Isolated DNA that encodes an Arabidopsis thaliana MSH3 protein involved in DNA mismatch repair and a method of modifying the mismatch repair system in a plant transformed with the isolated DNA

Information

  • Patent Grant
  • 6734019
  • Patent Number
    6,734,019
  • Date Filed
    Friday, October 27, 2000
    23 years ago
  • Date Issued
    Tuesday, May 11, 2004
    20 years ago
Abstract
The present invention relates to an isolated and purified DNA comprising a nucleotide sequence that encodes a polypeptide functionally involved in the DNA mismatch repair system of a plant.
Description




TECHNICAL FIELD




The present invention relates to nucleotide sequences which encode polypeptides involved in the DNA mismatch repair systems of plants, and to the polypeplides encoded by those nucleotide sequences. The invention also relates to nucleotide sequences and polypeptide sequences for use in altering the DNA mismatch repair system in plants. The invention also relates to a process for altering the DNA mismatch repair system of a plant cell, to a process for increasing genetic variations in plants and to processes for obtaining plants having a desired characteristic.




BACKGROUND OF THE INVENTION




Plant breeding essentially relies on and makes use of genetic variation which occurs naturally within and between members of a family, a genus, a species or a subspecies. Another source of genetic variation is the introduction of genes from other organisms which may or may not be related to the host plant.




Allelic loci or non-allelic genes which constitute or contribute to desired quantitative (e.g. growth performance, yield, etc.) or qualitative (e.g. deposition, content and composition of seed storage products; pathogen resistance genes: etc.) traits that are absent, incomplete or inefficient in a species or subspecies of interest are typically introduced by the plant breeder from other species or subspecies, or de novo. This introduction is often done by crossing, provided that the species to be crossed are sexually compatible. Other means of introducing genomes, individual chromosomes or genes into plant cells or plants are well known in the art. They include cell fusion, chemically aided transfection (Schocher et al., 1986. Biotechnology 4: 1093) and ballistic (McCabe et al., 1988, Biotechnology 6: 923), microinjection (Neuhaus et al., 1987, TAG 75: 30), electroporation of protoplasts (Chupeau et al., 1989, Biotechnology 7: 53) or microbial transformation methods such as Agrobacterium mediated transformation (Horsch et al., 1985, Science 227: 1229; Hiei et al., 1996, Biotechnology 14: 745).




However, when a foreign genome, chromosome or gene is introduced into a plant, it will often segregate in subsequent generations from the genome of the recipient plant or plant cell during mitotic and meiotic cell divisions and, in consequence, become lost from the host plant or plant cell into which it had been introduced. Occasionally, however, the introduced genome, chromosome or gene physically combines entirely or in part with the genome, chromosome or gene of the host plant or plant cell in a process which is called recombination.




Recombination involves the exchange of covalent linkages between DNA molecules in regions of identical or similar sequence. It is referred to here as homologous recombination if donor and recipient DNA are identical or nearly identical (at least 99% base sequence identity), and as homeologous recombination if donor and recipient DNA are not identical but are similar (less than 99% base sequence identity).




The ability of two genomes, chromosomes or genes to recombine is known to depend largely on the evolutionary relation between them and thus on the degree of sequence similarity between the two DNA molecules. Whereas homologous recombination is frequently observed during mitosis and meiosis, homeologous recombination is rarely or never seen.




From a breeder's perspective, the limits within which homologous recombination occurs, therefore, define a genetic barrier between species, varieties or lines, in contrast to homologous recombination which can break this barrier. Homeologous recombination is thus of great importance for plant breeding. Accordingly there is a need for a process for enhancing the frequency of homeologous recombination in plants. In particular, there is a need for a process of increasing homeologous recombination to significantly shorten the length of breeding programs by reducing the number of crosses required to obtain an otherwise rare recombination event.




At least in


Escherichia coli


, homologous and homeologous recombination are known to share a common pathway that requires among others the proteins RecA, RecB, RecC. RecD and makes use of the SOS induced RuvA and RuvB, respectively. It has been suggested that mating induced recombination follows the Double-Strand Break Repair model (Szostak et al., 1983, Cell 33, 25-35), which is widely used to describe genetic recombination in eukaryotes. Following the alignment of homologous or homeologous DNA double helices the RecA protein mediates an exchange of a single DNA strand from the donor helix to the aligned recipient DNA helix. The incoming strand screens the recipient helix for sequence complementary, seeking to form a heteroduplex by hydrogen bonding the complementary strand. The displaced homologous or homeologous strand of the recipient helix is guided into the donor helix where it base pairs with its counterpart strand to form a second heteroduplex. The resulting branch point then migrates along the aligned chromosomes thereby elongating and thus stabilising the initial heteroduplexes. Single stranded gaps (if present) are closed by DNA synthesis. The strand cross overs (Holliday junction) are eventually resolved enzymatically to yield the recombination products.




Although in wild type


E. coli


homologous and homeologous recombination are thus mechanistically similar if not identical, homologous recombination in conjugational crosses


E. coli×E. coli


occurs five orders of magnitude more frequently than homeologous recombination in conjugational crosses


E. coli×S. typhimurium


(Matic et al. 1995; Cell 80, 507-515). The imbalance in favour of homologous recombination was shown to be caused largely by the bacterial MisMatch Repair (MMR) system since its inactivation increased the frequency of homeologous recombination in


E. coli


up to 1000 fold (Rayssiguier et al. 1989, Nature 342. 396-401).




In


E. coli


, the MMR system (reviewed by Modrich 1991, Annual Rev Genetics 25, 229-253) is composed of only three proteins known as MutS, MutL and MutH. MutS recognizes and binds to base pair mismatches. MutL then forms a stable complex with mismatch bound MutS. This protein complex now activates the MutH intrinsic single stranded endonuclease which nicks the strand containing the misplaced base and thereby prepares the template for DNA repair enzymes.




During recombination. MMR components inhibit homeologous recombination. In vitro experiments demonstrated that MutS in complex with MutL binds to mismatches at the recombination branch point and physically blocks RecA mediated strand exchange and heteroduplex formation (Worth et al., 1994; PNAS 91, 3238-3241). Interestingly, the SOS dependent RuvAB mediated branch migration is insensitive to MutS/MutL, explaining the observed slight increase in SOS dependent homeologous recombination. Homeologous mating even induces the SOS response, thereby taking advantage of RuvAB induction (Matic et al. 1995, Cell 80, 507-515).




The MMR system thus appears to be a genetic guardian over genome stability in


E. coli


. In this role it essentially determines the extent to which genetic isolation, that is, speciation, occurs. The diminished sensitivity of the SOS system to MMR, however, allows (within limits) for rapid genomic changes at times of stress, providing the means for fast adaptation to altered environmental conditions and thus contributing to intraspecies genetic variation and species evolution.




The important role of MMR in preserving genomic integrity has been established also in certain eukaryotes. In its efficiency, the human MMR, for example, may even counteract potential gene therapy tools such as triple-helix forming oligonucleotides including RNA-DNA hybrid molecules (Havre et al., 1993, J. Virology 67: 7234-7331; Wang et al., 1995, Mol. Cell. Biol. 15: 1759-1768; Kotani et al., 1996, Mol. Gen. Genetics 250: 626-634; Cole-Strauss et al., 1996, Science 273: 1387-1389). Such oligonucleotides are designed to introduce single base changes into selected DNA target sequences in order to inactivate for example cancer genes or to restore their normal function. The resulting base mismatches however are recognised by the mismatch repair system which then directs removal of the mismatched base, thereby reducing the efficiency of oligonucleotide induced site-specific mutagenesis.




To date, two families of related genes, homologous to the bacterial MutS and MutL genes have been identified or isolated in yeast and mammals (recent reviews by Arnheim and Shibata, 1997, Curr. Opinion Genet. Dev. 7, 364-370; Modrich and Lahue, 1996, Annual Rev. Biochem. 65, 101-133: Umar and Kunkel, 1996, Eur. J. Biochem. 238, 297-307). Biochemical and genetic analysis indicated that eukaryotic MutS homologs (MSH) and MutL homologs (MLH, PMS), respectively, fulfill similar protein functions as their bacterial counterparts. Their relative abundance, however, could reflect different mismatch specificity and/or specialisation for different tissues or organelles or developmental processes such as mitotic versus meiotic recombination.




To date, six different genes homologous to MutS have been isolated in yeast (yMSM), and their homologs have been found in mouse (mMSH) and human (hMSH), respectively. Encoded proteins yMSH2, yMSH3 and yMSH6 appear to be the main MutS homologs involved in MMR during mitosis and meiosis in yeast, where the complementary proteins MSH3 and MSH6 alternatively associate with MSH2 to recognise different mismatch substrates (Masischky et al., 1996, Genes Dev. 10, 407-420). Similar protein interactions have been demonstrated for the human homologs hMSH2, hMSH3 and hMSH6 (Acharya et al., 1996, PNAS 93, 13629-13634).




MutL homologs (MLH and PMS), recently reviewed by Modrich and Lahue (1996, Annual Rev. Biochem. 65, 101-133) have so far been found in yeast (yMLH1 and yPhVS1), mouse (mPMS2) and human (hMLH1, hPMS1 and hpMS2). The hPMS2 is a member of a family of at least 7 genes (Horii et al., 1994, Biochem. Biophys. Res. Commun. 204, 1257-1264) and its gene product is most closely related to yPMS1. Prolla et al. (1994, Science 265, 1091-1093) presented evidence for yPMS1 and yMLH1 to physically associate with each other and, together, to interact with the MutS homolog yMSH2 to form a ternary complex involved in mismatch substrate binding.




However, while medical interest in mismatch repair has prompted extensive research on MMR in bacteria, yeast and mammals, MMR genes have not been isolated from higher plants prior to the present invention and no attempts to adjust the plant MMR to plant breeding needs have been reported.




SUMMARY OF THE INVENTION




According to a first embodiment of the invention, there is provided an isolated and purified DNA molecule comprising a polynucleotide sequence encoding a polypeptide functionally involved in the DNA mismatch repair system of a plant. In one form of this embodiment, the invention provides an isolated and purified DNA molecule comprising a polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human. More particularly, the invention provides polynucleotide sequences encoding polypeptides which are homologous to the mismatch repair polypeptides MSH3 and MSH6 of


Saccharomyces cerevisiae


. Still, more particularly, the invention provides the coding sequences of the genes AtMSH3 and ArMSH6 of


Arabidopsis thaliana


, as defined hereinbelow, and polynucleotide sequences encoding polypeptides which are homologous to polypeptides encoded by AtMSH3 and ArMSH6.




According to a second embodiment of the invention, there is provided an isolated and purified polypeptide functionally involved in the DNA mismatch repair system of a plant, for example a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human such as a polypeptide encoded by the genes ArMSH3 or ArMSH6 of


Arabidopsis thaliana


, as defined hereinbelow.




According to a third embodiment of the invention, there is provided an isolated and purified DNA molecule comprising a polynucleotide sequence selected from the group consisting of (i) a sequence encoding a polynucleotide which is capable of interfering with the expression of a plant polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human and thereby disabling said plant polynucleotide sequence; and (ii) a sequence encoding a polypeptide capable of disrupting the DNA mismatch repair system of a plant.




According to a fourth embodiment of the invention there is provided a chimeric gene comprising a DNA sequence selected from the group consisting of (i) a sequence encoding a polynucleotide which is capable of interfering with the expression of a plant polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human and thereby disabling said plant polynucleotide sequence, and (ii) a sequence encoding a polypeptide capable of disrupting the DNA mismatch repair system of a plant; together with at least one regulation element capable of functioning in a plant cell. Examples of such regulation elements include constitutive, inducible, tissue type specific and cell type specific promoters such as 35S, NOS, PR1a, AoPR1 and DMC1. Typically, a chimeric gene of the fourth embodiment will also include at least one terminator sequence, more typically exactly one terminator sequence.




In the third and fourth embodiments, said interference, by said polynucleotide sequence, with the expression of a plant polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair peptide of a yeast or a human typically occurs by hybridisation or by co-suppression.




According to a fifth embodiment of the invention there is provided a plasmid or vector comprising a chimeric gene of the fourth embodiment. A vector of the fifth embodiment may be, for example, a viral vector or a bacterial vector.




According to a sixth embodiment of the invention, there is provided a plant cell stably transformed, transfected or electroporated with a plasmid or vector of the fifth embodiment.




According to seventh embodiment of the invention, there is provided a plant comprising a cell of the sixth embodiment.




According to an eighth embodiment of the invention, there is provided a process for at least partially inactivating a DNA mismatch repair system of a plant cell, comprising transforming or transfecting said plant cell with a DNA sequence of the third embodiment or a chimeric gene of the fourth embodiment or a plasmid or vector of the fifth embodiment, and causing said DNA sequence to express said polynucleotide or said polypeptide.




According to a ninth embodiment of the invention, there is provided a process for increasing genetic variation in a plant comprising obtaining a hybrid plant from a first plant and a second plant, or cells thereof, said first and second plants being genetically different; altering the mismatch repair system in said hybrid plant; permitting said hybrid plant to self-fertilise and produce offspring plants; and screening said offspring plants for plants in which homeologous recombination has occurred. For example, homeologous recombination may be evidenced by new genetic linkage of a desired characteristic trait or of a gene which contributes to a desired characteristic trait.




According to a tenth embodiment of the invention there is provided a process for obtaining a plant having a desired characteristic, comprising altering the mismatch repair system in a plant, cell or plurality of cells of a plant which does not have said desired characteristic, permitting mutations to persist in said cells to produce mutated plant cells, deriving plants from said mutated plant cells, and screening said plants for a plant having said desired characteristic.




In a preferred form of the ninth and tenth embodiments of the invention, the step of altering the mismatch repair system comprises introducing into said hybrid plant, plant, cell or cells a chimeric gene of the fourth embodiment and permitting the chimeric gene to express a polynucleotide which is capable of interfering with the expression of a plant polynucleotide sequence in a mismatch repair gene of the hybrid plant, plant, cell or cells, or a polypeptide capable of disrupting the DNA mismatch repair system of the hybrid plant or cells.




In other embodiments, the invention provides (a) an oligonucleotide capable of hybridising at 45° C. under standard PCR conditions to a DNA molecule of the first embodiment; (b) an oligonucleotide capable of hybridising at 45° C. under standard PCR conditions to the DNA of SEQ ID NO: 18 and (c) an oligonucleotide capable of hybridising at 45° C. under standard PCR conditions to the DNA of SEQ ID NO:30; with the proviso that the oligonucleotide of (a), (b) and (c) is other than SEQ ID NO: 1 or SEQ ID NO:2.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

provides a diagrammatic representation of the primer sequences used to isolate AtMSH3.





FIG. 2

is a plasmid map of clone 52, showing restriction enzyme cleavage sites in the 5′ half of the full-length cDNA for AtMSH3.





FIG. 3

is a plasmid map of clone 13, showing restriction enzyme cleavage sites in the 3′ half of the full-length cDNA for AtMSH3.





FIG. 4

is a sequence listing of the coding sequence of AtMSH3, together with a deduced sequence of the encoded polypeptide.





FIG. 5

is a protein alignment of yeast


Saccharomyces cerevisiae


and


Arabidopsis thaliana


MSH3 protein. Homologous amino acid residues are highlighted.





FIG. 6

provides a diagrammatic representation of the primer sequences used to isolate AtMSH6.





FIG. 7

is a plasmid, map of clone 43, showing restriction enzyme cleavage sites in the 5′ half of the full-length cDNA for AtMSH6.





FIG. 8

is a plasmid map of clone 62, showing restriction enzyme cleavage sites in the 3′ half of the full-length cDNA for AtMSH6.





FIG. 9

is a sequence listing of the coding sequence of AtMSH6, together with a deduced sequence of the encoded polypeptide.





FIG. 10

is protein alignment of yeast


Saccharomyces cerevisiae


and


Arabidopsis thaliana


MSH6 protein. Homologous amino acid residues are highlighted.





FIG. 11

is a genomic sequence listing of AtMSH6.





FIG. 12

is a plasmid map of plasmid pPF13.





FIG. 13

is a plasmid map of plasmid pPF14.





FIG. 14

is a plasmid map of plasmid pCW186.





FIG. 15

is a plasmid map of plasmid pCW187.





FIG. 16

is a plasmid map of plasmid pPF66.





FIG. 17

is a plasmid map of plasmid pPF57.





FIG. 18

is a diagrammatic representation of an antisense gene construction for use in homeologous meiotic recombination.





FIG. 19

is a plasmid map of plasmid p3243.











DETAILED DESCRIPTION OF THE INVENTION




The present invention is based on the inventors' discovery that there exist in higher plants genes which are homologous to MMR genes in


E. coli


, and to MMR genes in yeasts and humans.




Thus, the inventors have identified genes, herein designated AtMSH3 and AtMSH6, of the plant


Arabidopsis thaliana


which encode the proteins AtMSH3 and AtMSH6. These plant proteins are homologous to yMSH3 and yMSH6, respectively. The present inventors have isolated cDNAs encoding the proteins AtMSH3 and AtMSH6 and have isolated the complete gene encoding AtMSH6. Given the teaching herein, other genes (for example AtMSH2, and genes of other plants) may be obtained which are involved in DNA mismatch repair in plants, including other genes which encode polypeptides homologous to MMR proteins of yeasts or humans, such as genes which encode polypeptides homologous to yeast MSH2, MLH1 or PMS2, or to human MLH1, PMS1 or PMS2. For example, given the teaching herein, genes of members of the Brassicaceae family or of other unrelated families, for example the Poaueae, the Solanaceae, the Asteraceae, the Malvaceae, the Fabaceae, the Linaceae, the Canabinaceae, the Dauaceae and the Cucurbitaceae family, and which encode polypeptides homologous to MMR proteins of yeasts or humans may be obtained.




Examples of plants whose genes encoding polypeptides homologous to MMR proteins of yeasts or humans may be obtained given the teaching herein include maize, wheat, oats, barley, rice, tomato, potato, tobacco, capsicum, sunflower, lettuce, artichoke, safflower, cotton, okra, beans of many kinds including soybean, peas, melon, squash, cucumber, oilseed rape, broccoli, cauliflower, cabbage, flax, hemp, hops and carrot.




Within the meaning of the present invention, a first polypeptide is defined as homologous to a second polypeptide if the amino acid sequence of the first polypeptide exhibits a similarity of at least 50% on the polypeptide level to the amino acid sequence of the second polypeptide.




A procedure which may be followed to obtain genes AtMSH3 and AtMSH6 is described in Example 1. Essentially the same technique may be applied to obtain other mismatch repair genes of Arabidopsis thaliana, and essentially the same technique as exemplified herein may be applied to cDNA obtained by reverse transcription of RNA from other plants. Alternatively, given the sequence information disclosed herein, other degenerate oligonucleotide primers, especially oligonucleotides of the invention which are capable of hybridising at 45° C. under standard PCR conditions (such as the conditions described in Example 1 using primers UPMU and DOMU) to AtMSH3 and/or ATMSH6 may be designed and obtained for use in isolating sequences of plant mismatch repair genes which are homologous to AtMSH3 or AtMSH6, from other plants. Similarly, oligonucleotides of the invention which are capable of hybridising at 45° C. under standard PCR conditions to plant mismatch repair genes of plants other than Arabidopsis thaliana also fall within the scope of the present invention and may be utilised to obtain mismatch repair genes of still other plants. Typically, such oligonucleotides are capable of hybridising at 45° C. under standard PCR conditions to a DNA molecule which encodes a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or a human. The temperature at which oligonucleotides of the invention hybridise to AtMSH3 and/or AtMSH6, or to plant mismatch repair genes of plants other than


Arabidopsis thaliana


, or to DNA molecules which encode polypeptides which are homologous to a mismatch repair polypeptide of a yeast or a human may be higher than 45° C., for example at least 50° C., or at least 55° C., or at least 60° C. or as high as 65° C.




The successful gene isolation disclosed herein demonstrates for the first time the existence of MMR in higher plants and indicates the presence of other plant MMR genes. For example, genes encoding the plant homologs of MSH1, MSH2, MSH4, MSH5, PMS1, PMS2 and MLH1 may he identified given the teaching herein. Such genes, as well as those specifically described herein, separately or in combination, are useful in manipulating the plant MMR for plant breeding purposes. Thus, for example, the plant MMR may be altered by including in a plant cell a polynucleotide sequence as defined herein above with reference to the third embodiment of the invention, and causing the polynucleotide sequence to express either a polynucleotide which disables a plant MMR gene, or a polypeptide which disrupts the plant's MMR system.




The DNA molecule of the third embodiment of the invention includes a polynucleotide sequence (herein referred to as a MMR altering gene) which may for example encode sense, antisense or ribozyme molecules characterised by sufficient base sequence similarity or complementarity to the gene to be altered to permit the antisense or ribozyme molecule to hybridise with the plant MMR gene in vivo or to permit the sense molecule to participate in co-suppression. Alternatively, the MMR altering gene may encode a protein or proteins which interfere with the activity of a plant MMR protein and thus disrupt the plant's MMR system. For example, such encoded proteins may be antibodies or other proteins capable of interfering with MMR protein function, such as by complexing with a protein functionally involved in plant MMR thereby disrupting the MMR of the plant. An example of such a protein is the MSH3 protein of


Arabidopsis thaliana


described herein or a protein of another plant which is homologous to the MSH3 protein of


A. thaliana


. For instance, overexpression of MSH3 in a plant cell causes MSH2 present in the cell to be substantially completely complexed, disrupting the mismatch repair mechanism or mechanisms in the cell which are functionally dependent on the presence of a complex of MSH2 with MSH6. Similarly, mismatch repair mechanisms which depend on the presence of a complex of MSH2 and MSH3 may be disrupted by the overexpression of MSH6.




A chimeric gene of the fourth embodiment, incorporating a MMR altering gene. may be prepared by methods which are known in the art. Similarly, the MMR altering gene may be introduced into a plant cell, regenerating tissue or whole plant by techniques known in the art as being suitable for plant transformation, or by crossing. Known transformation techniques include


Agrobacterium tumefaciens


or


A. rhizogenes


mediated gene transfer, ballistic and chemical methods, and electroporation of protoplasts. The MMR altering gene or genes are typically expressed from suitable promoters. Suitable promoters may direct constitutive expression, such as the 35S or the NOS promoter. Usually, however, the promoter will direct either inducible or tissue specific (e.g. callus; embryonic tissue; etc.), cell type specific (e.g. protoplasts; meiocytes; etc.) or developmental (e.g. embryo) expression of the altering gene or genes, in order for the MMR system to function in tissue types or cell types, or at developmental stages of the plant, in which it is not desirable for the MMR system to be altered. Using such promoters, therefore, the activity of a MMR altering gene may be limited to a specific stage during, plant development or it may be altered by controlling conditions external to 5 the plant, and the deleterious effects of a permanently disabled or altered DNA mismatch repair system in a plant may be avoided. Examples of suitable promoters which are not constitutive are known in the art and include inducible promoters such as PRIa (reviewed by Gatz, 1997, Annual Rev. Plant Phys. Plant Mol. Biol. 48: 89), tissue specific promoters such as AoPR1 (Sabahattin et al., 1993, Biotechnology 11: 218), and cell-type specific promoters such as DMC1.




A chimeric gene in accordance with the invention may further be physically linked to one or more selection markers such as genes which confer phenotypic traits such as herbicide resistance, antibiotic resistance or disease resistance, or which confer some other recognisable trait such as male sterility, male fertility, grain size, colour, growth is rate, flowering time, ripening time, etc.




