The present invention relates to residential and commercial irrigation systems, and more particularly to irrigation controllers that use soil moisture data in calculating and executing watering schedules.
Electronic irrigation controllers have long been used on residential and commercial sites to water turf and landscaping. They typically comprise a plastic housing that encloses circuitry including a processor that executes a watering program. Watering schedules are typically manually entered or selected by a user with pushbutton and/or rotary controls while observing an LCD display. The processor turns a plurality of solenoid actuated valves ON and OFF with solid state.
A conventional irrigation controller of the type that is used in the commercial market typically includes a seasonal adjustment feature. This feature is typically a simple global adjustment implemented by the user that adjusts the overall watering as a percentage of the originally scheduled cycle times. It is common for the seasonal adjustment to vary between a range of about ten percent to about one hundred and fifty percent or more of the scheduled watering. This is the simplest and most common overall watering adjustment that users of irrigation controllers can effectuate. Users can move the amount of adjustment down to ten to thirty percent in the winter, depending on their local requirements. They may run the system at fifty percent during the spring or fall seasons, and then at one hundred percent for the summer. The ability to seasonally adjust up to one hundred and fifty percent or more of the scheduled watering accommodates the occasional heat wave when turf and landscaping require significantly increased watering. The seasonal adjustment feature does not produce the optimum watering schedules because it does not take into consideration the amount of moisture that is actually available in the soil for the plants to utilize for healthy growth. Instead, the seasonal adjustment feature is manually set to simply adjust the watering schedules globally to run a longer or shorter period of time based on the existing watering schedule. When the seasonal adjustment feature is accurately re-set on a regular basis, a substantial amount of water is conserved while still providing adequate irrigation in a variety of weather conditions. The problem is that most users do not re-set it on a regular basis, or do not set it correctly, so a considerable amount of water is still wasted, or turf and landscaping die.
In the past, irrigation controllers used with turf and landscaping have used Soil moisture data to activate or deactivate irrigation zones based on actual soil moisture conditions. When soil moisture sensors are used with conventional irrigation controllers the sensors typically interrupt the programmed irrigation cycle by breaking the electrical connection between the controller and the irrigation valves when the soil is moist. Some specialized controllers that are designed to work specifically with soil moisture sensors can turn the irrigation on when the soil reaches a dry state, then turns the controller off when it reaches a moist state.
While conventional soil moisture based controllers help to conserve water and maintain plant health over a wide range of weather conditions they are specialized to the soil moisture sensor control and may not meet other needs of the landscaped area well. Soil moisture sensors that are hooked up to traditional irrigation controllers may simply disrupt the scheduled irrigation by disconnecting the common line to the valves when the soil is moist. In these cases, the irrigation controller turns on the outputs to the valves when they are normally scheduled to run. If the soil moisture sensor is sensing moist soil conditions, it simply disconnects the electrical circuit to the valve. The controller thinks it is irrigating, but the irrigation process is not happening. This can create confusion for the user when they go to the controller and see that station (X) is on yet they go out to the property to see that the same station is not running irrigation. This can result in calls to professionals to debug the system when the soil moisture was just keeping the station from running as designed. In these applications, there is no indication on the controller that the soil moisture has disrupted the irrigation process. In both of the above circumstances, the systems may require one sensor to be placed in the ground for every zone on the controller. Cables are then run back to the controller through the landscape. Some irrigation controllers, such as the ACC controller from Hunter Industries, can control forty-eight zones of irrigation. This requires up to forty-eight sensors to be placed in the ground with forty-eight cables buried throughout the landscape area and run back to the controller. This requires a substantial cost in materials and labor. Additionally, some conventional irrigation controllers may calculate the amount of water used based on the irrigation cycles as they run. When the sensors disrupt irrigation, while the controller thinks it is irrigating, the controller creates erroneous reports of over use of water, when in fact conservation is occurring. In some irrigation controllers, the controller knows the theoretical amount of water scheduled to be applied. As the stations are running, the controller measures this theoretical flow against the actual flow with a flow meter installed on the irrigation site. When the theoretical and actual flow is not within certain parameters, an alarm will indicate that there is a problem with the irrigation system. Soil moisture installations mentioned above will not work with these types of controllers. Another application is where one soil moisture sensor is hooked up to a rain sensor port on the conventional type of irrigation controller. In this case, as soon as the sensor senses moisture, it shuts the entire controller off. This requires very abnormal programming in the controller and also requires the sensor to be placed in the last station to be run so the irrigation does not shut off before all stations have irrigated. With this arrangement, the programming of the controller is very important as all of the previous stations may have run too much water for proper irrigation to have occurred prior to the last station sensing that the soil is moist after just a few minutes of irrigation.
