises a fourth surface with a profile to mirror a transition surface intermediate of the at least one port and the profile, the transition surface guiding flow directed through the at least one port to the at least two sets of flow channels, the transition surface aligned with and expanding smoothly in the direction of the profile.
  • 24. The mold assembly of claim 19 wherein the third core unit comprises a compound slide having a first slide and a second slide, the second slide including the third surface with a profile to mirror at least in part the at least one deflector profile.
  • 25. The mold assembly of claim 24 wherein the first and second slides each have a wall and a guide surface, wherein the guide surfaces slide relative to one another upon initial retraction of the first slide from the advanced position to allow the first slide to move relative to the second slide and wherein the walls engage at a predetermined distance from the advanced position to allow the first and second slides to move together relative to the mold cavity.
  • 26. The mold assembly of claim 25 wherein the first slide wall is moveable between at least three positions, a first position for molding in the advanced position, a second position disengaged from the second slide wall and in which the second slide is disengaged from the profile, and a third position in which the first and second slide walls engage one another.
  • 27. The mold assembly of claim 19 further comprising a fourth core unit defining in part the body and moveable through a fourth opening between an advanced position protruding into the cavity block and a retracted position substantially withdrawn from the cavity block.
  • 28. A method of forming a molded, unitary, one-piece spray nozzle body having a bottom end with a mounting portion defining an inlet and at least one deflector contoured to deliver fluid radially outwardly from the nozzle body through a predetermined arcuate span and at least one port, the at least one deflector comprising a profile including at least two sets of flow channels that subdivide fluid into a plurality of fluid streams with at least two different elevations, the at least one port comprising at least one opening with a cross-sectional shape corresponding to the shape of the predetermined arcuate span, the method comprising: forming a cavity block defining in part a mold cavity and having a plurality of openings;inserting a first core unit having a first surface with a profile to mirror the top of the nozzle body through a first opening in the cavity block;inserting a second core unit having a second surface with a profile to mirror the bottom end mounting portion of the nozzle body through a second opening in the cavity block;inserting a third core unit having a third surface with a profile to mirror at least in part the at least one deflector profile through a third opening in the cavity block;injecting plastic material into the mold cavity to form the nozzle body; andretracting at least two of the core units from the cavity block.
  • 29. The method of claim 28 wherein the second core unit comprises a threaded core sleeve for defining threading of the body.
  • 30. The method of claim 28 wherein the second core unit comprises a mold core sleeve for defining the at least one port of the nozzle body.
  • 31. The method of claim 30 wherein the third core unit further comprises a fourth surface with a profile to mirror a transition surface intermediate of one port and the at least one deflector profile, the transition surface guiding flow directed through the one port to the at least two sets of flow channels, the transition surface aligned with and expanding smoothly in the direction of the at least one deflector profile.
  • 32. The method of claim 28 wherein the third core unit comprises a compound slide for defining in part the deflector of the body.
  • 33. The method of claim 28 further comprising inserting a fourth core unit to define in part the body through a fourth opening in the cavity block.
