Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
Field of the Invention
The present invention relates to residential and commercial irrigation systems, and more particularly to irrigation controllers that use evapotranspiration (ET) data in calculating and executing watering schedules.
Description of the Related Art
Electronic irrigation controllers have long been used on residential and commercial sites to water turf and landscaping. They typically comprise a plastic housing that encloses circuitry including a processor that executes a watering program. Watering schedules are typically manually entered or selected by a user with pushbutton and/or rotary controls while observing an LCD display. The processor turns a plurality of solenoid actuated valves ON and OFF with solid-state switches in accordance with the watering schedules that are carried out by the watering program. The valves deliver water to sprinklers connected by subterranean pipes. There is presently a large demand for conventional irrigation controllers that are easy for users to set up in terms of entering and modifying the watering schedules. One example is the Pro C® irrigation controller commercially available from Hunter Industries, Inc., the assignee of the subject application. The user simply enters the start times for a selected watering schedule, assigns a station to one or more schedules, and sets each station to run a predetermined number of minutes to meet the irrigation needs of the site. The problem with conventional irrigation controllers is that they are often set up to provide the maximum amount of irrigation required for the hottest and driest season, and then either left that way for the whole year, or in some cases the watering schedules are modified once or twice per year by the user. The result is that large amounts of water are wasted. Water is a precious natural resource and there is an increasing need to conserve the same.
In one type of prior art irrigation controller the run cycles times for individual stations can be increased or decreased by pushing “more” and “less” watering buttons.
Another conventional irrigation controller of the type that is used in the commercial market typically includes a seasonal adjustment feature. This feature is typically a simple global adjustment implemented by the user that adjusts the overall watering as a percentage of the originally scheduled cycle times. It is common for the seasonal adjustment to vary between a range of about ten percent to about one hundred and fifty percent of the scheduled watering. This is the simplest and most common overall watering adjustment that users of irrigation controllers can effectuate. Users can move the amount of adjustment down to ten to thirty percent in the winter, depending on their local requirements. They may run the system at fifty percent during the spring or fall seasons, and then at one hundred percent for the summer. The ability to seasonally adjust up to one hundred and fifty percent of the scheduled watering accommodates the occasional heat wave when turf and landscaping require significantly increased watering. The seasonal adjustment feature does not produce the optimum watering schedules because it does not take into consideration all of the ET factors such as soil type, plant type, slope, temperature, humidity, solar radiation, wind speed, etc. Instead, the seasonal adjustment feature simply adjusts the watering schedules globally to run a longer or shorter period of time based on the existing watering program. When the seasonal adjustment feature is re-set on a regular basis a substantial amount of water is conserved and while still providing adequate irrigation in a variety of weather conditions. The problem is that most users forget about the seasonal adjustment feature and do not re-set it on a regular basis, so a considerable amount of water is still wasted, or turf and landscaping die.
In the past, irrigation controllers used with turf and landscaping have used ET data to calculate watering schedules based on actual weather conditions. Irrigation controllers that utilize ET data are quite cumbersome to set up and use, and require knowledge of horticulture that is lacking with most end users. The typical ET based irrigation controller requires the user to enter the following types of information: soil type, soil infiltration rates, sprinkler precipitation rate, plant type, slope percentage, root zone depth, and plant maturity. The controller then receives information, either directly or indirectly, from a weather station that monitors weather conditions such as: amount of rainfall, humidity, hours of available sunlight, amount of solar radiation, temperature, and wind speed. The typical ET based irrigation controller then automatically calculates an appropriate watering schedule that may change daily based on the weather conditions and individual plant requirements. These changes typically include the number of minutes each irrigation station operates, the number of times it operates per day (cycles), and the number of days between watering. All of these factors are important in achieving the optimum watering schedules for maximum water conservation while maintaining the health of turf and landscaping.
Another device that can be occasionally found connected to an irrigation controller is a soil moisture sensor. There are many methods used, but most involve sensors containing spaced apart electrodes placed at root zone depth in the soil to sense the moisture levels in the soil and help control irrigation amounts. There is typically a threshold set manually by the user to determine the “wet” and “dry” levels for the soil and plant conditions. However, systems with a stand alone soil moisture sensor typically are used as a shutoff type device, and the sensor does nothing to tell the controller how much or when to irrigate. Typically the homeowner or irrigation professionals must initially set up and then adjust the irrigation periodically during the year to optimize the amount being applied.
