Isolated converter with high boost ratio

Information

  • Patent Grant
  • 11652420
  • Patent Number
    11,652,420
  • Date Filed
    Thursday, July 1, 2021
    2 years ago
  • Date Issued
    Tuesday, May 16, 2023
    a year ago
Abstract
An isolated converter with high boost ration includes a transformer, a first bridge arm, a second bridge arm, and a boost circuit. The transformer includes a secondary side having a secondary side first node and a secondary side second node. The first bridge arm includes a first diode and a second diode. The second bridge arm includes a third diode and a fourth diode. The boost circuit includes at least one fifth diode coupled between the first bridge arm and the secondary side second node, at least one sixth diode coupled between the second bridge arm and the secondary side first node, and at least two capacitors coupled to the secondary side first node and the secondary side second node.
Description
BACKGROUND
Technical Field

The present disclosure relates to an isolated converter, and more particularly to an isolated converter with high boost ratio.


Description of Related Art

The statements in this section merely provide background information related to the present disclosure and do not necessarily constitute prior art.


Please refer to FIG. 1, which shows a circuit block diagram of a conventional non-isolated boost converter. If a high voltage conversion ratio (boost ratio) is required, for example more than 10 times, two or more than two boost (DC-to-DC) converters are used to implement the requirement of high boost ratio. As shown in FIG. 1, a first DC boost converter and a second DC boost converter are used. However, disadvantages of the multi-stage boost converters are higher circuit component costs and lower conversion efficiency.


Please refer to FIG. 2, which shows a circuit diagram of a conventional push-pull converter. The push-pull converter has an advantage of electrical isolation by an isolated transformer. By adjusting the number of coil turns of the isolated transformer, the high boost ratio (voltage conversion ratio) of the push-pull converter can be implemented. If the voltage conversion ratio is too high, however, excessive number of the secondary-side coil turns causes an increase in the leakage inductance of the isolated transformer, resulting in higher stress on the switch and/or the diode, and therefore the components with higher rated voltage need to be used. Further, the turned-on resistance of the switch becomes larger cause increased circuit costs, reduced efficiency, and larger transformer volume.


Please refer to FIG. 3, which shows a circuit diagram of a conventional full-bridge LLC resonant converter. The switches of the LLC resonant converter can operate under ZVS (zero voltage switching) condition, and usually the switching frequency is designed near the resonance point. By adjusting the number of coil turns of the isolated transformer, the high voltage conversion ratio of the LLC resonant converter can be implemented. If the voltage conversion ratio is too high, however, excessive number of the coil turns causes the increased coil turns of the transformer, increased volume of the transformer, and reduced efficiency. Moreover, the full-bridge LLC resonant converter shown in FIG. 3 provides the first- and third-quadrant operations of the transformers. The quadrant here refers to the main operation area of the transformer in the B-H curve (hysteresis phenomenon is ignored).


Please refer to FIG. 4, which shows a circuit diagram of a conventional full-bridge phase-shift converter. The switches of the full-bridge converter can operate under ZVS condition by phase control techniques. In comparison with the push-pull converter, the full-bridge converter has fewer switching losses. By adjusting the number of coil turns of the isolated transformer, the required output voltage of the full-bridge converter can be implemented. In order to implement the high boost ratio (voltage conversion ratio), however, the excessive number of the coil turns causes larger transformer volume, higher stress of the semiconductor switch, and lower conversion efficiency.


In the above several common isolated converters, the isolated transformer thereof operates in the first quadrant and the third quadrant. The present disclosure proposes an isolated converter with high boost ratio that can operate in the first quadrant and the third quadrant. The high boost ratio of the isolated converter can be implemented by charging capacitors to establish a high output voltage, thereby effectively reducing the number of coil turns of the isolated transformer. Accordingly, it is to increase efficiency of the boost circuit, reduce circuit component costs, and reduce occupied volume due to the reduction of the number of coil turns of the isolated transformer.


SUMMARY

An object of the present disclosure is to provide an isolated converter with high boost ratio to solve the above-mentioned problems.


