ISOLATED POLYNUCLEOTIDES AND POLYPEPTIDES AND METHODS OF USING SAME FOR INCREASING PLANT YIELD, BIOMASS, GROWTH RATE, VIGOR, OIL CONTENT, ABIOTIC STRESS TOLERANCE OF PLANTS AND NITROGEN USE EFFICIENCY

Information

  • Patent Application
  • 20120297504
  • Publication Number
    20120297504
  • Date Filed
    December 22, 2010
    13 years ago
  • Date Published
    November 22, 2012
    11 years ago
Abstract
Provided are isolated polynucleotides encoding a polypeptide at least 80% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 799, 488-798, 800-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, and 5558-8091; and isolated polynucleotide comprising nucleic acid sequences at least 80% identical to SEQ ID NO: 460, 1-459, 461-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4850 or 4851. Also provided are nucleic acid constructs comprising same, isolated polypeptides encoded thereby, transgenic cells and transgenic plants comprising same and methods of using same for increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant. Also provided are isolated polynucleotides comprising the nucleic acid sequence set forth by SEQ ID NO:8096, wherein the isolated polynucleotide is capable of regulating expression of at least one polynucleotide sequence operably linked thereto.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention, in some embodiments thereof, relates to isolated polypeptides and polynucleotides, nucleic acid constructs comprising same, transgenic cells comprising same, transgenic plants exogenously expressing same and more to particularly, but not exclusively, to methods of using same for increasing yield (e.g., seed yield, oil yield), biomass, growth rate, vigor, oil content, fiber yield, fiber quality abiotic stress tolerance, and/or fertilizer use efficiency (e.g., nitrogen use efficiency) of a plant.


Abiotic stress (ABS; also referred to as “environmental stress”) conditions such as salinity, drought, flood, suboptimal temperature and toxic chemical pollution, cause substantial damage to agricultural plants. Most plants have evolved strategies to protect themselves against these conditions. However, if the severity and duration of the stress conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Furthermore, most of the crop plants are highly susceptible to abiotic stress and thus necessitate optimal growth conditions for commercial crop yields. Continuous exposure to stress causes major alterations in the plant metabolism which ultimately leads to cell death and consequently yield losses.


The global shortage of water supply is one of the most severe agricultural problems affecting plant growth and crop yield and efforts are made to mitigate the harmful effects of desertification and salinization of the world's arable land. Water deficit is a common component of many plant stresses and occurs in plant cells when the whole plant transpiration rate exceeds the water uptake. In addition to drought, other stresses, such as salinity and low temperature, produce cellular dehydration.


Drought is a gradual phenomenon, which involves periods of abnormally dry weather that persists long enough to produce serious hydrologic imbalances such as crop damage and water supply shortage. In severe cases, drought can last many years and results in devastating effects on agriculture and water supplies. Furthermore, drought is associated with increase susceptibility to various diseases.


For most crop plants, the land regions of the world are too arid. In addition, overuse of available water results in increased loss of agriculturally-usable land (desertification), and increase of salt accumulation in soils adds to the loss of available water in soils.


Salinity, high salt levels, affects one in five hectares of irrigated land. This condition is only expected to worsen, further reducing the availability of arable land and crop production, since none of the top five food crops, i.e., wheat, corn, rice, potatoes, to and soybean, can tolerate excessive salt. Detrimental effects of salt on plants result from both water deficit which leads to osmotic stress (similar to drought stress) and the effect of excess sodium ions on critical biochemical processes. As with freezing and drought, high salt causes water deficit; and the presence of high salt makes it difficult for plant roots to extract water from their environment. Soil salinity is thus one of the more important variables that determine whether a plant may thrive. In many parts of the world, sizable land areas are uncultivable due to naturally high soil salinity. Thus, salination of soils that are used for agricultural production is a significant and increasing problem in regions that rely heavily on agriculture, and is worsen by over-utilization, over-fertilization and water shortage, typically caused by climatic change and the demands of increasing population. Salt tolerance is of particular importance early in a plant's lifecycle, since evaporation from the soil surface causes upward water movement, and salt accumulates in the upper soil layer where the seeds are placed. On the other hand, germination normally takes place at a salt concentration which is higher than the mean salt level in the whole soil profile.


Germination of many crops is sensitive to temperature. A gene that would enhance germination in hot conditions would be useful for crops that are planted late in the season or in hot climates. In addition, seedlings and mature plants that are exposed to excess heat may experience heat shock, which may arise in various organs, including leaves and particularly fruit, when transpiration is insufficient to overcome heat stress. Heat also damages cellular structures, including organelles and cytoskeleton, and impairs membrane function. Heat shock may produce a decrease in overall protein synthesis, accompanied by expression of heat shock proteins, e.g., chaperones, which are involved in refolding proteins denatured by heat.


Heat stress often accompanies conditions of low water availability. Heat itself is seen as an interacting stress and adds to the detrimental effects caused by water deficit conditions. Water evaporation increases along with the rise in daytime temperatures and can result in high transpiration rates and low plant water potentials. High-temperature damage to pollen almost always occurs in conjunction with drought stress, and rarely occurs under well-watered conditions. Combined stress can alter plant metabolism in various ways; therefore understanding the interaction between different stresses may be important for the development of strategies to enhance stress tolerance by genetic manipulation.