The system of the present invention may take the form of stand alone irrigation controller connected to a standalone soil moisture control unit that is connectable to a soil moisture sensor. Alternatively, the system may take the form of a stand alone irrigation controller with a removable soil moisture control module that is connectable to a soil moisture sensor. In yet another embodiment, the system may take the form of a standalone soil moisture based irrigation controller with all the components mounted in a single box-like housing that is connectable to a soil moisture sensor
In accordance with one aspect of the present invention a soil moisture based irrigation system includes a stand alone irrigation controller with a seasonal adjust feature and a soil moisture sensor. The soil moisture based irrigation system further includes a standalone soil moisture control unit operatively connected to the irrigation controller and the soil moisture sensor. The soil moisture control unit includes programming configured to calculate an estimated soil moisture requirement value using a signal from the soil moisture sensor and to automatically modify a watering schedule of the irrigation controller through the seasonal adjust feature based on the estimated soil moisture requirement value to thereby conserve water while maintaining plant health.
In accordance with another aspect of the present invention a soil moisture based irrigation system includes an interface that enables a user to select and/or enter a watering schedule and a memory for storing the watering schedule. The system further includes at least one sensor for generating a signal representative of the soil moisture. A processor is included in the system that is capable of calculating an estimated soil moisture requirement value based at least in part on the signal from the sensor. The system further includes a program executable by the processor to enable the processor to generate commands for selectively turning a plurality of valves ON and OFF in accordance with the watering schedule. The program includes a seasonal adjust feature that provides the capability for automatically modifying the watering schedule based on the estimated soil moisture requirement value to thereby conserve water while maintaining plant health.
The present invention also provides a unique method of controlling a plurality of valves on an irrigation site using soil moisture data. The method includes the step of calculating an estimated soil moisture requirement value based in part on a signal from a soil moisture sensor. The method further includes the step of automatically modifying a watering schedule based on the estimated soil moisture requirement value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site. Optionally, the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated soil moisture value as increased or decreased by the inputted overall watering adjustment.
The entire disclosures of the following U.S. patents and U.S. patent applications are hereby incorporated by reference: U.S. Pat. No. 5,097,861 granted Mar. 24, 1992 of Hopkins et al. entitled
The present invention addresses the poor inner-operability between soil moisture sensors and conventional irrigation controllers as well as the ability for a moisture sensor control unit to automatically increase or decrease the programmed duration of the irrigation schedule. The irrigation system of the present invention has a familiar manner of entering, selecting and modifying its watering schedules, and either built-in or add-on capability to automatically modify its watering schedules based on soil moisture data in order to conserve water and effectively irrigate vegetation throughout the year as weather conditions vary. The user friendly irrigation system of the present invention is capable of saving a significant amount of water that can theoretically be conserved on a given irrigation site, but is still able to be used by most non-professionals because of the simplicity of the connections between the soil moisture sensor and the controller as well as the clear indication of when irrigation is or is not happening for the user. With the new invention, the moisture sensor indicates what level of moisture is in the soil. The soil moisture control unit calculates the percentage of irrigation schedule that is required for the next irrigation cycle. The Irrigation controller then calculates the watering requirements and controls the irrigation process.