US Referenced Citations (408)
Number Name Date Kind
458607 Weiss Sep 1891 A
691758 Gay Jan 1902 A
949520 Choate Feb 1910 A
1523609 Roach Jan 1922 A
1432386 Curney Oct 1922 A
1639162 Brooks Aug 1927 A
1764570 Lohman Jun 1930 A
1805782 Munz May 1931 A
1964269 Munz Jun 1934 A
2125863 Arbogast Aug 1938 A
2125978 Arbogast Aug 1938 A
2128552 Rader Aug 1938 A
2130810 Munz Sep 1938 A
2325280 Scherrer Jul 1943 A
2348776 Scherrer Jul 1943 A
2338273 Wilkins Jan 1944 A
2634163 Double Apr 1953 A
2723879 Martin Nov 1955 A
2785013 Steams Mar 1957 A
2935266 Coleondro Jun 1958 A
2864652 O'Brien et al. Dec 1958 A
2875783 Schippers Mar 1959 A
2914257 Schippers Mar 1959 A
2990123 Hyde Jun 1961 A
2990128 Hyde Jun 1961 A
3029030 Dey, Sr. Apr 1962 A
3239149 Lindberg, Jr. Mar 1966 A
3365137 Corsette Jan 1968 A
3380659 Seablom Apr 1968 A
3716192 Hunter Feb 1973 A
3752403 Diest Aug 1973 A
3815831 Jooste Jun 1974 A
3940066 Hunter Feb 1976 A
3948285 Flynn Apr 1976 A
3955764 Phaup May 1976 A
4026471 Hunter May 1977 A
4119275 Hunter Oct 1978 A
4131234 Pescetto Dec 1978 A
4168033 Von Bernuth et al. Sep 1979 A
4189099 Bruninga Feb 1980 A
4198000 Hunter Apr 1980 A
4253608 Hunter Mar 1981 A
4272024 Kah, Jr. Jun 1981 A
4316579 Ray Feb 1982 A
4353506 Hayes Oct 1982 A
4353507 Kah, Jr. Oct 1982 A
4398666 Hunter Aug 1983 A
4401273 Olson Aug 1983 A
4417691 Lockwood Nov 1983 A
4456181 Burnham Jun 1984 A
4471908 Hunter Sep 1984 A
4479611 Galvis Oct 1984 A
4501391 Hunter Feb 1985 A
4566632 Sesser Jan 1986 A
4568024 Hunter Feb 1986 A
4579284 Arnold Apr 1986 A
4579285 Hunter Apr 1986 A
4609146 Walto Sep 1986 A
4618100 White et al. Oct 1986 A
4624412 Hunter Nov 1986 A
4625917 Torney Dec 1986 A
RE32386 Hunter Mar 1987 E
4660766 Nelson Apr 1987 A
4669663 Meyer Jun 1987 A
4676438 Sesser Jun 1987 A
4681260 Cochran Jul 1987 A
4681263 Cockman Jul 1987 A
4682732 Walto Jul 1987 A
4699321 Bivens Oct 1987 A
4708291 Grundy Nov 1987 A
4718605 Hunter Jan 1988 A
4720045 Meyer Jan 1988 A
4739934 Gewelber Apr 1988 A
D296464 Marmol Jun 1988 S
4752031 Merrick Jun 1988 A
4760958 Greenberg Aug 1988 A
4763838 Holcomb Aug 1988 A
4784325 Walker et al. Nov 1988 A
4796809 Hunter Jan 1989 A
4796811 Davisson Jan 1989 A
4815662 Hunter Mar 1989 A
4834289 Hunter May 1989 A
4836449 Hunter Jun 1989 A
4836450 Hunter Jun 1989 A
4840312 Tyler Jun 1989 A
4842201 Hunter Jun 1989 A
4867378 Kah Sep 1989 A
4889287 Hemsley et al. Dec 1989 A
4898332 Hunter Feb 1990 A
4901924 Kah Feb 1990 A
4932590 Hunter Jun 1990 A
4944456 Zakai Jul 1990 A
4948052 Hunter Aug 1990 A
4955542 Kah Sep 1990 A
4961534 Tyler Oct 1990 A
4967961 Hunter Nov 1990 A
4971250 Hunter Nov 1990 A
D312865 Davisson Dec 1990 S
4986474 Schisler Jan 1991 A
5031840 Grundy Jul 1991 A
