I.S. machine

Information

  • Patent Application
  • 20070277557
  • Publication Number
    20070277557
  • Date Filed
    June 02, 2006
    18 years ago
  • Date Published
    December 06, 2007
    17 years ago
Abstract
An I. S. Machine is provided wherein the blow molds are closed to a slightly cracked location whereby applied cooling air can not leak into and pressurize the blow mold thereby damaging the parison during reheat. When reheat is completed, the blow molds are fully closed and the parison is transformed into a bottle by applying compressed air and/or vacuum.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevational view of a conventional blow mold of an I. S. Machine closed about a parison;



FIG. 2 is a schematic showing a conventional blow mold open and close mechanism;



FIG. 3 is a logic diagram illustrating the operation of the control for the blow mold open and close mechanism; and



FIG. 4 is a view similar to that of FIG. 1 with the blow molds cracked during reheat.





BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENT

Each section of an I. S. Machine forms one or more gobs of molten glass into a bottle. For each gob there will be a blank mold for forming a gob into a parison and a blow mold for forming the parison into a bottle. A blow mold 10 is shown in FIG. 1 which is made up of an opposed pair of side molds 12 and a bottom plate 14 which interfits with the side molds when the side molds are fully closed as shown. As shown, the fully closed blow mold sides grip the neck 16 of a parison 18. The finish 20 of the parison was held by the neck rings of an invert mechanism until the parison became supported by the blow mold. The neck rings then opened and were displaced back to the blank molds.


The parison, which has a long hole 30 extending downwardly from the top, will reheat, i.e., the chilled skin will be heated by the internal heat of the parison, and once reheated the parison will begin to stretch downwardly. When the parison stretches down to the bottom plate as shown in dotted lines, the parison will be transformed into a bottle either by applying vacuum to the inside surface of the mold or by applying air pressure via a blowhead 32 located on top of the blow mold.


Cooling air is supplied to vertical holes 22 in the base 24 for the bottom plate 14 and these holes communicate with cooling holes 26 extending vertically through the blow mold sides 12. When a source of pressurized air is turned on cooling air will be forced through these cooling holes to remove heat from the blow mold sides. It is believed that this cooling air bleeds between the bottom surface of the blow mold and the top surface of the base and works its way between the bottom plate and the side molds into the interior of the blow mold and that this leakage expands due to the heat of the parison and acts to crush the parison ultimately causing a birdswing in the formed bottle. These pressure forces are illustrated with arrows 28.


A conventional blow mold open and close mechanism is shown in FIG. 2 where a pair of opposed side molds 12 are supported for displacement toward and away from each other. Displacement is via a drive 40 powered by a motor 42. Motion is controlled by a suitable control 44.


In accordance with the invention, when “Invert Is Complete?” 50 (This will be a time observed by an operator who is defining the event angles around a 360 degree timing drum—at this time the operator will see that the parison is located at the blow station and that the blow molds can be closed), the Control 44 will Displace The Blow Molds Directly To A Cracked Location 52. FIG. 3 shows this cracked location where “S” represents the crack or separation between the blow molds. This separation, which can be set by the operator, will be limited so that the top of the molds will continue to support the finish of the bottle. This could be a one step feed process to the cracked location or the control can Close The Blow Molds And Than Back-off To A “Cracked” location 52A. The crack only has to be wide enough to prevent the pressurization of the mold between the parison and the inner mold surface.


When the query “is Reheat Complete” 54 is answered yes (which can be an automated function or determined by the operator), which means that it is time for the parison to be formed into a bottle, the Control 44 will Close Blow Molds 56 and then Apply Vacuum/Compressed Air 58 to transform the parison into a bottle in the blow molds.

Claims
  • 1. An I. S. Machine including a blow station whereat a parison having a formed finish is transformed into a bottle within a blow mold including a pair of opposed blow molds movable towards and away from each other comprising means for displacing the blow molds from a remote location to a cracked location whereat a selected separation exists therebetween,said separation being selected so that a parison located within the molds located at the cracked location will support the finish of the parison while the parison reheats, andmeans for displacing said blow molds to a closed position at the conclusion of reheat.
  • 2. An I. S. Machine according to claim 1, wherein the blow molds are displaced to the cracked position by first displacing the blow molds to a closed position and then displacing the blow molds to the cracked position.