Referring to
Referring to
The face pack 30 (
A processor 40 (
The processor 40 communicates with removable modules 44 and 46a-c (
In
An elongate locking bar 50 (
The receptacles for the modules such as 44 and 46a-c are partially defined by vertical walls 58 (
The processor 40 (
The modules 44 and 46a-c have contacts 74 (
Referring to
The microcontroller 108 (
The user can modify the run and cycle times for individual stations in the usual manner in the irrigation controller 12. As an example, if one station is watering too much, but all of the other stations are watering the correct amount, the user can easily reduce the run time of that particular station and balance the system out. Then the soil moisture control unit 16 continues modifying the watering schedules executed by the irrigation controller 12 on a global basis as a percentage of run time, based on the calculated estimated soil moisture requirement value. Irrigation controllers can be used to control landscape lighting and other non-irrigation devices such as decorative water fountains. The controller 12 may have features in it such that the soil moisture control unit 16 only modifies the watering schedules of the irrigation controller 12.
One of the difficulties with conventional soil moisture based controllers is attributable to the difficulty of fine-tuning the irrigation controller schedule based on the soil moisture data being received. One situation is where the irrigation schedule has been inaccurately set up. It is very common for irrigation controllers to be programmed by the end user so that the schedule tends to over or under irrigate the property. In the new invention, this scheduling error is automatically corrected by the soil moisture control unit. When the irrigation control unit 16 is installed, the soil moisture sensor 20 is installed at the proper root zone depth of one of the irrigated zone. A wire connects the soil moisture control unit to the output of that zone on the irrigation controller. The soil moisture control unit 16 then measures how long that station operates. If the soil moisture control unit 16 has not detected the proper moisture when the irrigation cycle is complete, it can automatically increase the run time of the controller by adjusting the seasonal adjust feature higher. It will continue to do this over time until operation of that zone runs long enough for the soil moisture to sense the moisture in the soil. Also, if the soil moisture control unit 16 detects that the soil is moist, but the irrigation cycle is still running, it will allow that irrigation cycle to continue. After the cycle is complete, it will calculate the amount of time the zone ran and compare that with the amount of time it took to moisten the soil. It will then automatically reduce the seasonal adjust of the irrigation controller so the irrigation cycle time will match the amount of time required to irrigate the soil to the proper moisture. This is repeated each time the irrigation controller operates that zone to continually fine tune the watering schedule. Another situation is that the soil moisture sensors may not always be able to be placed in an optimum location on the irrigation site. As an example, a soil moisture sensor may be placed in an area that receives late afternoon shade. This will result in the calculation of an abnormally high estimated soil moisture content value for the rest of the irrigation site. The entire irrigation site may receive too little water and the plant material may become stressed from too little water if the watering schedules are based on an abnormally high estimated soil moisture content. If a conventional soil moisture based irrigation controller receives input from such an incorrectly located soil moisture sensor, the user can attempt to compensate by increasing the run times for each zone to compensate for the error. This is cumbersome and makes it difficult and frustrating for the user to adjust the conventional soil moisture based irrigation controller for optimum watering.
An advantage of the present invention is the ability to globally modify the watering schedules of the stand alone irrigation controller 12 to compensate for this type of condition. If at any time the user realizes that the property is receiving too little water, the user can simply manually change an overall watering adjustment feature. The overall watering adjustment feature is implemented as a simple plus or minus control via actuation of an assigned pair of the push buttons 128a-c. This changes the reference point of the soil moisture requirement calculation either up or down. After this adjustment is made, the seasonal adjustment executed by the soil moisture control unit 16 references the new setting and then compensates for under watering that would otherwise occur. Likewise, if the overall watering is too much for the irrigation site, the user can simply adjust the overall watering adjustment feature down and create a new lower reference for the automatic soil moisture based adjustments. The overall watering adjustment feature makes it easy for the user to fine-tune the system to the particular requirements of the irrigation site. The overall watering adjustment feature can be indicated by showing “global adjustment,” or “more/less, water+/−,” or similar naming conventions.
The overall watering adjustment feature of the soil moisture control unit 16 directly alters the station run times executed by the irrigation controller 12. This adjustment modifies a constant that is used in the calculating the seasonal adjust value. When the user makes overall watering adjustments by pressing plus or minus push buttons on the soil moisture control unit 16, this directly affects the soil moisture requirement value that is used to reset the seasonal adjustment in the host controller 12. In calculating the estimated soil moisture requirement value, the microcontroller 108 in the soil moisture control unit 16 uses only select data points as variables (soil moisture readings and optional temperature measurements) and uses other data points that may consist of pre-programmed constants, and/or data entered by the user that defines some one or more constants of the site.