5050800 Lamar Sep 1991 A
5052621 Katzer Oct 1991 A
5058806 Rupar Oct 1991 A
5078321 Davis Jan 1992 A
5083709 Iwanowski Jan 1992 A
RE33823 Nelson Feb 1992 E
5086977 Kah, Jr. Feb 1992 A
5090619 Barthold et al. Feb 1992 A
5098021 Kah Mar 1992 A
5104045 Kah Apr 1992 A
5123597 Bendall Jun 1992 A
5141024 Hicks Aug 1992 A
5148990 Kah, Jr. Sep 1992 A
5148991 Kah Sep 1992 A
5152458 Curtis Oct 1992 A
5158232 Tyler Oct 1992 A
5174327 Truax Dec 1992 A
5174501 Hadar Dec 1992 A
5199646 Kah Apr 1993 A
5205491 Hadar Apr 1993 A
5224653 Nelson Jul 1993 A
5226599 Lindermeir Jul 1993 A
5226602 Cochran Jul 1993 A
5234169 McKenzie Aug 1993 A
5240182 Lemme Aug 1993 A
5240184 Lawson Aug 1993 A
5267689 Forer Dec 1993 A
5288022 Sesser Feb 1994 A
5299742 Han Apr 1994 A
5322223 Hadar Jun 1994 A
5335857 Hagon Aug 1994 A
5360167 Crundy Nov 1994 A
5370311 Chen Dec 1994 A
5372307 Sesser Dec 1994 A
5375768 Clark Dec 1994 A
5398872 Joubran Mar 1995 A
5417370 Kah May 1995 A
5423486 Hunter Jun 1995 A
5435490 Machut Jul 1995 A
5439174 Sweet Aug 1995 A
RE35037 Kah Sep 1995 E
5456411 Scott Oct 1995 A
5503139 McMahon Apr 1996 A
5526982 McKenzie Jun 1996 A
5544814 Spenser Aug 1996 A
5556036 Chase Sep 1996 A
5588594 Kah, Jr. Dec 1996 A
5588595 Sweet Dec 1996 A
5598977 Lemme Feb 1997 A
5611488 Frolich Mar 1997 A
5620141 Chiang Apr 1997 A
5640983 Sherman, Jr. Jun 1997 A
5642861 Ogi et al. Jul 1997 A
5653390 Kah Aug 1997 A
5662545 Zimmerman Sep 1997 A
5671885 Davisson Sep 1997 A
5671886 Sesser Sep 1997 A
5676315 Han Oct 1997 A
D388502 Kah Dec 1997 S
5695123 Le Dec 1997 A
5699962 Scott Dec 1997 A
5711486 Clark Jan 1998 A
5718381 Katzer Feb 1998 A
5720435 Hunter Feb 1998 A
5722593 McKenzie Mar 1998 A
5758827 Van Le Jun 1998 A
5762270 Kearby Jun 1998 A
5765757 Bendall Jun 1998 A
5765760 Kuo Jun 1998 A
5769322 Smith Jun 1998 A
5785248 Staylor Jul 1998 A
5820029 Marans Oct 1998 A
5823439 Hunter Oct 1998 A
5823440 Clark Oct 1998 A
5826797 Kah Oct 1998 A
5845849 Mitzlaff Dec 1998 A
5875969 Grundy Mar 1999 A
5918812 Beutler Jul 1999 A
5927607 Scott Jul 1999 A
5971297 Sesser Oct 1999 A
5988523 Scott Nov 1999 A
5992760 Kearby Nov 1999 A
6007001 Hilton Dec 1999 A
6019295 McKenzie Feb 2000 A
6029907 McKenzie Feb 2000 A
6042021 Clark Mar 2000 A
6050502 Clark Apr 2000 A
6076744 O'Brien Jun 2000 A
6076747 Ming-Yuan Jun 2000 A
6085995 Kah Jul 2000 A
6102308 Steingrass Aug 2000 A
6109545 Kah Aug 2000 A
6138924 Hunter Oct 2000 A
6145758 Ogi Nov 2000 A
6155493 Kearby et al. Dec 2000 A
6158675 Ogi Dec 2000 A
6182909 Kah Feb 2001 B1
6186413 Lawson Feb 2001 B1
6223999 Lemelshtrich May 2001 B1
6227455 Scott May 2001 B1
6230988 Chao May 2001 B1
6230989 Haverstraw May 2001 B1
6237862 Kah May 2001 B1
6241158 Clark Jun 2001 B1