Excessive chilling conditions, e.g., low, but above freezing, temperatures affect crops of tropical origins, such as soybean, rice, maize, and cotton. Typical chilling damage includes wilting, necrosis, chlorosis or leakage of ions from cell membranes. The underlying mechanisms of chilling sensitivity are not completely understood yet, but probably involve the level of membrane saturation and other physiological deficiencies. For example, photoinhibition of photosynthesis (disruption of photosynthesis due to high light intensities) often occurs under clear atmospheric conditions subsequent to cold late summer/autumn nights. In addition, chilling may lead to yield losses and lower product quality through the delayed ripening of maize.


Salt and drought stress signal transduction consist of ionic and osmotic homeostasis signaling pathways. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. The osmotic component of salt stress involves complex plant reactions that overlap with drought and/or cold stress responses.


Common aspects of drought, cold and salt stress response [Reviewed in Xiong and Zhu (2002) Plant Cell Environ. 25: 131-139] include: (a) transient changes in the cytoplasmic calcium levels early in the signaling event; (b) signal transduction via mitogen-activated and/or calcium dependent protein kinases (CDPKs) and protein phosphatases; (c) increases in abscisic acid levels in response to stress triggering a subset of responses; (d) inositol phosphates as signal molecules (at least for a subset of the stress responsive transcriptional changes; (e) activation of phospholipases which in turn generates a diverse array of second messenger molecules, some of which might regulate the activity of stress responsive kinases; (f) induction of late embryogenesis abundant (LEA) type genes including the CRT/DRE responsive COR/RD genes; (g) increased levels of antioxidants and compatible osmolytes such as proline and soluble sugars; and (h) accumulation of reactive oxygen species such as superoxide, hydrogen peroxide, and hydroxyl radicals. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.


Several genes which increase tolerance to cold or salt stress can also improve drought stress protection, these include for example, the transcription factor AtCBF/DREB1, OsCDPK7 (Saijo et al. 2000, Plant J. 23: 319-327) or AVP1 (a vacuolar pyrophosphatase-proton pump, Gaxiola et al. 2001, Proc. Natl. Acad. Sci. USA 98: 11444-11449).


Developing stress-tolerant plants is a strategy that has the potential to solve or mediate at least some of these problems. However, traditional plant breeding strategies used to develop new lines of plants that exhibit tolerance to ABS are relatively inefficient since they are tedious, time consuming and of unpredictable outcome. Furthermore, limited germplasm resources for stress tolerance and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Additionally, the cellular processes leading to ABS tolerance are complex in nature and involve multiple mechanisms of cellular adaptation and numerous metabolic pathways.


Genetic engineering efforts, aimed at conferring abiotic stress tolerance to transgenic crops, have been described in various publications [Apse and Blumwald (Curr Opin Biotechnol. 13:146-150, 2002), Quesada et al. (Plant Physiol. 130:951-963, 2002), Holmström et al. (Nature 379: 683-684, 1996), Xu et al. (Plant Physiol 110: 249-257, 1996), Pilon-Smits and Ebskamp (Plant Physiol 107: 125-130, 1995) and Tarczynski et al. (Science 259: 508-510, 1993)].


Various patents and patent applications disclose genes and proteins which can be used for increasing tolerance of plants to abiotic stresses. These include for example, U.S. Pat. Nos. 5,296,462 and 5,356,816 (for increasing tolerance to cold stress); U.S. Pat. No. 6,670,528 (for increasing ABST); U.S. Pat. No. 6,720,477 (for increasing ABST); U.S. application Ser. Nos. 09/938,842 and 10/342,224 (for increasing ABST); U.S. application Ser. No. 10/231,035 (for increasing ABST); WO2004/104162 (for increasing ABST and biomass); WO2007/020638 (for increasing ABST, biomass, vigor and/or yield); WO2007/049275 (for increasing ABST, biomass, vigor and/or yield); WO2010/076756 (for increasing ABST, biomass and/or yield); WO2009/083958 (for increasing water use efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and/or biomass); WO2010/020941 (for increasing nitrogen use efficiency, abiotic stress tolerance, yield and/or biomass); WO2009/141824 (for increasing plant utility); WO2010/049897 (for increasing plant yield).


Suboptimal nutrient (macro and micro nutrient) affect plant growth and development through the whole plant life cycle. One of the essential macronutrients for the plant is Nitrogen. Nitrogen is responsible for biosynthesis of amino acids and nucleic acids, prosthetic groups, plant hormones, plant chemical defenses, and the like. Nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogenous fertilizer. Since fertilizer is rapidly depleted from most soil types, it must be supplied to growing crops two or three times during the growing season. Additional important macronutrients are Phosphorous (P) and Potassium (K), which have a direct correlation to yield and general plant tolerance.


Vegetable or seed oils are the major source of energy and nutrition in human and animal diet. They are also used for the production of industrial products, such as paints, inks and lubricants. In addition, plant oils represent renewable sources of long-chain hydrocarbons which can be used as fuel. Since the currently used fossil fuels are finite resources and are gradually being depleted, fast growing biomass crops may be used as alternative fuels or for energy feedstocks and may reduce the dependence on fossil energy supplies. However, the major bottleneck for increasing consumption of plant oils as bio-fuel is the oil price, which is still higher than fossil fuel. In addition, the production rate of plant oil is limited by the availability of agricultural land and water. Thus, increasing plant oil yields from the same growing area can effectively overcome the shortage in production space and can decrease vegetable oil prices at the same time.