The process of the tenth embodiment of the invention provides, for example, a process for generating intraspecies genetic variation by altering the mismatch repair system in a plant cell, in regenerating plant tissue or in a whole plant. The plant cell, regenerating tissue or whole plant includes and expresses one or more MMR altering genes which are capable of altering mismatch repair in the plant cell, regenerating tissue or whole plant. Alteration of MMR may be achieved, for example, by inactivating the genes encoding plant MSH3 and/or plant MSH6. It is preferred to inactivate the plant MSH3 and MSH6 encoding genes at the same time and in the same plant cell, regenerating tissue or whole plant. Typically in this preferred form of the invention inactivation of either plant MSH3 or MSH6 alone is insufficient to substantially alter the plant's mismatch repair system and only when both MSH3 and MSH6 are inactivated simultaneously is the plant's mismatch repair system sufficiently altered to prevent the MMR system from recognising base pair mismatches, base insertions or deletions as a result of DNA replication errors, DNA damage, or oligonucleotide induced site-specific mutagenesis. However, in some applications of the invention, inactivation of only one gene may also be used to cause genomic instability or increase the efficiency of site-specific mutagenesis.




If desired, the MMR altering gene or genes may later be rendered non-functional or ineffective, or may be removed from the genome of the plant cell, regenerating tissue or whole plant in order to restore mismatch repair in the plant cell, regenerating tissue or whole plant. The MMR altering gene or genes may be inactivated by means of known gene inactivation tools, such as ribozymes, or may be removed from the genome using gene elimination systems known in the art, such as CRE/LOX. It is preferred to render two genes, whose gene products combine to incapacitate MMR, ineffective by separating the altering genes through segregation. Therefore, in a preferred embodiment of the invention a first plant cell or plant is generated in which only plant MSH3 is incapacitated, and a second plant cell or plant is generated in which only plant MSH6 is incapacitated. The combination of both genomes, for example by crossing, then produces significant MMR deficiency in those cells or plants which have inherited both altering genes. If the altering genes are expressed from unlinked loci, gene segregation restores MMR activity in the progeny of the cells or plants.




In a process of the ninth embodiment of this invention, homeologous recombination is enhanced between different genomes, chromosomes or genes in plant cells or plants by altering MMR in said plant cells or plants. Such genomes, chromosomes or genes are characterised in that they originate from different plant families, genera, species, subspecies, plant varieties or lines. Hybrid plant cells or hybrid plants may be produced by crossing, by cell fusion or by other techniques known in the art. These plant cells or plants are further characterised by expressing one or more genes that are capable of altering mismatch repair in the plant cell or plants.




In the process of the ninth embodiment, the homeologous recombination is typically for the purpose of introducing a desired characteristic in the hybrid plant. In this typical application of the process of the ninth embodiment, and in the process of the tenth embodiment the desired characteristic may be any characteristic which is of value to the plant breeder. Examples of such characteristics are well known in the art and include altered composition or quality of leaf or seed derived storage products (e.g. oil, starch, protein), altered composition or quality of cell walls (e.g. decrease in lignin content), altered growth rate, prolonged flowering, increased plant yield or grain yield, altered plant morphology, resistence to pathogens, tolerance to or improved performance under environmental stresses of various kinds, etc.




In a preferred form of the tenth embodiment, an MMR altering gene is co-introduced along with the homeologous genome, chromosome or gene of another plant cell or plant into an MMR proficient plant cell or MMR proficient plant to produce a hybrid plant cell or hybrid plant in which homeologous recombination can occur. Suitably, the MMR proficient plant cell or MMR proficient plant may also include an MMR altering gene. For example a gene capable of inactivating plant MSH3 may be co-introduced along with the homeologous genome, chromosome or gene of another plant cell or plant into an MMR proficient plant cell or MMR proficient plant in which MSH6 is inactivated. A resultant hybrid plant in which homeologous recombination occurs will include both the MSH3 and MSH6 altering genes and its MMR system will therefore be inactivated.




In this form of the invention, if hybrid plants are to be produced by crossing, the MMR altering gene preferably originates from the male parent, thus ensuring that the MMR altering gene is always introduced and is not present in the recipient cell. That is, the MMR of the recipient cell, prior to introduction of the MMR altering gene, is typically proficient. Alternatively, if an MMR altering gene is present in a recipient cell it may be ineffective or inefficient on its own, or it may be linked to an inducible or tissue specific or cell type specific promoter which only renders the MMR altering gene active under limited conditions.




Thus, in a preferred form of the process of the ninth embodiment, the MMR system of the hybrid plant is initially unaltered. In this form of the process, the step of altering the mismatch repair system may comprise introducing into the hybrid plant, or cells thereof, a MMR altering gene, such as by


Agrobacterium tumefaciens


or


A. rhizogenes


mediated gene transfer, ballistic and chemical methods, and electroporation of protoplasts.




The MMR altering gene or genes are typically expressed from suitable promoters, as described above. Preferably, the promoter is transcriptionally active in mitotically and meiotically active tissue and/or cells to ensure MMR alteration after chromosome pairing at mitosis and meiosis, respectively. The preferred timing for MMR alteration is at meiosis, because recombinant genomes, chromosomes or genes are directly transmitted to the progeny. A suitable meiocyte specific promoter is for example the DMC


1


promoter from


Arabidopsis thaliana


ssp. Ler. (Klimyuk and Jones, 1997, Plant J. 11, 1-14). However, mitotic homologous recombination is also a desirable outcome as somatic recombination events can be transmitted to offspring due to the totipotency of plant cells and the lack of predetermined germ cells in plants.




If desired, the MMR altering gene or genes may later be rendered non-functional or ineffective, or may be removed from the hybrid plant or hybrid plant cells, in order to restore mismatch repair in the hybrid plant or hybrid plant cells. The MMR altering gene or genes may be inactivated by means of known gene inactivation tools as described herein above.




EXAMPLES




Example 1




Cloning of the AtMSH3 and AtMSH6 Coding Sequences Isolation of Partial A MSH3 and AtA4SH6 Consensus Sequences




Degenerate oligonucleotides UPMU (SEQ ID NO: 1) and DOMU (SEQ ID NO:2)




UPMU CTOGATCCACIGGICCIAA(CIT)ATG




DOMU CTGGATCC(AIG)TA(A/G)TGIGTI(A/G)C(A/G)AA




were used to isolate ATMSH3 and AtMSH6 sequences by PCR amplification.




Primers UPMU and DOMU correspond to conserve amino acid sequences of the proteins MutS (


E. coli


and


S. typhimurium


, HexA


S. pneumoniae


, Repl (mouse) and Ducl (human). The concerved regions to which they are targeted are TGPNM (SEQ. ID. NO: 99) for UPMU and FATHY (SEQ ID NO:100) or FVTHY (SEQ. ID. NO. 101) for DOMU. These primers have been used to isolate MSH2 and MSH1 from yeast (Reenan and Kolodner, Genetics 132:963-973 (1992)) and MSH2 from Xenopus and mouse (Varlet et al., Nucleic acids Res. 22:5723-5728 (1994)).




Primers UPMU and DOMU correspond to conserve amino acid sequences of the proteins MutS (


E. coli


and


S. typhimurium


, HexA


S. pneumoniae


, Repl (mouse) and Ducl (human). The concerved regions to which they are targeted are TGPNM (SEQ. ID. NO: 99) for UPMU and FATHY (SEQ ID NO:100) or FVTHY (SEQ. ID. NO. 101) for DOMU. These primers have been used to isolate MSH2 and MSH1 from yeast (Reenan and Kolodner, Genetics 132:963-973 (1992)) and MSH2 from Xenopus and mouse (Varlet et al., Nucleic acids Res. 22:5723-5728 (1994)).




Template single strand cDNA was produced by reverse transcription of 2 μg total RNA from a cell suspension culture of


Arabidopsis thaliana


ecotype Columbia (Axelos et al. 1989, Mol. Gen. Genetics 219: 106-112). The PCR reaction was performed under the following conditions in a final volume of 100 μl: 0.2mM dNTP, 1 μM each primer, IXPCR buffer, 1u Taq DNA polymerase (Appligene) in the presence of template cDNA. PCR parameters were 5 minutes at 94° C., followed by 30 cycles of 40 seconds at 95° C., 90 seconds at 45° C., 1 minute at 72° C. The amplification products were cloned into pGEM-T vector (Promega) and sequenced. Two different clones were isolated, S5 (350 bp) was homologous to MSH3, Sg (327 bp) was homologous to MSH6. Complete cDNA sequences were then isolated according to the Marathon cDNA amplification kit procedure (Clontech). In summary, this procedure involves producing double stranded cDNA by reverse transcription of 2 μg polyA+RNA from the cell suspension culture of Arabidopsis. Adaptors are ligated on each side of the cDNA. The ligated cDNA is used as a template for 5′ and 3′ RACE PCR reactions in the presence of primers that are specific for the adaptor on one side (AP1 and AP2), and specific for the targeted gene on the other side. A 5′ and a fragment that overlap are thus produced for each gene. The complete gene coding sequence can be reconstituted taking advantage of a unique restriction site, if available, in the overlapping region. Specific details of this procedure as it was used to isolate AtMSH3 and AtMSH6 coding regions, are as follows.




Isolation of AtMSH3 Complete Coding Sequence




From the sequence of clone S5, primer 636 (SEQ ID NO:3) was designed:




636 TGCTAGTGCCTCTTGCAAGCTCAT.




Primer AP1 (SEQ ID NO:4) is complementary to a portion of an adaptor sequence which had been ligated to the 5′ and 3′ ends of Arabidopsis cDNA:




AP1 CCATCCTAATACGACTCACTATAGGGC.




PCR performed on the ligated cDNA with primers 636 and AP1 for the 5′ RACE PCR was followed by a second round of amplification with the nested primers AP2 (SEQ ID NO:5) and S525 (SEQ ID NO:6)




AP2 ACTCACTATAGGGCTCGAGCGGC




S525 AGGTTCTGATTATGTGTGACGCTTACTTA




(the latter was also designed to correspond to a part of the sequence of clone S5) and produced a 2720 bp DNA fragment.

FIG. 1

provides a diagrammatic representation of the primer sequences used to isolate AtMSH3. Another primer (S51, SEQ ID NO:7)




S51 GGATCGGGTACTGGGTTTTGAGTGTGAGG




was designed closer to the 5 border and permitted the determination of 99 bp upstream to the ATG initiation codon. For the 3′ RACE PCR, a first PCR reaction was performed with primers AP1 and 635 (SEQ ID NO:8).




635 GCACGTCTTGATGGTGTTTTCAC




followed by a second round of amplification, using the nested primers AP2 and S523 (SEQ ID NO:9)




S523 TCAGACAGTATCCAGCATGGCAGAAGTA




which produced a DNA fragment of 890 bp. Both DNA fragments were subcloned into pGEM-T and sequenced. Since PCR amplification using the Expand Long Template PCR System (Boehringer-Mannheim) produced errors in the sequence, new oligonucleotides were designed to isolate those sequences again by PCR, but with the high fidelity DNA polymerase Pfu. PCR with primers 1S5 (SEQ ID NO: 10) and S53 (SEQ ID NO:11)




1S5 ATCCCGGGATGGGCAAGCAkAAGCAGCAGACGA




S53 GACAAAGAGCGAAATGAGGCCCCTTGG




amplified the 1244 bp fragment clone 52 (SEQ ID NO: 12, cloned into pUC18/SmaI). PCR with primers S52 (SEQ ID NO: 3) and 2S5 (SEQ ID NO: 14)




2S5 ATCCCGGGTCAAAATGAACAAGTTGGTTTTAGTC




S52 GCCACATCTGACTGTTCAAGCCCTCGC




amplified the 2104 bp clone 13 (SEQ ID NO:15, cloned into pUC18/SmaI). The complete coding sequence of the AtMSH3 gene was reconstructed in pUC18 by ligating the 5′ half AtMSH3 (clone 52) to the 3′ half of AtMSH3 (clone 13) after digesting with BamHI which has a unique cleavage site in the overlapping region of both clones. This manipulation yielded plasmid pPF26. The Sinal fragment from pPF26 contains the complete AtMSH3 coding sequence. The remaining primers referred to in

FIG. 1

are as follows:




S51 GGATCGGGTACTGGGTTTTGAGTGTGAGG (SEQ ID NO:16)




S525 AGGTTCTGATTATGTGTGACGCTTTACTTA (SEQ ID NO: 17)





FIGS. 2 and 3

provide plasmid maps of clones 52 and 13 respectively, showing restriction enzyme cleavage sites. The complete AtMSH3 coding sequence (SEQ ID NO: 18) 30 is 3246 bp long and is shown in

FIG. 4

together with the deduced sequence (SEQ ID NO: 19) of the encoded polypeptide. AtMSH3 is clearly homologous to the yeast and mouse MSH3 genes. A sequence alignment of polypeptides encoded by AtMSH3 and that encoded by


Saccharomyces cerevisiae


MSH3 is set out in FIG.


5


.




Isolation of the AtMSH6 Complete Coding Sequence and Genomic Sequences




The same procedure allowed isolation of the AtMSH6 cDNA.

FIG. 6

provides a diagrammatic representation of the primer sequences used to isolate AtMSH6. For the 5′ RACE PCR, primers 638 (SEQ ID NO:20) and AP1 (SEQ ID NO:4)




638 TCTCTACCAGGTGACGAAAAACCG




allowed the amplification of a 2889 DNA fragment. Primer S81 (SEQ ID NO:21)




S81CGTCGCCTTTAGCATCCCCTTCC17CAC




helped define the 142 bp upstream to the ATG initiation codon. On the 3′ side. RACE PCR was initially performed with primers S823 (SEQ ID NO:22) and AP1 (SEQ ID NO:4).




S823 GCTTGGCGCATCTAATAGAATCATGACAGG




and then with the nested primers 637 (SEQ ID NO:23) and AP2 (SEQ ID NO:5).




637 GACAGCGTCAGTTCTTCAGAATGC




to produce a 774 bp DNA fragment. As for AtMSH3, those fragments were cloned and sequenced. Re-isolation of the DNA sequence using the high fidelity Pfu polymerase and newly designed primers 1S8 (SEQ ID NO:24) and S83 (SEQ ID NO:25) (for the 5′ side) led to a 2182 bp DNA fragment identified as clone 43 (SEQ ID NO:26, cloned in pUC18/SmaI), and a 1379 bp clone identified as clone 62 (SEQ ID NO:27, also cloned in pUC18/SmaI).




1S8 ATCCCGGGATGCAGCGCCAGAGATCGATTTTGT




2S8 ATCCCGGGTTATTTGGGAACACAGTAAGAGGATT (SEQ ID NO:28)




S82 GCGTTCGATCATCAGCCTCTGTGT7GC (SEQ ID NO:29)




S83 CGCTATCTAFGGCTGCTTCGAATTGAG





FIGS. 7 and 8

provide plasmid maps of clones


43


and


62


respectively, showing restriction enzyme cleavage sites. Clones 43 and 62 were digested by the Xmn1 restriction enzyme for which a unique site is present in their overlapping region and then ligated. The complete AtMSH6 coding sequence (SEQ ID NO:30) is 3330 bp long and is shown in

FIG. 9

together with the deduced sequence (SEQ ID NO:31) of the encoded polypeptide. AtMSH6 is clearly homologous to the yeast and mouse MSH6genes. A sequence alignment of polypeptides encoded by AtMSH6 and that encoded by


Saccharomyces cerevisiae


MSH6 is set out in FIG.


10


.




An AtMSH6 genomic sequence was also isolated from a genomic DNA library constituted after partial Sau3A1 digestion of DNA from the Arabidopsis cell suspension. 8062 bp were sequenced that covered the AtMSH6 gene and show colinearity with the cDNA. 16 introns are found scattered along the gene. The complete genomic sequence (SEQ ID NO:98) is shown in FIG.


11


.




EXAMPLE 2




A Measure of Somatic Variation in MMR Deficient Plants Constructs




Constructs with antisense AtMSH3 or antisense AtMSH6 or both AtMSH3/AtMSH6 under the control of a single 35S promoter have been inserted into the binary vector pPZP121 (Hajdukiewicz et al., Plant Mol. Biol. 23. 793-799) between the right and left borders of the T-DNA. The pPZP121 plasmid confers chloramphenicol resistance to


Escherichia coli


or


Agrobacterium tumefaciens


bacteria. The aacC1 gene is carried by the T-DNA and allows selection of transformed plant cells on gentamycin (Hajdukiewicz et al., Plant Mol. Biol. 25, 989-994). For the purpose of expressing antisense constructs, a 35S promoter/terminator cassette with a polylinker was introduced into pPZP121. The 3′ ends of the considered genes have been chosen since this region seems more efficient for antisense inhibition. For AtMSH3 this corresponds to clone 13 (2104 bp), for AtMSH6 this corresponds to clone 62 (1379 bp). Clone 13 comprises 2104 bp of the 3′ region that were cut off the pUC18 vector by SalI/SstI restriction, blunted with T4 DNA polymerase and ligated into the T4 DNA polymerase blunted BamHI site of pPZP121/35S, creating clone pPF13. The same procedure was followed for the 3′ region of AtMSH6 clone 62 (1379 bp) thus creating plasmid pPF14. For the double constructs, the 3′ region (from clone 62) of AtMSH6 was introduced ahead of the AtMSM3 region into pPF13 creating pCW186 and to reciprocally, the 3′ region of AtMSH3 (from clone 13) was introduced ahead of AtMSH6 into pPF14, creating pCW187.




These constructs were introduced into the Arabidopsis cells (as described below) of wildtype Columbia and of the Columbia tester line.




An alternative strategy to antisense inhibition of AtMSH6 comes from experiments of Marra et al. (1998. Proc. Natl. Acad. Sci USA 95. 8568-8573) who show that overexpression of functional MSH3 results in depiction of MSH6 protein in human cells. This depletion may generate a mismatch repair mutant phenotype.




For the purpose of overexpressing functional AtMSH3 protein in plant cells, the complete MSH3 coding region was excised from pPF26 (example 1) by digestion with SmaI, and was inserted into the SmaI site of pCW164. The resulting construct was named pPF66. It contains a complete AtMSH3 gene under the control of the 35S promoter inside the left (LB) and right (RB) border of the T-DNA. This T-DNA also contains the hpt2 gene for gentamycin selection. Plasmid pPF66 was introduced into Arabidopsis cells as described below. One cell clone was selected which clearly overexpressed the AtMSH3 gene as shown by Northem analysis.

FIGS. 12-16

provide plasmid maps of plasmids pPF13, pPF14, pCW186, pCW187 and pPF66, respectively.




Construction of Tester Construct




For the purpose of Forward Mutagenesis Assays, a tester construct was built containing the coding regions for nptII, codA, uidA. All three genes are driven by the 35S promoter and are terminated by the 35S terminator. This construct was obtained by introducing an EcoRI fragment encoding the codA cassette (2.5 kb) and a HindIII fragment encoding the uidA (GUS) cassette (2.4 kb) into the pPZP111 vector (Hajdukiewicz et al.,1994, Plant Mol Biol 23: 793-799) which already contained the nptII expression cassette. This new plasmid was named pPF57. NptII is used to select for transformed plant cells. GUS is used to analyse the degree of gene silencing in the construct (i.e. to identify cell lines in which the transgenes are expressed), and codA is used as a marker for forward mutagenesis (described below).




The plasmid map of pPF57 is provided in FIG.


17


.




Plant Cell Transformation




The constructs are introduced into Agrobacterium by electroporation. Plant cells are then transformed by co-cultivation. A suspension culture of


Arabidopsis thaliana


cells that has been established be Axelos et al. (1992, Plant Physiol. Biochem. 30, 1-6) may be used. One day old freshly subcultured cells are diluted five times into AT medium (Gamborg B5 medium. 30 g/l sucrose, 200 μg/l NAA). 10 μl of saturated Agrobacterium containing the transforming T-DNA constructs are added to 10 ml diluted cells in a 100 ml erlenmeyer. The co-cultivation is agitated slowly (80 rpm) for 2 days. The cells are then washed 3 times into AT medium and finally resuspended in the same initial volume (10 ml). The culture is agitated for 3 days to allow expression before plating on selection plates (AT/BactoAgar 8g/l+gentamycin 50 μg/ml). Transformed individual calli are isolated 3 weeks later.




Tester Strain




The tester construct on plasmid pPF57 was introduced into Arabidopsis cells of wildtype Columbia using the transformation protocol described above. Among 10 candidate transformants, one cell clone was shown (by Southern analysis) to have a unique T-DNA insertion. All three genes were shown to be functional in this cell line as indicated by resistance to kanamycin, blue staining in the presence of X-Glu (GUS), and sensitivity to 5-fluoro-cytosine (codA).




MMR altering genes (described above) were then introduced individually into the tester line and transformed cells are used for analysis of both Microsatellite Instability and Forward Mutagenesis.




Microsatellite Analysis




Microsatellites have been described in Arabidopsis (Bell and Ecker. 1994, Genomics 19. 137-144). The present Example is based on a study of instability of microsatellites that are polymorphic amongst different ecotypes. DNA is extracted from the transformed calli. Specific primers have been defined that are used to amplify the microsatellite sequence. One of the two primers is previously p


32


labelled by T4 kinase. In case of a polymorphic variation, new PCR products appear that do not follow the expected pattern of migration on a polyacrylamide gel. This is a commonly observed feature for MMR deficient cells in yeast or mammalian cells.




In particular, the present Example describes a study on microsatellites ca72 (CA


18


), ngal72 (GA


29


), and ATHGENEA(A


39


), chosen because they belong to the types predominantly affected in human mismatch repair deficient tumors. The size of these microsatellites is not conserved from one Arabidopsis ecotype to the other.




Arabidopsis cells which are transformed with an MMR altering gene (above) and control cells not expressing the MMR altering gene are allowed to form calli. DNA is rapidly extracted from the calli and is analysed for microsatellite instability as described in detail by Bell and Ecker 1994. Genomics 19, 137-144. In summary, the relevant microsatellite is amplified by PCR using P32 labelled primers. The PCR products are separated on a DNA sequencing gel for size determination. Size differences between microsatellites from transformed and control cells not expressing the MMR altering gene in question indicate microsatellite instability as a result of MMR alteration.




The sequences of primers used for PCR amplification of microsatellites ca72 and nga172 are included in Table 1. PCR amplification of microsatellite ATHGENEA made use of a forward primer containing the sequence




ACCATGCATAGCTTAAACTTCTTG (SEQ ID NO:32) and of a reverse primer containing the sequence




ACATAACCACAAATAGGGGTGC (SEQ ID NO:33).




The amplification for microsatellite ca72 revealed in Columbia control cells (with respect to the MMR altering gene) a 248 bp long PCR fragment instead of the published length of 124 bp. DNA sequencing verified this fragment as a CA


18


microsatellite.




Forward Mutagenesis Assay




Tester cells transformed with antisense AtMSH3 or antisense AtMSH6 or both AtMSH3/AtMSH6 are analysed for the stability of the codA gene. The functional codA gene confers to sensitivity to 5-fluoro-cytosine (5FC), whereas a gene inactivating mutation in codA will confer resistance to 5FC. The frequency of resistant cells is therefore a good indicator of somatic variation as a direct result of MMR alteration. Variants resistant to 5FC are first analysed for GUS activity. If GUS is inactive, 5FC resistance is assumed to be due to gene silencing (all three genes are under The 35S promoter). If GUS is active. 5FC resistance is assumed to be due to forward mutations that have inactivated codA. PCR is then performed on the putative codA mutant genes which is then sequenced to confirm the presence of forward mutations in codA.




Besides codA, other marker genes may also be used for the Forward Mutagenesis Assay such as the ALS gene (conferring sensitivity to valine or to sulfonylurea; Hervieu and f Vaucheret, 1996, Mol. Gen. Genet. 251 220-224: Mazur et al. 1987, Plant Physiol. 85 1110-1117).




EXAMPLE 3




Homeologous Meiotic Recombination in


Arabidopsis thaliana






A. Construction of a Meiocyte Specific Gene Expression Cassette Comprising the DMC1 Promoter and the NOS Terminator




(i) The DMC1 promoter may be used as published by Klimyuk and Jones, 1997, Plant J. 11.1-14). To obtain a more convenient alternative for gene cloning, a 3.3 Kb long subfragment of the DMC1 promoter was obtained by PCR from genomic DNA of


Arabidopsis thaliana


(ssp. Landsberg erects “Ler”).