6244521 Sesser Jun 2001 B1
6264117 Roman Jul 2001 B1
6286767 Hui-Chen Sep 2001 B1
6332581 Chin Dec 2001 B1
6336597 Kah Jan 2002 B1
6341733 Sweet Jan 2002 B1
6345541 Hendey Feb 2002 B1
6367708 Olson Apr 2002 B1
D458342 Johnson Jun 2002 S
6443372 Hsu Sep 2002 B1
6454186 Haverstraw Sep 2002 B2
6457656 Scott Oct 2002 B1
6464151 Cordua Oct 2002 B1
6478237 Kearby et al. Nov 2002 B2
6488218 Townsend Dec 2002 B1
6491235 Scott Dec 2002 B1
6494384 Meyer Dec 2002 B1
6499672 Sesser Dec 2002 B1
6530531 Butler Mar 2003 B2
6588680 Cameron et al. Jul 2003 B2
6601781 Kah Aug 2003 B2
6607147 Schneider Aug 2003 B2
6622940 Huang Sep 2003 B2
6637672 Cordua Oct 2003 B2
6651904 Roman Nov 2003 B2
6651905 Sesser Nov 2003 B2
6688539 Griend Feb 2004 B2
6695223 Beutler Feb 2004 B2
6715699 Greenberg Apr 2004 B1
6719218 Cool et al. Apr 2004 B2
6732952 Kah May 2004 B2
6736332 Sesser May 2004 B2
6736336 Wong May 2004 B2
6769633 Huang Aug 2004 B1
6811098 Drechsel Nov 2004 B2
6814304 Onofrio Nov 2004 B2
6814305 Townsend Nov 2004 B2
6817543 Clark Nov 2004 B2
6820825 Wang Nov 2004 B1
6827291 Townsend Dec 2004 B2
6834816 Kah, Jr. Dec 2004 B2
6840460 Clark Jan 2005 B2
6848632 Clark Feb 2005 B2
6854664 Smith Feb 2005 B2
6869026 McKenzie Mar 2005 B2
6871795 Anuskiewicz Mar 2005 B2
6880768 Lau Apr 2005 B2
6883727 De Los Santos Apr 2005 B2
6921030 Renquist Jul 2005 B2
6932279 Burcham Aug 2005 B2
6942164 Walker Sep 2005 B2
6945471 McKenzie Sep 2005 B2
6957782 Clark Oct 2005 B2
6997393 Angold Feb 2006 B1
7017831 Santiago Mar 2006 B2
7017837 Taketomi Mar 2006 B2
7028920 Hekman Apr 2006 B2
7028927 Mermet Apr 2006 B2
7032836 Sesser Apr 2006 B2
7032844 Cordua Apr 2006 B2
7040553 Clark May 2006 B2
7044403 Kah May 2006 B2
7070122 Burcham Jul 2006 B2
7090146 Ericksen et al. Aug 2006 B1
7100842 Meyer Sep 2006 B2
7104472 Renquist Sep 2006 B2
7108204 Johnson Sep 2006 B2
7111795 Thong Sep 2006 B2
7143957 Nelson Dec 2006 B2
7143962 Kah, Jr. Dec 2006 B2
7152814 Schapper Dec 2006 B1
7156322 Heitzman Jan 2007 B1
7159795 Sesser Jan 2007 B2
7168634 Onofrio Jan 2007 B2
7232081 Kah, Jr. Jun 2007 B2
7234651 Mousavi Jun 2007 B2
7240860 Griend Jul 2007 B2
7287710 Nelson et al. Oct 2007 B1
7287711 Crooks Oct 2007 B2
7293721 Roberts Nov 2007 B2
7303147 Danner Dec 2007 B1
7303153 Han Dec 2007 B2
7322533 Grizzle Jan 2008 B2
7337988 McCormick et al. Mar 2008 B2
7389942 Kenyon Jun 2008 B2
RE40440 Sesser Jul 2008 E
7392956 McKenzie Jul 2008 B2
7429005 Schapper Sep 2008 B2
7478526 McAfee et al. Jan 2009 B2
7487924 Johnson Feb 2009 B2
7533833 Wang May 2009 B2
7562833 Perkins et al. Jul 2009 B2
7581687 Feith Sep 2009 B2
7584906 Lev Sep 2009 B2
7597273 McAfee et al. Oct 2009 B2
7597276 Hawkins Oct 2009 B2
7607588 Nobili Oct 2009 B2