Studies aiming at increasing plant oil yields focus on the identification of genes involved in oil metabolism as well as in genes capable of increasing plant and seed yields in transgenic plants. Genes known to be involved in increasing plant oil yields include those participating in fatty acid synthesis or sequestering such as desaturase [e.g., DELTA6, DELTA12 or acyl-ACP (Ssi2; Arabidopsis Information Resource (TAIR; Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/), TAIR No. AT2G43710)], OleosinA (TAIR No. AT3G01570) or FAD3 (TAIR No. to AT2G29980), and various transcription factors and activators such as Led1 [TAIR No. AT1G21970, Lotan et al. 1998. Cell. 26; 93(7):1195-205], Lec2 [TAIR No. AT1G28300, Santos Mendoza et al. 2005, FEBS Lett. 579(21):4666-70], Fus3 (TAIR No. AT3G26790), ABI3 [TAIR No. AT3G24650, Lara et al. 2003. J Biol. Chem. 278(23): 21003-11] and Wri1 [TAIR No. AT3G54320, Cernac and Benning, 2004. Plant J. 40(4): 575-85].


Genetic engineering efforts aiming at increasing oil content in plants (e.g., in seeds) include upregulating endoplasmic reticulum (FAD3) and plastidal (FAD7) fatty acid desaturases in potato (Zabrouskov V., et al., 2002; Physiol Plant. 116:172-185); over-expressing the GmDof4 and GmDof11 transcription factors (Wang H W et al., 2007; Plant J. 52:716-29); over-expressing a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter (Vigeolas H, et al. 2007, Plant Biotechnol J. 5:431-41; U.S. Pat. Appl. No. 20060168684); using Arabidopsis FAE1 and yeast SLC1-1 genes for improvements in erucic acid and oil content in rapeseed (Katavic V, et al., 2000, Biochem Soc Trans. 28:935-7).


Various patent applications disclose genes and proteins which can increase oil content in plants. These include for example, U.S. Pat. Appl. No. 20080076179 (lipid metabolism protein); U.S. Pat. Appl. No. 20060206961 (the Ypr140w polypeptide); U.S. Pat. Appl. No. 20060174373 [triacylglycerols synthesis enhancing protein (TEP)]; U.S. Pat. Appl. Nos. 20070169219, 20070006345, 20070006346 and 20060195943 (disclose transgenic plants with improved nitrogen use efficiency which can be used for the conversion into fuel or chemical feedstocks); WO2008/122980 (polynucleotides for increasing oil content, growth rate, biomass, yield and/or vigor of a plant).


Cotton and cotton by-products provide raw materials that are used to produce a wealth of consumer-based products in addition to textiles including cotton foodstuffs, livestock feed, fertilizer and paper. The production, marketing, consumption and trade of cotton-based products generate an excess of $100 billion annually in the U.S. alone, making cotton the number one value-added crop.


Even though 90% of cotton's value as a crop resides in the fiber (lint), yield and fiber quality has declined due to general erosion in genetic diversity of cotton varieties, and an increased vulnerability of the crop to environmental conditions.


There are many varieties of cotton plant, from which cotton fibers with a range to of characteristics can be obtained and used for various applications. Cotton fibers may be characterized according to a variety of properties, some of which are considered highly desirable within the textile industry for the production of increasingly high quality products and optimal exploitation of modem spinning technologies. Commercially desirable properties include length, length uniformity, fineness, maturity ratio, decreased fuzz fiber production, micronaire, bundle strength, and single fiber strength. Much effort has been put into the improvement of the characteristics of cotton fibers mainly focusing on fiber length and fiber fineness. In particular, there is a great demand for cotton fibers of specific lengths.


A cotton fiber is composed of a single cell that has differentiated from an epidermal cell of the seed coat, developing through four stages, i.e., initiation, elongation, secondary cell wall thickening and maturation stages. More specifically, the elongation of a cotton fiber commences in the epidermal cell of the ovule immediately following flowering, after which the cotton fiber rapidly elongates for approximately 21 days. Fiber elongation is then terminated, and a secondary cell wall is formed and grown through maturation to become a mature cotton fiber.