In order to achieve the above-mentioned object, the isolated converter with high boost ratio includes a transformer, a first bridge arm, a second bridge arm, and a boost circuit. The transformer includes a secondary side having a secondary side first node and a secondary side second node. The first bridge arm has a first diode and a second diode. A cathode of the first diode is coupled to a DC positive output node, an anode of the first diode is coupled to a first bridge arm upper node. An anode of the second diode is coupled to a DC negative output node, and a cathode of the second diode is coupled to a first bridge arm lower node. The second bridge arm has a third diode and a fourth diode. A cathode of the third diode is coupled to the DC positive output node, an anode of the third diode is coupled to a second bridge arm upper node. An anode of the fourth diode is coupled to the DC negative output node, and a cathode of the fourth diode is coupled to a second bridge arm lower node. The boost circuit includes at least one fifth diode, at least one sixth diode, and at least two capacitors. The at least one fifth diode is coupled between the first bridge arm and the secondary side second node. The at least one sixth diode is coupled between the second bridge arm and the secondary side first node. The at least two capacitors are coupled to the secondary side first node and the secondary side second node.


Accordingly, the isolated converter with high boost ratio is provided to increase efficiency of the boost circuit, reduce circuit component costs, and reduce occupied volume due to the reduction of the number of coil turns of the isolated transformer.


Another object of the present disclosure is to provide an isolated converter with high boost ratio to solve the above-mentioned problems.


In order to achieve the above-mentioned object, the isolated converter with high boost ratio includes a transformer, a first bridge arm, a second bridge arm, and a boost circuit. The transformer includes a secondary side having a secondary side first node and a secondary side second node. The first bridge arm has a first switch and a second switch. A first end of the first switch is coupled to a DC positive output node, a second end of the first switch is coupled to a first bridge arm upper node, a first end of the second switch is coupled to a DC negative output node, and a second end of the second switch is coupled to a first bridge arm lower node. The second bridge arm has a third switch and a fourth switch. A first end of the third switch is coupled to the DC positive output node, a second end of the third switch is coupled to a second bridge arm upper node, a first end of the fourth switch is coupled to the DC negative output node, and a second end of the fourth switch is coupled to a second bridge arm lower node. The boost circuit includes at least one fifth switch, at least one sixth switch, and at least two capacitors. The at least one fifth switch is coupled between the first bridge arm and the secondary side second node. The at least one sixth switch is coupled between the second bridge arm and the secondary side first node. The at least two capacitors are coupled to the secondary side first node and the secondary side second node.


Accordingly, the isolated converter with high boost ratio is provided to increase efficiency of the boost circuit, reduce circuit component costs, and reduce occupied volume due to the reduction of the number of coil turns of the isolated transformer.


It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the present disclosure as claimed. Other advantages and features of the present disclosure will be apparent from the following description, drawings and claims.





BRIEF DESCRIPTION OF DRAWINGS

The present disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawing as follows:



FIG. 1 is a circuit block diagram of a conventional non-isolated boost converter.



FIG. 2 is a circuit diagram of a conventional push-pull converter.



FIG. 3 is a circuit diagram of a conventional full-bridge LLC resonant converter.



FIG. 4 is a circuit diagram of a conventional full-bridge phase-shift converter.



FIG. 5 is a single-bus circuit structure of an isolated converter with high boost ratio according to a first embodiment of the present disclosure.



FIG. 6 is a single-bus circuit structure of the isolated converter with high boost ratio according to a second embodiment of the present disclosure.



FIG. 7 is a schematic diagram of current paths of a first-quadrant operation in FIG. 5.



FIG. 8 is a schematic diagram of current paths of a third-quadrant operation in FIG. 5.



FIG. 9 is a single-bus circuit structure of the isolated converter with high boost ratio according to a third embodiment of the present disclosure.



FIG. 10 is a single-bus circuit structure of the isolated converter with high boost ratio according to a fourth embodiment of the present disclosure.



FIG. 11 is a dual-bus circuit structure of the isolated converter with high boost ratio according to the present disclosure.



FIG. 12 is a circuit diagram of a push-pull converter having the single-bus circuit structure in FIG. 5.