7611077 Sesser Nov 2009 B2
7621467 Garcia Nov 2009 B1
7654474 Cordua Feb 2010 B2
7686235 Roberts Mar 2010 B2
7686236 Alexander Mar 2010 B2
7703706 Walker Apr 2010 B2
RE41302 Drechsel May 2010 E
D615152 Kah May 2010 S
7766259 Feith Aug 2010 B2
7770821 Pinch Aug 2010 B2
7780093 Johnson Aug 2010 B2
D628272 Kah Nov 2010 S
7828229 Kah, Jr. Nov 2010 B2
7850094 Richmond Dec 2010 B2
7861948 Crooks Jan 2011 B1
D636459 Kah Apr 2011 S
7926746 Melton Apr 2011 B2
7971804 Roberts Jul 2011 B2
8006919 Renquist Aug 2011 B2
8047456 Kah Nov 2011 B2
8056829 Gregory Nov 2011 B2
8074897 Hunnicutt Dec 2011 B2
8205811 Cordua Jun 2012 B2
8272583 Hunnicutt Sep 2012 B2
8282022 Porter Oct 2012 B2
8328112 Johnson Dec 2012 B2
8336788 Perkins et al. Dec 2012 B2
2075589 Walker Jan 2014 A1
8651400 Walker Feb 2014 B2
8695900 Hunnicutt Apr 2014 B2
8783582 Robertson et al. Jul 2014 B2
20010023901 Haverstraw Sep 2001 A1
20020070289 Hsu Jun 2002 A1
20020130202 Kah, Jr. Sep 2002 A1
20020153434 Cordua Oct 2002 A1
20030006304 Cool et al. Jan 2003 A1
20030015606 Cordua Jan 2003 A1
20030042327 Beutler et al. Mar 2003 A1
20030071140 Roman Apr 2003 A1
20030075620 Sesser Apr 2003 A1
20040108391 Onofrio Jun 2004 A1
20040124261 Griend Jul 2004 A1
20050006501 Englefield Jan 2005 A1
20050161534 Kah Jul 2005 A1
20050194464 Bruninga Sep 2005 A1
20050194479 Curtis Sep 2005 A1
20060038046 Curtis Feb 2006 A1
20060086832 Roberts Apr 2006 A1
20060086833 Roberts Apr 2006 A1
20060108445 Pinch May 2006 A1
20060144968 Lev Jul 2006 A1
20060237198 Crampton Oct 2006 A1
20060273202 Su Dec 2006 A1
20060281375 Jordan Dec 2006 A1
20070012800 McAfee et al. Jan 2007 A1
20070034711 Kah Feb 2007 A1
20070034712 Kah Feb 2007 A1
20070181711 Sesser Aug 2007 A1
20070235565 Kah Oct 2007 A1
20070246567 Roberts Oct 2007 A1
20080169363 Walker Jul 2008 A1
20080217427 Wang et al. Sep 2008 A1
20080257982 Kah Oct 2008 A1
20080276391 Jung Nov 2008 A1
20080277499 McAfee et al. Nov 2008 A1
20090008484 Feith Jan 2009 A1
20090014559 Marino Jan 2009 A1
20090072048 Renquist Mar 2009 A1
20090078788 Holmes Mar 2009 A1
20090108099 Porter Apr 2009 A1
20090140076 Cordua Jun 2009 A1
20090173803 Kah, Jr. Jul 2009 A1
20090173904 Roberts Jul 2009 A1
20090188988 Walker Jul 2009 A1
20090188991 Russell et al. Jul 2009 A1
20090224070 Clark Sep 2009 A1
20100078508 South et al. Apr 2010 A1
20100090024 Hunnicutt Apr 2010 A1
20100090036 Allen et al. Apr 2010 A1
20100108787 Walker May 2010 A1
20100155506 Johnson Jun 2010 A1
20100176217 Richmond Jul 2010 A1
20100257670 Hodel Oct 2010 A1
20100276512 Nies Nov 2010 A1
20100294851 Johnson Nov 2010 A1
20100301135 Hunnicutt Dec 2010 A1
20100301142 Hunnicutt Dec 2010 A1
20110024522 Anuskiewicz Feb 2011 A1