Several candidate genes which are associated with the elongation, formation, quality and yield of cotton fibers were disclosed in various patent applications such as U.S. Pat. No. 5,880,100 and U.S. patent application Ser. Nos. 08/580,545, 08/867,484 and 09/262,653 (describing genes involved in cotton fiber elongation stage); WO0245485 (improving fiber quality by modulating sucrose synthase); U.S. Pat. No. 6,472,588 and WO0117333 (increasing fiber quality by transformation with a DNA encoding sucrose phosphate synthase); WO9508914 (using a fiber-specific promoter and a coding sequence encoding cotton peroxidase); WO9626639 (using an ovary specific promoter sequence to express plant growth modifying hormones in cotton ovule tissue, for altering fiber quality characteristics such as fiber dimension and strength); U.S. Pat. No. 5,981,834, U.S. Pat. No. 5,597,718, U.S. Pat. No. 5,620,882, U.S. Pat. No. 5,521,708 and U.S. Pat. No. 5,495,070 (coding sequences to alter the fiber characteristics of transgenic fiber producing plants); U.S. patent applications U.S. 2002049999 and U.S. 2003074697 (expressing a gene coding for endoxyloglucan transferase, catalase or peroxidase for improving cotton fiber characteristics); WO 01/40250 (improving cotton fiber quality by modulating transcription factor gene expression); WO 96/40924 (a cotton fiber transcriptional initiation regulatory region associated which is expressed in cotton fiber); EP0834566 (a gene which controls the fiber formation mechanism in cotton plant); WO2005/121364 (improving cotton fiber quality by modulating gene expression); WO2008/075364 (improving fiber quality, yield/biomass/vigor and/or abiotic stress tolerance of plants).


A promoter is a nucleic acid sequence approximately 200-1500 base pairs (bp) in length which is typically located upstream of coding sequences. A promoter functions in directing transcription of an adjacent coding sequence and thus acts as a switch for gene expression in an organism. Thus, all cellular processes are ultimately governed by the activity of promoters, making such regulatory elements important research and commercial tools.


Promoters are routinely utilized for heterologous gene expression in commercial expression systems, gene therapy and a variety of research applications.


The choice of the promoter sequence determines when, where and how strongly the heterologous gene of choice is expressed. Accordingly, when a constitutive expression throughout an organism is desired, a constitutive promoter is preferably utilized. On the other hand, when triggered gene expression is desired, an inductive promoter is preferred. Likewise, when an expression is to be confined to a particular tissue, or a particular physiological or developmental stage, a tissue specific or a stage specific promoter is respectively preferred.


Constitutive promoters are active throughout the cell cycle and have been utilized to express heterologous genes in transgenic plants so as to enable expression of traits encoded by the heterologous genes throughout the plant at all times. Examples of known constitutive promoters often used for plant transformation include the cauliflower heat shock protein 80 (hsp80) promoter, 35S cauliflower mosaic virus promoter, nopaline synthase (nos) promoter, octopine (ocs) Agrobacterium promoter and the mannopine synthase (mas) Agrobacterium promoter.


Inducible promoters can be switched on by an inducing agent and are typically active as long as they are exposed to the inducing agent. The inducing agent can be a chemical agent, such as a metabolite, growth regulator, herbicide, or phenolic compound, or a physiological stress directly imposed upon the plant such as cold, heat, salt, toxins, or through the action of a microbial pathogen or an insecticidal pest. Accordingly, inducible promoters can be utilized to regulate expression of desired traits, such as genes that control insect pests or microbial pathogens, whereby the protein is only produced shortly upon infection or first bites of the insect and transiently so as to decrease selective pressure for resistant insects. For example, plants can be transformed to express insecticidal or fungicidal traits such as the Bacillus thuringiensis (Bt) toxins, viruses coat proteins, glucanases, chitinases or phytoalexins. In another example, plants can be transformed to tolerate herbicides by overexpressing, upon exposure to a herbicide, the acetohydroxy acid synthease enzyme, which neutralizes multiple types of herbicides [Hattori, J. et al., Mol. General. Genet. 246: 419 (1995)].


Several fruit-specific promoters have been described, including an apple-isolated Thi promoter (U.S. Pat. No. 6,392,122); a strawberry-isolated promoter (U.S. Pat. No. 6,080,914); tomato-isolated E4 and E8 promoters (U.S. Pat. No. 5,859,330); a polygalacturonase promoter (U.S. Pat. No. 4,943,674); and the 2AII tomato gene promoter [Van Haaren et al., Plant Mol. Biol. 21: 625-640 (1993)]. Such fruit specific promoters can be utilized, for example, to modify fruit ripening by regulating expression of ACC deaminase which inhibits biosynthesis of ethylene. Other gene products which may be desired to express in fruit tissue include genes encoding flavor or color traits, such as thaumatin, cyclase or sucrose phosphate synthase.


Seed specific promoters have been described in U.S. Pat. Nos. 6,403,862, 5,608,152 and 5,504,200; and in U.S. patent application Ser. Nos. 09/998,059 and 10/137,964. Such seed specific promoters can be utilized, for example, to alter the levels of saturated or unsaturated fatty acids; to increase levels of lysine- or sulfur-containing amino acids, or to modify the amount of starch contained in seeds.


Several promoters which regulate gene expression specifically during germination stage have been described, including the α-glucoronidase and the cystatin-1 barely-isolated promoters (U.S. Pat. No. 6,359,196), and the hydrolase promoter [Skriver et al., Proc. Natl. Acad. Sci. USA, 88:7266-7270 (1991)].


WO2004/081173 discloses novel plant derived regulatory sequences and constructs and methods of using same for directing expression of exogenous polynucleotide sequences in plants.


SUMMARY OF THE INVENTION

According to an aspect of some embodiments of the present invention there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8090 or 8091, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


According to an aspect of some embodiments of the present invention there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


According to an aspect of some embodiments of the present invention there is provided a method of increasing oil content, fiber yield and/or fiber quality of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 5470, 5476, or 5481, thereby increasing the oil content, fiber yield and/or fiber quality of the plant.