The PCR was done in three rounds:




Round One: A 3.7 Kb long product was obtained using the forward primer DMCIN-A comprising the sequence




GAAGCGATATTGTTCGTG (SEQ ID NO:34)




and the reverse primer DMCIN-B comprising the sequence




AGATTGCGAGAACATTCC (SEQ ID NO:35).




The weak amplification product was then used as template for round two and three.




Round Two: A 3.1 Kb long product comprising the promoter and the 5′ untranslated leader was obtained using forward primer DMCIN-1, which contained the sequence




acgcgtcgacTCAGCTATGAGATTACTCGTG (SEQ ID NO:36) and introduced a SalI cloning site at the 5′ end of the promoter fragment, and reverse primer DMCIN-2 which contained the sequence




gctctagaTTTCTCGCTCTAAGACTCTCT (SEQ ID NO:37) and introduced a Xba1 site at the 3′ end of the PCR fragment.




Round Three: A 0.2 Kb long product comprising the first exon/intron of the DMC1 promoter was obtained using forward primer DMCIN-3, which contained the sequence




gctctagaGCTTCTCTTAAGTAAGTGATTGAT (SEQ ID NO:38) and introduced a Xba1 site at the 5′ end of the PCR fragment, and reverse primer DMCIN4, containing the sequence




tcccccgggctcgagagatctccategTTTCTT CAGCTCTATGAATCC (SEQ ID NO:39) and introduced at the 3′ end of the PCR product restriction sites for Ncol, BgilI, Xhol and SmaI.




The products obtained in round Two and Three were digested with Xba1 and subsequently ligated to reconstitute a 3.3 Kb lone DMC1 promoter from which the first two in-frame ATG start codons were replaced with a unique restriction site for XbaI. This promoter can be cloned between the restriction sites for SalI and SmaI of p3264, which contains the SacI-EcoRI NOS terminator in pBIN19, to yield the entire expression cassette in pBIN19. This cassette contains the following cloning sites: Ncol, BglII Xhol. SmaI and (already present on p3264) KpnI and SacI.




(ii) Another strategy yielded the following convenient DMC1 promoter. A 1.8 kb DNA fragment comprising the 3′ terminal pan of the meiocyte specific DMC1 promoter was isolated by PCR from purified genomic DNA of


Arabidopsis thaliana


(ssp. Landsberg erecta “Ler”). The forward PCR primer (DMC1a) contained the sequence




acgcgtcgacGAATTCGCAAGTGGGG (SEQ ID NO:40)




and introduced a SalI cloning site at the 5′ end of the promoter fragment. The reverse PCR primer (DMC1b) contained the sequence




tccatggagatctcccgggtacCGATTTGCTTCGAGGG (SEQ ID NO:41)




introducing a polylinker region at the 3′ end of the promoter fragment. The PCR reaction was carried out with VENT DNA Polymerase (NEB) over 25 cycles using the following cycling protocol: 1 minute at 94° C., 1 minute at 54° C., 2 minutes at 72° C.




The PCR reaction yielded a blunt ended DNA fragment which was digested with restriction enzyme SalI and was cloned into the cleavage sites of restriction enzymes SalI and SmaI in plasmid p2030, a pUC118 derivative containing the SacI-EcoRI NOS terminator fragment of pBIN121. The cloning yielded plasmid p2031, containing the DMC1 promoter-polylinker-NOS terminator expression cassette depicted in FIG.


18


.




B. Construction of an MSH3 Antisense Gene Under the Control of the DMC1 Promoter




A 2.1 kb DNA fragment encoding the carboxyterminal part of AtMSH3 was removed from the polylinker of clone 13 described in Example 1 after (i) digestion with KpnI, (ii) blunting of the DNA ends generated by KpnI and (iii) digestion with BamHI. The isolated fragment was then cloned in antisense orientation downstream of the DMCl promoter in plasmid p2031, which had, been digested with restriction enzymes SmaI and Bg/II. This cloning yielded plasmid p2033 (FIG.


18


).




After digestion of p2033 with EcoRI , a 4.1 kb DNA fragment was recovered comprising the DMC1 promoter, the partial MSH3 cDNA in antisense orientation with respect to the promoter and the NOS terminator. This fragment was cloned into the EcoRI restriction site of plant transformation vector pNOS-Hyg-SCV to yield plasmid p3242 (FIG.


18


).




C. Construction of a Combined MSH61MSH3 Antisense Gene Under the Control of a Single DMC1 Promoter




A 3.1 kb fragment, encoding in antisense orientation the partial AtMSH6 and AtMSH3 sequences and the 35S terminator, was isolated from pCW186 by digestion with KpnI. The fragment was treated with Klenow enzyme to blunt both ends. It was then cloned into the SmaI site of plasmid p3243 (a pNOS-Hyg-SCV derivative, illustrated in FIG.


19


), which had been opened to delete the region between the SmaI sites. Clones containing the fragment in the antisense orientation with respect to the DMC1 promoter (described in A(ii) above) were identified by diagnostic digestion with BamHI. The selected construct was named p3261.




Another practical way of cloning the double antisense gene is as follows. A 1 kb DNA fragment encoding the carboxyterminal part of AtMSH6 is isolated from clone


62


described in Example 1 after digestion of clone 62 plasmid DNA with BamHI, which cleaves in the 5′ polylinker region flanking the partial cDNA, and with EcoRI, which cleaves within the cDNA. The isolated fragment is treated with Klenow enzyme to blunt both its ends and is cloned into the recipient plasmid p2033 or p3242. For the purpose of cloning, the recipient plasmid may be cleaved with either AvaI or NcoI and can be blunted with Klenow enzyme to produce blunt acceptor ends for fragment cloning. This cloning yields, two opposite orientations of cloned fragment DNA with respect to the DMCl promoter. These can be identified by diagnostic digestion with restriction enzymes ScaI or XmnI in conjunction with SacI. The selected construct contains the DMC1 promoter, the combined partial cDNAs for AtMSH3 and AtMSH6 (both cloned in antisense orientation with respect to the DMC1 promoter) and the NOS terminator. If the recipient plasmid is p2033, the combined antisense gene under control the single DMC1 promoter is recovered from the vector after EcoRI digestion and is cloned into the EcoRI restriction site of pNOS-Hyg-SCV.




D. Construction of a full-length MSH3 Sense Gene Under Control of the DMC1 Promoter for Overexpression of Functional MSH3 Protein




Overexpression of MSH3 protein was shown in human cells (Marra et al., 1998, Proc. Natl. Acad. Sci. USA 95, 8568-8573) to complex all available MSH2 protein. This leaves MSH6 protein without its partner, leading to the degradation of MSH6 protein and eventually to a mismatch repair phenotype.




This phenomenon is exploited to increase homeologous meiotic recombination in Arabidopsis as an alternative to antisense inhibition of AtMSH6. For this purpose the full-length cDNA encoding AtMSM3 is isolated from plasmid pPF66 by digestion with SmaI and is cloned into the SmaI site of the DMC1 expression cassettes described in A(i).




E. Selection of Recombination Markers on Homeologous Chromosomes of


ArabidoDsis thaliana


Subspecies Landshere Erecta (Lerl. Columbia (Col) and C24, Respectively E(i). Visual Recombination Markers in


Arabidopsis th


. subspecies C24:




Agrobacterium mediated transformation with a T-DNA containing a 35S-GUS gene, inactivated by insertion of a 35S-Ac transposable element (Finnegan et al., 1993, Plant Mol. Biol. 22, 625-633), had yielded a C24 line in which the T-DNA construct was integrated into chromosome 2. Genetic and molecular analysis of this line shows that the Ac transposon had excised from its T-DNA locus thereby restoring GUS activity, but had re-inserted into the chromosome at a distance of 16.4 cM, where it stayed fixed (due to disablement of Ac) within the chlorina gene. Insertional inactivation of the chlorina gene caused a bleached phenotype in those plants that were homozygous for this mutation. Because of the two linked phenotypic markers, chlorina3A:Ac and GUS, this C24 line was used in crosses to wildtype Ler for analysis of meiotic homeologous recombination on chromosome 2 in conjunction with molecular recombination markers.




E(ii). Visual Recombination Markers in


Arabidosis th


. Ler




The Ler line NW1 (obtained from NASC, Nottingham, UK) contains one recessive visual marker per chromosome, i.e. an-1 on Chr.1, py-1 on Chr.2, gl1-1 on Chr.3, cer


2-1


on Chr.4, and ms1-1 on Chr.5. This line is used in crosses to wildtype C24 which expresses an MMR altering gene for analysis of meiotic homeologous recombination on chromosomes 1-5 in conjunction with molecular recombination markers listed in Table 1.




Other Ler lines from NASC have several visual markers in close proximity to each other on the same chromosome. When these lines are used for hybrid production, analysis of homeologous meiotic recombination may make use entirely of visual recombination markers. Particularly suitable for crossing to C24 wildtype that is expressing a MMR altering gene are the following Ler lines:




NW22: relative markers are dis1—(4 cM)—ga4—(11 cM)—th




1




on chromosome 1.




NW10: relevant markers are rz-201—(5 cM)—cer3 on chromosome 5.




NW134, relevant markers are ttg—(4 cM)—ga3 on chromosome 5.




NW24(abi3-1) and NW64 (gl1-1). When present in the same plant on chromosome 3, abi3-1 and gl1-1 are 13 cM apart. Since this marker combination is not available from NASC, we have combined these markers by crossing, line NW24 to line NW64. The F1 offspring were allowed to self-fertilise and to produce F2 seeds. F2 Plants which carry both markers as homozygous traits on the same chromosome can be identified firstly, by germinating F2 seeds on germination medium containing selective concentrations of abscisic acid, and subsequently, by identifying among the abscisic acid resistant plants those individuals which show the glabra phenotype.




E(iii) Molecular Recombination Markers in Col. Ler and C24




The genome of


Arabidopsis thaliana


is interspersed with unique base sequences arranged as simple tandem repeats. Allelic repeats can vary in length between different Arabidopsis subspecies and when amplified by PCR yield diagnostic DNA products of different length named Simple Sequence Length Polymorphisms (SSLPs). Many SSLPs have been genetically mapped and have been assigned to unique chromosome locations on the recombinant inbred map (Bell and Ecker. 1994, Genomics 19, 137-144; Lister and Deans lines, Weeds World 4i, May 1997).




In Table 1 are listed 28 mapped and established SSLPs between Ler and Col. A number of PCR primer pairs are described herein (SEQ ID NO:42 to SEQ ID NO:97) which also yielded SSLPs between C24 and Ler (19 SSLPs) or between C24 and Col (25 SSLPs), respectively. Polymorphic SSLPs can be used as molecular markers in the analysis of homeologous recombination between genomes from these subspecies.




The PCR reactions (25 μL) were carried out over 35 cycles (15 seconds at 94°C., 30 seconds at 55° C. and 30 seconds at 72°C.), with 0.25 U Taq DNA polymerase and 0.6 μg genomic DNA in reaction buffer containing 2 mM MgCl


2


. PCR products were separated by agarose gel electrophoresis (4% ultra high resolution agarose) and visualised by ethidiumbromide staining. The results from the PCR experiments are summarised in Table 1, which also shows the sequence of PCR primers, primer annealing temperature (Tm). PCR product length and chromosome location of SSLP (with respect to the RI map of May 1997, Weeds World 4i).




F. Production of Hybrid Plants




C24 plants heterozygous for chlorina3A:Ac/GUS are crossed as male to emasculated wildtype Ler to produce Ler/C24(chlorina3A, GUS) hybrid seeds.




Due to the heterozygosity of the C24 parent, only 50% of hybrid plants have inherited the chlorina3A:Ac/GUS locus. The remaining 50% of hybrid plants are wildtype with respect to chlorina3A:Ac/GUS. Since the mutant locus is linked to a kanamycin resistance gene (contained on the same T-DNA as GUS) mutant plants can be pre-selected by germinating hybrid seeds on germination medium containing 50 mg/L kanamycin.




Ler plants homozygous for the five chromosome markers are male sterile (ms1-1) and are crossed without emasculation to wildtype C24 to produce Ler(an-1, py-1, gl1-1) cer2-1, ms1-1)/C24 hybrid seeds.




Other Ler plants, which are male fertile, are crossed after emasculation of the female parent to produce Ler/C24 hybrid seeds.




G. Introduction of MSH3 and MSH6/3 Antisense Genes Into Arabidonsis and Analysis of Meiotic Homeologous Recombination




(i) Transformation of hybrid plants and analysis of homeologous meiotic recombination The plant transformation vectors comprising the antisense genes described in (B) and (C) above are introduced into


Agrobacterium tumefaciens


strain AGL (Lazo et al., 1991, Bio/Technology 9, 963-967) by electroporation. Recombinant Agrobacterium clones are selected on LB medium containing 50 mg/L rifampicin and 100 mg/L carbenicillin. Selected clones are used to infect roots of Arabidopsis hybrid plants (described in (F) above) using the root transformation protocol of Valyekens et al. (1988, PNAS 85. 5536-5540) except that shoot and root inducing media contain hygromycin (10 mg/L) instead of kanamycin.




Plants regenerated from roots of hybrid plants are genetic clones of root donating plants and therefore are again genetic hybrids of two Arabidopsis subspecies described in (F). However, in contrast to the root donating plants, the regenerated hybrid plants also contain the introduced transgene and the co-introduced hygromycin resistance gene with the latter allowing these plants to grow on hygromycin containing culture medium.




Hygromycin resistant plants are then allowed to enter the reproductive phase and to produce gametes by meiotic divisions of microspore and megaspore mothercells. At meiosis, the DMC1 promoter is activated and can direct the expression of antisense genes described in (B) and (C) above, leading to decreased MSH6 and/or MSH3 gene expression. This in turn depletes the gamete mothercells of MSH6 and/or MSH3 protein, thus causing alteration of MMR during meiotic divisions and increasing the recombination frequency between homeologous chromosomes.




Transgenic plants are then allowed to self-fertilise and to produce seeds. These seeds (F2 seeds with respect to hybrid production), and the plants derived therefrom, carry the homeologous recombination events which can be identified by using the visual and molecular recombination markers described in (E) above.




In case of homeologous recombination between chromosomes of Ler and C24(chlorina3A:Ac. GUS), the analysis concentrates on chromosome 2 by selecting plants showing the visual phenotypic marker chlorina. This marker thus serves as a reference point as it indicates that respective chromosomes 2 originate from C24. Other markers, such as GUS or molecular markers, on chromosome 2 may then be used to identify chromosomal regions which are derived from the Ler chromosome as a result of homeologous recombination. F2 plants of control transformants not expressing the antisense gene(s) can be analysed in parallel and the results can be used for comparison to homeologous recombination results obtained in antisense plants.




(ii) Transformation of C24 wildtype, hybrid plant production and analysis of homeologous meiotic recombination




Introduction of MMR altering genes into wildtype C24 is done using the root transformation protocol as described in G(i) for transformation of hybrid plants. Transformed plants are selected by resistance to either 10 mg/L hygromycin (in case of transformation with T-DNA's derived from pNOS-Hyg-SCV) or to 50 mg/L kanamycin (in case of transformation with T-DNA's derived from pBIN19).




Transgenic plants are then allowed to self-fertilise and to produce seeds (T1 seeds). Segregation of the antibiotic resistance gene in the T1 population then indicates the number of transgene loci. Lines with a single transgene locus (indicated by a 3:1 ratio of resistant:sensitive plants) are selected and are bred to homozygosity. This is done by collecting selfed seeds (T2) from T1 plants and subsequent testing of at least four independent T2 seed populations for segregation of the antibiotic resistance gene. T2 populations which do not segregate the antibiotic resistance gene are assumed to be homozygous for both the resistance gene and the linked MMR altering gene.




C24 plants homozygous for the MMR altering gene are then crossed to Ler lines homozygous for recessive visual markers (see E(ii)) to produce C24/Ler hybrid plants as described in (F). These F1 hybrids are then allowed to enter the reproductive phase and to produce gametes by meiotic division of microspore and megaspore mothercells. At meiosis, the DMC 1 promoter is activated and can direct the expression of antisense or sense genes described in (B), (C) and (D) above, leading to decreased MSH6 and/or MSH3 gene expression. This in turn depletes the gamete mothercells of MSH6 and/or MSH3 protein, thus causing alteration of MMR during meiotic divisions and increasing the recombination frequency between the homeologous chromosomes of C24 and Ler. Recombination events are then scored in the F2 generation.




For recombination analysis, the hybrid plants are allowed to self-fertilise and to produce F2 seeds. F2 plants are then preselected for a first visual marker. Since this marker is recessive, its visual presence indicates homozygosity for Ler DNA at the relevant locus. Those F2 plants which show this first visual marker are then analysed for the presence or absence of a second visual marker which in the Ler parent is closely linked to the first marker. Absence of the second visual marker indicates recombination between the relevant C24 and Ler chromosomes between the first and second marker. The frequency of recombination in transgenic hybrids is compared to the recombination frequency in control hybrids not expressing the MMR altering gene.




Examples of recombination analysis are the following.




The Ler line NW22(dis1, ga4, th1) is used for crosses to transformedC24.




F2 plants are preselected first for thiamine requirement (thl) and then are further analysed for re-appearance of wildtype height (loss of ga4) and/or re-appearance of normal trichomes (loss of dis1) as a result of recombination.




The Ler line NW10(tz-201, cer3) is used for crosses to transformedC24.




F2 plants are then preselected first for thiazole requirement (tz) and then are further analysed for re-appearance of normal, i.e. non-shiny stems (loss of cer3) as a result of recombination.




The Ler line NW134 (ttg, ga3) is used for crosses to transformedC24. F2 plants are first preselected for dwarfish appearance (ga3) and are then analysed for re-appearance of trichomes (loss of ttg) as a result of recombination.




Ler plants homozygous for abi3-1 and gl1-1 are used for crosses to transformedC24F2 plants are first preselected for their ability to germinate in the presence of abscisic acid and are then analysed for re-appearance of trichomes on the leaves (loss of gl1-1) as a result of recombination.




In the case of homeologous recombination between transformedC24 and the Ler line NW1 (an-1, py-1, gl1-1, cer2-1, ms1-1), recombination analysis is similar the one described above, except that the second marker is not a visual marker but has to be a molecular marker. This is because the Ler parent carries only one visual marker per chromosome.












TABLE 1











SSLP Markers in


Arabidopsis thaliana


Subspecies



















RI Map




PCR Primer











Chromosome




Position




Pair




Primer Sequence




Tm [° C.]




length/COL




length/LER




length/C24





















I




2.3




ATEAT1 F




GCCACTGCGTGAATGATATG




57.8




172




162




162








ATEAT1 R




CGAACAGCCAACATTAATTCCC




58.2






I




9.3




NGA63 F




AACCAAGGCACAGAAGCG




57.3




111




89




120








NGA63 R




ACCCAAGTGATCGCCACC




59.6






I




40.1




NGA248 F




TACCGAACCAAAACACAAAGG




56.1




143




129




no amplific.








NGA248 R




TCTGTATCTCGGTGAATTCTCC




58.2






I




81.2




NGA128 F




GGTCTGTTGATGTCGTAAGTCG




60.1




180




190




no amplific.








NGA128 R




ATCTTGAAACCTTTAGGGAGGG




58.2






I




81.2




NGA280 F




CTGATCTCACGGACAATAGTGC




60.1




105




85




 85








NGA280 R




GGCTCCATAAAAAGTGCACC




57.8






I




111.4




NGA111 F




CTCCAGTTGGAAGCTAAAGGG




60




128




162




170








NGA111 R




TGTTTTTTAGGACAAATGGCG




70






II




ca. 7.5




NGA168 F




CCTTCACATCCAAAACCCAC




57.8




213




217




208








NGA168 R




GCACATACCCACAACCAGAA




57.8






II




ca. 48




NGA1126L




CGCTACGCTTTTCGGTAAAG




57.8




191




199




196








NGA1126R




GCACAGTCCAAGTCACAACC




59.9






II




62.2




NGA361L




AAAGAGATGAGAATTTGGAC




51.7




114




120




114








NGA361R




ACATATCAATATATTAAAGTAGC




49.5






II




73




NGA168 F




TCGTCTACTGCACTGCCG




59.6




151




135




135








NGA168 R




GAGGACATGTATAGGAGCCTCG




61.9






II




ca. 77




AthBIO2 L




TGACCTCCTCTTCCATGGAG




59.9




141




209




139








AthBIO2 R




TTAACAGAAACCCAAAGCTTTC




54.5






II




ca. 83




AthUBIQUE L




AGGCAAATGTCCATTTCATTG




54.1




146




148




148








AthUBIQUE R




ACGACATGGCAGATTTCTCC




57.8






III




3.4




NGA172 F




AGCTGCTTCCTTATAGCGTCC




60




162




136




140








NGA172 R




CATCCGAATGCCATTGTTC




55.4






III




12.8




NGA126 F




GAAAAAACGCTACTTTCGTGG




56.1




119




147




no amplific.








NGA126 R




CAAGAGCAATATCAAGAGCAGC




58.2






III




17.5




NGA162 F




CATGCAATTTGCATCTGAGG




55.8




107




89




no amplific.








NGA162 R




CTCTGTCACTCTTTTCCTCTGG




60.1






III




81.8




NGA6 F




TGGATTTCTTCCTCTCTTCAC




56.1




143




123




143








NGA6 R




ATGGAGAAGCTTACACTGATC




56.1






IV




19.8




NGA12 F




AATGTTGTCCTCCCCTCCTC




59.9




247




234




220








NGA12 R




TGATGCTCTCTGAAACAAGAGC




58.2






IV




24.1




NGA8 F




GAGGGCAAATCTTTATTTCGG




56.1




154




198




190








NGA8 R




TGGCTTTCGTTTATAAACATCC




54.5






IV




102




NGA1107 L




GCGAAAAAACAAAAAAATCCA




50.2




150




140




140








NGA1107 R




CGACGAATCGACAGAATTAGG




58






V




11.8




NGA225 F




GAAATCCAAATCCCAGAGAGG




58




119




189




119








NGA225 R




TCTCCCCACTAGTTTTGTGTCC




60.1






V




16.7




NGA249 F




TACCGTCAATTTCATCGCC




55.4




125




115




115








NGA249 R




GGATCCCTAACTGTAAAATCCC




58.2






V




19.9




CA72 F




AATCCCAGTAACCAAACACACA




56.3




124




110




110








CA72 R




CCCAGTCTAACCACGACCAC




61.9






V




20




NGA151 F




GTTTTGGGAAGTTTTGCTGG




55.8




150




120




130








NGA151 R




CAGTCTAAAAGCGAGAGTATGATG




58.6






V




24




NGA106 F




GTTATGGAGTTTCTAGGGCACG




60.1




157




123




130








NGA106 R




TGCCCCATTTTGTTCTTCTC




55.8






V




37.8




NGA139 F




AGAGCTACCAGATCCGATGG




59.9




174




132




132








NGA139 R




GGTTTCGTTTCACTATCCAGG




55.8






V




50




NGA76 F




GGAGAAAATGTCACTCTCCACC




60.1




231




>250




300








NGA76 R




AGGCATGGGAGACATTTACG




57.8






V




61.1




ATHSO191 L




CTCCACCAATCATGCAAATG




55.8




148




156




146








ATHSO191 R




TGATGTTGATGGAGATGGTCA




53.7






V




81.7




NGA129 F




TCAGGAGGAACTAAAGTGAGGG




60.1




177




179




172








NGA129 R




CACACTGAAGATGGTCTTGAGG




60.1

















100




1


23


DNA


Artificial Sequence




modified_base




(11)...(11)




I





1
ctggatccac nggnccnaay atg 23




2


23


DNA


Artificial Sequence




Degenerate oligonucleotides DOMU used to
isolate AtMSH3 and AtMSH6.