Another feature provided by the soil moisture control unit 16 is an automatic shut down feature for irrigation that overrides any scheduled run times. The automatic shut down feature of the soil moisture control unit 16 can be utilized in geographic areas where watering agencies and municipalities impose restrictions that limit the times when irrigation can occur. The user is able to enter a no-water window into the soil moisture control unit 16, which consists of the times when irrigation is not allowed to take place. When a no-water window is entered by the user, the soil moisture control unit 16 will signal the irrigation controller 12 to shut down, irregardless of any scheduled irrigation running or not running at the time. The soil moisture control unit 16 will then allow the irrigation controller 12 to return to its normal run mode after the selected no-water window time has elapsed. The irrigation controller 12 may have sensor input terminals, as in the case of the Pro-C irrigation controller, which can be used to shut down all watering on receipt of a shut down command from the soil moisture control unit 16.
In conclusion, the soil moisture control unit 16 of the present invention utilizes the watering program set up procedures that the users are already accustomed to. Start times, station run times, and days-to-water are manually entered into the irrigation controller 12. The user also selects from one of a group selected sensors in the soil moisture control unit 16. The ET unit 16 then automatically takes over setting of the seasonal adjustment feature of the irrigation controller 12 on a regular basis. Instead of a user changing that feature several times per year, the soil moisture control unit 16 sets that seasonal adjustment daily depending on current soil conditions gathered on site. Furthermore, the soil moisture control unit 16 shuts down any scheduled watering by the irrigation controller 12 when there is a scheduled no-water window to comply with local agency regulations.
The present invention also provides a unique method of controlling a plurality of valves on an irrigation site. The method includes the steps of selecting and/or creating a watering schedule, storing the watering schedule and generating a signal representative of the soil condition on an irrigation site. The method also includes the steps of calculating an estimated soil moisture requirement value based at least in part on the signal and selectively turning a plurality of valves located on the irrigation site ON and OFF in accordance with the watering schedule. Importantly, the method includes the further step of automatically modifying the watering schedule based on the estimated soil moisture requirement value using a seasonal adjust algorithm to thereby conserve water while maintaining the health of plants on the irrigation site. Optionally, the method of present invention may further include the step of inputting an overall watering adjustment and automatically modifying the watering schedule through the seasonal adjust algorithm based on the estimated soil moisture requirement value as increased or decreased by the inputted overall watering adjustment.
While the a soil moisture sensor of any type can be combine with some intelligence (microcontroller) at the sensor itself, and made to communicate with the control unit via the MMBTA92 and LM393 as discussed earlier, it may be more cost effective to deal with the “raw” sensor interface, than to add this intelligence in every sensor. An example of this approach for a resistive soil moisture sensor is illustrated in
This type of sensor varies its resistance based on the amount of moisture in the soil. It is very important that there be no DC potential between any metallic part of the sensor, and earth ground. If such a potential exists, the sensor will disintegrate due to the well known process of galvanic corrosion. Referring to
The relationship of resistance to soil moisture is typically non-linear, thus the microcontroller can apply a polynomial expansion, or lookup table function to determine the amount of moisture in the soil from the resistance reading.
While an embodiment of an irrigation system comprising a stand alone soil moisture control unit connected to stand alone irrigation controller and linked to a separate soil moisture sensor has been described in detail, persons skilled in the art will appreciate that the present invention can be modified in arrangement and detail. The features and functionality described could be provided by combining the irrigation controller and the ET unit into a single integrated unit in which case a single microcontroller would replace the microcontrollers 40 and 108. Alternatively, the soil moisture control unit could be packaged in a soil moisture control module designed for removable insertion into a receptacle in a stand alone irrigation controller. The irrigation controller may be mounted outside, or be connected directly to 110 or 220 AC power with a transformer mounted inside the irrigation controller. Therefore, the protection afforded the subject invention should only be limited in accordance with the scope of the following claims.