According to an aspect of some embodiments of the present invention there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4850 or 4851, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


According to an aspect of some embodiments of the present invention there is to provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


According to an aspect of some embodiments of the present invention there is provided a method of increasing oil content, fiber yield and/or fiber quality of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 1627, 1629, or 1631, thereby increasing the oil content, fiber yield and/or fiber quality of the plant.


According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least 80% homologous to the amino acid sequence set forth in SEQ ID NO: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8090 or 8091, wherein the amino acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.


According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.


According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4850 or 4851, wherein the nucleic acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.


According to an aspect of some embodiments of the present invention there is to provided an isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising the isolated polynucleotide of some embodiments of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.


According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising an amino acid sequence at least 80% homologous to SEQ ID NO: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8090 or 8091, wherein the amino acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.


According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.


According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, or the nucleic acid construct of some embodiments of the invention.


According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polypeptide of some embodiments of the invention.


According to an aspect of some embodiments of the present invention there is provided a transgenic plant exogenously expressing the isolated polynucleotide of some embodiments of the invention.


According to an aspect of some embodiments of the present invention there is provided a transgenic plant comprising the nucleic acid construct of some embodiments of the invention.


According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising the nucleic acid sequence set forth by SEQ ID NO: 8096.


According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising the isolated polynucleotide of some embodiments of the invention.


According to an aspect of some embodiments of the present invention there is provided a transgenic cell comprising the nucleic acid construct of some embodiments of the invention.


According to an aspect of some embodiments of the present invention there is provided a transgenic plant comprising the nucleic acid construct of some embodiments of the invention.


According to an aspect of some embodiments of the present invention there is provided a method of producing a transgenic plant, comprising transforming a plant with the isolated polynucleotide of some embodiments of the invention or with the nucleic acid construct of some embodiments of the invention.


According to an aspect of some embodiments of the present invention there is provided a method of expressing a polypeptide of interest in a cell comprising transforming the cell with a nucleic acid construct which comprises a polynucleotide sequence encoding the polypeptide of interest operably linked to the isolated polynucleotide of some embodiments of the invention, thereby expressing the polypeptide of interest in the cell.


According to some embodiments of the invention, the nucleic acid sequence encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.


According to some embodiments of the invention, the nucleic acid sequence is selected from the group consisting of SEQ ID NOs:1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


According to some embodiments of the invention, the polynucleotide consists of the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


According to some embodiments of the invention, the nucleic acid sequence encodes the amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.


According to some embodiments of the invention, the plant cell forms part of a plant.


According to some embodiments of the invention, the promoter is heterologous to the isolated polynucleotide and/or to the host cell.


According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.


According to some embodiments of the invention, the abiotic stress is selected from the group consisting of salinity, drought, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.


According to some embodiments of the invention, the yield comprises seed yield or oil yield.


According to some embodiments of the invention, the promoter is set forth by SEQ ID NO: 8096.


According to some embodiments of the invention, the nucleic acid construct further comprising at least one heterologous polynucleotide operably linked to the isolated polynucleotide.


According to some embodiments of the invention, the at least one heterologous polynucleotide is a reporter gene.


According to some embodiments of the invention, the nucleic acid construct further comprising a heterologous polynucleotide operably linked to the isolated polynucleotide.


According to some embodiments of the invention, the heterologous to polynucleotide comprises the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


According to some embodiments of the invention, the transgenic cell of some embodiments of the invention, being a plant cell.


According to some embodiments of the invention, the polypeptide of interest comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.


According to some embodiments of the invention, the polynucleotide encoding the polypeptide of interest comprises the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.


In the drawings:



FIG. 1 is a schematic illustration of the modified pGI binary plasmid containing to the new At6669 promoter (SEQ ID NO:8096) and the GUSintron (pQYN6669) used for expressing the isolated polynucleotide sequences of the invention. RB—T-DNA right border; LB—T-DNA left border; MCS—Multiple cloning site; RE—any restriction enzyme; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); GUSintron—the GUS reporter gene (coding sequence and intron). The isolated polynucleotide sequences of the invention were cloned into the vector while replacing the GUSintron reporter gene.



FIG. 2 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO:8096) (pQFN or pQFNc) used for expressing the isolated polynucleotide sequences of the invention. RB—T-DNA right border; LB—T-DNA left border; MCS—Multiple cloning site; RE—any restriction enzyme; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); GUSintron—the GUS reporter gene (coding sequence and intron). The isolated polynucleotide sequences of the invention were cloned into the MCS of the vector.



FIGS. 3A-F are images depicting visualization of root development of transgenic plants exogenously expressing the polynucleotide of some embodiments of the invention when grown in transparent agar plates under normal (FIGS. 3A-B), osmotic stress (15% PEG; FIGS. 3C-D) or nitrogen-limiting (FIGS. 3E-F) conditions. The different transgenes were grown in transparent agar plates for 17 days (7 days nursery and 10 days after transplanting). The plates were photographed every 3-4 days starting at day 1 after transplanting. FIG. 3A—An image of a photograph of plants taken following 10 after transplanting days on agar plates when grown under normal (standard) conditions. FIG. 3B—An image of root analysis of the plants shown in FIG. 3A in which the lengths of the roots measured are represented by arrows. FIG. 3C—An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under high osmotic (PEG 15%) conditions. FIG. 3D—An image of root analysis of the plants shown in FIG. 3C in which the lengths of the roots measured are represented by arrows. FIG. 3E—An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under low nitrogen conditions. FIG. 3F—An image of root analysis of the plants shown in FIG. 3E in which the lengths of the roots measured are represented by arrows.