2
ctggatccrt artgngtnrc raa 23




3


24


DNA


Artificial Sequence




MSH3 specific primer 636 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






3
tgctagtgcc tcttgcaagc tcat 24




4


27


DNA


Artificial Sequence




Primer AP1 for PCR using cDNA of Arabidopsis
thaliana ecotype Columbia containing adapter
sequences ligated to both its ends.






4
ccatcctaat acgactcact atagggc 27




5


23


DNA


Artificial Sequence




Primer AP2 for PCR using cDNA of Arabidopsis
thaliana ecotype Columbia containing adapter
sequences ligated to both its ends.






5
actcactata gggctcgagc ggc 23




6


30


DNA


Artificial Sequence




MSH3 specific primer S525 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






6
aggttctgat tatgtgtgac gctttactta 30




7


29


DNA


Artificial Sequence




MSH3 specific primer S51 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






7
ggatcgggta ctgggttttg agtgtgagg 29




8


24


DNA


Artificial Sequence




MSH3 specific primer 635 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






8
gcacgtgctt gatggtgttt tcac 24




9


28


DNA


Artificial Sequence




MSH3 specific primer S523 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






9
tcagacagta tccagcatgg cagaagta 28




10


33


DNA


Artificial Sequence




MSH3 specific primer 1S5 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






10
atcccgggat gggcaagcaa aagcagcaga cga 33




11


27


DNA


Artificial Sequence




MSH3 specific primer S53 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






11
gacaaagagc gaaatgaggc cccttgg 27




12


1250


DNA


Arabidopsis thaliana ecotype Columbia




misc_feature




(0)...(0)




Clone 52





12
cccgggatgg gcaagcaaaa gcagcagacg atttctcgtt tcttcgctcc caaacccaaa 60
tccccgactc acgaaccgaa tccggtagcc gaatcatcaa caccgccacc gaagatatcc 120
gccactgtat ccttctctcc ttccaagcgt aagcttctct ccgaccacct cgccgccgcg 180
tcacccaaaa agcctaaact ttctcctcac actcaaaacc cagtacccga tcccaattta 240
caccaaagat ttctccagag atttctggaa ccctcgccgg aggaatatgt tcccgaaacg 300
tcatcatcga ggaaatacac accattggaa cagcaagtgg tggagctaaa gagcaagtac 360
ccagatgtgg ttttgatggt ggaagttggt tacaggtaca gattcttcgg agaagacgcg 420
gagatcgcag cacgcgtgtt gggtatttac gctcatatgg atcacaattt catgacggcg 480
agtgtgccaa catttcgatt gaatttccat gtgagaagac tggtgaatgc aggatacaag 540
attggtgtag tgaagcagac tgaaactgca gccattaagt cccatggtgc aaaccggacc 600
ggcccttttt tccggggact gtcggcgttg tataccaaag ccacgcttga agcggctgag 660
gatataagtg gtggttgtgg tggtgaagaa ggttttggtt cacagagtaa tttcttggtt 720
tgtgttgtgg atgagagagt taagtcggag acattaggct gtggtattga aatgagtttt 780
gatgttagag tcggtgttgt tggcgttgaa atttcgacag gtgaagttgt ttatgaagag 840
ttcaatgata atttcatgag aagtggatta gaggctgtga ttttgagctt gtcaccagct 900
gagctgttgc ttggccagcc tctttcacaa caaactgaga agtttttggt ggcacatgct 960
ggacctacct caaacgttcg agtggaacgt gcctcactgg attgtttcag caatggtaat 1020
gcagtagatg aggttatttc attatgtgaa aaaatcagcg caggtaactt agaagatgat 1080
aaagaaatga agctggaggc tgctgaaaaa ggaatgtctt gcttgacagt tcatacaatt 1140
atgaacatgc cacatctgac tgttcaagcc ctcgccctaa cgttttgcca tctcaaacag 1200
tttggatttg aaaggatcct ttaccaaggg gcctcatttc gctctttgtc 1250




13


34


DNA


Artificial Sequence




MSH3 specific primer 2S5 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






13
atcccgggtc aaaatgaaca agttggtttt agtc 34




14


27


DNA


Artificial Sequence




MSH3 specific primer S52 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






14
gccacatctg actgttcaag ccctcgc 27




15


2110


DNA


Arabidopsis thaliana ecotype Columbia




misc_feature




(0)...(0)




Clone 13





15
gccacatctg actgttcaag ccctcgccct aacgttttgc catctcaaac agtttggatt 60
tgaaaggatc ctttaccaag gggcctcatt tcgctctttg tcaagtaaca cagagatgac 120
tctctcagcc aatactctgc aacagttgga ggttgtgaaa aataattcag atggatcgga 180
atctggctcc ttattccata atatgaatca cacacttaca gtatatggtt ccaggcttct 240
tagacactgg gtgactcatc ctctatgcga tagaaatttg atatctgctc ggcttgatgc 300
tgtttctgag atttctgctt gcatgggatc tcatagttct tcccagctca gcagtgagtt 360
ggttgaagaa ggttctgaga gagcaattgt atcacctgag ttttatctcg tgctctcctc 420
agtcttgaca gctatgtcta gatcatctga tattcaacgt ggaataacaa gaatctttca 480
tcggactgct aaagccacag agttcattgc agttatggaa gctattttac ttgcggggaa 540
gcaaattcag cggcttggca taaagcaaga ctctgaaatg aggagtatgc aatctgcaac 600
tgtgcgatct actcttttga gaaaattgat ttctgttatt tcatcccctg ttgtggttga 660
caatgccgga aaacttctct ctgccctaaa taaggaagcg gctgttcgag gtgacttgct 720
cgacatacta atcacttcca gcgaccaatt tcctgagctt gctgaagctc gccaagcagt 780
tttagtcatc agggaaaagc tggattcctc gatagcttca tttcgcaaga agctcgctat 840
tcgaaatttg gaatttcttc aagtgtcggg gatcacacat ttgatagagc tgcccgttga 900
ttccaaggtc cctatgaatt gggtgaaagt aaatagcacc aagaagacta ttcgatatca 960
tcccccagaa atagtagctg gcttggatga gctagctcta gcaactgaac atcttgccat 1020
tgtgaaccga gcttcgtggg atagtttcct caagagtttc agtagatact acacagattt 1080
taaggctgcc gttcaagctc ttgctgcact ggactgtttg cactcccttt caactctatc 1140
tagaaacaag aactatgtcc gtcccgagtt tgtggatgac tgtgaaccag ttgagataaa 1200
catacagtct ggtcgtcatc ctgtactgga gactatatta caagataact tcgtcccaaa 1260
tgacacaatt ttgcatgcag aaggggaata ttgccaaatt atcaccggac ctaacatggg 1320
aggaaagagc tgctatatcc gtcaagttgc tttaatttcc ataatggctc aggttggttc 1380
ctttgtacca gcgtcattcg ccaagctgca cgtgcttgat ggtgttttca ctcggatggg 1440
tgcttcagac agtatccagc atggcagaag tacctttcta gaagaattaa gtgaagcgtc 1500
acacataatc agaacctgtt cttctcgttc gcttgttata ttagatgagc ttggaagagg 1560
cactagcaca cacgacggtg tagccattgc ctatgcaaca ttacagcatc tcctagcaga 1620
aaagagatgt ttggttcttt ttgtcacgca ttaccctgaa atagctgaga tcagtaacgg 1680
attcccaggt tctgttggga cataccatgt ctcgtatctg acattgcaga aggataaagg 1740
cagttatgat catgatgatg tgacctacct atataagctt gtgcgtggtc tttgcagcag 1800
gagctttggt tttaaggttg ctcagcttgc ccagatacct ccatcatgta tacgtcgagc 1860
catttcaatg gctgcaaaat tggaagctga ggtacgtgca agagagagaa atacacgcat 1920
gggagaacca gaaggacatg aagaaccgag aggcgcagaa gaatctattt cggctctagg 1980
tgacttgttt gcagacctga aatttgctct ctctgaagag gacccttgga aagcattcga 2040
gtttttaaag catgcttgga agattgctgg caaaatcaga ctaaaaccaa cttgttcatt 2100
ttgacccggg 2110




16


29


DNA


Artificial Sequence




MSH3 specific primer S51 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






16
ggatcgggta ctgggttttg agtgtgagg 29




17


30


DNA


Artificial Sequence




MSH3 specific primer S525 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






17
aggttctgat tatgtgtgac gctttactta 30




18


3522


DNA


Arabidopsis thaliana ecotype Columbia




CDS




(100)...(3342)




AtMSH3 full-length cDNA and deduced sequence of
the encoded polypeptide.






18
cctaagaaag cgcgcgaaaa ttggcaaccc aagttcgcca tagccacgac cacgaccttc 60
catttctctt aaacggagga gattacgaat aaagcaatt atg ggc aag caa aag 114
Met Gly Lys Gln Lys
1 5
cag cag acg att tct cgt ttc ttc gct ccc aaa ccc aaa tcc ccg act 162
Gln Gln Thr Ile Ser Arg Phe Phe Ala Pro Lys Pro Lys Ser Pro Thr
10 15 20
cac gaa ccg aat ccg gta gcc gaa tca tca aca ccg cca ccg aag ata 210
His Glu Pro Asn Pro Val Ala Glu Ser Ser Thr Pro Pro Pro Lys Ile
25 30 35
tcc gcc act gta tcc ttc tct cct tcc aag cgt aag ctt ctc tcc gac 258
Ser Ala Thr Val Ser Phe Ser Pro Ser Lys Arg Lys Leu Leu Ser Asp
40 45 50
cac ctc gcc gcc gcg tca ccc aaa aag cct aaa ctt tct cct cac act 306
His Leu Ala Ala Ala Ser Pro Lys Lys Pro Lys Leu Ser Pro His Thr
55 60 65
caa aac cca gta ccc gat ccc aat tta cac caa aga ttt ctc cag aga 354
Gln Asn Pro Val Pro Asp Pro Asn Leu His Gln Arg Phe Leu Gln Arg
70 75 80 85
ttt ctg gaa ccc tcg ccg gag gaa tat gtt ccc gaa acg tca tca tcg 402
Phe Leu Glu Pro Ser Pro Glu Glu Tyr Val Pro Glu Thr Ser Ser Ser
90 95 100
agg aaa tac aca cca ttg gaa cag caa gtg gtg gag cta aag agc aag 450
Arg Lys Tyr Thr Pro Leu Glu Gln Gln Val Val Glu Leu Lys Ser Lys
105 110 115
tac cca gat gtg gtt ttg atg gtg gaa gtt ggt tac agg tac aga ttc 498
Tyr Pro Asp Val Val Leu Met Val Glu Val Gly Tyr Arg Tyr Arg Phe
120 125 130
ttc gga gaa gac gcg gag atc gca gca cgc gtg ttg ggt att tac gct 546
Phe Gly Glu Asp Ala Glu Ile Ala Ala Arg Val Leu Gly Ile Tyr Ala
135 140 145
cat atg gat cac aat ttc atg acg gcg agt gtg cca aca ttt cga ttg 594
His Met Asp His Asn Phe Met Thr Ala Ser Val Pro Thr Phe Arg Leu
150 155 160 165
aat ttc cat gtg aga aga ctg gtg aat gca gga tac aag att ggt gta 642
Asn Phe His Val Arg Arg Leu Val Asn Ala Gly Tyr Lys Ile Gly Val
170 175 180
gtg aag cag act gaa act gca gcc att aag tcc cat ggt gca aac cgg 690
Val Lys Gln Thr Glu Thr Ala Ala Ile Lys Ser His Gly Ala Asn Arg
185 190 195
acc ggc cct ttt ttc cgg gga ctg tcg gcg ttg tat acc aaa gcc acg 738
Thr Gly Pro Phe Phe Arg Gly Leu Ser Ala Leu Tyr Thr Lys Ala Thr
200 205 210
ctt gaa gcg gct gag gat ata agt ggt ggt tgt ggt ggt gaa gaa ggt 786
Leu Glu Ala Ala Glu Asp Ile Ser Gly Gly Cys Gly Gly Glu Glu Gly
215 220 225
ttt ggt tca cag agt aat ttc ttg gtt tgt gtt gtg gat gag aga gtt 834
Phe Gly Ser Gln Ser Asn Phe Leu Val Cys Val Val Asp Glu Arg Val
230 235 240 245
aag tcg gag aca tta ggc tgt ggt att gaa atg agt ttt gat gtt aga 882
Lys Ser Glu Thr Leu Gly Cys Gly Ile Glu Met Ser Phe Asp Val Arg
250 255 260
gtc ggt gtt gtt ggc gtt gaa att tcg aca ggt gaa gtt gtt tat gaa 930
Val Gly Val Val Gly Val Glu Ile Ser Thr Gly Glu Val Val Tyr Glu
265 270 275
gag ttc aat gat aat ttc atg aga agt gga tta gag gct gtg att ttg 978
Glu Phe Asn Asp Asn Phe Met Arg Ser Gly Leu Glu Ala Val Ile Leu
280 285 290
agc ttg tca cca gct gag ctg ttg ctt ggc cag cct ctt tca caa caa 1026
Ser Leu Ser Pro Ala Glu Leu Leu Leu Gly Gln Pro Leu Ser Gln Gln
295 300 305
act gag aag ttt ttg gtg gca cat gct gga cct acc tca aac gtt cga 1074
Thr Glu Lys Phe Leu Val Ala His Ala Gly Pro Thr Ser Asn Val Arg
310 315 320 325
gtg gaa cgt gcc tca ctg gat tgt ttc agc aat ggt aat gca gta gat 1122
Val Glu Arg Ala Ser Leu Asp Cys Phe Ser Asn Gly Asn Ala Val Asp
330 335 340
gag gtt att tca tta tgt gaa aaa atc agc gca ggt aac tta gaa gat 1170
Glu Val Ile Ser Leu Cys Glu Lys Ile Ser Ala Gly Asn Leu Glu Asp
345 350 355
gat aaa gaa atg aag ctg gag gct gct gaa aaa gga atg tct tgc ttg 1218
Asp Lys Glu Met Lys Leu Glu Ala Ala Glu Lys Gly Met Ser Cys Leu
360 365 370
aca gtt cat aca att atg aac atg cca cat ctg act gtt caa gcc ctc 1266
Thr Val His Thr Ile Met Asn Met Pro His Leu Thr Val Gln Ala Leu
375 380 385
gcc cta acg ttt tgc cat ctc aaa cag ttt gga ttt gaa agg atc ctt 1314
Ala Leu Thr Phe Cys His Leu Lys Gln Phe Gly Phe Glu Arg Ile Leu
390 395 400 405
tac caa ggg gcc tca ttt cgc tct ttg tca agt aac aca gag atg act 1362
Tyr Gln Gly Ala Ser Phe Arg Ser Leu Ser Ser Asn Thr Glu Met Thr
410 415 420
ctc tca gcc aat act ctg caa cag ttg gag gtt gtg aaa aat aat tca 1410
Leu Ser Ala Asn Thr Leu Gln Gln Leu Glu Val Val Lys Asn Asn Ser
425 430 435
gat gga tcg gaa tct ggc tcc tta ttc cat aat atg aat cac aca ctt 1458
Asp Gly Ser Glu Ser Gly Ser Leu Phe His Asn Met Asn His Thr Leu
440 445 450
aca gta tat gct tcc agg ctt ctt aga cac tgg gtg act cat cct cta 1506
Thr Val Tyr Ala Ser Arg Leu Leu Arg His Trp Val Thr His Pro Leu
455 460 465
tgc gat aga aat ttg ata tct gct cgg ctt gat gct gtt tct gag att 1554
Cys Asp Arg Asn Leu Ile Ser Ala Arg Leu Asp Ala Val Ser Glu Ile
470 475 480 485
tct gct tgc atg gga tct cat agt tct tcc cag ctc agc agt gag ttg 1602
Ser Ala Cys Met Gly Ser His Ser Ser Ser Gln Leu Ser Ser Glu Leu
490 495 500
gtt gaa gaa ggt tct gag aga gca att gta tca cct gag ttt tat ctc 1650
Val Glu Glu Gly Ser Glu Arg Ala Ile Val Ser Pro Glu Phe Tyr Leu
505 510 515
gtg ctc tcc tca gtc ttg aca gct atg tct aga tca tct gat att caa 1698
Val Leu Ser Ser Val Leu Thr Ala Met Ser Arg Ser Ser Asp Ile Gln
520 525 530
cgt gga ata aca aga atc ttt cat cgg act gct aaa gcc aca gag ttc 1746
Arg Gly Ile Thr Arg Ile Phe His Arg Thr Ala Lys Ala Thr Glu Phe
535 540 545
att gca gtt atg gaa gct att tta ctt gcg ggg aag caa att cag cgg 1794
Ile Ala Val Met Glu Ala Ile Leu Leu Ala Gly Lys Gln Ile Gln Arg
550 555 560 565
ctt ggc ata aag caa gac tct gaa atg agg agt atg caa tct gca act 1842
Leu Gly Ile Lys Gln Asp Ser Glu Met Arg Ser Met Gln Ser Ala Thr
570 575 580
gtg cga tct act ctt ttg aga aaa ttg att tct gtt att tca tcc cct 1890
Val Arg Ser Thr Leu Leu Arg Lys Leu Ile Ser Val Ile Ser Ser Pro
585 590 595
gtt gtg gtt gac aat gcc gga aaa ctt ctc tct gcc cta aat aag gaa 1938
Val Val Val Asp Asn Ala Gly Lys Leu Leu Ser Ala Leu Asn Lys Glu
600 605 610
gcg gct gtt cga ggt gac ttg ctc gac ata cta atc act tcc agc gac 1986
Ala Ala Val Arg Gly Asp Leu Leu Asp Ile Leu Ile Thr Ser Ser Asp
615 620 625
caa ttt cct gag ctt gct gaa gct cgc caa gca gtt tta gtc atc agg 2034
Gln Phe Pro Glu Leu Ala Glu Ala Arg Gln Ala Val Leu Val Ile Arg
630 635 640 645
gaa aag ctg gat tcc tcg ata gct tca ttt cgc aag aag ctc gct att 2082
Glu Lys Leu Asp Ser Ser Ile Ala Ser Phe Arg Lys Lys Leu Ala Ile
650 655 660
cga aat ttg gaa ttt ctt caa gtg tcg ggg atc aca cat ttg ata gag 2130
Arg Asn Leu Glu Phe Leu Gln Val Ser Gly Ile Thr His Leu Ile Glu
665 670 675
ctg ccc gtt gat tcc aag gtc cct atg aat tgg gtg aaa gta aat agc 2178
Leu Pro Val Asp Ser Lys Val Pro Met Asn Trp Val Lys Val Asn Ser
680 685 690
acc aag aag act att cga tat cat ccc cca gaa ata gta gct ggc ttg 2226
Thr Lys Lys Thr Ile Arg Tyr His Pro Pro Glu Ile Val Ala Gly Leu
695 700 705
gat gag cta gct cta gca act gaa cat ctt gcc att gtg aac cga gct 2274
Asp Glu Leu Ala Leu Ala Thr Glu His Leu Ala Ile Val Asn Arg Ala
710 715 720 725
tcg tgg gat agt ttc ctc aag agt ttc agt aga tac tac aca gat ttt 2322
Ser Trp Asp Ser Phe Leu Lys Ser Phe Ser Arg Tyr Tyr Thr Asp Phe
730 735 740
aag gct gcc gtt caa gct ctt gct gca ctg gac tgt ttg cac tcc ctt 2370
Lys Ala Ala Val Gln Ala Leu Ala Ala Leu Asp Cys Leu His Ser Leu
745 750 755
tca act cta tct aga aac aag aac tat gtc cgt ccc gag ttt gtg gat 2418
Ser Thr Leu Ser Arg Asn Lys Asn Tyr Val Arg Pro Glu Phe Val Asp
760 765 770
gac tgt gaa cca gtt gag ata aac ata cag tct ggt cgt cat cct gta 2466
Asp Cys Glu Pro Val Glu Ile Asn Ile Gln Ser Gly Arg His Pro Val
775 780 785
ctg gag act ata tta caa gat aac ttc gtc cca aat gac aca att ttg 2514
Leu Glu Thr Ile Leu Gln Asp Asn Phe Val Pro Asn Asp Thr Ile Leu
790 795 800 805
cat gca gaa ggg gaa tat tgc caa att atc acc gga cct aac atg gga 2562
His Ala Glu Gly Glu Tyr Cys Gln Ile Ile Thr Gly Pro Asn Met Gly
810 815 820
gga aag agc tgc tat atc cgt caa gtt gct tta att tcc ata atg gct 2610
Gly Lys Ser Cys Tyr Ile Arg Gln Val Ala Leu Ile Ser Ile Met Ala
825 830 835
cag gtt ggt tcc ttt gta cca gcg tca ttc gcc aag ctg cac gtg ctt 2658
Gln Val Gly Ser Phe Val Pro Ala Ser Phe Ala Lys Leu His Val Leu
840 845 850
gat ggt gtt ttc act cgg atg ggt gct tca gac agt atc cag cat ggc 2706
Asp Gly Val Phe Thr Arg Met Gly Ala Ser Asp Ser Ile Gln His Gly
855 860 865
aga agt acc ttt cta gaa gaa tta agt gaa gcg tca cac ata atc aga 2754
Arg Ser Thr Phe Leu Glu Glu Leu Ser Glu Ala Ser His Ile Ile Arg
870 875 880 885
acc tgt tct tct cgt tcg ctt gtt ata tta gat gag ctt gga aga ggc 2802
Thr Cys Ser Ser Arg Ser Leu Val Ile Leu Asp Glu Leu Gly Arg Gly
890 895 900
act agc aca cac gac ggt gta gcc att gcc tat gca aca tta cag cat 2850
Thr Ser Thr His Asp Gly Val Ala Ile Ala Tyr Ala Thr Leu Gln His
905 910 915
ctc cta gca gaa aag aga tgt ttg gtt ctt ttt gtc acg cat tac cct 2898
Leu Leu Ala Glu Lys Arg Cys Leu Val Leu Phe Val Thr His Tyr Pro
920 925 930
gaa ata gct gag atc agt aac gga ttc cca ggt tct gtt ggg aca tac 2946
Glu Ile Ala Glu Ile Ser Asn Gly Phe Pro Gly Ser Val Gly Thr Tyr
935 940 945
cat gtc tcg tat ctg aca ttg cag aag gat aaa ggc agt tat gat cat 2994
His Val Ser Tyr Leu Thr Leu Gln Lys Asp Lys Gly Ser Tyr Asp His
950 955 960 965
gat gat gtg acc tac cta tat aag ctt gtg cgt ggt ctt tgc agc agg 3042
Asp Asp Val Thr Tyr Leu Tyr Lys Leu Val Arg Gly Leu Cys Ser Arg
970 975 980
agc ttt ggt ttt aag gtt gct cag ctt gcc cag ata cct cca tca tgt 3090
Ser Phe Gly Phe Lys Val Ala Gln Leu Ala Gln Ile Pro Pro Ser Cys
985 990 995
ata cgt cga gcc att tca atg gct gca aaa ttg gaa gct gag gta cgt 3138
Ile Arg Arg Ala Ile Ser Met Ala Ala Lys Leu Glu Ala Glu Val Arg
1000 1005 1010
gca aga gag aga aat aca cgc atg gga gaa cca gaa gga cat gaa gaa 3186
Ala Arg Glu Arg Asn Thr Arg Met Gly Glu Pro Glu Gly His Glu Glu
1015 1020 1025
ccg aga ggc gca gaa gaa tct att tcg gct cta ggt gac ttg ttt gca 3234
Pro Arg Gly Ala Glu Glu Ser Ile Ser Ala Leu Gly Asp Leu Phe Ala
1030 1035 1040 1045
gac ctg aaa ttt gct ctc tct gaa gag gac cct tgg aaa gca ttc gag 3282
Asp Leu Lys Phe Ala Leu Ser Glu Glu Asp Pro Trp Lys Ala Phe Glu
1050 1055 1060
ttt tta aag cat gct tgg aag att gct ggc aaa atc aga cta aaa cca 3330
Phe Leu Lys His Ala Trp Lys Ile Ala Gly Lys Ile Arg Leu Lys Pro
1065 1070 1075
act tgt tca ttt tgatttaatc ttaacattat agcaactgca aggtcttgat 3382
Thr Cys Ser Phe
1080
catctgttag ttgcgtacta acttatgtgt attagtataa caagaaaaga gaattagaga 3442
gatggattct aatccggtgt tgcagtacat cttttctcca cccgcataaa aaaaaaaaaa 3502
aaaaaaaaaa aaaaaaaaaa 3522