20110024526 Feith et al. Feb 2011 A1
20110024809 Janesick Feb 2011 A1
20110031325 Perkins et al. Feb 2011 A1
20110031332 Sesser et al. Feb 2011 A1
20110036920 Johnson Feb 2011 A1
20110147484 Jahan Jun 2011 A1
20110147489 Walker et al. Jun 2011 A1
20110248093 Kim Oct 2011 A1
20110248094 Robertson et al. Oct 2011 A1
20110248097 Kim Oct 2011 A1
20110285126 Jahan et al. Nov 2011 A1
20110309161 Renquist Dec 2011 A1
20120012670 Kah Jan 2012 A1
20120153051 Kah, Jr. Jun 2012 A1
20120292403 Hunnicutt et al. Nov 2012 A1
20130334332 Robertson Dec 2013 A1
20130334340 Walker Dec 2013 A1
20140027526 Shadbolt Jan 2014 A1
20140027527 Walker Jan 2014 A1
Foreign Referenced Citations (53)
Number Date Country
783999 Jan 2006 AU
2427450 Jun 2004 CA
1016463 Apr 1992 CN
2794646 Jul 2006 CN
2805823 Aug 2006 CN
1283591 Nov 1968 DE
3335805 Feb 1985 DE
0761312 Dec 1991 EP
463742 Jan 1992 EP
489679 Jun 1992 EP
518579 Dec 1992 EP
572747 Dec 1993 EP
646417 Apr 1995 EP
724913 Aug 1996 EP
1043075 Oct 2000 EP
1043077 Oct 2000 EP
1173286 Jan 2002 EP
1250958 Oct 2002 EP
1270082 Jan 2003 EP
1289673 Mar 2003 EP
1426112 Jun 2004 EP
1440735 Jul 2004 EP
1452234 Sep 2004 EP
1492626 Jan 2005 EP
1502660 Feb 2005 EP
1508378 Feb 2005 EP
1818104 Aug 2007 EP
1944090 Jul 2008 EP
2255884 Jan 2010 EP
2251090 Nov 2010 EP
1234723 Jun 1971 GB
2330783 May 1999 GB
62588 Nov 1942 SU
9520988 Aug 1995 WO
9727951 Aug 1997 WO
9735668 Oct 1997 WO
0007428 Dec 2000 WO
0131996 May 2001 WO
0162395 Aug 2001 WO
02078857 Oct 2002 WO
02098570 Dec 2002 WO
03086643 Oct 2003 WO
2004052721 Jun 2004 WO
2005099905 Oct 2005 WO
2005115554 Dec 2005 WO
2005123263 Dec 2005 WO
2006108298 Oct 2006 WO
2007131270 Nov 2007 WO
2008130393 Oct 2008 WO
2009036382 Mar 2009 WO
2010036241 Apr 2010 WO
2010126769 Nov 2010 WO
2011075690 Jun 2011 WO
Non-Patent Literature Citations (79)
Entry
U.S. Appl. No. 12/757,912, filed Apr. 9, 2010.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Jul. 10, 2014 (7 pages).
Office Action dated Sep. 8, 2014 for U.S. Appl. No. 12/757,912.
USPTO; U.S. Appl. No. 12/757,912; Office Action dated May 14, 2015.
Advisory Action mailed Jul. 14, 2011 for U.S. Appl. No. 11/947,571 (3 pgs.).
Applicant-Initiated Interview Summary and Final Office Action mailed Mar. 5, 2014 for U.S. Appl. No. 12/972,271 (12 pgs.).
European Patent Office Search Report and Opinion dated Aug. 5, 2010 for Application No. 10164085.2 (5 pgs.).
Final Office Action mailed Apr. 5, 2011 for U.S. Appl. No. 11/947,571 (11 pgs.).
Final Office Action mailed Dec. 5, 2013 for U.S. Appl. No. 12/972,271 (9 pgs.).
Interview Summary mailed Mar. 5, 2014 for U.S. Appl. No. 12/859,159 (3 pgs.).
Interview Summary mailed Sep. 26, 2011 for U.S. Appl. No. 12/475,242 (3 pgs.).