FIG. 4 is a schematic illustration of the modified pGI binary plasmid containing the Root Promoter (pQNa_RP) used for expressing the isolated polynucleotide sequences of the invention. RB—T-DNA right border; LB—T-DNA left border; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); The isolated polynucleotide sequences according to some embodiments of the invention were cloned into the MCS of the vector.



FIG. 5 depicts sequence alignment between the novel promoter sequence (SEQ ID NO:8096) identified herein from Arabidopsis thaliana and the previously disclosed Arabidopsis At6669 promoter (WO2004/081173; set forth by SEQ ID NO:8093 herein). Mismatched nucleotides are underlined in positions 270; 484; 867-868; 967; 2295 and 2316-2318 of SEQ ID NO: 8096. New Domains are marked with an empty box in positions 862-865; 2392-2395 and 2314-2317 of SEQ ID NO:8096. Note that the YACT regulatory element at position 862-865 and the AAAG regulatory element at positions 2392-2395 and 2314-2317 of the novel promoter sequence (SEQ ID NO:8096) are absent in the previously disclosed At6669 promoter (SEQ ID NO:8093).



FIG. 6 is a schematic illustration of the pQYN plasmid.



FIG. 7 is a schematic illustration of the pQFN plasmid.



FIG. 8 is a schematic illustration of the pQFYN plasmid.



FIGS. 9A-D are images depicting GUS staining in 11 day-old A. thaliana seedlings which were transformed with the GUS intron expression cassette under the novel At6669 promoter (SEQ ID NO:8096). Note that the novel promoter sequence p6669 induces GUS expression (blue staining) in 11 day-old seedling of A. thaliana, especially in roots, cotyledons and leaves. GUS expression is demonstrated for 4 indepented events (event numbers 12516, 12515, 12512, 12511).



FIGS. 10A-D are images depicting GUS staining in 20-day-old A. thaliana seedlings which were transformed with the GUS intron expression cassette under the novel At6669 promoter (SEQ ID NO:8096). Note that the novel promoter sequence p6669 induces GUS expression (blue staining) in 20 day-old A. thaliana, especially in roots mainly root tip and leaves. GUS expression is demonstrated for 4 indepented events (event numbers 12516, 12515, 12512, 12511).



FIGS. 11A-L are images depicting GUS staining in 41-day-old A. thaliana seedlings which were transformed with the GUS intron expression cassette under the novel At6669 promoter (SEQ ID NO:8096). Note that the novel promoter sequence p6669 induces GUS expression (blue staining) in 41 day old A. thaliana, especially in the stem, roots mainly root tip. Strong expression was detected in flower, leaves and cauline leaves. GUS expression is demonstrated for 4 indepented events: FIGS. 11A-C—event 12511; FIGS. 11D-F—event 12516; FIGS. 11G-I—event 12515; FIGS. 11J-L—event 12512.



FIG. 12 is a schematic illustration of the modified pGI binary plasmid used for expressing the isolated polynucleotide sequences of some embodiments of the invention. RB—T-DNA right border; LB—T-DNA left border; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; RE=any restriction enzyme; Poly-A signal (polyadenylation signal); 35S—the 35S promoter (SEQ ID NO:8094). The isolated polynucleotide sequences of some embodiments of the invention were cloned into the MCS (Multiple cloning site) of the vector.





DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION

The present invention, in some embodiments thereof, relates to isolated polynucleotides and polypeptides, nucleic acid constructs encoding same, cells expressing same, transgenic plants expressing same and methods of using same for increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.


The present inventors have identified novel polypeptides and polynucleotides which can be used to increase yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality abiotic stress tolerance, and/or fertilizer use efficiency (e.g., nitrogen use efficiency) of a plant, and a novel regulatory sequence which can be used to express heterologous genes in host cells such as in plants.