19


1081


PRT


Arabidopsis thaliana ecotype Columbia




Polypeptide MSH3





19
Met Gly Lys Gln Lys Gln Gln Thr Ile Ser Arg Phe Phe Ala Pro Lys
1 5 10 15
Pro Lys Ser Pro Thr His Glu Pro Asn Pro Val Ala Glu Ser Ser Thr
20 25 30
Pro Pro Pro Lys Ile Ser Ala Thr Val Ser Phe Ser Pro Ser Lys Arg
35 40 45
Lys Leu Leu Ser Asp His Leu Ala Ala Ala Ser Pro Lys Lys Pro Lys
50 55 60
Leu Ser Pro His Thr Gln Asn Pro Val Pro Asp Pro Asn Leu His Gln
65 70 75 80
Arg Phe Leu Gln Arg Phe Leu Glu Pro Ser Pro Glu Glu Tyr Val Pro
85 90 95
Glu Thr Ser Ser Ser Arg Lys Tyr Thr Pro Leu Glu Gln Gln Val Val
100 105 110
Glu Leu Lys Ser Lys Tyr Pro Asp Val Val Leu Met Val Glu Val Gly
115 120 125
Tyr Arg Tyr Arg Phe Phe Gly Glu Asp Ala Glu Ile Ala Ala Arg Val
130 135 140
Leu Gly Ile Tyr Ala His Met Asp His Asn Phe Met Thr Ala Ser Val
145 150 155 160
Pro Thr Phe Arg Leu Asn Phe His Val Arg Arg Leu Val Asn Ala Gly
165 170 175
Tyr Lys Ile Gly Val Val Lys Gln Thr Glu Thr Ala Ala Ile Lys Ser
180 185 190
His Gly Ala Asn Arg Thr Gly Pro Phe Phe Arg Gly Leu Ser Ala Leu
195 200 205
Tyr Thr Lys Ala Thr Leu Glu Ala Ala Glu Asp Ile Ser Gly Gly Cys
210 215 220
Gly Gly Glu Glu Gly Phe Gly Ser Gln Ser Asn Phe Leu Val Cys Val
225 230 235 240
Val Asp Glu Arg Val Lys Ser Glu Thr Leu Gly Cys Gly Ile Glu Met
245 250 255
Ser Phe Asp Val Arg Val Gly Val Val Gly Val Glu Ile Ser Thr Gly
260 265 270
Glu Val Val Tyr Glu Glu Phe Asn Asp Asn Phe Met Arg Ser Gly Leu
275 280 285
Glu Ala Val Ile Leu Ser Leu Ser Pro Ala Glu Leu Leu Leu Gly Gln
290 295 300
Pro Leu Ser Gln Gln Thr Glu Lys Phe Leu Val Ala Met Ala Gly Pro
305 310 315 320
Thr Ser Asn Val Arg Val Glu Arg Ala Ser Leu Asp Cys Phe Ser Asn
325 330 335
Gly Asn Ala Val Asp Glu Val Ile Ser Leu Cys Glu Lys Ile Ser Ala
340 345 350
Gly Asn Leu Glu Asp Asp Lys Glu Met Lys Leu Glu Ala Ala Glu Lys
355 360 365
Gly Met Ser Cys Leu Thr Val His Thr Ile Met Asn Met Pro His Leu
370 375 380
Thr Val Gln Ala Leu Ala Leu Thr Phe Cys His Leu Lys Gln Phe Gly
385 390 395 400
Phe Glu Arg Ile Leu Tyr Gln Gly Ala Ser Phe Arg Ser Leu Ser Ser
405 410 415
Asn Thr Glu Met Thr Leu Ser Ala Asn Thr Leu Gln Gln Leu Glu Val
420 425 430
Val Lys Asn Asn Ser Asp Gly Ser Glu Ser Gly Ser Leu Phe His Asn
435 440 445
Met Asn His Thr Leu Thr Val Tyr Gly Ser Arg Leu Leu Arg His Trp
450 455 460
Val Thr His Pro Leu Cys Asp Arg Asn Leu Ile Ser Ala Arg Leu Asp
465 470 475 480
Ala Val Ser Glu Ile Ser Ala Cys Met Gly Ser His Ser Ser Ser Gln
485 490 495
Leu Ser Ser Glu Leu Val Glu Glu Gly Ser Glu Arg Ala Ile Val Ser
500 505 510
Pro Glu Phe Tyr Leu Val Leu Ser Ser Val Leu Thr Ala Met Ser Arg
515 520 525
Ser Ser Asp Ile Gln Arg Gly Ile Thr Arg Ile Phe His Arg Thr Ala
530 535 540
Lys Ala Thr Glu Phe Ile Ala Val Met Glu Ala Ile Leu Leu Ala Gly
545 550 555 560
Lys Gln Ile Gln Arg Leu Gly Ile Lys Gln Asp Ser Glu Met Arg Ser
565 570 575
Met Gln Ser Ala Thr Val Arg Ser Thr Leu Leu Arg Lys Leu Ile Ser
580 585 590
Val Ile Ser Ser Pro Val Val Val Asp Asn Ala Gly Lys Leu Leu Ser
595 600 605
Ala Leu Asn Lys Glu Ala Ala Val Arg Gly Asp Leu Leu Asp Ile Leu
610 615 620
Ile Thr Ser Ser Asp Gln Phe Pro Glu Leu Ala Glu Ala Arg Gln Ala
625 630 635 640
Val Leu Val Ile Arg Glu Lys Leu Asp Ser Ser Ile Ala Ser Phe Arg
645 650 655
Lys Lys Leu Ala Ile Arg Asn Leu Glu Phe Leu Gln Val Ser Gly Ile
660 665 670
Thr His Leu Ile Glu Leu Pro Val Asp Ser Lys Val Pro His Asn Trp
675 680 685
Val Lys Val Asn Ser Thr Lys Lys Thr Ile Arg Tyr His Pro Pro Glu
690 695 700
Ile Val Ala Gly Leu Asp Glu Leu Ala Leu Ala Thr Glu His Leu Ala
705 710 715 720
Ile Val Asn Arg Ala Ser Trp Asp Ser Phe Leu Lys Ser Phe Ser Arg
725 730 735
Tyr Tyr Thr Asp Phe Lys Ala Ala Val Gln Ala Leu Ala Ala Leu Asp
740 745 750
Cys Leu His Ser Leu Ser Thr Leu Ser Arg Asn Lys Asn Tyr Val Arg
755 760 765
Pro Glu Phe Val Asp Asp Cys Glu Pro Val Glu Ile Asn Ile Gln Ser
770 775 780
Gly Arg His Pro Val Leu Glu Thr Ile Leu Gln Asp Asn Phe Val Pro
785 790 795 800
Asn Asp Thr Ile Leu His Ala Glu Gly Glu Tyr Cys Gln Ile Ile Thr
805 810 815
Gly Pro Asn Met Gly Gly Lys Ser Cys Tyr Ile Arg Gln Val Ala Leu
820 825 830
Ile Ser Ile Met Ala Gln Val Gly Ser Phe Val Pro Ala Ser Phe Ala
835 840 845
Lys Leu His Val Leu Asp Gly Val Phe Thr Arg Met Gly Ala Ser Asp
850 855 860
Ser Ile Gln His Gly Arg Ser Thr Phe Leu Glu Glu Leu Ser Glu Ala
865 870 875 880
Ser His Ile Ile Arg Thr Cys Ser Ser Arg Ser Leu Val Ile Leu Asp
885 890 895
Glu Leu Gly Arg Gly Thr Ser Thr His Asp Gly Val Ala Ile Ala Tyr
900 905 910
Ala Thr Leu Gln His Leu Leu Ala Glu Lys Arg Cys Leu Val Leu Phe
915 920 925
Val Thr His Tyr Pro Glu Ile Ala Glu Ile Ser Asn Gly Phe Pro Gly
930 935 940
Ser Val Gly Thr Tyr His Val Ser Tyr Leu Thr Leu Gln Lys Asp Lys
945 950 955 960
Gly Ser Tyr Asp His Asp Asp Val Thr Tyr Leu Tyr Lys Leu Val Arg
965 970 975
Gly Leu Cys Ser Arg Ser Phe Gly Phe Lys Val Ala Gln Leu Ala Gln
980 985 990
Ile Pro Pro Ser Cys Ile Arg Arg Ala Ile Ser Met Ala Ala Lys Leu
995 1000 1005
Glu Ala Glu Val Arg Ala Arg Glu Arg Asn Thr Arg Met Gly Glu Pro
1010 1015 1020
Glu Gly His Glu Glu Pro Arg Gly Ala Glu Glu Ser Ile Ser Ala Leu
1025 1030 1035 1040
Gly Asp Leu Phe Ala Asp Leu Lys Phe Ala Leu Ser Glu Glu Asp Pro
1045 1050 1055
Trp Lys Ala Phe Glu Phe Leu Lys His Ala Trp Lys Ile Ala Gly Lys
1060 1065 1070
Ile Arg Leu Lys Pro Thr Cys Ser Phe
1075 1080




20


24


DNA


Artificial Sequence




MSH6 specific primer 638 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






20
tctctaccag gtgacgaaaa accg 24




21


28


DNA


Artificial Sequence




Primer S81 for PCR using cDNA of Arabidopsis
thaliana ecotype Columbia.






21
cgtcgccttt agcatcccct tccttcac 28




22


30


DNA


Artificial Sequence




MSH6 specific primer S823 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






22
gcttggcgca tctaatagaa tcatgacagg 30




23


24


DNA


Artificial Sequence




MSH6 specific primer 637 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






23
gacagcgtca gttcttcaga atgc 24




24


33


DNA


Artificial Sequence




MSH6 specific primer 1S8 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






24
atcccgggat gcagcgccag agatcgattt tgt 33




25


27


DNA


Artificial Sequence




MSH6 specific primer S83 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






25
cgctatctat ggctgcttcg aattgag 27




26


2188


DNA


Arabidopsis thaliana ecotype Columbia




misc_feature




(0)...(0)




Clone 43





26
cccgggatgc agcgccagag atcgattttg tctttcttcc aaaaacccac ggcggcgact 60
acgaagggtt tggtttccgg cgatgctgct agcggcgggg gcggcagcgg aggaccacga 120
tttaatgtga aggaagggga tgctaaaggc gacgcttctg tacgttttgc tgtttcgaaa 180
tctgtcgatg aggttagagg aacggatact ccaccggaga aggttccgcg tcgtgtcctg 240
ccgtctggat ttaagccggc tgaatccgcc ggtgatgctt cgtccctgtt ctccaatatt 300
atgcataagt ttgtaaaagt cgatgatcga gattgttctg gagagaggag ccgagaagat 360
gttgttccgc tgaatgattc atctctatgt atgaaggcta atgatgttat tcctcaattt 420
cgttccaata atggtaaaac tcaagaaaga aaccatgctt ttagtttcag tgggagagct 480
gaacttagat cagtagaaga tataggagta gatggcgatg ttcctggtcc agaaacacca 540
gggatgcgtc cacgtgcttc tcgcttgaag cgagttctgg aggatgaaat gacttttaag 600
gaggataagg ttcctgtatt ggactctaac aaaaggctga aaatgctcca ggatccggtt 660
tgtggagaga agaaagaagt aaacgaagga accaaatttg aatggcttga gtcttctcga 720
atcagggatg ccaatagaag acgtcctgat gatccccttt acgatagaaa gaccttacac 780
ataccacctg atgttttcaa gaaaatgtct gcatcacaaa agcaatattg gagtgttaag 840
agtgaatata tggacattgt gcttttcttt aaagtgggga aattttatga gctgtatgag 900
ctagatgcgg aattaggtca caaggagctt gactggaaga tgaccatgag tggtgtggga 960
aaatgcagac aggttggtat ctctgaaagt gggatagatg aggcagtgca aaagctatta 1020
gctcgtggat ataaagttgg acgaatcgag cagctagaaa catctgacca agcaaaagcc 1080
agaggtgcta atactataat tccaaggaag ctagttcagg tattaactcc atcaacagca 1140
agcgagggaa acatcgggcc tgatgccgtc catcttcttg ctataaaaga gatcaaaatg 1200
gagctacaaa agtgttcaac tgtgtatgga tttgcttttg ttgactgtgc tgccttgagg 1260
ttttgggttg ggtccatcag cgatgatgca tcatgtgctg ctcttggagc gttattgatg 1320
caggtttctc caaaggaagt gttatatgac agtaaagggc tatcaagaga agcacaaaag 1380
gctctaagga aatatacgtt gacagggtct acggcggtac agttggctcc agtaccacaa 1440
gtaatggggg atacagatgc tgctggagtt agaaatataa tagaatctaa cggatacttt 1500
aaaggttctt ctgaatcatg gaactgtgct gttgatggtc taaatgaatg tgatgttgcc 1560
cttagtgctc ttggagagct aattaatcat ctgtctaggc taaagctaga agatgtactt 1620
aagcatgggg atatttttcc ataccaagtt tacaggggtt gtctcagaat tgatggccag 1680
acgatggtaa atcttgagat atttaacaat agctgtgatg gtggtccttc agggaccttg 1740
tacaaatatc ttgataactg tgttagtcca actggtaagc gactcttaag gaattggatc 1800
tgccatccac tcaaagatgt agaaagcatc aataaacggc ttgatgtagt tgaagaattc 1860
acggcaaact cagaaagtat gcaaatcact ggccagtatc tccacaaact tccagactta 1920
gaaagactgc tcggacgcat caagtctagc gttcgatcat cagcctctgt gttgcctgct 1980
cttctgggga aaaaagtgct gaaacaacga gttaaagcat ttgggcaaat tgtgaaaggg 2040
ttcagaagtg gaattgatct gttgttggct ctacagaagg aatcaaatat gatgagtttg 2100
ctttataaac tctgtaaact tcctatatta gtaggaaaaa gcgggctaga gttatttctt 2160
tctcaattcg aagcagccat agatagcg 2188




27


1385


DNA


Arabidopsis thaliana ecotype Columbia




misc_feature




(0)...(0)




Clone 62





27
catcagcctc tgtgttgcct gctcttctgg ggaaaaaagt gctgaaacaa cgagttaaag 60
catttgggca aattgtgaaa gggttcagaa gtggaattga tctgttgttg gctctacaga 120
aggaatcaaa tatgatgagt ttgctttata aactctgtaa acttcctata ttagtaggaa 180
aaagcgggct agagttattt ctttctcaat tcgaagcagc catagatagc gactttccaa 240
attatcagaa ccaagatgtg acagatgaaa acgctgaaac tctcacaata cttatcgaac 300
tttttatcga aagagcaact caatggtctg aggtcattca caccataagc tgcctagatg 360
tcctgagatc ttttgcaatc gcagcaagtc tctctgctgg aagcatggcc aggcctgtta 420
tttttcccga atcagaagct acagatcaga atcagaaaac aaaagggcca atacttaaaa 480
tccaaggact atggcatcca tttgcagttg cagccgatgg tcaattgcct gttccgaatg 540
atatactcct tggcgaggct agaagaagca gtggcagcat tcatcctcgg tcattgttac 600
tgacgggacc aaacatgggc ggaaaatcaa ctcttcttcg tgcaacatgt ctggccgtta 660
tctttgccca acttggctgc tacgtgccgt gtgagtcttg cgaaatctcc ctcgtggata 720
ctatcttcac aaggcttggc gcatctgata gaatcatgac aggagagagt acctttttgg 780
tagaatgcac tgagacagcg tcagttcttc agaatgcaac tcaggattca ctagtaatcc 840
ttgacgaact gggcagagga actagtactt tcgatggata cgccattgca tactcggttt 900
ttcgtcacct ggtagagaaa gttcaatgtc ggatgctctt tgcaacacat taccaccctc 960
tcaccaagga attcgcgtct cacccacgtg tcacctcgaa acacatggct tgcgcattca 1020
aatcaagatc tgattatcaa ccacgtggtt gtgatcaaga cctagtgttc ttgtaccgtt 1080
taaccgaggg agcttgtcct gagagctacg gacttcaagt ggcactcatg gctggaatac 1140
caaaccaagt ggttgaaaca gcatcaggtg ctgctcaagc catgaagaga tcaattgggg 1200
aaaacttcaa gtcaagtgag ctaagatctg agttctcaag tctgcatgaa gactggctca 1260
agtcattggt gggtatttct cgagtcgccc acaacaatgc ccccattggc gaagatgact 1320
acgacacttt gttttgctta tggcatgaga tcaaatcctc ttactgtgtt cccaaataac 1380
ccggg 1385




28


34


DNA


Artificial Sequence




MSH6 specific primer 2S8 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






28
atcccgggtt atttgggaac acagtaagag gatt 34




29


27


DNA


Artificial Sequence




MSH6 specific primer S82 for PCR using cDNA of
Arabidopsis thaliana ecotype Columbia.






29
gcgttcgatc atcagcctct gtgttgc 27




30


3606


DNA


Arabidopsis thaliana ecotype Columbia




CDS




(142)...(3468)




AtMSH6 full-length cDNA and deduced sequence of
the encoded polypeptide.