This application is a continuation of similarly titled U.S. patent application Ser. No. 12/251,179 of Peter J. Woytowitz et al. filed Oct. 14, 2008. This application is also a continuation-in-part of U.S. Ser. No. 13/011,301 of Porter et al., filed Jan. 21, 2011, which is a continuation of U.S. Ser. No. 12/176,936 of Porter et al. filed Jul. 21, 2008, now U.S. Pat. No. 7,877,168 granted Jan 25, 2011. Said U.S. Ser. No. 12/176,936 is a continuation-in-part of U.S. Ser. No. 10/985,425 of Woytowitz et al., filed Nov. 9, 2004, now U.S. Pat. No. 7,853,363 granted Dec. 14, 2010, and a continuation-in-part of U.S. Ser. No. 11/288,831 of Porter et al., filed Nov. 29, 2005, now U.S. Pat. No. 7,412,303 granted Aug. 12, 2008. Priority is claimed off of the filing dates of each of the above-identified applications and patents, and the entire disclosures of each of the above-identified applications and patents are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4180083 | Miyaoka et al. | Dec 1979 | A |
4646224 | Ransburg et al. | Feb 1987 | A |
4693419 | Weintraub et al. | Sep 1987 | A |
4722478 | Fletcher et al. | Feb 1988 | A |
4807664 | Wilson et al. | Feb 1989 | A |
4811221 | Sturman et al. | Mar 1989 | A |
4922433 | Mark | May 1990 | A |
4937732 | Brundisini | Jun 1990 | A |
5097861 | Hopkins et al. | Mar 1992 | A |
5148826 | Bakhshaei | Sep 1992 | A |
5148985 | Bancroft | Sep 1992 | A |
5173855 | Nielsen et al. | Dec 1992 | A |
5208855 | Marian | May 1993 | A |
5229937 | Evelyn-Veere | Jul 1993 | A |
5251153 | Nielsen et al. | Oct 1993 | A |
5293554 | Nicholson | Mar 1994 | A |
5337957 | Olson | Aug 1994 | A |
5381331 | Mock et al. | Jan 1995 | A |
5444611 | Woytowitz et al. | Aug 1995 | A |
5546974 | Bireley | Aug 1996 | A |
5694963 | Fredell et al. | Dec 1997 | A |
5696671 | Oliver | Dec 1997 | A |
5740038 | Hergert | Apr 1998 | A |
5829678 | Hunter et al. | Nov 1998 | A |
5836339 | Klever et al. | Nov 1998 | A |
5870302 | Oliver | Feb 1999 | A |
5944444 | Motz et al. | Aug 1999 | A |
6016971 | Welch et al. | Jan 2000 | A |
6088621 | Woytowitz et al. | Jul 2000 | A |
6145755 | Feltz | Nov 2000 | A |
6227220 | Addink | May 2001 | B1 |
6267298 | Campbell | Jul 2001 | B1 |
6298285 | Addink et al. | Oct 2001 | B1 |
6314340 | Mecham et al. | Nov 2001 | B1 |
6452499 | Runge et al. | Sep 2002 | B1 |
6453215 | Lavole | Sep 2002 | B1 |
6453216 | McCabe et al. | Sep 2002 | B1 |
6568416 | Tucker et al. | May 2003 | B2 |
6570109 | Klinefelter et al. | May 2003 | B2 |
6721630 | Woytowitz | Apr 2004 | B1 |
6782311 | Barlow et al. | Aug 2004 | B2 |
6823239 | Sieminski | Nov 2004 | B2 |
6842667 | Beutler et al. | Jan 2005 | B2 |
6892114 | Addink et al. | May 2005 | B1 |
6895987 | Addink et al. | May 2005 | B2 |
6947811 | Addink et al. | Sep 2005 | B2 |
6977351 | Woytowitz | Dec 2005 | B1 |
6993416 | Christiansen | Jan 2006 | B2 |
7010394 | Runge et al. | Mar 2006 | B1 |
7048204 | Addink et al. | May 2006 | B1 |
7058478 | Alexanian | Jun 2006 | B2 |
7069115 | Woytowitz | Jun 2006 | B1 |