Thus, as shown in the Examples section which follows, the present inventors have utilized bioinformatics tools to identify polynucleotides which enhance yield (e.g., seed yield, oil yield, oil content), growth rate, biomass, vigor, fiber yield, fiber quality, abiotic stress tolerance and/or nitrogen use efficiency) of a plant. Genes which affect the trait-of-interest were identified (Table 27, Example 10) based on correlation analyses performed using Arabidopsis ecotypes (Examples 2 and 3), tomato varieties (Example 4), b. Juncea ecotypes (Examples 5 and 6), Sorghum varieties (Example 7), Maize hybrids (Example 8) and the expression profiles of the genes according to selected expression sets (e.g., tissues, developmental stages and stress conditions) (Tables 1-26, Examples 1-9). Homologous polypeptides and polynucleotides having the same function were also identified (Table 28, Example 11). The identified polynucleotides were cloned into binary vectors (Example 12, Table 29) and transgenic plants over-expressing the identified polynucleotides and polypeptides were generated (Example 13) and further tested for the effect of the exogenous gene on the trait of interest (e.g., increased fresh and dry weight, leaf area, root coverage and length, relative growth rate (RGR) of leaf area, RGR of root coverage, RGR of root length, seed yield, oil yield, dry matter, harvest index, growth rate, rosette area, rosette diameter, RGR leaf number, RGR plot coverage, RGR rosette diameter, leaf blade area, oil percentage in seed and weight of 1000 seeds, plot coverage, tolerance to abiotic stress conditions and to fertilizer limiting conditions; Examples 14-16; Tables 30-48). In addition, as is further shown in the Examples section which follows, the present inventors have uncovered a novel promoter sequence which can be used to express the gene-of-interest in a host cell (Example 17, FIGS. 5, 8-11). Altogether, these results suggest the use of the novel polynucleotides and polypeptides of the invention for increasing yield (including oil yield, seed yield and oil content), growth rate, biomass, vigor, fiber yield, fiber quality, abiotic stress tolerance and/or nitrogen use efficiency of a plant.


Thus, according to an aspect of some embodiments of the invention, there is provided method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4850 or 4851, thereby increasing the yield, to biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


As used herein the phrase “plant yield” refers to the amount (e.g., as determined by weight or size) or quantity (numbers) of tissues or organs produced per plant or per growing season. Hence increased yield could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time.


It should be noted that a plant yield can be affected by various parameters including, but not limited to, plant biomass; plant vigor; growth rate; seed yield; seed or grain quantity; seed or grain quality; oil yield; content of oil, starch and/or protein in harvested organs (e.g., seeds or vegetative parts of the plant); number of flowers (florets) per panicle (expressed as a ratio of number of filled seeds over number of primary panicles); harvest index; number of plants grown per area; number and size of harvested organs per plant and per area; number of plants per growing area (density); number of harvested organs in field; total leaf area; carbon assimilation and carbon partitioning (the distribution/allocation of carbon within the plant); resistance to shade; number of harvestable organs (e.g. seeds), seeds per pod, weight per seed; and modified architecture [such as increase stalk diameter, thickness or improvement of physical properties (e.g. elasticity)].


As used herein the phrase “seed yield” refers to the number or weight of the seeds per plant, seeds per pod, or per growing area or to the weight of a single seed, or to the oil extracted per seed. Hence seed yield can be affected by seed dimensions (e.g., length, width, perimeter, area and/or volume), number of (filled) seeds and seed filling rate and by seed oil content. Hence increase seed yield per plant could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time; and increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants grown on the same given area.


The term “seed” (also referred to as “grain” or “kernel”) as used herein refers to a small embryonic plant enclosed in a covering called the seed coat (usually with some stored food), the product of the ripened ovule of gymnosperm and angiosperm plants which occurs after fertilization and some growth within the mother plant.


The phrase “oil content” as used herein refers to the amount of lipids in a given to plant organ, either the seeds (seed oil content) or the vegetative portion of the plant (vegetative oil content) and is typically expressed as percentage of dry weight (10% humidity of seeds) or wet weight (for vegetative portion).


It should be noted that oil content is affected by intrinsic oil production of a tissue (e.g., seed, vegetative portion), as well as the mass or size of the oil-producing tissue per plant or per growth period.


In one embodiment, increase in oil content of the plant can be achieved by increasing the size/mass of a plant's tissue(s) which comprise oil per growth period. Thus, increased oil content of a plant can be achieved by increasing the yield, growth rate, biomass and vigor of the plant.


As used herein the phrase “plant biomass” refers to the amount (e.g., measured in grams of air-dry tissue) of a tissue produced from the plant in a growing season, which could also determine or affect the plant yield or the yield per growing area. An increase in plant biomass can be in the whole plant or in parts thereof such as aboveground (harvestable) parts, vegetative biomass, roots and seeds.


As used herein the phrase “growth rate” refers to the increase in plant organ/tissue size per time (can be measured in cm2 per day).


As used herein the phrase “plant vigor” refers to the amount (measured by weight) of tissue produced by the plant in a given time. Hence increased vigor could determine or affect the plant yield or the yield per growing time or growing area. In addition, early vigor (seed and/or seedling) results in improved field stand.


It should be noted that a plant yield can be determined under stress (e.g., abiotic stress, nitrogen-limiting conditions) and/or non-stress (normal) conditions.


Improving early vigor is an important objective of modern rice breeding programs in both temperate and tropical rice cultivars. Long roots are important for proper soil anchorage in water-seeded rice. Where rice is sown directly into flooded fields, and where plants must emerge rapidly through water, longer shoots are associated with vigor. Where drill-seeding is practiced, longer mesocotyls and coleoptiles are important for good seedling emergence. The ability to engineer early vigor into plants would be of great importance in agriculture. For example, poor early vigor has been a limitation to the introduction of maize (Zea mays L.) hybrids based on Corn Belt germplasm in the European Atlantic.