While conventional ET based irrigation controllers help to conserve water and maintain plant health over a wide range of weather conditions they are complex and their set up is intimidating to many users. They typically require a locally mounted weather station having a complement of environmental sensors. Such locally mounted weather stations are complex, expensive and require frequent maintenance. Instead of receiving data from a locally mounted weather station, home owners and property owners can arrange for their ET based irrigation controllers to receive weather data collected by a private company on a daily basis and transmitted to the end user wirelessly, via phone lines or over an Internet connection. This reduces the user's up-front costs, and maintenance challenges, but requires an ongoing subscription expense for the life of the ET based irrigation controller. In addition, the user must still have a substantial understanding of horticulture to set up the ET based irrigation controller. For these reasons, most ET based irrigation controllers are set up by irrigation professionals for a fee. These same irrigation professionals must be called back to the property when changes need to be made, because the set up procedures are complex and not intuitive to most users. These challenges are limiting the sale and use of ET based irrigation controllers to a very small minority of irrigation sites. This impairs water conservation efforts that would otherwise occur if ET based irrigation controllers were easier to set up and adjust.
An irrigation system includes at least one environmental sensor, such as a solar radiation sensor, that is installed on an irrigation site, and a soil moisture sensor that is also installed on the irrigation site. Programming allows an estimated ET value to be calculated based at least in part on the output signal of the environmental sensor. A pre-programmed watering schedule is automatically modified based on the estimated ET value to thereby conserve water while maintaining the health of plants on the irrigation site. The system automatically inhibits irrigation when an output signal of the soil moisture sensor indicates an amount of moisture in the soil is above a predetermined threshold.
The entire disclosures of the following U.S. patents and U.S. patent applications are hereby incorporated by reference: U.S. Pat. No. 5,097,861 granted Mar. 24, 1992 of Hopkins et al. entitled IRRIGATION METHOD AND CONTROL SYSTEM; U.S. Pat. No. 5,444,611 granted Aug. 22, 1995 of Peter J. Woytowitz, et al. entitled LAWN AND GARDEN IRRIGATION CONTROLLER; U.S. Pat. No. 5,829,678 granted Nov. 3, 1998 of Richard E. Hunter et al. entitled SELF-CLEANING IRRIGATION REGULATOR VALVE APPARATUS; U.S. Pat. No. 6,088,621 granted Jul. 11, 2000 also of Peter J. Woytowitz et al. entitled PORTABLE APPARATUS FOR RAPID REPROGRAMMING OF IRRIGATION CONTROLLERS; U.S. Pat. No. 6,721,630 granted Apr. 13, 2004 also of Peter J. Woytowitz entitled EXPANDABLE IRRIGATION CONTROLLER WITH OPTIONAL HIGH-DENSITY STATION MODULE; U.S. Pat. No. 5,179,347 granted Jan. 12, 1993 of Alfred J. Hawkins; U.S. Pat. No. 6,842,667 granted Jan. 11, 2005 of Beutler et al. entitled POSITIVE STATION MODULE LOCKING MECHANISM FOR EXPANDABLE IRRIGATION CONTROLLER; U.S. patent application Ser. No. 10/883,283 filed Jun. 30, 2004 also of Peter J. Woytowitz entitled HYBRID MODULAR/DECODER IRRIGATION CONTROLLER, now U.S. Pat. No. 7,069,115 granted Jun. 27, 2007; pending U.S. patent application Ser. No. 10/985,425 filed Nov. 9, 2004 also of Peter J. Woytowitz et al. and entitled EVAPOTRANSPIRATION UNIT CONNECTABLE TO IRRIGATION CONTROLLER; pending U.S. patent application Ser. No. 11/288,831 filed Nov. 29, 2005 of LaMonte D. Porter et al. and entitled EVAPOTRANSPIRATION UNIT FORRE-PROGRAMMING AN IRRIGATION CONTROLLER; U.S. patent application Ser. No. 11/045,527 filed Jan. 28, 2005 also of Peter J. Woytowitz entitled DISTRIBUTED ARCHITECTURE IRRIGATION CONTROLLER, now U.S. Pat. No. 7,245,991 granted Jul. 17, 2007; U.S. Pat. No. 7,289,886 of Peter J. Woytowitz granted Oct. 30, 2007 entitled MODULAR IRRIGATION CONTROLLER WITH SEPARATE FIELD VALVE LINE WIRING TERMINALS; U.S. Pat. No. 7,225,058 of LaMonte D. Porter granted May 29, 2007 entitled MODULAR IRRIGATION CONTROLLER WITH INDIRECTLY POWERED STATION MODULES; pending