7133749 | Goldberg | Nov 2006 | B2 |
7146254 | Howard | Dec 2006 | B1 |
7168632 | Kates | Jan 2007 | B2 |
7203576 | Wilson et al. | Apr 2007 | B1 |
7225058 | Porter | May 2007 | B1 |
7245991 | Woytowitz | Jul 2007 | B1 |
7261245 | Zur | Aug 2007 | B2 |
7289886 | Woytowitz | Oct 2007 | B1 |
7403840 | Moore et al. | Jul 2008 | B2 |
7412303 | Porter et al. | Aug 2008 | B1 |
7430458 | Dansereau et al. | Sep 2008 | B2 |
7458521 | Ivans | Dec 2008 | B2 |
7477950 | DeBourke et al. | Jan 2009 | B2 |
7532954 | Evelyn-Veere | May 2009 | B2 |
7596429 | Cardinal et al. | Sep 2009 | B2 |
7619322 | Gardner et al. | Nov 2009 | B2 |
7789321 | Hitt | Sep 2010 | B2 |
7805221 | Nickerson | Sep 2010 | B2 |
7853363 | Porter et al. | Dec 2010 | B1 |
7877168 | Porter et al. | Jan 2011 | B1 |
7953517 | Porter et al. | May 2011 | B1 |
7956624 | Beaulieu | Jun 2011 | B2 |
8301309 | Woytoxitz et al. | Oct 2012 | B1 |
20020002425 | Dossey et al. | Jan 2002 | A1 |
20020072829 | Addink et al. | Jun 2002 | A1 |
20030093159 | Sieminski | May 2003 | A1 |
20030109964 | Addink et al. | Jun 2003 | A1 |
20030179102 | Barnes | Sep 2003 | A1 |
20030182022 | Addink et al. | Sep 2003 | A1 |
20040011880 | Addink et al. | Jan 2004 | A1 |
20040015270 | Addink et al. | Jan 2004 | A1 |
20040030456 | Barlow et al. | Feb 2004 | A1 |
20040039489 | Moore et al. | Feb 2004 | A1 |
20040181315 | Cardinal et al. | Sep 2004 | A1 |
20040206395 | Addink et al. | Oct 2004 | A1 |
20050038569 | Howard | Feb 2005 | A1 |
20050125083 | Kiko | Jun 2005 | A1 |
20050199842 | Parsons et al. | Sep 2005 | A1 |
20050203669 | Curren | Sep 2005 | A1 |
20050211791 | Clark et al. | Sep 2005 | A1 |
20050211792 | Clark et al. | Sep 2005 | A1 |
20050211793 | Clark et al. | Sep 2005 | A1 |
20050211794 | Clark et al. | Sep 2005 | A1 |
20050216127 | Clark et al. | Sep 2005 | A1 |
20050216128 | Clark et al. | Sep 2005 | A1 |
20050216129 | Clark et al. | Sep 2005 | A1 |
20050216130 | Clark et al. | Sep 2005 | A1 |
20060116792 | Addink | Jun 2006 | A1 |
20060122736 | Alexanian | Jun 2006 | A1 |
20060161309 | Moore et al. | Jul 2006 | A1 |
20060184284 | Froman et al. | Aug 2006 | A1 |
20060184285 | Evelyn-Veere | Aug 2006 | A1 |
20070016334 | Smith et al. | Jan 2007 | A1 |
20070055407 | Goldberg et al. | Mar 2007 | A1 |
20070156290 | Froman et al. | Jul 2007 | A1 |
20070237583 | Corwon et al. | Oct 2007 | A1 |
20070293990 | Alexanain | Dec 2007 | A1 |
20080091307 | Dansereau et al. | Apr 2008 | A1 |
20080142614 | Elezaby | Jun 2008 | A1 |
20090094097 | Gartenswartz | Apr 2009 | A1 |
20090099701 | Li et al. | Apr 2009 | A1 |
20090138105 | Crawford | May 2009 | A1 |
20090177330 | Kah, Jr. | Jul 2009 | A1 |
20090216345 | Christfort | Aug 2009 | A1 |
20090326723 | Moore et al. | Dec 2009 | A1 |
20100030476 | Woytowitz et al. | Feb 2010 | A1 |
20100094472 | Woytowitz et al. | Apr 2010 | A1 |
20100312404 | Nickerson | Dec 2010 | A1 |
20110093123 | Alexanian | Apr 2011 | A1 |
20110224836 | Hern et al. | Sep 2011 | A1 |
20110238228 | Woytowitz et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2008144563 | Nov 2008 | JP |