FIG. 13 is a circuit diagram of a full-bridge converter having the single-bus circuit structure in FIG. 5.



FIG. 14 is a circuit diagram of a full-bridge LLC resonant converter having the single-bus circuit structure in FIG. 5.



FIG. 15 is a circuit diagram of a push-pull converter having the dual-bus circuit structure in FIG. 11.



FIG. 16 is a circuit diagram of a full-bridge converter having the dual-bus circuit structure in FIG. 11.



FIG. 17 is a circuit diagram of a full-bridge LLC resonant converter having the dual-bus circuit structure in FIG. 11.





DETAILED DESCRIPTION

Reference will now be made to the drawing figures to describe the present disclosure in detail. It will be understood that the drawing figures and exemplified embodiments of present disclosure are not limited to the details thereof.


Please refer to FIG. 5, which shows a single-bus circuit structure of an isolated converter with high boost ratio according to a first embodiment of the present disclosure. The isolated converter includes a transformer T1, a first bridge arm Lb1, a second bridge arm Lb2, and a boost circuit 10. The transformer T1 includes a secondary side having a secondary side first node Ps1 and a secondary side second node Ps2. The first bridge arm Lb1 includes a first diode D1 and a second diode D2. A cathode of the first diode D1 is coupled to a DC positive output node+Vb, an anode of the first diode D1 is coupled to a first bridge arm upper node Pu1, an anode of the second diode D2 is coupled to a DC negative output node −Vb, and a cathode of the second diode D2 is coupled to a first bridge arm lower node Pw1. The second bridge arm Lb2 includes a third diode D3 and a fourth diode D4. A cathode of the third diode D3 is coupled to the DC positive output node+Vb, an anode of the third diode D3 is coupled to a second bridge arm upper node Pu2, an anode of the fourth diode D4 is coupled to the DC negative output node −Vb, and a cathode of the fourth diode D4 is coupled to a second bridge arm lower node Pw2.


The boost circuit 10 includes at least one fifth diode D5, at least one sixth diode D6, and at least two capacitors. The at least one fifth diode D5 is coupled between the first bridge arm Lb1 and the secondary side second node Ps2. The at least one sixth diode D6 is coupled between the second bridge arm Lb2 and the secondary side first node Ps1. The at least two capacitors are coupled to the secondary side first node Ps1 and the secondary side second node Ps2.


As shown in FIG. 5, the number of the at least two capacitors is two, including a first capacitor C1 and a second capacitor C2. Two ends of the first capacitor C1 are coupled to the secondary side first node Ps1 and the first bridge arm upper node Pu1, and two ends of the second capacitor C2 are coupled to the secondary side second node Ps2 and the second bridge arm upper node Pu2. A cathode of the fifth diode D5 is coupled to the first bridge arm upper node Pu1, and an anode of the fifth diode D5 is coupled to the secondary side second node Ps2; a cathode of the sixth diode D6 is coupled to the second bridge arm upper node Pu2, and an anode of the sixth diode D6 is coupled to the secondary side first node Ps1.


As shown in FIG. 6, the number of the at least two capacitors is two, including a first capacitor C1 and a second capacitor C2. Two ends of the first capacitor C1 are coupled to the secondary side first node Ps1 and the first bridge arm lower node Pw1, and two ends of the second capacitor C2 are coupled to the secondary side second node Ps2 and the second bridge arm lower node Pw2. An anode of the fifth diode D5 is coupled to the first bridge arm lower node Pw1, and a cathode of the fifth diode D5 is coupled to the secondary side second node Ps2; an anode of the sixth diode D6 is coupled to the second bridge arm lower node Pw2, and a cathode of the sixth diode D6 is coupled to the secondary side first node Ps1.


The diode-capacitor circuit, which is coupled to the secondary side of the transformer T1, is proposed to charge the capacitors through the secondary side coil turns, thereby reducing coil turns, increasing conversion efficiency, and reducing occupied volume. Further, the diode-capacitor circuit can be used in a variety of isolated converters capable of operating both in a first quadrant and a third quadrant.