U.S. patent application Ser. No. 11/458,551 filed Jul. 19, 2006 of LaMonte D. Porter et al. entitled IRRIGATION CONTROLLER WITH INTERCHANGEABLE CONTROL PANEL; pending U.S. patent application Ser. No. 12/042,301 filed Mar. 4, 2008 of Peter J. Woytowitz et al. entitled IRRIGATION CONTROLLER WITH SELECTABLE WATERING RESTRICTIONS; pending U.S. patent application Ser. No. 12/181,894 filed Jul. 29, 2008 of Peter J. Woytowitz et al. entitled IRRIGATION SYSTEM WITH ET BASED SEASONAL WATERING ADJUSTMENT; and pending U.S. patent application Ser. No. 12/251,179 filed Oct. 14, 2008 of Peter J. Woytowitz et al. entitled IRRIGATION SYSTEM WITH SOIL MOISTURE BASED SEASONAL WATERING ADJUSTMENT. The aforementioned U.S. patents and applications are all assigned to Hunter Industries, Inc., the assignee of the subject application, except for the patent granted Jan. 12, 1993 to Hawkins.
The present invention addresses the hesitancy or inability of users to learn the horticultural factors required to set up a conventional ET based irrigation controller. The irrigation system of the present invention has a familiar manner of entering, selecting and modifying its watering schedules, and either built-in or add-on capability to automatically modify its watering schedules based on ET data in order to conserve water and effectively irrigate vegetation throughout the year as weather conditions vary. The user friendly irrigation system of the present invention is capable of achieving, for example, eighty-five percent of the maximum amounts of water that can theoretically be conserved on a given irrigation site, but is still able to be used by most non-professionals. Therefore, a large percentage of users of the irrigation system of the present invention will have a much more beneficial environmental impact than a near perfect solution provided by complex prior art ET based irrigation controllers that might at best be adopted a small percentage of users. Even within the small percentage of users that adopt the full ET device, many of them may not be set up correctly because of the complexities of ET, and may therefore operate inefficiently.
Referring to
Referring to
The face pack 30 (
A processor 40 (
The processor 40 communicates with removable modules 44 and 46a-c (
In
An elongate locking bar 50 (
The receptacles for the modules such as 44 and 46a-c are partially defined by vertical walls 58 (
The processor 40 (
The modules 44 and 46a-c have contacts 74 (
Referring to
The microcontroller 108 (
The user can modify the run and cycle times for individual stations in the usual manner in the irrigation controller 12. As an example, if one station is watering too much, but all of the other stations are watering the correct amount, the user can easily reduce the run time of that particular station and balance the system out. Then the ET unit 16 continues modifying the watering schedules executed by the irrigation controller 12 on a global basis as a percentage of run time, based on the calculated estimated ET value. Irrigation controllers can be used to control landscape lighting and other non-irrigation devices such as decorative water fountains. The controller 12 may have features in it such that the ET unit 16 only modifies the watering schedules of the irrigation controller 12.
One of the difficulties with conventional weather-based controllers is attributable to the difficulty of fine-tuning the weather data being received. The environmental sensors may not always be able to be placed in an optimum location on the irrigation site. As an example, a solar radiation sensor may be placed in an area that receives late afternoon shade. This will result in the calculation of an abnormally low estimated ET value. The entire irrigation site may receive too little water and the plant material may become stressed from too little water if the watering schedules are based on an abnormally low estimated ET. If a conventional ET based irrigation controller receives input from such an incorrectly located solar radiation sensor, the user can attempt to compensate by increasing the run times for each zone by modifying precipitation rates to compensate for the error. This is cumbersome and makes it difficult and frustrating for the user to adjust a conventional ET based irrigation controller for optimum watering.