Issue Notification mailed Jul. 2, 2014 for U.S. Appl. No. 12/859,159 (1 pg.).
Non-Final Office Action dated Jan. 10, 2014 for U.S. Appl. No. 13/069,334 (6 pgs.).
Non-Final Office Action mailed Apr. 10, 2013 for U.S. Appl. No. 13/562,825 (22 pgs.).
Non-Final Office Action mailed Aug. 24, 2010 for U.S. Appl. No. 11/947,571 (11 pgs.).
Non-Final Office Action mailed Dec. 4, 2012 for U.S. Appl. No. 12/686,895 (29 pgs.).
Non-Final Office Action mailed Jan. 5, 2011 for U.S. Appl. No. 12/248,644 (20 pgs.).
Non-Final Office Action mailed Jul. 20, 2011 for U.S. Appl. No. 12/475,242 (17 pgs.).
Non-Final Office Action mailed Jun. 5, 2013 for U.S. Appl. No. 12/972,271 (8 pgs.).
Non-Final Office Action mailed Jun. 7, 2012 for U.S. Appl. No. 13/300,946 (9 pgs.).
Non-Final Office Action mailed Mar. 29, 2011 for U.S. Appl. No. 12/475,242 (7 pgs.).
Non-Final Office Action mailed May 24, 2013 U.S. Appl. No. 12/720,261 (67 pgs.).
Non-Final Office Action mailed Oct. 12, 2012 for U.S. Appl. No. 13/300,946 (7 pgs.).
Non-Final Office Action mailed Oct. 15, 2012 for U.S. Appl. No. 13/562,825 (10 pgs.).
Non-Final Office Action mailed Sep. 3, 2013 for U.S. Appl. No. 13/300,946. (5 pgs.).
Non-Final Office Action mailed Sep. 30, 2010 for U.S. Appl. No. 12/248,644 (7 pgs.).
Notice of Allowability mailed Jun. 23, 2014 for U.S. Appl. No. 12/859,159 (6 pgs.).
Notice of Allowance mailed Mar. 14, 2014 for U.S. Appl. No. 12/859,159 (12 pgs.).
Office Action dated Apr. 1, 2014 for U.S. Appl. No. 13/069,334.
Office Action dated Oct. 7, 2014 for U.S. Appl. No. 13/523,846.
Office Action mailed Dec. 4, 2013 for U.S. Appl. No. 12/859,159 (12 pgs.).
Office Action mailed May 29, 2013 for U.S. Appl. No. 12/859,159; (19 pgs.)
Office Action mailed Oct. 30, 2014 for U.S. Appl. No. 13/069,334 (15 pgs.).
Response dated Apr. 29, 2011 to Office Action mailed Mar. 29, 2011 for U.S. Appl. No. 12/475,242 (13 pgs.).
Response dated Jun. 25, 2012 to Office Action mailed Jun. 7, 2012 for U.S. Appl. No. 13/300,946 (12 pgs.).
Response dated Mar. 4, 2014 to Final Office Action mailed Dec. 4, 2013 for U.S. Appl. No. 12/859,159 (19 pgs.).
Response dated Nov. 24, 2010 to Office Action mailed Aug. 24, 2010 for U.S. Appl. No. 11/947,571 (19 pgs.).
Response dated Oct. 18, 2011 to Office Action mailed Jul. 20, 2011 for U.S. Appl. No. 12/475,242 (17 pgs.).
Response dated Oct. 29, 2013 to Non-Final Office Action mailed May 29, 2013 for U.S. Appl. No. 12/859,159 (13 pgs.).
Response dated Sep. 16, 2013 to Office Action mailed Jun. 5, 2013 for U.S. Appl. No. 12/972,271 (15 pgs.).
U.S. Appl. No. 61/681,798, filed Aug. 10, 2012.
U.S. Appl. No. 61/681,802, filed Aug. 10, 2012.
USPTO; U.S. Appl. No. 13/069,334; Office Action mailed Apr. 27, 2015.
USPTO; U.S. Appl. No. 13/523,846; Notice of Allowance mailed Feb. 23, 2015.