Please refer to FIG. 7, which shows a schematic diagram of current paths of a first-quadrant operation in FIG. 5. When the isolated converter operates in a first quadrant, a main current Ic1 flows through the secondary side of the transformer T1, the second capacitor C2, the third diode D3, the DC positive output node+Vb, the DC negative output node −Vb, the second diode D2, and the secondary side. A pre-charge current Ic2 flows through the secondary side of the transformer T1, the fifth diode D5, the first capacitor C1, and the secondary side. In particular, the first capacitor C1 is charged by the pre-charge current Ic2.


In addition, when the isolated converter shown in FIG. 6 operates in a first quadrant (not shown), a main current flows through the secondary side of the transformer T1, the third diode D3, the DC positive output node+Vb, the DC negative output node −Vb, the second diode D2, the first capacitor C1, and the secondary side. A pre-charge current flows through the secondary side of the transformer T1, the second capacitor C2, the sixth diode D6, and the secondary side.


Please refer to FIG. 8, which shows a schematic diagram of current paths of a third-quadrant operation in FIG. 5. When the isolated converter operates in a third quadrant, a main current Ic1 flows through the secondary side of the transformer T1, the first capacitor C1, the first diode D1, the DC positive output node+Vb, the DC negative output node −Vb, the fourth diode D4, and the secondary side. A pre-charge current Ic2 flows through the secondary side of the transformer T1, the sixth diode D6, the second capacitor C2, and the secondary side. Similarly, when the isolated converter shown in FIG. 6 operates in a third quadrant (not shown), a main current flows through the secondary side of the transformer T1, the first diode D1, the DC positive output node+Vb, the DC negative output node −Vb, the fourth diode D4, the second capacitor C2, and the secondary side. A pre-charge current flows through the secondary side of the transformer T1, the first capacitor C1, the fifth diode D5, and the secondary side.


Please refer to FIG. 9, which shows a single-bus circuit structure of the isolated converter with high boost ratio according to a third embodiment of the present disclosure, and the circuit structure of FIG. 9 is a combination of the circuit structure of FIG. 5 and the circuit structure of FIG. 6. As shown in FIG. 9, the number of the at least two capacitors is four, including a first capacitor C1, a second capacitor C2, a third capacitor C3, and a fourth capacitor C4. The number of the at least one fifth diode D5 is two, including an upper fifth diode D5 and a lower fifth diode D5. The number of the at least one sixth diode D6 is two, including an upper sixth diode D6 and a lower sixth diode D6.


Two ends of the first capacitor C1 are coupled to the secondary side first node Ps1 and the first bridge arm upper node Pu1. Two ends of the second capacitor C2 are coupled to the secondary side second node Ps2 and the second bridge arm upper node Pu2. Two ends of the third capacitor C3 are coupled to the secondary side first node Ps1 and the first bridge arm lower node Pw1. Two ends of the fourth capacitor C4 are coupled to the secondary side second node Ps2 and the second bridge arm lower node Pw2.


A cathode of the upper fifth diode D5 is coupled to the first bridge arm upper node Pu1, and an anode of the upper fifth diode D5 is coupled to the secondary side second node Ps2. A cathode of the upper sixth diode D6 is coupled to the second bridge arm upper node Pu2, and an anode of the upper sixth diode D6 is coupled to the secondary side first node Ps1. An anode of the lower fifth diode D5 is coupled to the first bridge arm lower node Pw1, and a cathode of the lower fifth diode D5 is coupled to the secondary side second node Ps2. An anode of the lower sixth diode D6 is coupled to the second bridge arm lower node Pw2, and a cathode of the lower sixth diode D6 is coupled to the secondary side first node Ps1.