An advantage of the present invention is the ability to globally modify the watering schedules of the stand alone irrigation controller 12 to compensate for this type of condition. If at any time the user realizes that the property is receiving too little water, the user can simply manually change an overall watering adjustment feature. The overall watering adjustment feature is implemented as a simple plus or minus control via actuation of an assigned pair of the push buttons 128a-c. This changes the reference point of the ET calculation either up or down. After this adjustment is made, the ET adjustment executed by the ET unit 16 references the new setting and then compensates for under watering that would otherwise occur. Likewise, if the overall watering is too much for the irrigation site, the user can simply adjust the overall watering adjustment feature down and create a new lower reference for the automatic ET based adjustments. The overall watering adjustment feature makes it easy for the user to fine-tune the system to the particular requirements of the irrigation site. The overall watering adjustment feature can be indicated by showing “global adjustment,” or “more/less, water+/−,” or similar naming conventions.
The overall watering adjustment feature of the ET unit 16 directly alters the station run times executed by the irrigation controller 12. This adjustment modifies the estimated maximum expected ET setting, which is a constant that is used in the calculating the seasonal adjust value. When the user makes overall watering adjustments by pressing plus or minus push buttons on the ET unit 16, this directly affects the ET value that is used to reset the seasonal adjustment in the host controller 12. In calculating the estimated ET, the microcontroller 108 in the ET unit 16 uses only select data points as variables (temperature and solar radiation) and uses other data points that may consist of pre-programmed constants, and/or data entered by the user that defines some one or more constants of the site. Estimated ET is calculated using the Penman-Monteith formula, taking into account geographical data for peak estimated summer ET.
Another feature provided by the ET 16 is an automatic shutdown feature for irrigation that overrides any scheduled run times. There are several times when this is important. A rain sensor in the weather station 20 can send signals to the ET unit representing the occurrence of a rain event. The ET unit 10 will then signal the irrigation controller 12 to shut down and suspend any watering, regardless of any scheduled irrigation running or not running at the time. As another example, during a freeze or near freeze condition, irrigation may produce ice that can be dangerous to people walking or vehicles diving by. Many cities therefore require that irrigation be automatically turned off in the event of a freeze condition. A temperature sensor in the weather station 20 can detect a freeze or near freeze condition and the ET unit 16 will signal the irrigation controller 12 to shut down, regardless of any scheduled irrigation running or not running at the time. As another example, if the user entered irrigation or scheduled irrigation puts too much water down for a selected root zone, this can create a hazardous condition due to water runoff and is also wasteful of water. A soil moisture sensor attached to the ET unit 10 can detect soil moisture levels and send signals to the ET unit representing the level of moisture 30 present in the soil. The ET unit 10 will then determine from these soil moisture levels and user preset limits to selectively inhibit, shut down and/or suspend any watering to prevent an overwatering condition. If the irrigation site experiences very heavy rainfall, and particularly if such rainfall persists for several days, the soil becomes saturated. However a hygroscopic rain sensor will dry out in two or three days, and the irrigation controller will resume executing its pre-programmed watering schedule. Often times the soil is still sufficiently most to support healthy plant growth and additional watering is not needed at this time. The use of a soil moisture sensor to inhibit watering under such circumstances is very advantageous in terms of conserving water.
The automatic shutdown feature of the ET unit 10 is also useful in geographic areas where watering agencies and municipalities impose restrictions that limit the times when irrigation can occur. The user is able to enter a no-water window into the ET unit 16, which consists of the times when irrigation is not allowed to take place. When a no-water window is entered by the user, the ET unit 16 will signal the irrigation controller 12 to shut down, regardless of any scheduled irrigation running or not running at the time. The ET unit 16 will then allow the irrigation controller 12 to return to its normal run mode after the selected no-water window time has elapsed. The irrigation controller 12 may have sensor input terminals, as in the case of the Pro-C irrigation controller, which can be used to shut down all watering on receipt of a shutdown command from the ET unit 16.
The weather station 20 (
The stacks 136 and 138 (
The rain sensor including the stacks 136 and 138 of hygroscopic discs, magnet 154 and Hall effect sensor 156 is one form of environmental sensor that can be used to generate a signal representative of an environmental condition on a local irrigation site where the irrigation controller 12 is installed. The solar radiation sensor 160 is another form of environmental sensor that can generate another signal representative of another environmental condition on the irrigation site. Those skilled in the art will appreciate that various environmental sensors may be used on the site, alone or in combination, such as a rain sensor, a solar radiation sensor, a wind speed sensor, a humidity sensor, a freeze sensor, a temperature sensor, and so forth.