Written Opinion of the International Searching Authority and International Search Report date of mailing Apr. 19, 2011 for Application No. PCT/US10/61132 (12 pgs.).
Response dated Feb. 10, 2014 to Office Action mailed Jan. 10, 2014 for U.S. Appl. No. 13/069,334 (3 pgs.).
EPO Search Report and Opinion, dated Aug. 5, 2010 for EPO Application No. 10164085.2 (5 pgs.).
Initiated Interview Summary and Non-Final Office Action dated Mar. 5, 2014 for U.S. Appl. No. 12/972,271 (12 pgs.).
Non-Final Office Action mailed Oct. 15, 2012 for U.S. Appl. No. 13/562,825 (20 pgs.).
Response dated Feb. 10, 2014 to Office Action dated Apr. 10, 2014 for U.S. Appl. No. 13/069,334 (3 pgs).
Response dated Jul. 25, 2012 to Non-Final Office Action Apr. 25. 2012 for U.S. Appl. No. 12/757,912 (27 pgs.).
Response dated Mar. 25, 2013 to Final Rejection dated Oct. 23, 2012 for U.S. Appl. No. 12/757,912 (20 pgs.).
Response dated Oct. 18, 2011 to Office Action mailed Jul. 20, 2011 for U.S. Appl. No. 11/947,571 (11 pgs.).
USPTO Applicant-Initiated interview Summary dated Apr. 23, 2013 for U.S. Appl. No. 12/757,912 (3 pgs.).
USPTO Final Rejection dated Dec. 5, 2013 for U.S. Appl. No. 12/972,271 (9 pgs.).
USPTO Final Rejection dated Oct. 23, 2012 for U.S. Appl. No. 12/757,912 (19 pgs.).
USPTO Non-Final Office Action dated Apr. 25, 2012 for U.S. Appl. No. 12/757,912 (45 pgs.).
USPTO Non-Final Office Action dated Jun. 5, 2013 for U.S. Appl. No. 12/972,271 (25 pgs.).
Response dated Mar. 25. 2013 to Final Rejection dated Oct. 23, 2012 for U.S. Appl. No. 12/757,912.
U.S. Appl. No. 12/248,644, filed Oct. 9, 2008.
U.S. Appl. No. 12/475,242, filed May 29, 2009.
U.S. Appl. No. 12/720,261, filed Mar. 9, 2010.
U.S. Appl. No. 12/757,912, filed Apr. 19, 2010.
U.S. Appl. No. 12/859,159, filed Aug. 18, 2010.
U.S. Appl. No. 12/952,369, filed Nov. 23, 2010.
U.S. Appl. No. 13/069,334, filed Mar. 22, 2011.
U.S. Appl. No. 13/495,402, filed Jun. 13, 2012.
U.S. Appl. No. 13/523,846, filed Jun. 14, 2012.
U.S. Appl. No. 13/560,423, filed Jul. 27, 2012.
U.S. Appl. No. 13/562,825, filed Jul. 31, 2012.
U.S. Appl. No. 13/828,582, filed Mar. 14, 2013.
U.S. Appl. No. 12/686,895, filed Jan. 13, 2010.
U.S. Appl. No. 13/300,946, filed Nov. 21, 2011.
USPTO Non-Final Office Action dated Apr. 25, 2012 for U.S. Appl. No. 12/757,912 (17 pgs.).
Written Opinion of the International Searching Authority and International Search Report issued in International Patent Application No. PCT/US10/61132 on Apr. 19, 2011.
Response dated Jul. 25, 2012 to Non-Final Office Action Apr. 25, 2012 for U.S. Appl. No. 12/757,912 (27 pgs.).
Response dated Sep. 16, 2013 to Office Action dated Jun. 5, 2013 for U.S. Appl. No. 12/972,271.
USPTO Applicant-Initiated Interview Summary dated Apr. 23, 2013 for U.S. Appl. No. 12/757,912.
USPTO Final Rejection dated Oct. 23, 2012 for U.S. Appl. No. 12/757,912.
Related Publications (1)
Number Date Country
20140263757 A1 Sep 2014 US