In the circuit structure shown in FIG. 9, when the isolated converter operates in a first quadrant (not shown), a main current flows through the secondary side of the transformer T1, the second capacitor C2, the third diode D3, the DC positive output node+Vb, the DC negative output node −Vb, the second diode D2, the third capacitor C3, and the secondary side. A first pre-charge current flows through the secondary side, the upper fifth diode D5, the first capacitor C1, and the secondary side. A second pre-charge current flows through the secondary side, the fourth capacitor C4, the lower sixth diode D6, and the secondary side. When the isolated converter operates in a third quadrant (not shown), a main current flows through the secondary side, the first capacitor C1, the first diode D1, the DC positive output node+Vb, the DC negative output node −Vb, the fourth diode D4, the fourth capacitor C4, and the secondary side. A first pre-charge current flows through the secondary side, the upper sixth diode D6, the second capacitor C2, and the secondary side. A second pre-charge current flows through the secondary side, the third capacitor C3, the lower fifth diode D5, and the secondary side.


Please refer to FIG. 10, which shows a single-bus circuit structure of the isolated converter with high boost ratio according to a fourth embodiment of the present disclosure. The main difference between FIG. 10 and FIG. 9 is that all the diodes D1-D6 in FIG. 9 are replaced by power switches S1-S6. In this embodiment, the power switches S1-S6 are, for example but not limited to, metal-oxide-semiconductor field-effect transistors (MOSFETs). By actively controlling the power switches S1-S6, the isolated converter can achieve the function of bidirectional operation. Similarly, the diodes in the isolated converters shown in FIG. 5, FIG. 6, and FIG. 9 also can be replaced by power switches so that the isolated converter can achieve the function of bidirectional operation and achieve less conduction loss. In FIG. 5, FIG. 6, and FIG. 9, the “diode” is not limited to a diode that is independently packaged, it can be also a parasitic element of the power switch, such as a body diode of the MOSFET.


Please refer to FIG. 11, which shows a dual-bus circuit structure of the isolated converter with high boost ratio according to the present disclosure. In the same concept of the diode-capacitor circuit, the dual-bus circuit structure is proposed for the specific application, such as a dual-bus output of the UPS's power converter. In comparison with the single-bus circuit structure of the isolated converter with high boost ratio shown in FIG. 9, the dual-bus circuit structure of the isolated converter with high boost ratio shown in FIG. 11 further includes a center-tapped node Pct. Therefore, balance charging and discharging operation of the dual-bus output voltage can be implemented through the center-tapped structure, and the circuit is similar to FIG. 9 and will not be repeated here.


Please refer to FIG. 12, which shows a circuit diagram of a push-pull converter having the single-bus circuit structure in FIG. 5. The diode-capacitor circuit shown in FIG. 5 is applied to the push-pull converter having the single-bus circuit structure to achieve the DC-to-DC converter with high boost ratio and high efficiency. Moreover, it can be controlled by a fixed frequency control manner.


In addition, the diode-capacitor circuit shown in FIG. 6, FIG. 9, and FIG. 10 is also suitable for the push-pull converter (its detailed circuit diagram is not shown) having the single-bus circuit.


Please refer to FIG. 13, which shows a circuit diagram of a full-bridge converter having the single-bus circuit structure in FIG. 5. The diode-capacitor circuit shown in FIG. 5 is applied to the full-bridge converter having the single-bus circuit structure to achieve the DC-to-DC converter with high boost ratio and high efficiency.


In addition, the diode-capacitor circuit shown in FIG. 6, FIG. 9, and FIG. 10 is also suitable for the full-bridge converter (its detailed circuit diagram is not shown) having the single-bus circuit.


Please refer to FIG. 14, which shows a circuit diagram of a full-bridge LLC resonant converter having the single-bus circuit structure in FIG. 5. The diode-capacitor circuit shown in FIG. 5 is applied to the full-bridge LLC resonant converter having the single-bus circuit structure to achieve the DC-to-DC converter with high boost ratio and high efficiency.


In addition, the diode-capacitor circuit shown in FIG. 6, FIG. 9, and FIG. 10 is also suitable for the full-bridge LLC resonant converter (its detailed circuit diagram is not shown) having the single-bus circuit.


Please refer to FIG. 15, which shows a circuit diagram of a push-pull converter having the dual-bus circuit structure in FIG. 11. The diode-capacitor circuit shown in FIG. 11 is applied to the push-pull converter having the dual-bus circuit structure to achieve the DC-to-DC converter with high boost ratio and high efficiency.