The basic construction of the soil moisture sensor 21 may be similar to that disclosed in U.S. Pat. No. 5,179,347 granted Jan. 12, 1993 to Alfred J. Hawkins entitled ELECTRICAL SENSOR FOR SENSING MOISTURE IN SOILS, the entire disclosure of which is incorporated herein by reference. The aforementioned U.S. patent is assigned to Irrometer Company, Inc., Riverside, Calif.
A surge protection circuit 164 is also connected to the buffer that may consist of metal oxide varistors and on board spark gaps connected to each output of the H-bridge. The buffer 162 is in turn connected to a Microchip PIC18F684-I/SL microcontroller 166.
The communications interface 168 between the microcontroller 166 and the ET unit 10 may be a hard wire interface, or more preferably, a wireless interface that may comprise a Microchip Technology RFPIC675 transmitter and a Maxim MAX1473 receiver. The transmitter sends signals representative of actual components of soil moisture data within the soil at the root zone to the ET unit 10. Power for the hard wired soil moisture sensor 21 is derived from the communications link to the ET unit 10 and is fed to an input conditioner 170 which feeds a Microchip MCP1702T-3002E/CB power regulator 7. The power regulator 172 supplies 15 V DC power to the power regulator 174. Power regulator 174 supplies three volt DC power to the micro controller 166. When there is a wireless connection, power is supplied by a dedicated battery (not illustrated) installed within the soil moisture sensor.
The ET unit 16 of the present invention utilizes the watering program set up procedures that the installers, maintenance personnel and homeowners are already accustomed to using. Start times, station run times, and days-to-water are manually entered into the irrigation controller 12. The user also selects from one of a group of geographical regions in the ET unit 16. The ET unit 16 then automatically takes over setting of the seasonal adjustment feature of the irrigation controller 12 on a regular basis. Instead of a user changing that feature several times per year, the ET unit 16 sets that seasonal adjustment daily depending on current weather conditions gathered on site. Furthermore, the ET unit 16 shuts down any scheduled watering by the irrigation controller 12 in response to a rain event or a freeze event, and when there is a scheduled no-water window. Cost savings are achieved since only a small number of the weather parameters need to be measured. These variables are then used with pre-programmed constants to calculate an estimated ET value. This approach allows for cost savings since the stand alone weather station 20 need not have more than a solar radiation sensor, a temperature sensor and a rain sensor.
The present invention also provides a unique method of controlling a plurality of valves on an irrigation site. The method includes the steps of selecting and/or creating a watering schedule, storing the watering schedule and generating a signal representative of an environmental condition on an irrigation site. The method also includes the steps of calculating an estimated ET value based at least in part on the signal and selectively turning a plurality of valves located on the irrigation site ON and OFF in accordance with the watering schedule. The method further includes step of automatically modifying the watering schedule based on the estimated ET value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site. The method further includes the step of inhibiting watering if the moisture sensed by a soil moisture sensor is above a predetermined threshold. Optionally, the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated ET value as increased or decreased by the inputted overall watering adjustment.