30
aaaagttgag ccctgaggag tatcgtttcc gccatttcta cgacgcaagg cgaaaatttt 60
tggcgccaat ctttcccccc tttcgaattc tctcagctca aaacatcgtt tctctctcac 120
tctctctcac aattccaaaa a atg cag cgc cag aga tcg att ttg tct ttc 171
Met Gln Arg Gln Arg Ser Ile Leu Ser Phe
1 5 10
ttc caa aaa ccc acc gcg gcg act acg aag ggt ttg gtt tcc ggc gat 219
Phe Gln Lys Pro Thr Ala Ala Thr Thr Lys Gly Leu Val Ser Gly Asp
15 20 25
gct gct agc ggc ggg ggc ggc agc gga gga cca cga ttt aat gtg aag 267
Ala Ala Ser Gly Gly Gly Gly Ser Gly Gly Pro Arg Phe Asn Val Arg
30 35 40
gaa ggg gat gct aaa ggc gac gct tct gta cgt ttt gct gtt tcg aaa 315
Glu Gly Asp Ala Lys Gly Asp Ala Ser Val Arg Phe Ala Val Ser Lys
45 50 55
tct gtc gat gag gtt aga gga acg gat act cca ccg gag aag gtt ccg 363
Ser Val Asp Glu Val Arg Gly Thr Asp Thr Pro Pro Glu Lys Val Pro
60 65 70
cgt cgt gtc ctg ccg tct gga ttt aag ccg gct gaa tcc gcc gst gat 411
Arg Arg Val Leu Pro Ser Gly Phe Lys Pro Ala Glu Ser Ala Gly Asp
75 80 85 90
gct tcg tcc ctg ttc tcc aat att atg cat aag ttt gta aaa gtc gat 459
Ala Ser Ser Leu Phe Ser Asn Ile Met His Lys Phe Val Lys Val Asp
95 100 105
gat cga gat tgt tct gga gag agg agc cga gaa gat gtt gtt ccg ctg 507
Asp Arg Asp Cys Ser Gly Glu Arg Ser Arg Glu Asp Val Val Pro Leu
110 115 120
aat gat tca tct cta tgt atg aag gct aat gat gtt att cct caa ttt 555
Asn Asp Ser Ser Leu Cys Met Lys Ala Asn Asp Val Ile Pro Gln Phe
125 130 135
cgt tcc aat aat ggt aaa act caa gaa aga aac cat gct ttt agt ttc 603
Arg Ser Asn Asn Gly Lys Thr Gln Glu Arg Asn His Ala Phe Ser Phe
140 145 150
agt ggg aga gct gaa ctt aga tca gta gaa gat ata gga gta gat ggc 651
Ser Gly Arg Ala Glu Leu Arg Ser Val Glu Asp Ile Gly Val Asp Gly
155 160 165 170
gat gtt cct ggt cca gaa aca cca ggg atg cgt cca cgt gct tct cgc 699
Asp Val Pro Gly Pro Glu Thr Pro Gly Met Arg Pro Arg Ala Ser Arg
175 180 185
ttg aag cga gtt ctg gag gat gaa atg act ttt aag gag gat aag gtt 747
Leu Lys Arg Val Leu Glu Asp Glu Met Thr Phe Lys Glu Asp Lys Val
190 195 200
cct gta ttg gac tct aac aaa agg ctg aaa atg ctc cag gat ccg gtt 795
Pro Val Leu Asp Ser Asn Lys Arg Leu Lys Met Leu Gln Asp Pro Val
205 210 215
tgt gga gag aag aaa gaa gta aac gaa gga acc aaa ttt gaa tgg ctt 843
Cys Gly Glu Lys Lys Glu Val Asn Glu Gly Thr Lys Phe Glu Trp Leu
220 225 230
gag tct tct cga atc agg gat gcc aat aga aga cgt cct gat gat ccc 891
Glu Ser Ser Arg Ile Arg Asp Ala Asn Arg Arg Arg Pro Asp Asp Pro
235 240 245 250
ctt tac gat aga aag acc tta cac ata cca cct gat gtt ttc aag aaa 939
Leu Tyr Asp Arg Lys Thr Leu His Ile Pro Pro Asp Val Phe Lys Lys
255 260 265
atg tct gca tca caa aag caa tat tgg agt gtt aag agt gaa tat atg 987
Met Ser Ala Ser Gln Lys Gln Tyr Trp Ser Val Lys Ser Glu Tyr Met
270 275 280
gac att gtg ctt ttc ttt aaa gtg ggg aaa ttt tat gag ctg tat gag 1035
Asp Ile Val Leu Phe Phe Lys Val Gly Lys Phe Tyr Glu Leu Tyr Glu
285 290 295
cta gat gcg gaa tta ggt cac aag gag ctt gac tgg aag atg acc atg 1083
Leu Asp Ala Glu Leu Gly His Lys Glu Leu Asp Trp Lys Met Thr Met
300 305 310
agt ggt gtg gga aaa tgc aga cag gtt ggt atc tct gaa agt ggg ata 1131
Ser Gly Val Gly Lys Cys Arg Gln Val Gly Ile Ser Glu Ser Gly Ile
315 320 325 330
gat gag gca gtg caa aag cta tta gct cgt gga tat aaa gtt gga cga 1179
Asp Glu Ala Val Gln Lys Leu Leu Ala Arg Gly Tyr Lys Val Gly Arg
335 340 345
atc gag cag cta gaa aca tct gac caa gca aaa gcc aga ggt gct aat 1227
Ile Glu Gln Leu Glu Thr Ser Asp Gln Ala Lys Ala Arg Gly Ala Asn
350 355 360
act ata att cca agg aag cta gtt cag gta tta act cca tca aca gca 1275
Thr Ile Ile Pro Arg Lys Leu Val Gln Val Leu Thr Pro Ser Thr Ala
365 370 375
agc gag gga aac atc ggg cct gat gcc gtc cat ctt ctt gct ata aaa 1323
Ser Glu Gly Asn Ile Gly Pro Asp Ala Val His Leu Leu Ala Ile Lys
380 385 390
gag atc aaa atg gag cta caa aag tgt tca act gtg tat gga ttt gct 1371
Glu Ile Lys Met Glu Leu Gln Lys Cys Ser Thr Val Tyr Gly Phe Ala
395 400 405 410
ttt gtt gac tgt gct gcc ttg agg ttt tgg gtt ggg tcc atc agc gat 1419
Phe Val Asp Cys Ala Ala Leu Arg Phe Trp Val Gly Ser Ile Ser Asp
415 420 425
gat gca tca tgt gct gct ctt gga gcg tta ttg atg cag gtt tct cca 1467
Asp Ala Ser Cys Ala Ala Leu Gly Ala Leu Leu Met Gln Val Ser Pro
430 435 440
aag gaa gtg tta tat gac agt aaa ggg cta tca aga gaa gca caa aag 1515
Lys Glu Val Leu Tyr Asp Ser Lys Gly Leu Ser Arg Glu Ala Gln Lys
445 450 455
gct cta agg aaa tat acg ttg aca ggg tct acg gcg gta cag ttg gct 1563
Ala Leu Arg Lys Tyr Thr Leu Thr Gly Ser Thr Ala Val Gln Leu Ala
460 465 470
cca gta cca caa gta atg ggg gat aca gat gct gct gga gtt aga aat 1611
Pro Val Pro Gln Val Met Gly Asp Thr Asp Ala Ala Gly Val Arg Asn
475 480 485 490
ata ata gaa tct aac gga tac ttt aaa ggt tct tct gaa tca tgg aac 1659
Ile Ile Glu Ser Asn Gly Tyr Phe Lys Gly Ser Ser Glu Ser Trp Asn
495 500 505
tgt gct gtt gat ggt cta aat gaa tgt gat gtt gcc ctt agt gct ctt 1707
Cys Ala Val Asp Gly Leu Asn Glu Cys Asp Val Ala Leu Ser Ala Leu
510 515 520
gga gag cta att aat cat ctg tct agg cta aag cta gaa gat gta ctt 1755
Gly Glu Leu Ile Asn His Leu Ser Arg Leu Lys Leu Glu Asp Val Leu
525 530 535
aag cat ggg gat att ttt cca tac caa gtt tac agg ggt tgt ctc aga 1803
Lys His Gly Asp Ile Phe Pro Tyr Gln Val Tyr Arg Gly Cys Leu Arg
540 545 550
att gat ggc cag acg atg gta aat ctt gag ata ttt aac aat agc tgt 1851
Ile Asp Gly Gln Thr Met Val Asn Leu Glu Ile Phe Asn Asn Ser Cys
555 560 565 570
gat ggt ggt cct tca ggg acc ttg tac aaa tat ctt gat aac tgt gtt 1899
Asp Gly Gly Pro Ser Gly Thr Leu Tyr Lys Tyr Leu Asp Asn Cys Val
575 580 585
agt cca act ggt aag cga ctc tta agg aat tgg atc tgc cat cca ctc 1947
Ser Pro Thr Gly Lys Arg Leu Leu Arg Asn Trp Ile Cys His Pro Leu
590 595 600
aaa gat gta gaa agc atc aat aaa cgg ctt gat gta gtt gaa gaa ttc 1995
Lys Asp Val Glu Ser Ile Asn Lys Arg Leu Asp Val Val Glu Glu Phe
605 610 615
acg gca aac tca gaa agt atg caa atc act ggc cag tat ctc cac aaa 2043
Thr Ala Asn Ser Glu Ser Met Gln Ile Thr Gly Gln Tyr Leu His Lys
620 625 630
ctt cca gac tta gaa aga ctg ctc gga cgc atc aag tct agc gtt cga 2091
Leu Pro Asp Leu Glu Arg Leu Leu Gly Arg Ile Lys Ser Ser Val Arg
635 640 645 650
tca tca gcc tct gtg ttg cct gct ctt ctg ggg aaa aaa gtg ctg aaa 2139
Ser Ser Ala Ser Val Leu Pro Ala Leu Leu Gly Lys Lys Val Leu Lys
655 660 665
caa cga gtt aaa gca ttt ggg caa att gtg aaa ggg ttc aga agt gga 2187
Gln Arg Val Lys Ala Phe Gly Gln Ile Val Lys Gly Phe Arg Ser Gly
670 675 680
att gat ctg ttg ttg gct cta cag aag gaa tca aat atg atg agt ttg 2235
Ile Asp Leu Leu Leu Ala Leu Gln Lys Glu Ser Asn Met Met Ser Leu
685 690 695
ctt tat aaa ctc tgt aaa ctt cct ata tta gta gga aaa agc ggg cta 2283
Leu Tyr Lys Leu Cys Lys Leu Pro Ile Leu Val Gly Lys Ser Gly Leu
700 705 710
gag tta ttt ctt tct caa ttc gaa gca gcc ata gat agc gac ttt cca 2331
Glu Leu Phe Leu Ser Gln Phe Glu Ala Ala Ile Asp Ser Asp Phe Pro
715 720 725 730
aat tat cag aac caa gat gtg aca gat gaa aac gct gaa act ctc aca 2379
Asn Tyr Gln Asn Gln Asp Val Thr Asp Glu Asn Ala Glu Thr Leu Thr
735 740 745
ata ctt atc gaa ctt ttt atc gaa aga gca act caa tgg tct gag gtc 2427
Ile Leu Ile Glu Leu Phe Ile Glu Arg Ala Thr Gln Trp Ser Glu Val
750 755 760
att cac acc ata agc tgc cta gat gtc ctg aga tct ttt gca atc gca 2475
Ile His Thr Ile Ser Cys Leu Asp Val Leu Arg Ser Phe Ala Ile Ala
765 770 775
gca agt ctc tct gct gga agc atg gcc agg cct gtt att ttt ccc gaa 2523
Ala Ser Leu Ser Ala Gly Ser Met Ala Arg Pro Val Ile Phe Pro Glu
780 785 790
tca gaa gct aca gat cag aat cag aaa aca aaa ggg cca ata ctt aaa 2571
Ser Glu Ala Thr Asp Gln Asn Gln Lys Thr Lys Gly Pro Ile Leu Lys
795 800 805 810
atc caa gga cta tgg cat cca ttt gca gtt gca gcc gat ggt caa ttg 2619
Ile Gln Gly Leu Trp His Pro Phe Ala Val Ala Ala Asp Gly Gln Leu
815 820 825
cct gtt ccg aat gat ata ctc ctt ggc gag gct aga aga agc agt ggc 2667
Pro Val Pro Asn Asp Ile Leu Leu Gly Glu Ala Arg Arg Ser Ser Gly
830 835 840
agc att cat cct cgg tca ttg tta ctg acg gga cca aac atg ggc gga 2715
Ser Ile His Pro Arg Ser Leu Leu Leu Thr Gly Pro Asn Met Gly Gly
845 850 855
aaa tca act ctt ctt cgt gca aca tgt ctg gcc gtt atc ttt gcc caa 2763
Lys Ser Thr Leu Leu Arg Ala Thr Cys Leu Ala Val Ile Phe Ala Gln
860 865 870
ctt ggc tgc tac gtg ccg tgt gag tct tgc gaa atc tcc ctc gtg gat 2811
Leu Gly Cys Tyr Val Pro Cys Glu Ser Cys Glu Ile Ser Leu Val Asp
875 880 885 890
act atc ttc aca agg ctt ggc gca tct gat aga atc atg aca gga gag 2859
Thr Ile Phe Thr Arg Leu Gly Ala Ser Asp Arg Ile Met Thr Gly Glu
895 900 905
agt acc ttt ttg gta gaa tgc act gag aca gcg tca gtt ctt cag aat 2907
Ser Thr Phe Leu Val Glu Cys Thr Glu Thr Ala Ser Val Leu Gln Asn
910 915 920
gca act cag gat tca cta gta atc ctt gac gaa ctg ggc aga gga act 2955
Ala Thr Gln Asp Ser Leu Val Ile Leu Asp Glu Leu Gly Arg Gly Thr
925 930 935
agt act ttc gat gga tac gcc att gca tac tcg gtt ttt cgt cac ctg 3003
Ser Thr Phe Asp Gly Tyr Ala Ile Ala Tyr Ser Val Phe Arg His Leu
940 945 950
gta gag aaa gtt caa tgt cgg atg ctc ttt gca aca cat tac cac cct 3051
Val Glu Lys Val Gln Cys Arg Met Leu Phe Ala Thr His Tyr His Pro
955 960 965 970
ctc acc aag gaa ttc gcg tct cac cca cgt gtc acc tcg aaa cac atg 3099
Leu Thr Lys Glu Phe Ala Ser His Pro Arg Val Thr Ser Lys His Met
975 980 985
gct tgc gca ttc aaa tca aga tct gat tat caa cca cgt ggt tgt gat 3147
Ala Cys Ala Phe Lys Ser Arg Ser Asp Tyr Gln Pro Arg Gly Cys Asp
990 995 1000
caa gac cta gtg ttc ttg tac cgt tta acc gag gga gct tgt cct gag 3195
Gln Asp Leu Val Phe Leu Tyr Arg Leu Thr Glu Gly Ala Cys Pro Glu
1005 1010 1015
agc tac gga ctt caa gtg gca ctc atg gct gga ata cca aac caa gtg 3243
Ser Tyr Gly Leu Gln Val Ala Leu Met Ala Gly Ile Pro Asn Gln Val
1020 1025 1030
gtt gaa aca gca tca ggt gct gct caa gcc atg aag aga tca att ggg 3291
Val Glu Thr Ala Ser Gly Ala Ala Gln Ala Met Lys Arg Ser Ile Gly
1035 1040 1045 1050
gga aac ttc aag tca agt gag cta aga tct gag ttc tca agt ctg cat 3339
Glu Asn Phe Lys Ser Ser Glu Leu Arg Ser Glu Phe Ser Ser Leu His
1055 1060 1065
gaa gac tgg ctc aag tca ttg gtg ggt att tct cga gtc gcc cac aac 3387
Glu Asp Trp Leu Lys Ser Leu Val Gly Ile Ser Arg Val Ala His Asn
1070 1075 1080
aat gcc ccc att ggc gaa gat gac tac gac act ttg ttt tgc tta tgg 3435
Asn Ala Pro Ile Gly Glu Asp Asp Tyr Asp Thr Leu Phe Cys Leu Trp
1085 1090 1095
cat gag atc aaa tcc tct tac tgt gtt ccc aaa taaatggcta tgacataaca 3488
His Glu Ile Lys Ser Ser Tyr Cys Val Pro Lys
1100 1105
ctatctgaag ctcgttaagt cttttgcctc tctgatgttt attcctctta aaaaatgctt 3548
atatatcaaa aaattgtttc ctcgattaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa 3606




31


1109


PRT


Arabidopsis thaliana ecotype Columbia




Polypeptide MSH6





31
Met Gln Arg Gln Arg Ser Ile Leu Ser Phe Phe Gln Lys Pro Thr Ala
1 5 10 15
Ala Thr Thr Lys Gly Leu Val Ser Gly Asp Ala Ala Ser Gly Gly Gly
20 25 30
Gly Ser Gly Gly Pro Arg Phe Asn Val Arg Glu Gly Asp Ala Lys Gly
35 40 45
Asp Ala Ser Val Arg Phe Ala Val Ser Lys Ser Val Asp Glu Val Arg
50 55 60
Gly Thr Asp Thr Pro Pro Glu Lys Val Pro Arg Arg Val Leu Pro Ser
65 70 75 80
Gly Phe Lys Pro Ala Glu Ser Ala Gly Asp Ala Ser Ser Leu Phe Ser
85 90 95
Asn Ile Met His Lys Phe Val Lys Val Asp Asp Arg Asp Cys Ser Gly
100 105 110
Glu Arg Ser Arg Glu Asp Val Val Pro Leu Asn Asp Ser Ser Leu Cys
115 120 125
Met Lys Ala Asn Asp Val Ile Pro Gln Phe Arg Ser Asn Asn Gly Lys
130 135 140
Thr Gln Glu Arg Asn His Ala Phe Ser Phe Ser Gly Arg Ala Glu Leu
145 150 155 160
Arg Ser Val Glu Asp Ile Gly Val Asp Gly Asp Val Pro Gly Pro Glu
165 170 175
Thr Pro Gly Met Arg Pro Arg Ala Ser Arg Leu Lys Arg Val Leu Glu
180 185 190
Asp Glu Met Thr Phe Lys Glu Asp Lys Val Pro Val Leu Asp Ser Asn
195 200 205
Lys Arg Leu Lys Met Leu Gln Asp Pro Val Cys Gly Glu Lys Lys Glu
210 215 220
Val Asn Glu Gly Thr Lys Phe Glu Trp Leu Glu Ser Ser Arg Ile Arg
225 230 235 240
Asp Ala Asn Arg Arg Arg Pro Asp Asp Pro Leu Tyr Asp Arg Lys Thr
245 250 255
Leu His Ile Pro Pro Asp Val Phe Lys Lys Met Ser Ala Ser Gln Lys
260 265 270
Gln Tyr Trp Ser Val Lys Ser Glu Tyr Met Asp Ile Val Leu Phe Phe
275 280 285
Lys Val Gly Lys Phe Tyr Glu Leu Tyr Glu Leu Asp Ala Glu Leu Gly
290 295 300
His Lys Glu Leu Asp Trp Lys Met Thr Met Ser Gly Val Gly Lys Cys
305 310 315 320
Arg Gln Val Gly Ile Ser Glu Ser Gly Ile Asp Glu Ala Val Gln Lys
325 330 335
Leu Leu Ala Arg Gly Tyr Lys Val Gly Arg Ile Glu Gln Leu Glu Thr
340 345 350
Ser Asp Gln Ala Lys Ala Arg Gly Ala Asn Thr Ile Ile Pro Arg Lys
355 360 365
Leu Val Gln Val Leu Thr Pro Ser Thr Ala Ser Glu Gly Asn Ile Gly
370 375 380
Pro Asp Ala Val His Leu Leu Ala Ile Lys Glu Ile Lys Met Glu Leu
385 390 395 400
Gln Lys Cys Ser Thr Val Tyr Gly Phe Ala Phe Val Asp Cys Ala Ala
405 410 415
Leu Arg Phe Trp Val Gly Ser Ile Ser Asp Asp Ala Ser Cys Ala Ala
420 425 430
Leu Gly Ala Leu Leu Met Gln Val Ser Pro Lys Glu Val Leu Tyr Asp
435 440 445
Ser Lys Gly Leu Ser Arg Glu Ala Gln Lys Ala Leu Arg Lys Tyr Thr
450 455 460
Leu Thr Gly Ser Thr Ala Val Gln Leu Ala Pro Val Pro Gln Val Met
465 470 475 480
Gly Asp Thr Asp Ala Ala Gly Val Arg Asn Ile Ile Glu Ser Asn Gly
485 490 495
Tyr Phe Lys Gly Ser Ser Glu Ser Trp Asn Cys Ala Val Asp Gly Leu
500 505 510
Asn Glu Cys Asp Val Ala Leu Ser Ala Leu Gly Glu Leu Ile Asn His
515 520 525
Leu Ser Arg Leu Lys Leu Glu Asp Val Leu Lys His Gly Asp Ile Phe
530 535 540
Pro Tyr Gln Val Tyr Arg Gly Cys Leu Arg Ile Asp Gly Gln Thr Met
545 550 555 560
Val Asn Leu Glu Ile Phe Asn Asn Ser Cys Asp Gly Gly Pro Ser Gly
565 570 575
Thr Leu Tyr Lys Tyr Leu Asp Asn Cys Val Ser Pro Thr Gly Lys Arg
580 585 590
Leu Leu Arg Asn Trp Ile Cys His Pro Leu Lys Asp Val Glu Ser Ile
595 600 605
Asn Lys Arg Leu Asp Val Val Glu Glu Phe Thr Ala Asn Ser Glu Ser
610 615 620
Met Gln Ile Thr Gly Gln Tyr Leu His Lys Leu Pro Asp Leu Glu Arg
625 630 635 640
Leu Leu Gly Arg Ile Lys Ser Ser Val Arg Ser Ser Ala Ser Val Leu
645 650 655
Pro Ala Leu Leu Gly Lys Lys Val Leu Lys Gln Arg Val Lys Ala Phe
660 665 670
Gly Gln Ile Val Lys Gly Phe Arg Ser Gly Ile Asp Leu Leu Leu Ala
675 680 685
Leu Gln Lys Glu Ser Asn Met Met Ser Leu Leu Tyr Lys Leu Cys Lys
690 695 700
Leu Pro Ile Leu Val Gly Lys Ser Gly Leu Glu Leu Phe Leu Ser Gln
705 710 715 720
Phe Glu Ala Ala Ile Asp Ser Asp Phe Pro Asn Tyr Gln Asn Gln Asp
725 730 735
Val Thr Asp Glu Asn Ala Glu Thr Leu Thr Ile Leu Ile Glu Leu Phe
740 745 750
Ile Glu Arg Ala Thr Gln Trp Ser Glu Val Ile His Thr Ile Ser Cys
755 760 765
Leu Asp Val Leu Arg Ser Phe Ala Ile Ala Ala Ser Leu Ser Ala Gly
770 775 780
Ser Met Ala Arg Pro Val Ile Phe Pro Glu Ser Glu Ala Thr Asp Gln
785 790 795 800
Asn Gln Lys Thr Lys Gly Pro Ile Leu Lys Ile Gln Gly Leu Trp His
805 810 815
Pro Phe Ala Val Ala Ala Asp Gly Gln Leu Pro Val Pro Asn Asp Ile
820 825 830
Leu Leu Gly Glu Ala Arg Arg Ser Ser Gly Ser Ile His Pro Arg Ser
835 840 845
Leu Leu Leu Thr Gly Pro Asn Met Gly Gly Lys Ser Thr Leu Leu Arg
850 855 860
Ala Thr Cys Leu Ala Val Ile Phe Ala Gln Leu Gly Cys Tyr Val Pro
865 870 875 880
Cys Glu Ser Cys Glu Ile Ser Leu Val Asp Thr Ile Phe Thr Arg Leu
885 890 895
Gly Ala Ser Asp Arg Ile Met Thr Gly Glu Ser Thr Phe Leu Val Glu
900 905 910
Cys Thr Glu Thr Ala Ser Val Leu Gln Asn Ala Thr Gln Asp Ser Leu
915 920 925
Val Ile Leu Asp Glu Leu Gly Arg Gly Thr Ser Thr Phe Asp Gly Tyr
930 935 940
Ala Ile Ala Tyr Ser Val Phe Arg His Leu Val Glu Lys Val Gln Cys
945 950 955 960
Arg Met Leu Phe Ala Thr His Tyr His Pro Leu Thr Lys Glu Phe Ala
965 970 975
Ser His Pro Arg Val Thr Ser Lys His Met Ala Cys Ala Phe Lys Ser
980 985 990
Arg Ser Asp Tyr Gln Pro Arg Gly Cys Asp Gln Asp Leu Val Phe Leu
995 1000 1005
Tyr Arg Leu Thr Glu Gly Ala Cys Pro Glu Ser Tyr Gly Leu Gln Val
1010 1015 1020
Ala Leu Met Ala Gly Ile Pro Asn Gln Val Val Glu Thr Ala Ser Gly
1025 1030 1035 1040
Ala Ala Gln Ala Met Lys Arg Ser Ile Gly Glu Asn Phe Lys Ser Ser
1045 1050 1055
Glu Leu Arg Ser Glu Phe Ser Ser Leu His Glu Asp Trp Leu Lys Ser
1060 1065 1070
Leu Val Gly Ile Ser Arg Val Ala His Asn Asn Ala Pro Ile Gly Glu
1075 1080 1085
Asp Asp Tyr Asp Thr Leu Phe Cys Leu Trp His Glu Ile Lys Ser Ser
1090 1095 1100
Tyr Cys Val Pro Lys
1105




32


24


DNA


Artificial Sequence




Forward primer for PCR amplification of
ATHGENEA microsatellite.






32
accatgcata gcttaaactt cttg 24




33


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of
ATHGENEA microsatellite.






33
acataaccac aaataggggt gc 22




34


18


DNA


Artificial Sequence




Forward primer DMCIN-A for PCR on genomic DNA
of Arabidopsis thaliana ssp. Landsberg erecta “Ler”.






34
gaagcgatat tgttcgtg 18




35


18


DNA


Artificial Sequence




Reverse primer DMCIN-B for PCR on genomic DNA
of Arabidopsis thaliana ssp. Landsberg erecta “Ler”.






35
agattgcgag aacattcc 18




36


31


DNA


Artificial Sequence




Forward primer DMCIN-1 for PCR on genomic DNA
of Arabidopsis thaliana ssp. Landsberg erecta “Ler”.






36
acgcgtcgac tcagctatga gattactcgt g 31




37


29


DNA


Artificial Sequence




Reverse primer DMCIN-2 for PCR on genomic DNA
of Arabidopsis thaliana ssp. Landsberg erecta “Ler”.






37
gctctagatt tctcgctcta agactctct 29




38


32


DNA


Artificial Sequence




Forward primer DMCIN-3 for PCR on genomic DNA
of Arabidopsis thaliana ssp. Landsberg erecta “Ler”.






38
gctctagagc ttctcttaag taagtgattg at 32




39


48


DNA


Artificial Sequence




Reverse primer DMCIN-4 for PCR on genomic DNA
of Arabidopsis thaliana ssp. Landsberg erecta “Ler”.






39
tcccccgggc tcgagagatc tccatggttt cttcagctct atgaatcc 48




40


26


DNA


Artificial Sequence




Forward primer DMC1a for PCR on genomic DNA of
Arabidopsis thaliana ssp. Landsberg erecta “Ler”.






40
acgcgtcgac gaattcgcaa gtgggg 26




41


38


DNA


Artificial Sequence




Reverse primer DMC1b for PCR on genomic DNA of
Arabidopsis thaliana ssp. Landsberg erecta “Ler”.






41
tccatggaga tctcccgggt accgatttgc ttcgaggg 38




42


20


DNA


Artificial Sequence




Forward primer for PCR amplification of ATEAT1
SSLP marker in Arabidopsis thaliana subspecies.






42
gccactgcgt gaatgatatg 20




43


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of ATEAT1
SSLP marker in Arabidopsis thaliana subspecies.






43
cgaacagcca acattaattc cc 22




44


18


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA63
SSLP marker in Arabidopsis thaliana subspecies.






44
aaccaaggca cagaagcg 18




45


18


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA63
SSLP marker in Arabidopsis thaliana subspecies.






45
acccaagtga tcgccacc 18




46


21


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA248
SSLP marker in Arabidopsis thaliana subspecies.






46
taccgaacca aaacacaaag g 21




47


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA248
SSLP marker in Arabidopsis thaliana subspecies.






47
tctgtatctc ggtgaattct cc 22




48


22


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA128
SSLP marker in Arabidopsis thaliana subspecies.






48
ggtctgttga tgtcgtaagt cg 22




49


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA128
SSLP marker in Arabidopsis thaliana subspecies.






49
atcttgaaac ctttagggag gg 22




50


22


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA280
SSLP marker in Arabidopsis thaliana subspecies.






50
ctgatctcac ggacaatagt gc 22




51


20


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA280
SSLP marker in Arabidopsis thaliana subspecies.






51
ggctccataa aaagtgcacc 20




52


21


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA111
SSLP marker in Arabidopsis thaliana subspecies.






52
ctccagttgg aagctaaagg g 21




53


21


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA111
SSLP marker in Arabidopsis thaliana subspecies.






53
tgttttttag gacaaatggc g 21




54


20


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA168
SSLP marker in Arabidopsis thaliana subspecies.






54
ccttcacatc caaaacccac 20




55


20


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA168
SSLP marker in Arabidopsis thaliana subspecies.






55
gcacataccc acaaccagaa 20




56


20


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA1126
SSLP marker in Arabidopsis thaliana subspecies.






56
cgctacgctt ttcggtaaag 20




57


20


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA1126
SSLP marker in Arabidopsis thaliana subspecies.






57
gcacagtcca agtcacaacc 20




58


20


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA361
SSLP marker in Arabidopsis thaliana subspecies.






58
aaagagatga gaatttggac 20




59


23


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA361
SSLP marker in Arabidopsis thaliana subspecies.






59
acatatcaat atattaaagt agc 23




60


18


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA168
SSLP marker in Arabidopsis thaliana subspecies.