WO 03085473 | Oct 2003 | WO |
Entry |
---|
Aqua Conserve Products from Internet—Email address: http://www.aquaconserve.com/products.php (2002, Aqua Conservation Systems), in 5 pages. |
Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAQ Irrigation and Drainage Paper 56 Attachment for link to Internet-Email address: http://hydrotechnic.150m.com/crop—water.html (no date) 60 pages. |
Dukes, et al.: “Soil Moisture Sensor Control for Conservation of Landscape Irrigation,” Georgia Water Resources Conference, Mar. 27-29, 2007. |
East Bay Municipal Utility District (EBMUD), “Irrigation Controllers Timer for the Homeowner,” US Environmental Protection Agency (EPA) (EPA 832-K-03-001, Jul. 2003)—http://www.epa.gov/owm/water-efficiency/Irrigation—booklet.pdf. |
Hunter Irrigation Products Catalog, 110 pages, 2007. |
Hydropoint, Inc., WeatherTRAK, Smart Irrigation Made Simple, in 1 page. 2004 Hydropoint, Inc. http://www.hydropoint.com (2004 Hydropoint, Inc.). |
Residential Landscape Irrigation Study Using Aqua ET Controllers for Aqua Conserve, Denver Water, Denver, CO & City of Sonoma, CA & Valley of the Moon Water District, CA. Jun. 2002, in 5 pages. |
Shedd et al., “Evaluation of Evapotranspiration and Soil Moisture-based Irrigation Control on Turfgrass,” Proceedings ASCE EWRI World Environmental & Water Resources Congress, May 15-19, 2007, in 21 pages. |
SRR Remote Wiring and Installation of Hunter the Irrigation Innovators from Internet—Email address: http:///www.hunterindustries.com/resources/technical—bulletin/srr—remote.html (2004 Hunter Industries Incorporated), in 1 page. |
Toro Partners with HydroPoint Data Systems to Develop Weather-Based Irrigation Controllers of Athletic Turf News from Internet—Email address: http://athleticturf.net/athleticturf/article, Jan. 16, 2004. |
U.S. Appl. No. 10/985,425 “Amendment” in response to USPTO Office Action mailed on Aug. 11, 2005 in 9 pages. |
U.S. Appl. No. 10/985,425 “Amendment” in response to USPTO Office Action mailed Dec. 6, 2005 in 8 pages. |
U.S. Appl. No. 10/985,425 “Brief on Appeal” in response to Board of Appeals and Interferences' Notice of Panel Decision from Pre-Appeal Brief Review mailed Jan. 23, 2007 (appealing from USPTO Office Action mailed Mar. 24, 2006). |
U.S. Appl. No. 10/985,425 “Examiner's Answer” in response to Appellants' Appeal Brief filed Mar. 23, 2007 (appealing from USPTO Office Action mailed on Mar. 24, 2006). |
U.S. Appl. No. 10/985,425 “Reply Brief” in response to Examiner's Answer from Board of Appeals and Interferences mailed Jul. 25, 2007. |
Number | Date | Country | |
---|---|---|---|
20110238229 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12251179 | Oct 2008 | US |
Child | 13154253 | US | |
Parent | 12176936 | Jul 2008 | US |
Child | 13011301 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13011301 | Jan 2011 | US |
Child | 12251179 | US | |
Parent | 10985425 | Nov 2004 | US |
Child | 12176936 | US | |
Parent | 11288831 | Nov 2005 | US |
Child | 10985425 | US |