Please refer to FIG. 16, which shows a circuit diagram of a full-bridge converter having the dual-bus circuit structure in FIG. 11. The diode-capacitor circuit shown in FIG. 11 is applied to the full-bridge converter having the dual-bus circuit structure to achieve the DC-to-DC converter with high boost ratio and high efficiency.


Please refer to FIG. 17, which shows a circuit diagram of a full-bridge LLC resonant converter having the dual-bus circuit structure in FIG. 11. The diode-capacitor circuit shown in FIG. 11 is applied to the full-bridge LLC resonant converter having the dual-bus circuit structure to achieve the DC-to-DC converter with high boost ratio and high efficiency.


Although the present disclosure has been described with reference to the preferred embodiment thereof, it will be understood that the present disclosure is not limited to the details thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the present disclosure as defined in the appended claims.

Claims
  • 1. An isolated converter with high boost ratio consisting of: a transformer comprising a secondary-side coil having a first node and a second node,a first bridge arm having a first switch, a first capacitor, and a second switch connected in series,a second bridge arm connected to the first bridge arm in parallel, and the second bridge arm having a third switch, a second capacitor, and a fourth switch connected in series,a fifth switch, wherein a first end of the fifth switch is directly connected to the first switch and the first capacitor, and a second end of the fifth switch is directly connected to the second node of the secondary-side coil and directly connected to the secondary capacitor and the fourth switch so that the secondary-side coil, the fifth switch, and the first capacitor form a second current path, anda sixth switch, wherein a first end of the sixth switch is directly connected to the third switch and the second capacitor, and a second end of the sixth switch is directly connected to the first node of the secondary-side coil and directly connected to the first capacitor and the second switch so that the secondary-side coil, the sixth switch, and the second capacitor form a first current path.
  • 2. The isolated converter with high boost ratio in claim 1, wherein the first switch is a first diode, the second switch is a second diode, the third switch is a third diode, the fourth switch is a fourth diode, the fifth switch is a fifth diode, and the sixth switch is a sixth diode.
  • 3. The isolated converter with high boost ratio in claim 2, wherein an anode of the first diode and the first capacitor are connected at a first upper node,a cathode of the second diode and the first capacitor are connected at a first lower node,an anode of the third diode and the second capacitor are connected at a second upper node,a cathode of the fourth diode and the second capacitor are connected at a second lower node,a cathode of the first diode is connected to a cathode of the third diode,an anode of the second diode is connected to an anode of the fourth diode,an anode of the fifth diode is connected to the second node and the second lower node, and a cathode of the fifth diode is connected to the first upper node, andan anode of the sixth diode is connected to the first node and the first lower node, and a cathode of the sixth diode is connected to the second upper node.
  • 4. The isolated converter with high boost ratio in claim 1, wherein the first switch is a first active switch, the second switch is a second active switch, the third switch is a third active switch, the fourth switch is a fourth active switch, the fifth switch is a fifth active switch, and the sixth switch is a sixth active switch.
  • 5. The isolated converter with high boost ratio in claim 4, wherein a first non-controlled end of the first active switch and the first capacitor are connected at a first upper node,a first non-controlled end of the third active switch and the second capacitor are connected at a second upper node,a second non-controlled end of the first active switch is connected to a second non-controlled end of the third active switch,a first non-controlled end of the second active switch is connected to a first non-controlled end of the fourth active switch,a second non-controlled end of the second active switch and the first capacitor are connected at a first lower node,a second non-controlled end of the fourth active switch and the second capacitor are connected at a second lower node,a first non-controlled end of the fifth active switch is connected to the second node and the second lower node, and a second non-controlled end of the fifth active switch is connected to the first upper node, anda first non-controlled end of the sixth active switch is connected to the first node and the first lower node, and a second non-controlled end of the sixth active switch is connected to the second upper node.
Priority Claims (1)
Number Date Country Kind
202010248753.X Apr 2020 CN national
CROSS-REFERENCE TO RELATED APPLICATION

This patent application is a continuing application of U.S. patent application Ser. No. 16/867,242 filed on May 5, 2020, and entitled “ISOLATED CONVERTER WITH HIGH BOOST RATIO,” which claims the benefit of United States Provisional Patent Application No. 62/860,650 filed Jun. 12, 2019, and claims priority of CN202010248753.X filed Apr. 1, 2020. The entire disclosures of the above applications are all incorporated herein by reference.