While an embodiment of an irrigation system comprising a stand alone ET unit connected to stand alone irrigation controller and linked to a separate stand alone weather station has been described in detail, persons skilled in the art will appreciate that the present invention can be modified in arrangement and detail. The calculated ET values may be down loaded to a controller that changes the irrigation schedule of each individual station rather than changing the seasonal adjust feature. The features and functionality described could be provided by combining the irrigation controller and the ET unit into a single integrated unit 212 (
Number | Name | Date | Kind |
---|---|---|---|
3721254 | Rutten | Mar 1973 | A |
4176395 | Evelyn-Veere et al. | Nov 1979 | A |
4180083 | Miyaoka et al. | Dec 1979 | A |
4567563 | Hirsch | Jan 1986 | A |
4646224 | Ransburg et al. | Feb 1987 | A |
4655076 | Weihe et al. | Apr 1987 | A |
4693419 | Weintraub et al. | Sep 1987 | A |
4722478 | Fletcher et al. | Feb 1988 | A |
4755942 | Gardner et al. | Jul 1988 | A |
4807664 | Wilson et al. | Feb 1989 | A |
4811221 | Sturman et al. | Mar 1989 | A |
4876647 | Gardner et al. | Oct 1989 | A |
4877189 | Williams | Oct 1989 | A |
4922433 | Mark | May 1990 | A |
4937732 | Brundisini | Jun 1990 | A |
4962522 | Marian | Oct 1990 | A |
5097861 | Hopkins et al. | Mar 1992 | A |
5148826 | Bakhshaei | Sep 1992 | A |
5148985 | Bancroft | Sep 1992 | A |
5173855 | Nielsen et al. | Dec 1992 | A |
5208855 | Marian | May 1993 | A |
5229937 | Evelyn-Veere | Jul 1993 | A |
5251153 | Nielsen et al. | Oct 1993 | A |
5293554 | Nicholson | Mar 1994 | A |
5337957 | Olson | Aug 1994 | A |
5381331 | Mock et al. | Jan 1995 | A |
5444611 | Woytowitz et al. | Aug 1995 | A |
5479339 | Miller | Dec 1995 | A |
5546974 | Bireley | Aug 1996 | A |
5694963 | Fredell et al. | Dec 1997 | A |
5696671 | Oliver | Dec 1997 | A |
5740038 | Hergert | Apr 1998 | A |
5829678 | Hunter et al. | Nov 1998 | A |
5836339 | Klever et al. | Nov 1998 | A |
5870302 | Oliver | Feb 1999 | A |
5944444 | Motz et al. | Aug 1999 | A |
6016971 | Welch et al. | Jan 2000 | A |
6088621 | Woytowitz et al. | Jul 2000 | A |
6145755 | Feltz | Nov 2000 | A |
6227220 | Addink | May 2001 | B1 |
6267298 | Campbell | Jul 2001 | B1 |
6298285 | Addink et al. | Oct 2001 | B1 |
6314340 | Mecham et al. | Nov 2001 | B1 |
6452499 | Runge et al. | Sep 2002 | B1 |
6453215 | Lavole | Sep 2002 | B1 |
6453216 | McCabe et al. | Sep 2002 | B1 |
6568416 | Tucker et al. | May 2003 | B2 |
6570109 | Klinefelter et al. | May 2003 | B2 |
6600971 | Smith et al. | Jul 2003 | B1 |
6721630 | Woytowitz | Apr 2004 | B1 |
6782311 | Barlow et al. | Aug 2004 | B2 |
6823239 | Sieminski | Nov 2004 | B2 |
6842667 | Beutler et al. | Jan 2005 | B2 |
6892113 | Addink et al. | May 2005 | B1 |
6892114 | Addink et al. | May 2005 | B1 |
6895987 | Addink et al. | May 2005 | B2 |
6947811 | Addink et al. | Sep 2005 | B2 |
6977351 | Woytowitz | Dec 2005 | B1 |
6978794 | Dukes | Dec 2005 | B2 |
6993416 | Christiansen | Jan 2006 | B2 |
7010394 | Runge et al. | Mar 2006 | B1 |
7010396 | Ware et al. | Mar 2006 | B2 |
7048204 | Addink et al. | May 2006 | B1 |
7058478 | Alexanian | Jun 2006 | B2 |
7069115 | Woytowitz | Jun 2006 | B1 |
7133749 | Goldberg | Nov 2006 | B2 |
7146254 | Howard | Dec 2006 | B1 |
7168632 | Kates | Jan 2007 | B2 |
7203576 | Wilson et al. | Apr 2007 | B1 |
7225058 | Porter | May 2007 | B1 |
7231298 | Hnilica-Maxwell | Jun 2007 | B2 |