60
tcgtctactg cactgccg 18




61


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA168
SSLP marker in Arabidopsis thaliana subspecies.






61
gaggacatgt ataggagcct cg 22




62


20


DNA


Artificial Sequence




Forward primer for PCR amplification of AthBIO2
SSLP marker in Arabidopsis thaliana subspecies.






62
tgacctcctc ttccatggag 20




63


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of AthBIO2
SSLP marker in Arabidopsis thaliana subspecies.






63
ttaacagaaa cccaaagctt tc 22




64


21


DNA


Artificial Sequence




Forward primer for PCR amplification of
AthUBIQUE SSLP marker in Arabidopsis thaliana subspecies.






64
aggcaaatgt ccatttcatt g 21




65


20


DNA


Artificial Sequence




Reverse primer for PCR amplification of
AthUBIQUE SSLP marker in Arabidopsis thaliana subspecies.






65
acgacatggc agatttctcc 20




66


21


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA172
SSLP marker in Arabidopsis thaliana subspecies.






66
agctgcttcc ttatagcgtc c 21




67


19


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA172
SSLP marker in Arabidopsis thaliana subspecies.






67
catccgaatg ccattgttc 19




68


21


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA126
SSLP marker in Arabidopsis thaliana subspecies.






68
gaaaaaacgc tactttcgtg g 21




69


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA126
SSLP marker in Arabidopsis thaliana subspecies.






69
caagagcaat atcaagagca gc 22




70


20


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA162
SSLP marker in Arabidopsis thaliana subspecies.






70
catgcaattt gcatctgagg 20




71


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA162
SSLP marker in Arabidopsis thaliana subspecies.






71
ctctgtcact cttttcctct gg 22




72


21


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA6
SSLP marker in Arabidopsis thaliana subspecies.






72
tggatttctt cctctcttca c 21




73


21


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA6
SSLP marker in Arabidopsis thaliana subspecies.






73
atggagaagc ttacactgat c 21




74


20


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA12
SSLP marker in Arabidopsis thaliana subspecies.






74
aatgttgtcc tcccctcctc 20




75


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA12
SSLP marker in Arabidopsis thaliana subspecies.






75
tgatgctctc tgaaacaaga gc 22




76


21


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA8
SSLP marker in Arabidopsis thaliana subspecies.






76
gagggcaaat ctttatttcg g 21




77


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA8
SSLP marker in Arabidopsis thaliana subspecies.






77
tggctttcgt ttataaacat cc 22




78


21


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA1107
SSLP marker in Arabidopsis thaliana subspecies.






78
gcgaaaaaac aaaaaaatcc a 21




79


21


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA1107
SSLP marker in Arabidopsis thaliana subspecies.






79
cgacgaatcg acagaattag g 21




80


21


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA225
SSLP marker in Arabidopsis thaliana subspecies.






80
gaaatccaaa tcccagagag g 21




81


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA225
SSLP marker in Arabidopsis thaliana subspecies.






81
tctccccact agttttgtgt cc 22




82


19


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA249
SSLP marker in Arabidopsis thaliana subspecies.






82
taccgtcaat ttcatcgcc 19




83


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA249
SSLP marker in Arabidopsis thaliana subspecies.






83
ggatccctaa ctgtaaaatc cc 22




84


22


DNA


Artificial Sequence




Forward primer for PCR amplification of CA72
SSLP marker in Arabidopsis thaliana subspecies.






84
aatcccagta accaaacaca ca 22




85


20


DNA


Artificial Sequence




Reverse primer for PCR amplification of CA72
SSLP marker in Arabidopsis thaliana subspecies.






85
cccagtctaa ccacgaccac 20




86


20


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA151
SSLP marker in Arabidopsis thaliana subspecies.






86
gttttgggaa gttttgctgg 20




87


24


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA151
SSLP marker in Arabidopsis thaliana subspecies.






87
cagtctaaaa gcgagagtat gatg 24




88


22


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA106
SSLP marker in Arabidopsis thaliana subspecies.






88
gttatggagt ttctagggca cg 22




89


20


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA106
SSLP marker in Arabidopsis thaliana subspecies.






89
tgccccattt tgttcttctc 20




90


20


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA139
SSLP marker in Arabidopsis thaliana subspecies.






90
agagctacca gatccgatgg 20




91


21


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA139
SSLP marker in Arabidopsis thaliana subspecies.






91
ggtttcgttt cactatccag g 21




92


22


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA76
SSLP marker in Arabidopsis thaliana subspecies.






92
ggagaaaatg tcactctcca cc 22




93


20


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA76
SSLP marker in Arabidopsis thaliana subspecies.






93
aggcatggga gacatttacg 20




94


20


DNA


Artificial Sequence




Forward primer for PCR amplification of
ATHSO191 SSLP marker in Arabidopsis thaliana subspecies.






94
ctccaccaat catgcaaatg 20




95


21


DNA


Artificial Sequence




Reverse primer for PCR amplification of
ATHSO191 SSLP marker in Arabidopsis thaliana subspecies.






95
tgatgttgat ggagatggtc a 21




96


22


DNA


Artificial Sequence




Forward primer for PCR amplification of NGA129
SSLP marker in Arabidopsis thaliana subspecies.






96
tcaggaggaa ctaaagtgag gg 22




97


22


DNA


Artificial Sequence




Reverse primer for PCR amplification of NGA129
SSLP marker in Arabidopsis thaliana subspecies.






97
cacactgaag atggtcttga gg 22




98


8062


DNA


Arabidopsis thaliana ecotype Columbia




Genomic DNA sequence of AtMSH6





98
ttttttggtt gctaacaata aaggtatacg gttttatgtc atcaatataa ctatatataa 60
aagaaatgaa agatatatat tgttttttca tttatcaaac aaaacaacaa gacttttttt 120
ttacttttta cattggtcaa caaaatacaa gataaacgac atcgtttaat catttcccaa 180
ttttacccct aagtttaaca cctagaacct tctccatctt cgcaagcaca gcctgattag 240
gaacagcttt accattctca tattcctgaa ctacctgagt cctctcattg atctgtttcg 300
ccaaatccgc ttgtgacatc ttcttctcca atctcgcttt ctgtatcatc aacctcacct 360
ctgctttcac acgatccatc gccgcaggct ctgtttcttc ttccagcttc ttcgtgttaa 420
tcaccggaac cgccgtagat ttcccctttt tgttcgaacc ggcatcgaat ttcttaaccg 480
tttgaaccgc gacaccgttt ctcagagctg cgttaaccgc tttcggatcg cgtaggtctt 540
ggctcttttg ttttgatttg tggagaacta ctggttccca gtcttgtgtt actgctcctg 600
ggtatctgct cggcatcgtc gatgaattga gagaaaggaa caacgcgaaa attttattaa 660
tctgagtttt gaaattgaga aacgatgaag atgaagaatg ttgttgagag gattgtgata 720
tttatatata cgaagattgg tttctggaga attcgatcat ctttttctcc attttcgtct 780
ctggaacgtt cttagagatg attgacgacg tgtcattatc tgatttgcag ttaaccaatg 840
ctttttgggt tggattcgtg gtacaccata ttatccgatt tggctcaatg gttttatata 900
aatttggttt tcggttcggt tatgagttat cattaaaatt aagctaacca aaaattttcg 960
taaaatttat ttcggtttca attcggatcc cttacttcca gaaccgaatt attcgaaacc 1020
ggggttagcc gaaccgaata ccaatgcctg attgactcgt tggctagaaa gatccaacgg 1080
tatacaataa tagaacataa atcggacggt catcaaagcc tcaaagagtg aacagtcaac 1140
aaaaaaagtt gagccctgag gagtatcgtt tccgccattt ctacgacgca aggcgaaaat 1200
ttttggcgcc aatctttccc ccctttcgaa ttctctcagc tcaaaacatc gtttctctct 1260
cactctctct cacaattcca aaaaatgcag cgccagagat cgattttgtc tttcttccaa 1320
aaacccacgg cggcgactac gaagggtttg gtttccggcg atgctgctag cggcgggggc 1380
ggcagcggag accacgattt aatgtgaagg aaggggatgc taaaggcgac gcttctgtac 1440
gttttgctgt ttcgaaatct gtcgatgagg ttagaggaac ggatactcca ccggagaagg 1500
ttccgcgtcg tgtcctgccg tctggattta agccggctga atccgccggt gatgcttcgt 1560
ccctgttctc caatattatg cataagtttg taaaagtcga tgatcgagat tgttctggag 1620
agaggtacta atcttcgatt ctcttaattt tgttatcttt agctggaaga agaagattcg 1680
tgtaatttgt tgtattcgtt ggagagattc tgattactgc attggatcgt tgtttacaaa 1740
ttttcaggag ccgagaagat gttgttccgc tgaatgattc atctctatgt atgaaggcta 1800
atgatgttat tcctcaattt cgttccaata atggtaaaac tcaagaaaga aaccatgctt 1860
ttagtttcag tgggagagct gaacttagat cagtagaaga tataggagta gatggcgatg 1920
ttcctggtcc agaaacacca gggatgcgtc cacgtgcttc tcgcttgaag cgagttctgg 1980
aggatgaaat gacttttaag gaggataagg ttcctgtatt ggactctaac aaaaggctga 2040
aaatgctcca ggatccggtt tgtggagaga agaaagaagt aaacgaagga accaaatttg 2100
aatggcttga gtcttctcga atcagggatg ccaatagaag acgtcctgat gatccccttt 2160
acgatagaaa gaccttacac ataccacctg atgttttcaa gaaaatgtct gcatcacaaa 2220
agcaatattg gagtgttaag agtgaatata tggacattgt gcttttcttt aaagtggtta 2280
gtaactatta atctagtgtt caatccattt cctcaatgtg atttgttcac ttacatctgt 2340
ttacgttatg ctcttctcag gggaaatttt atgagctgta tgagctagat gcggaattag 2400
gtcacaagga gcttgactgg aagatgacca tgagtggtgt gggaaaatgc agacaggtaa 2460
attagttgaa acaactggcc tgcttgaatt attgtgtcta taaattttga caccaccttt 2520
tgtttcaggt tggtatctct gaaagtggga tagatgaggc agtgcaaaag ctattagctc 2580
gtgggtaagg gaaccatcat actttatgga attcgtttac tgctacttcg gctaggattt 2640
aagaaatgga aatcacttca agcatcatta gttaggatcc tgagaactca ggatgttttc 2700
ttattcgtta tataataagt cttttcatca aggagtaaca aacaaaactt gcacaatatt 2760
tgtgtgctca ctggcaaggc atatataccc agctaacctt tgctagttca ctgtagtaac 2820
agttacggat aatatatgtt tacttgtatg tggtaccctc attttgtctc tcatggaggc 2880
tttcaagcct tgtgttgaaa ctggatagtt acatatgctt ccaacagaaa ctagcatgca 2940
gattcatatg ctttcctatt ctactaatta tgtattgaca cactcgttgt ttcttttgaa 3000
agatataaag ttggacgaat cgagcagcta gaaacatctg accaagcaaa agccagaggt 3060
gctaatactg taagttttct tggataggtc aaggagagtg ttgcagactg tttttgatca 3120
tttctttttc tgtacattac tttcatgctg taattaactc aatggctatt ctggtctgat 3180
tatcagataa ttccaaggaa gctagttcag gtattaactc catcaacagc aagcgaggga 3240
aacatcgggc ctgatgccgt ccatcttctt gctataaaag aggtttgtta tttacttatt 3300
tatcttatca tgttcagttc atccaagtcc tgaaaaatta cactcttctt taccaatctt 3360
ccatcaagct gtgtaaagga tttggaatta gaaaatcatt atttgatgct ttgttttata 3420
tgcaagaggt tcccttgaaa agatctgttt aagattcttt gcacttgaaa aattcaatct 3480
ttttaagtga atcccctact ttcttacaat gatcatagtc tgcaattgca tgtcaagtaa 3540
tatcattcct tgttactgca tccccctctt tcttaatgac cattgtctat gttgtgtttg 3600
tctcgtgtgc tggagaaaat gatagctgat ccaagctgta cattatcatg attaagtagc 3660
tgctcaggaa ttgcctttgg ttacattgcc taatggtttg atgtcaattt ttcttctgaa 3720
tctttatttt agatcaaaat ggagctacaa aagtgttcaa ctgtgtatgg atttgctttt 3780
gttgactgtg ctgccttgag gttttgggtt gggtccatca gcgatgatgc atcatgtgct 3840
gctcttggag cgttattgat gcaggtaagc aagtgtattc tgtatcttat gtgtaccatg 3900
tgacttcctg tgcatatatt tgggttgcag gaactaattc tgaatcacca tttggtatgt 3960
tttttccagg tttctccaaa ggaagtgtta tatgacagta aaggtaaact gcttgtatcg 4020
ccagttgttt tgttaaacag aatttaaggt aaatgacact ggttaattta aagtgcatac 4080
atgttgaaat attgcagggc tatcaagaga agcacaaaag gctctaagga aatatacgtt 4140
gacaggtacc atttcagtag gcaagctaac tgacaattta accgctcacc gaatgatagg 4200
tctcttaaac attgctaatg tagatgatgt ttatgtttca atctaatagg gtctacggcg 4260
gtacagttgg ctccagtacc acaagtaatg ggggatacag atgctgctgg agttagaaat 4320
ataatagaat ctaacggata ctttaaaggt tcttctgaat catggaactg tgctgttgat 4380
ggtctaaatg aatgtgatgt tgcccttagt gctcttggag agctaattaa tcatctgtct 4440
aggctaaagg tgtgttggct tgtttagttt ttgcttttca caaattaagc aaaggaactt 4500
ttcataactt acagtttcta tctacttgca gctagaagat gtacttaagc atggggatat 4560
ttttccatac caagtttaca ggggttgtct cagaattgat ggccagacga tggtaaatct 4620
tgagatattt aacaatagct gtgatggtgg tccttcaggc aagtgcatat ttcttttttg 4680
ataacttcaa ctagagggca gacatagaag gaaaaattct aatacttcgt acggatctcc 4740
agtaagtaat agccgatttt tgtttaccta tgtagggacc ttgtacaaat atcttgataa 4800
ctgtgttagt ccaactggta agcgactctt aaggaattgg atctgccatc cactcaaaga 4860
tgtagaaagc atcaataaac ggcttgatgt agttgaagaa ttcacggcaa actcagaaag 4920
tatgcaaatc actggccagt atctccacaa acttccagac ttagaaagac tgctcggacg 4980
catcaagtct agcgttcgat catcagcctc tgtgttgcct gctcttctgg ggaaaaaagt 5040
gctgaaacaa cgagtaagta tcaatcacaa gttttctgag taatgccttc catgagtagt 5100
ataggactaa aacattacgg gtctagctaa agactgttct ccttcttttg caatgtctgg 5160
ttattcatta catttctctt aacttattgc attgcaggtt aaagcatttg ggcaaattgt 5220
gaaagggttc agaagtggaa ttgatctgtt gttggctcta cagaaggaat caaatatgat 5280
gagtttgctt tataaactct gtaaacttcc tatattagta ggaaaaagcg ggctagagtt 5340
atttctttct caattcgaag cagccataga tagcgacttt ccaaattatc aggtgcccat 5400
ctatctttca tactttacaa caaaatgtct gtcactactc aaagcaatgc atatggctta 5460
gatctcaact cacaccccga ggatcctaaa gggatttgct ttttattcct aatgtttttg 5520
gatggtttga tttatttcta acttgaactt attaatcttg taccagaacc aagatgtgac 5580
agatgaaaac gctgaaactc tcacaatact tatcgaactt tttatcgaaa gagcaactca 5640
atggtctgag gtcattcaca ccataagctg cctagatgtc ctgagatctt ttgcaatcgc 5700
agcaagtctc tctgctggaa gcatggccag gcctgttatt tttcccgaat cagaagctac 5760
agatcagaat cagaaaacaa aagggccaat acttaaaatc caaggactat ggcatccatt 5820
tgcagttgca gccgatggtc aattgcctgt tccgaatgat atactccttg gcgaggctag 5880
aagaagcagt ggcagcattc atcctcggtc attgttactg acgggaccaa acatgggcgg 5940
aaaatcaact cttcttcgtg caacatgtct ggccgttatc tttgcccaag tttgtatact 6000
cgttagataa ttactctatt ctttgcaatc agttcttcaa catgaataat aaattctgtt 6060
ttctgtctgc agcttggctg ctacgtgccg tgtgagtctt gcgaaatctc cctcgtggat 6120
actatcttca caaggcttgg cgcatctgat agaatcatga caggagagag taagttttgt 6180
tctcaaaata ccaattcctc gaactattta ctcagatttt gtctgattgg acaaggtggt 6240
tttgcttttt tttaggtacc tttttggtag aatgcactga gacagcgtca gttcttcaga 6300
atgcaactca ggattcacta gtaatccttg acgaactggg cagaggaact agtactttcg 6360
atggatacgc cattgcatac tcggtaacct gctcttctcc ttcaacttat acttgttgat 6420
caacaaaaac atgcaattca ttttgctgaa acttattgat ttatatcagg tttttcgtca 6480
cctggtagag aaagttcaat gtcggatgct ctttgcaaca cattaccacc ctctcaccaa 6540
ggaattcgcg tctcacccac gtgtcacctc gaaacacatg gcttgcgcat tcaaatcaag 6600
atctgattat caaccacgtg gttgtgatca agacctagtg ttcttgtacc gtttaaccga 6660
gggagcttgt cctgagagct acggacttca agtggcactc atggctggaa taccaaacca 6720
agtggttgaa acagcatcag gtgctgctca agccatgaag agatcaattg gggaaaactt 6780
caagtcaagt gagctaagat ctgagttctc aagtctgcat gaagactggc tcaagtcatt 6840
ggtgggtatt tctcgagtcg cccacaacaa tgcccccatt ggcgaagatg actacgacac 6900
tttgttttgc ttatggcatg agatcaaatc ctcttactgt gttcccaaat aaatggctat 6960
gacataacac tatctgaagc tcgttaagtc ttttgcttct ctgatgttta ttcctcttaa 7020
aaaatgctta tatatcaaaa aattgtttcc tcgattataa caagattata tatgtatctg 7080
tcggtttagc tatggtatat aatatatgta tgttcatgag attggtcaag agaaatactc 7140
acaaacagta tattaagaag gaaatatgtt tatgcattaa tttaagtttc aagataaact 7200
gcaaataacc tcgactaaag ttgcaaagac caaacacaaa ttacaaaact tataagactt 7260
aagttctgaa ttccctaaaa ccaaaaaaaa aaacagaaca tattttgttg catctacaaa 7320
caacacaaac ctacatagtt tataacttac tcatcactga gattaacatc agaatcattc 7380
tccatttctt catcttcact ctcatcatca tcaccaccac catgatgatt ctcctcctct 7440
tcacgtaacc tagcaatctc actctgagct ctatcaacaa tctgcttctt ctgcaactcc 7500
aaatctctct gaaaatcagc tctcatcttc tccaactcct tcatttgctc tttcttactc 7560
ttctccatct tctcataaac cttcccaaac ctctcaacag aatccgccaa catcttatac 7620
gaagcagcgt cattaacctt cttcctctcg tactcaacct catcatcctc atcctcctcc 7680
tcttcagaat caccaggact atccatcatc tcatcaaacc cattagactt atctaaataa 7740
accttagtgt tcataaacac aaactcacct gaatcaacac cacaagctaa acctaaatcc 7800
gacttgggcg aaacacaaag caacatatcc aacttattga aaaacgacca tttacttgaa 7860
cctaaacctg atttctcaac cttaatcttc tcttttctat acttcctctt caagtcatca 7920
atcattctcc tacattgcgt ctcagatttc tccatcctta gctcctcact cactttctca 7980
gctacttcat tccaatcctc gttcctcaaa ctccttctac ccaattgcaa aaacctatct 8040
ccccaaactt caagcaacac aa 8062