US Referenced Citations (72)
Number Name Date Kind
3478258 Nagai Nov 1969 A
3579078 Cronin May 1971 A
4167777 Allington Sep 1979 A
4454455 Matulevich Jun 1984 A
4559590 Davidson Dec 1985 A
4660134 Geray Apr 1987 A
4675795 Takamura Jun 1987 A
4839786 Ohosuga Jun 1989 A
5663877 Dittli Sep 1997 A
5774346 Poon Jun 1998 A
5856916 Bonnet Jan 1999 A
5883795 Farrington Mar 1999 A
5956243 Mao Sep 1999 A
6067236 White May 2000 A
6154382 Kawahara Nov 2000 A
6272031 Shona Aug 2001 B1
8009444 Duan Aug 2011 B2
8238129 Unkrich Aug 2012 B2
8498136 Shinomoto Jul 2013 B2
8885366 Yu Nov 2014 B2
9356522 Hong May 2016 B2
9692313 Isurin Jun 2017 B1
9997994 Luo Jun 2018 B1
10483862 Cook Nov 2019 B1
10491136 Lyasu Nov 2019 B2
10700614 Wang Jun 2020 B1
10819244 Shi Oct 2020 B1
20040047165 Luo Mar 2004 A1
20040264224 Jang Dec 2004 A1
20080316775 Tsai Dec 2008 A1
20090213625 Adler Aug 2009 A1
20090219006 Gekinozu Sep 2009 A1
20110013436 Gan Jan 2011 A1
20110199802 Leu Aug 2011 A1
20110242853 Agarwal Oct 2011 A1
20120250359 Knill Oct 2012 A1
20120250373 Adam Oct 2012 A1
20120287678 Xu Nov 2012 A1
20120294053 Yan Nov 2012 A1
20130003427 Pan Jan 2013 A1
20130257392 Yan Oct 2013 A1
20130322136 Ceu Dec 2013 A1
20140104893 Pan Apr 2014 A1
20140354247 Xu Dec 2014 A1
20150016164 Takajou Jan 2015 A1
20150078053 Harrison Mar 2015 A1
20150102765 Lee Apr 2015 A1
20150131330 Pan May 2015 A1
20150207424 Okamoto Jul 2015 A1
20150330195 Dong Nov 2015 A1
20160036338 El-Barbari Feb 2016 A1
20160087545 Higaki Mar 2016 A1
20160118817 Uno Apr 2016 A1
20160190933 Lee Jun 2016 A1
20160233406 Kurikuma Aug 2016 A1
20160276941 Iwaya Sep 2016 A1
20160307086 Nozoe Oct 2016 A1
20170126136 Nakahori May 2017 A1
20170222562 Nakahori Aug 2017 A1
20170237339 Young Aug 2017 A1
20170353111 Elasser Dec 2017 A1
20170373592 Takahashi Dec 2017 A1
20180175732 Dai Jun 2018 A1
20180287504 Parsekar Oct 2018 A1
20180335714 Hirabayashi Nov 2018 A1
20190341855 Kim Nov 2019 A1
20200083814 Choi Mar 2020 A1
20200220368 Fei Jul 2020 A1
20200287461 Zou Sep 2020 A1
20200358355 Zambetti Nov 2020 A1
20200395861 Lin Dec 2020 A1
20210044210 Huang Feb 2021 A1
Foreign Referenced Citations (1)
Number Date Country
103887987 Jun 2014 CN
Related Publications (1)
Number Date Country
20210336548 A1 Oct 2021 US
Provisional Applications (1)
Number Date Country
62860650 Jun 2019 US
Continuations (1)
Number Date Country
Parent 16867242 May 2020 US
Child 17365608 US