7245991 | Woytowitz | Jul 2007 | B1 |
7261245 | Zur | Aug 2007 | B2 |
7289886 | Woytowitz | Oct 2007 | B1 |
7403840 | Moore et al. | Jul 2008 | B2 |
7412303 | Porter et al. | Aug 2008 | B1 |
7430458 | Dansereau et al. | Sep 2008 | B2 |
7458521 | Ivans | Dec 2008 | B2 |
7477950 | DeBourke et al. | Jan 2009 | B2 |
7532954 | Evelyn-Veere | May 2009 | B2 |
7596429 | Cardinal et al. | Sep 2009 | B2 |
7619322 | Gardner et al. | Nov 2009 | B2 |
7789321 | Hitt | Sep 2010 | B2 |
7805221 | Nickerson | Sep 2010 | B2 |
7853363 | Porter et al. | Dec 2010 | B1 |
7877168 | Porter et al. | Jan 2011 | B1 |
7953517 | Porter et al. | May 2011 | B1 |
7956624 | Beaulieu | Jun 2011 | B2 |
8200368 | Nickerson | Jun 2012 | B2 |
8275309 | Woytowitz | Sep 2012 | B2 |
8301309 | Woytowitz et al. | Oct 2012 | B1 |
8321061 | Anderson | Nov 2012 | B2 |
8538592 | Alexanian | Sep 2013 | B2 |
8548632 | Porter et al. | Oct 2013 | B1 |
8600569 | Woytowitz et al. | Dec 2013 | B2 |
8606415 | Woytowitz et al. | Dec 2013 | B1 |
8649907 | Ersavas | Feb 2014 | B2 |
8660705 | Woytowitz et al. | Feb 2014 | B2 |
8793024 | Woytowitz et al. | Jul 2014 | B1 |
8924032 | Woytowitz et al. | Dec 2014 | B2 |
20010054967 | Vanderah et al. | Dec 2001 | A1 |
20020002425 | Dossey et al. | Jan 2002 | A1 |
20020072829 | Addink et al. | Jun 2002 | A1 |
20030093159 | Sieminski | May 2003 | A1 |
20030109964 | Addink et al. | Jun 2003 | A1 |
20030179102 | Barnes | Sep 2003 | A1 |
20030182022 | Addink et al. | Sep 2003 | A1 |
20040011880 | Addink et al. | Jan 2004 | A1 |
20040015270 | Addink et al. | Jan 2004 | A1 |
20040030456 | Barlow et al. | Feb 2004 | A1 |
20040039489 | Moore et al. | Feb 2004 | A1 |
20040181315 | Cardinal et al. | Sep 2004 | A1 |
20040206395 | Addink et al. | Oct 2004 | A1 |
20040225412 | Alexanian | Nov 2004 | A1 |
20040239524 | Kobayashi | Dec 2004 | A1 |
20050038529 | Perez et al. | Feb 2005 | A1 |
20050038569 | Howard | Feb 2005 | A1 |
20050090936 | Hitt et al. | Apr 2005 | A1 |
20050125083 | Kiko | Jun 2005 | A1 |
20050171646 | Miller | Aug 2005 | A1 |
20050199842 | Parsons et al. | Sep 2005 | A1 |
20050203669 | Curren | Sep 2005 | A1 |
20050211791 | Clark et al. | Sep 2005 | A1 |
20050211792 | Clark et al. | Sep 2005 | A1 |
20050211793 | Clark et al. | Sep 2005 | A1 |
20050211794 | Clark et al. | Sep 2005 | A1 |
20050216127 | Clark et al. | Sep 2005 | A1 |
20050216128 | Clark et al. | Sep 2005 | A1 |
20050216129 | Clark et al. | Sep 2005 | A1 |
20050216130 | Clark et al. | Sep 2005 | A1 |
20060116792 | Addink | Jun 2006 | A1 |
20060122736 | Alexanian | Jun 2006 | A1 |
20060161309 | Moore et al. | Jul 2006 | A1 |
20060184284 | Froman et al. | Aug 2006 | A1 |
20060184285 | Evelyn-Veere | Aug 2006 | A1 |
20070016334 | Smith et al. | Jan 2007 | A1 |
20070055407 | Goldberg et al. | Mar 2007 | A1 |
20070156290 | Froman et al. | Jul 2007 | A1 |
20070237583 | Corwon et al. | Oct 2007 | A1 |
20070282486 | Walker et al. | Dec 2007 | A1 |
20070293990 | Alexanain | Dec 2007 | A1 |
20080091307 | Dansereau et al. | Apr 2008 | A1 |
20080142614 | Elezaby | Jun 2008 | A1 |
20090094097 | Gartenswartz | Apr 2009 | A1 |
20090099701 | Li et al. | Apr 2009 | A1 |
20090138105 | Crawford | May 2009 | A1 |
20090177330 | Kah, Jr. | Jul 2009 | A1 |
20090216345 | Christfort | Aug 2009 | A1 |
20090326723 | Moore et al. | Dec 2009 | A1 |
20100030476 | Woytowitz | Feb 2010 | A1 |
20100094472 | Woytowitz | Apr 2010 | A1 |
20100312404 | Nickerson | Dec 2010 | A1 |