99


1047


PRT


Saccharomyces cerevisiae



99
Met Val Ile Gly Asn Glu Pro Lys Leu Val Leu Leu Arg Ala Lys Ser
1 5 10 15
Ser Ala Asn Arg Phe Ile Leu Leu Asn Leu Leu Thr Ile Met Ala Gly
20 25 30
Gln Pro Thr Ile Ser Arg Phe Phe Lys Lys Ala Val Lys Ser Glu Leu
35 40 45
Thr His Lys Gln Glu Gln Glu Val Ala Val Gly Asn Gly Ala Gly Ser
50 55 60
Glu Ser Ile Cys Leu Asp Thr Asp Glu Glu Asp Asn Leu Ser Ser Val
65 70 75 80
Ala Ser Thr Thr Val Thr Asn Asp Ser Phe Pro Leu Lys Gly Ser Val
85 90 95
Ser Ser Lys Asn Ser Lys Asn Ser Glu Lys Thr Ser Gly Thr Ser Thr
100 105 110
Thr Phe Asn Asp Ile Asp Phe Ala Lys Lys Leu Asp Arg Ile Met Lys
115 120 125
Arg Arg Ser Asp Glu Asn Val Glu Ala Glu Asp Asp Glu Glu Glu Gly
130 135 140
Glu Glu Asp Phe Val Lys Lys Lys Ala Arg Lys Ser Pro Thr Ala Lys
145 150 155 160
Leu Thr Pro Leu Asp Lys Gln Val Lys Asp Leu Lys Met His His Arg
165 170 175
Asp Lys Val Leu Val Ile Arg Val Gly Tyr Lys Tyr Lys Cys Phe Ala
180 185 190
Glu Asp Ala Val Thr Val Ser Arg Ile Leu His Ile Lys Leu Val Pro
195 200 205
Gly Lys Leu Thr Ile Asp Glu Ser Asn Pro Gln Asp Cys Asn His Arg
210 215 220
Gln Phe Ala Tyr Cys Ser Phe Pro Asp Val Arg Leu Asn Val His Leu
225 230 235 240
Glu Arg Leu Val His His Asn Leu Lys Val Ala Val Val Glu Gln Ala
245 250 255
Glu Thr Ser Ala Ile Lys Lys His Asp Pro Gly Ala Ser Lys Ser Ser
260 265 270
Val Phe Glu Arg Lys Ile Ser Asn Val Phe Thr Lys Ala Thr Phe Gly
275 280 285
Val Asn Ser Thr Phe Val Leu Arg Gly Lys Arg Ile Leu Gly Asp Thr
290 295 300
Asn Ser Ile Trp Ala Leu Ser Arg Asp Val His Gln Gly Lys Val Ala
305 310 315 320
Lys Tyr Ser Leu Ile Ser Val Asn Leu Asn Asn Gly Glu Val Val Tyr
325 330 335
Asp Glu Phe Glu Glu Pro Asn Leu Ala Asp Glu Lys Leu Gln Ile Arg
340 345 350
Ile Lys Tyr Leu Gln Pro Ile Glu Val Leu Val Asn Thr Asp Asp Leu
355 360 365
Pro Leu His Val Ala Lys Phe Phe Lys Asp Ile Ser Cys Pro Leu Ile
370 375 380
His Lys Gln Glu Tyr Asp Leu Glu Asp His Val Val Gln Ala Ile Lys
385 390 395 400
Val Met Asn Glu Lys Ile Gln Leu Ser Pro Ser Leu Ile Arg Leu Val
405 410 415
Ser Lys Leu Tyr Ser His Met Val Glu Tyr Asn Asn Glu Gln Val Met
420 425 430
Leu Ile Pro Ser Ile Tyr Ser Pro Phe Ala Ser Lys Ile His Met Leu
435 440 445
Leu Asp Pro Asn Ser Leu Gln Ser Leu Asp Ile Phe Thr His Asp Gly
450 455 460
Gly Lys Gly Ser Leu Phe Trp Leu Leu Asp His Thr Arg Thr Ser Phe
465 470 475 480
Gly Leu Arg Met Leu Arg Glu Trp Ile Leu Lys Pro Leu Val Asp Val
485 490 495
His Gln Ile Glu Glu Arg Leu Asp Ala Ile Glu Cys Ile Thr Ser Glu
500 505 510
Ile Asn Asn Ser Ile Phe Phe Glu Ser Leu Asn Gln Met Leu Asn His
515 520 525
Thr Pro Asp Leu Leu Arg Thr Leu Asn Arg Ile Met Tyr Gly Thr Thr
530 535 540
Ser Arg Lys Glu Val Tyr Phe Tyr Leu Lys Gln Ile Thr Ser Phe Val
545 550 555 560
Asp His Phe Lys Met His Gln Ser Tyr Leu Ser Glu His Phe Lys Ser
565 570 575
Ser Asp Gly Arg Ile Gly Lys Gln Ser Pro Leu Leu Phe Arg Leu Phe
580 585 590
Ser Glu Leu Asn Glu Leu Leu Ser Thr Thr Gln Leu Pro His Phe Leu
595 600 605
Thr Met Ile Asn Val Ser Ala Val Met Glu Lys Asn Ser Asp Lys Gln
610 615 620
Val Met Asp Phe Phe Asn Leu Asn Asn Tyr Asp Cys Ser Glu Gly Ile
625 630 635 640
Ile Lys Ile Gln Arg Glu Ser Glu Ser Val Arg Ser Gln Leu Lys Glu
645 650 655
Glu Leu Ala Glu Ile Arg Lys Tyr Leu Lys Arg Pro Tyr Leu Asn Phe
660 665 670
Arg Asp Glu Val Asp Tyr Leu Ile Glu Val Lys Asn Ser Gln Ile Lys
675 680 685
Asp Leu Pro Asp Asp Trp Ile Lys Val Asn Asn Thr Lys Met Val Ser
690 695 700
Arg Phe Thr Thr Pro Arg Thr Gln Lys Leu Thr Gln Lys Leu Glu Tyr
705 710 715 720
Tyr Lys Asp Leu Leu Ile Arg Glu Ser Glu Leu Gln Tyr Lys Glu Phe
725 730 735
Leu Asn Lys Ile Thr Ala Glu Tyr Thr Glu Leu Arg Lys Ile Thr Leu
740 745 750
Asn Leu Ala Gln Tyr Asp Cys Ile Leu Ser Leu Ala Ala Thr Ser Cys
755 760 765
Asn Val Asn Tyr Val Arg Pro Thr Phe Val Asn Gly Gln Gln Ala Ile
770 775 780
Ile Ala Lys Asn Ala Arg Asn Pro Ile Ile Glu Ser Leu Asp Val His
785 790 795 800
Tyr Val Pro Asn Asp Ile Met Met Ser Pro Glu Asn Gly Lys Ile Asn
805 810 815
Ile Ile Thr Gly Pro Asn Met Gly Gly Lys Ser Ser Tyr Ile Arg Gln
820 825 830
Val Ala Leu Leu Thr Ile Met Ala Gln Ile Gly Ser Phe Val Pro Ala
835 840 845
Glu Glu Ile Arg Leu Ser Ile Phe Glu Asn Val Leu Thr Arg Ile Gly
850 855 860
Ala His Asp Asp Ile Ile Asn Gly Asp Ser Thr Phe Lys Val Glu Met
865 870 875 880
Leu Asp Ile Leu His Ile Leu Lys Asn Cys Asn Lys Arg Ser Leu Leu
885 890 895
Leu Leu Asp Glu Val Gly Arg Gly Thr Gly Thr His Asp Gly Ile Ala
900 905 910
Ile Ser Tyr Ala Leu Ile Lys Tyr Phe Ser Glu Leu Ser Asp Cys Pro
915 920 925
Leu Ile Leu Phe Thr Thr His Phe Pro Met Leu Gly Glu Ile Lys Ser
930 935 940
Pro Leu Ile Arg Asn Tyr His Met Asp Tyr Val Glu Glu Gln Lys Thr
945 950 955 960
Gly Glu Asp Trp Met Ser Val Ile Phe Leu Tyr Lys Leu Lys Lys Gly
965 970 975
Leu Thr Tyr Asn Ser Tyr Gly Met Asn Val Ala Lys Leu Ala Arg Leu
980 985 990
Asp Lys Asp Ile Ile Asn Arg Ala Phe Ser Ile Ser Glu Glu Leu Arg
995 1000 1005
Lys Glu Ser Ile Asn Glu Asp Ala Leu Lys Leu Phe Ser Ser Leu Lys
1010 1015 1020
Arg Ile Leu Lys Ser Asp Asn Ile Thr Ala Thr Asp Lys Leu Ala Lys
1025 1030 1035 1040
Leu Leu Ser Leu Asp Ile His
1045




100


1242


PRT


Saccharomyces cerevisiae



100
Met Ala Pro Ala Thr Pro Lys Thr Ser Lys Thr Ala His Phe Glu Asn
1 5 10 15
Gly Ser Thr Ser Ser Gln Lys Lys Met Lys Gln Ser Ser Leu Leu Ser
20 25 30
Phe Phe Ser Lys Gln Val Pro Ser Gly Thr Pro Ser Lys Lys Val Gln
35 40 45
Lys Pro Thr Pro Ala Thr Leu Glu Asn Thr Ala Thr Asp Lys Ile Thr
50 55 60
Lys Asn Pro Gln Gly Gly Lys Thr Gly Lys Leu Phe Val Asp Val Asp
65 70 75 80
Glu Asp Asn Asp Leu Thr Ile Ala Glu Glu Thr Val Ser Thr Val Arg
85 90 95
Ser Asp Ile Met His Ser Gln Glu Pro Gln Ser Asp Thr Met Leu Asn
100 105 110
Ser Asn Thr Thr Glu Pro Lys Ser Thr Thr Thr Asp Glu Asp Leu Ser
115 120 125
Ser Ser Gln Ser Arg Arg Asn His Lys Arg Arg Val Asn Tyr Ala Glu
130 135 140
Ser Asp Asp Asp Asp Ser Asp Thr Thr Phe Thr Ala Lys Arg Lys Lys
145 150 155 160
Gly Lys Val Val Asp Ser Glu Ser Asp Glu Asp Glu Tyr Leu Pro Asp
165 170 175
Lys Asn Asp Gly Asp Glu Asp Asp Asp Ile Ala Asp Asp Lys Glu Asp
180 185 190
Ile Lys Gly Glu Leu Ala Glu Asp Ser Gly Asp Asp Asp Asp Leu Ile
195 200 205
Ser Leu Ala Glu Thr Thr Ser Lys Lys Lys Phe Ser Tyr Asn Thr Ser
210 215 220
His Ser Ser Ser Pro Phe Thr Arg Asn Ile Ser Arg Asp Asn Ser Lys
225 230 235 240
Lys Lys Ser Arg Pro Asn Gln Ala Pro Ser Arg Ser Tyr Asn Pro Ser
245 250 255
His Ser Gln Pro Ser Ala Thr Ser Lys Ser Ser Lys Phe Asn Lys Gln
260 265 270
Asn Glu Glu Arg Tyr Gln Trp Leu Val Asp Glu Arg Asp Ala Gln Arg
275 280 285
Arg Pro Lys Ser Asp Pro Glu Tyr Asp Pro Arg Thr Leu Tyr Ile Pro
290 295 300
Ser Ser Ala Trp Asn Lys Phe Thr Pro Phe Glu Lys Gln Tyr Trp Glu
305 310 315 320
Ile Lys Ser Lys Met Trp Asp Cys Ile Val Phe Phe Lys Lys Gly Lys
325 330 335
Phe Phe Glu Leu Tyr Glu Lys Asp Ala Leu Leu Ala Asn Ala Leu Phe
340 345 350
Asp Leu Lys Ile Ala Gly Gly Gly Arg Ala Asn Met Gln Leu Ala Gly
355 360 365
Ile Pro Glu Met Ser Phe Glu Tyr Trp Ala Ala Gln Phe Ile Gln Met
370 375 380
Gly Tyr Lys Val Ala Lys Val Asp Gln Arg Glu Ser Met Leu Ala Lys
385 390 395 400
Glu Met Arg Glu Gly Ser Lys Gly Ile Val Lys Arg Glu Leu Gln Cys
405 410 415
Ile Leu Thr Ser Gly Thr Leu Thr Asp Gly Asp Met Leu His Ser Asp
420 425 430
Leu Ala Thr Phe Cys Leu Ala Ile Arg Glu Glu Pro Gly Asn Phe Tyr
435 440 445
Asn Glu Thr Gln Leu Asp Ser Ser Thr Ile Val Gln Lys Leu Asn Thr
450 455 460
Lys Ile Phe Gly Ala Ala Phe Ile Asp Thr Ala Thr Gly Glu Leu Gln
465 470 475 480
Met Leu Glu Phe Glu Asp Asp Ser Glu Cys Thr Lys Leu Asp Thr Leu
485 490 495
Met Ser Gln Val Arg Pro Met Glu Val Val Met Glu Arg Asn Asn Leu
500 505 510
Ser Thr Leu Ala Asn Lys Ile Val Lys Phe Asn Ser Ala Pro Asn Ala
515 520 525
Ile Phe Asn Glu Val Lys Ala Gly Glu Glu Phe Tyr Asp Cys Asp Lys
530 535 540
Thr Tyr Ala Glu Ile Ile Ser Ser Glu Tyr Phe Ser Thr Glu Glu Asp
545 550 555 560
Trp Pro Glu Val Leu Lys Ser Tyr Tyr Asp Thr Gly Lys Lys Val Gly
565 570 575
Phe Ser Ala Phe Gly Gly Leu Leu Tyr Tyr Leu Lys Trp Leu Lys Leu
580 585 590
Asp Lys Asn Leu Ile Ser Met Lys Asn Ile Lys Glu Tyr Asp Phe Val
595 600 605
Lys Ser Gln His Ser Met Val Leu Asp Gly Ile Thr Leu Gln Asn Leu
610 615 620
Glu Ile Phe Ser Asn Ser Phe Asp Gly Ser Asp Lys Gly Thr Leu Phe
625 630 635 640
Lys Leu Phe Asn Arg Ala Ile Thr Pro Met Gly Lys Arg Met Met Lys
645 650 655
Lys Trp Leu Met His Pro Leu Leu Arg Lys Asn Asp Ile Glu Ser Arg
660 665 670
Leu Asp Ser Val Asp Ser Leu Leu Gln Asp Ile Thr Leu Arg Glu Gln
675 680 685
Leu Glu Ile Thr Phe Ser Lys Leu Pro Asp Leu Glu Arg Met Leu Ala
690 695 700
Arg Ile His Ser Arg Thr Ile Lys Val Lys Asp Phe Glu Lys Val Ile
705 710 715 720
Thr Ala Phe Glu Thr Ile Ile Glu Leu Gln Asp Ser Leu Lys Asn Asn
725 730 735
Asp Leu Lys Gly Asp Val Ser Lys Tyr Ile Ser Ser Phe Pro Glu Gly
740 745 750
Leu Val Glu Ala Val Lys Ser Trp Thr Asn Ala Phe Glu Arg Gln Lys
755 760 765
Ala Ile Asn Glu Asn Ile Ile Val Pro Gln Arg Gly Phe Asp Ile Glu
770 775 780
Phe Asp Lys Ser Met Asp Arg Ile Gln Glu Leu Glu Asp Glu Leu Met
785 790 795 800
Glu Ile Leu Met Thr Tyr Arg Lys Gln Phe Lys Cys Ser Asn Ile Gln
805 810 815
Tyr Lys Asp Ser Gly Lys Glu Ile Tyr Thr Ile Glu Ile Pro Ile Ser
820 825 830
Ala Thr Lys Asn Val Pro Ser Asn Trp Val Gln Met Ala Ala Asn Lys
835 840 845
Thr Tyr Lys Arg Tyr Tyr Ser Asp Glu Val Arg Ala Leu Ala Arg Ser
850 855 860
Met Ala Glu Ala Lys Glu Ile His Lys Thr Leu Glu Glu Asp Leu Lys
865 870 875 880
Asn Arg Leu Cys Gln Lys Phe Asp Ala His Tyr Asn Thr Ile Trp Met
885 890 895
Pro Thr Ile Gln Ala Ile Ser Asn Ile Asp Cys Leu Leu Ala Ile Thr
900 905 910
Arg Thr Ser Glu Tyr Leu Gly Ala Pro Ser Cys Arg Pro Thr Ile Val
915 920 925
Asp Glu Val Asp Ser Lys Thr Asn Thr Gln Leu Asn Gly Phe Leu Lys
930 935 940
Phe Lys Ser Leu Arg His Pro Cys Phe Asn Leu Gly Ala Thr Thr Ala
945 950 955 960
Lys Asp Phe Ile Pro Asn Asp Ile Glu Leu Gly Lys Glu Gln Pro Arg
965 970 975
Leu Gly Leu Leu Thr Gly Ala Asn Ala Ala Gly Lys Ser Thr Ile Leu
980 985 990
Arg Met Ala Cys Ile Ala Val Ile Met Ala Gln Met Gly Cys Tyr Val
995 1000 1005
Pro Cys Glu Ser Ala Val Leu Thr Pro Ile Asp Arg Ile Met Thr Arg
1010 1015 1020
Leu Gly Ala Asn Asp Asn Ile Met Gln Gly Lys Ser Thr Phe Phe Val
1025 1030 1035 1040
Glu Leu Ala Glu Thr Lys Lys Ile Leu Asp Met Ala Thr Asn Arg Ser
1045 1050 1055
Leu Leu Val Val Asp Glu Leu Gly Arg Gly Gly Ser Ser Ser Asp Gly
1060 1065 1070
Phe Ala Ile Ala Glu Ser Val Leu His His Val Ala Thr His Ile Gln
1075 1080 1085
Ser Leu Gly Phe Phe Ala Thr His Tyr Gly Thr Leu Ala Ser Ser Phe
1090 1095 1100
Lys His His Pro Gln Val Arg Pro Leu Lys Met Ser Ile Leu Val Asp
1105 1110 1115 1120
Glu Ala Thr Arg Asn Val Thr Phe Leu Tyr Lys Met Leu Glu Gly Gln
1125 1130 1135
Ser Glu Gly Ser Phe Gly Met His Val Ala Ser Met Cys Gly Ile Ser
1140 1145 1150
Lys Glu Ile Ile Asp Asn Ala Gln Ile Ala Ala Asp Asn Leu Glu His
1155 1160 1165
Thr Ser Arg Leu Val Lys Glu Arg Asp Leu Ala Ala Asn Asn Leu Asn
1170 1175 1180
Gly Glu Val Val Ser Val Pro Gly Gly Leu Gln Ser Asp Phe Val Arg
1185 1190 1195 1200
Ile Ala Tyr Gly Asp Gly Leu Lys Asn Thr Lys Leu Gly Ser Gly Glu
1205 1210 1215
Gly Val Leu Asn Tyr Asp Trp Asn Ile Lys Arg Asn Val Leu Lys Ser
1220 1225 1230
Leu Phe Ser Ile Ile Asp Asp Leu Gln Ser
1235 1240






Claims
  • 1. An isolated and purified nucleic acid comprising a nucleolide sequence encoding a polypeptide having the amino acid sequence of AtMSH3 (SEQ ID NO: 19).
  • 2. The nucleic acid of claim 1 further comprising a regulation element operably linked to said AtMSH3-encoding sequence.
  • 3. A plasmid or vector comprising the nucleic acid of claim 2.
  • 4. A plant cell stably transformed, transfected or electroporated with the plasmid or vector according to claim 3.
  • 5. A plant comprising the cell according to claim 4.
  • 6. A process for at least partially inactivating the DNA mismatch repair system of a plant cell, comprising:transforming or transfecting said plant cell with a nucleic acid comprising a regulation element operably linked to a nucleotide sequence encoding a polypeptide having the amino acid sequence of AtMSH3 (SEQ ID NO:19); growing said cell under conditions that permit expression of said AtMSH3-encoding sequence; and inactivating said DNA mismatch repair system of said plant cell.
  • 7. The process of claim 6, wherein said plant is selected from the group consisting of Brassicaceae, Poaceae, Solanaceae, Asteraceae, Malvaceae, Fabaccae, Linaceae, Canabinaccac, Dauaccae and Cucurbitaceae.
Priority Claims (1)
Number Date Country Kind
P09745 Oct 1997 AU
PCT Information
Filing Document Filing Date Country Kind
PCT/EP98/06977 WO 00
Publishing Document Publishing Date Country Kind
WO99/19492 4/22/1999 WO A
Foreign Referenced Citations (6)
Number Date Country
9007576 Jul 1990 WO
9515381 Jun 1995 WO
9626283 Aug 1996 WO
9626283 Aug 1996 WO
9701634 Jan 1997 WO
9737011 Oct 1997 WO
Non-Patent Literature Citations (49)
Entry
Eric Alani, The Saccharomyces cerevisiae Msh2 and Msh6 Proteins Form a Complex That Specifically Binds to Duplex Oligonucleotides Containing Mismatched DNA Base Pairs, Oct. 1996, Molecular and Cellular Biology, pp. 5604-5615.*
Rice et. al., Genetic Repair of Mutations in Plants Cell-Free Extracts Directed by Specific Chimeric Oligonucleotides, Jun. 200, Plant Physiology, vol. 123, pp. 427-437.*
Colliver et al., Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase contruct in transgenic Lotus corniculatus, 1997, Plant Molecular Biology, vol. 35, pp. 509-522.*
Culligan et al., DNA Mismatch Repair in Plants1, 1997, Plant Physiol, vol. 115, pp. 833-836.*
Letter to the Editor, “Homology” in Protein and Nucleic Acids: A Terminology Muddle and a way out of it, 1987, Cell, vol. 50, p. 667.*
Reeck et al 1987, “Homology” in proteins and nucleic acids: A terminology muddle and a way out of it, Cell 50:667.*
Rice et al 2000, Genetic repari of mutations in plant cell-free extracts directed by specific chimeric oligonucleotides. Plant Physiology 123:427-437.*
Colliver et al 1997, Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus. Plant Molecular Biology 35:509-522.*
Culligan et al 1997, DNA mismatch repair in plants, An Arabidopsis thaliana gene that predicts a protein belonging to the MSH2 subfamily of eukaryotic MutS homologs. Plant Physiology 115(2):833-839.*
Liu et al., “Characterization of the mouse Rep-3 gene: sequence similarities to bacterial and yeast mismatch-repair proteins”, Gene, vol. 147, 1994, pp. 169-177.
Prolla et al., “MLH1, PMS1, and MSH2 Interactions During the Initiation of DNA Mismatch Repair in Yeast”, Science, vol. 265, Aug. 19, 1994, pp. 1091-1093.
Acharya et al., “hMSH2 forms specific mispari-binding complexes with hMSH3 and hMSH6”, Proc. Natl. Acad. Sci. USA, vol. 93, Nov. 1996, pp. 13629-13634.
Iaccarino et al., “MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2”, Current Biology, vol. 6, No. 4, 1996, pp. 484-486.
Corradi et al., “cDNA Sequence, Map, and Expression of the Murine Homolog of GTBP, a DNA Mismatch Repair Gene”, Genomics, vol. 36, 1996, pp. 288-295.
Balestrazzi et al., “Cloning of a cDNA encoding DNA topoisomerase I in Daucus carota and expression analysis in relation to cell proliferation”, Gene, vol. 183, 1996, pp. 183-190.
Culligan et al., “DNA Mismatch Repair in Plants”, Plant Physiol., vol. 115, 1997, pp. 833-839.
Watanabe et al., “Genomic Organization and Expression of the Human MSH3 Gene”, Genomics, vol. 31, 1996, pp. 311-318.
Database EMBL Nucleotide and Protein Sequences, Oct. 16, 1997, AC=AF009657.
Database EMBL Nucleotide and Protein Sequences, Mar. 18, 1998, AC=065607.
Database EMBL Nucleotide and Protein Sequences, Jul. 13, 1998, AC=AJ007791.
Database EMBL Nucleotide and Protein Sequences, Oct. 12, 1998, AC=AJ007792.
Database EMBL Nucleotide and Protein Sequences, Dec. 17, 1998, AC=AJ131669.
Asano T et al., 2002, “Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor” Plant Cell. 14(3):619-628.
Jobling SA et al., 2002, “Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes” Nat Biotechnol. 20(3):295-299.
Scheidig A et al., 2002, “Downregulation of a chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves” Plant J. 30(5):581-591.
Verpoorte R et al., 2002, “Engineering secondary metabolite production in plants” Curr Opin Biotechnol. 13(2):181-187.
Forkmann G et al., 2001, “Metabolic engineering and applications of flavonoids” Curr Opin Biotechnol. 12(2):155-160.
Tuteja N et al., 2001, “Molecular mechanisms of DNA damage and repair: progress in plants” Crit. Rev. Biochem Mol. Biol. 36(4):337-397.
Zhang Y et al., 2001, “Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley” Plant J. 28(4):431-41.
Cao X et al., 2000, “Conserved plant genes with similarity to mammalian de novo DNA methyltransferases” Proc Natl Acad Sci USA 97:4979-4984.
Culligan KM et al., 2000, “Arabidopsis MutS homologs-AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7-form three distinct protein heterodimers with different specificities for mismatched DNA” Plant Cell 12:991-1002.
O'hara P et al., 2000, “Modulation of fatty acid biosynthesis by antisense beta-keto reductase expression” Biochem Soc Trans. 28(6):613-615.
Stepanova AN et al., 2000, “Ethylene signaling: from mutants to molecules” Curr Opin Plant Biol. 3(5):353-360.
Yanagisawa S, 2000, “Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize” Plant J. 21(3):281-288.
Ade J et al., 1999, “Four mismatch repair paralogues coexist in Arabidopsis thaliana: AtMSH2, AtMSH3, AtMSH6-1 and AtMSH6-2” Mol. Gen. Genet. 262(2):239-249.
Martin M et al., 1999, “Antisense-mediated depletion of potato leaf omega3 fatty acid desaturase lowers linolenic acid content and reduces gene activation in response to wounding” Eur J Biochem. 262(2):283-290.
Royo J et al., 1999, “Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests” Proc Natl Acad Sci USA 96(3):1146-1151.
Schroda M et al., 1999, “A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition” Plant Cell 11(6):1165-78.
Amor Y et al., 1998, “The involvement of poly(ADP-ribose) polymerase in the oxidative stress response in plants” FEBS Lett. 440(1-2):1-7.
Kaldenhoff R et al., 1998, “Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana” Plant J. 14(1):121-128.
Robbins MP et al., 1998, “Genetic manipulation of condensed tannins in higher plants. Ii. Analysis Of birdsfoot trefoil plants harboring antisense dihydroflavonol reductase constructs” Plant Physiol. 116(3):1133-1144.
Xu H et al., 1998, “Plant homologue of human excision repair gene ERCC1 points to conservation of DNA repair mechanisms” Plant J. 13(6):823-9.
Bavage AD et al., 1997, “Expression of an Antirrhinum dihydroflavonol reductase gene results in changes in condensed tannin structure and accumulation in root cultures of Lotus corniculatus (bird's foot trefoil)” Plant Mol Biol. 35(4):443-458.
Lee D et al., 1997, “Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition” Plant Cell. 9(11):1985-1998.
Mett VL et al., 1996, “A system for tissue-specific copper-controllable gene expression in transgenic plants: nodule-specific antisense of aspartate aminotransferase-P2” Transgenic Res. 5(2):105-113.
Masle J et al., 1993, “Effects of Ambient CO2 Concentration on Growth and Nitrogen Use in Tobacco (Nicotiana tabacum) Plants Transformed with an Antisense Gene to the Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase” Plant Physiol. 103(4):1075-1088.
Orozco-Cardenas M et al., 1993, “Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae” Proc Natl Acad Sci USA 90(17):8273-8276.
Bramley P et al., 1992, “Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5” Plant J. 2(3):343-349.
McGurl B et al., 1992, “Structure, expression, and antisense inhibition of the systemin precursor gene” Science 255(5051):1570-1573.