20110093123 | Alexanian | Apr 2011 | A1 |
20110224836 | Hern et al. | Sep 2011 | A1 |
20140081471 | Woytowitz et al. | Mar 2014 | A1 |
20140172180 | Woytowitz et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
WO 03085473 | Oct 2003 | WO |
WO 2008144563 | Nov 2008 | WO |
Entry |
---|
Aqua Conserve Products, http://www.aquaconserve.com/products.php, © 2002, Aqua Conservative Systems in 5 pages. |
Allen et al., “Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAQ Irrigation and Drainage,” Paper 56, http://hydrotechnic.150m.com/crop—water.html in 60 pages, FAO—Food and Agriculture Organization of the United Nations of Rome, 1998. |
Dukes, et al.: “Soil Moisture Sensor Control for Conservation of Landscape Irrigation,” Georgia Water Resources Conference, Mar. 27-29, 2007. |
East Bay Municipal Utility District (EBMUD), “Irrigation Controllers Timer for the Homeowner,” US Environmental Protection Agency (EPA) (EPA 832-K-03-001, Jul. 2003)—http://www.epa.gov/owm/water-efficiency/Irrigation—booklet.pdf. |
Hunter Irrigation Products Catalog Aug. 2009, 110 pages, © 2007 Hunter Industries Incorporated. |
WeatherTRAK, Smart irrigation. Made simple, http://www.hydropoint.com, © 2004 Hydropoint, Inc., in 1 page. |
Rain Bird, Turf Irrigation Equipment 1989 catalog, cover page, pp. 72 and 73. |
Residential Landscape Irrigation Study Using Aqua ET Controllers for Aqua Conserve, Denver Water, Denver, CO & City of Sonoma, CA & Valley of the Moon Water District, CA. Jun. 2002, in 5 pages. |
Shedd et al., “Evaluation of Evapotranspiration and Soil Moisture-based Irrigation Control on Turfgrass,” Proceedings ASCE EWRI World Environmental & Water Resources Congress, May 15-19, 2007, in 21 pages. |
SRR Remote Wiring and Installation, Technical Tips, http:///www.hunterindustries.com/resources/technical—bulletin/srr—remote.html © 2004 Hunter Industries Incorporation. |
Toro Partners with HydroPoint Data Systems to Develop Weather-Based Irrigation Controllers of Athletic Turf News from Internet—Email address: http://athleticturf.net/athleticturf/article, Jan. 16, 2004. |
The ongoing prosecution history of U.S. Appl. No. 11/458,551, filed Jul. 19, 2006, including without limitations Office Action, Amendments, Remarks, and any other potentially relevant documents. |
The ongoing prosecution history of U.S. Appl. No. 12/042,301, filed Mar. 4, 2008, including without limitations Office Action, Amendments, Remarks, and any other potentially relevant documents. |
U.S. Appl. No. 10/985,425 “Amendment” in response to USPTO Office Action mailed on Aug. 11, 2005 in 9 pages. |
U.S. Appl. No. 10/985,425 “Amendment” in response to USPTO Office Action mailed Dec. 6, 2005 in 8 pages. |
U.S. Appl. No. 10/985,425 “Brief on Appeal” in response to Board of Appeals and Interferences' Notice of Panel Decision from Pre-Appeal Brief Review mailed Jan. 23, 2007 (appealing from USPTO Office Action mailed Mar. 24, 2006), in 22 pages. |
U.S. Appl. No. 10/985,425 “Examiner's Answer” in response to Appellants' Appeal Brief filed Mar. 23, 2007 (appealing from USPTO Office Action mailed on Mar. 24, 2006). |
U.S. Appl. No. 10/985,425 “Reply Brief” in response to Examiner's Answer from Board of Appeals and Interferences mailed Jul. 25, 2007. |
Number | Date | Country | |
---|---|---|---|
20150112494 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14091865 | Nov 2013 | US |
Child | 14581222 | US | |
Parent | 12986033 | Jan 2011 | US |
Child | 14091865 | US |