As used herein, the phrase “non-stress conditions” refers to the growth conditions (e.g., water, temperature, light-dark cycles, humidity, salt concentration, fertilizer concentration in soil, nutrient supply such as nitrogen, phosphorous and/or potassium), that do not significantly go beyond the everyday climatic and other abiotic conditions that plants may encounter, and which allow optimal growth, metabolism, reproduction and/or viability of a plant at any stage in its life cycle (e.g., in a crop plant from seed to a mature plant and back to seed again). Persons skilled in the art are aware of normal soil conditions and climatic conditions for a given plant in a given geographic location. It should be noted that while the non-stress conditions may include some mild variations from the optimal conditions (which vary from one type/species of a plant to another), such variations do not cause the plant to cease growing without the capacity to resume growth.


The phrase “abiotic stress” as used herein refers to any adverse effect on metabolism, growth, reproduction and/or viability of a plant. Accordingly, abiotic stress can be induced by suboptimal environmental growth conditions such as, for example, salinity, water deprivation, flooding, freezing, low or high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, atmospheric pollution or UV irradiation. The implications of abiotic stress are discussed in the Background section.


The phrase “abiotic stress tolerance” as used herein refers to the ability of a plant to endure an abiotic stress without suffering a substantial alteration in metabolism, growth, productivity and/or viability.


Plants are subject to a range of environmental challenges. Several of these, including salt stress, general osmotic stress, drought stress and freezing stress, have the ability to impact whole plant and cellular water availability. Not surprisingly, then, plant responses to this collection of stresses are related. Zhu (2002) Ann. Rev. Plant Biol. 53: 247-273 et al. note that “most studies on water stress signaling have focused on salt stress primarily because plant responses to salt and drought are closely related and the mechanisms overlap”. Many examples of similar responses and pathways to this set of stresses have been documented. For example, the CBF transcription factors have been shown to condition resistance to salt, freezing and drought (Kasuga et al. (1999) Nature Biotech. 17: 287-291). The Arabidopsis rd29B gene is induced in response to both salt and dehydration stress, a process that is mediated largely through an ABA signal transduction process (Uno et al. (2000) Proc. Natl. Acad. Sci. USA 97: 11632-11637), resulting in altered activity of transcription factors that bind to an upstream element within the rd29B promoter. In Mesembryanthemum crystallinum (ice plant), Patharker and Cushman have shown that a calcium-dependent protein kinase (McCDPK1) is induced by exposure to both drought and salt stresses (Patharker and Cushman (2000) Plant J. 24: 679-691). The stress-induced kinase was also shown to phosphorylate a transcription factor, presumably altering its activity, although transcript levels of the target transcription factor are not altered in response to salt or drought stress. Similarly, Saijo et al. demonstrated that a rice salt/drought-induced calmodulin-dependent protein kinase (OsCDPK7) conferred increased salt and drought tolerance to rice when overexpressed (Saijo et al. (2000) Plant J. 23: 319-327).


Exposure to dehydration invokes similar survival strategies in plants as does freezing stress (see, for example, Yelenosky (1989) Plant Physiol 89: 444-451) and drought stress induces freezing tolerance (see, for example, Siminovitch et al. (1982) Plant Physiol 69: 250-255; and Guy et al. (1992) Planta 188: 265-270). In addition to the induction of cold-acclimation proteins, strategies that allow plants to survive in low water conditions may include, for example, reduced surface area, or surface oil or wax production. In another example increased solute content of the plant prevents evaporation and water loss due to heat, drought, salinity, osmoticum, and the like therefore providing a better plant tolerance to the above stresses.


It will be appreciated that some pathways involved in resistance to one stress (as described above), will also be involved in resistance to other stresses, regulated by the same or homologous genes. Of course, the overall resistance pathways are related, not identical, and therefore not all genes controlling resistance to one stress will control resistance to the other stresses. Nonetheless, if a gene conditions resistance to one of these stresses, it would be apparent to one skilled in the art to test for resistance to these related stresses. Methods of assessing stress resistance are further provided in the Examples section which follows.


As used herein the phrase “water use efficiency (WUE)” refers to the level of organic matter produced per unit of water consumed by the plant, i.e., the dry weight of a plant in relation to the plant's water use, e.g., the biomass produced per unit transpiration.


As used herein the phrase “fertilizer use efficiency” refers to the metabolic process(es) which lead to an increase in the plant's yield, biomass, vigor, and growth rate per fertilizer unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of one or more of the minerals and organic moieties absorbed by the plant, such as nitrogen, phosphates and/or potassium.


As used herein the phrase “fertilizer-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of a fertilizer applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.


As used herein the phrase “nitrogen use efficiency (NUE)” refers to the metabolic process(es) which lead to an increase in the plant's yield, biomass, vigor, and growth rate per nitrogen unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of nitrogen absorbed by the plant.


As used herein the phrase “nitrogen-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of nitrogen (e.g., ammonium or nitrate) applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.


Improved plant NUE and FUE is translated in the field into either harvesting similar quantities of yield, while implementing less fertilizers, or increased yields gained by implementing the same levels of fertilizers. Thus, improved NUE or FUE has a direct effect on plant yield in the field. Thus, the polynucleotides and polypeptides of some embodiments of the invention positively affect plant yield, seed yield, and plant biomass. In addition, the benefit of improved plant NUE will certainly improve crop quality and biochemical constituents of the seed such as protein yield and oil yield.


It should be noted that improved ABST will confer plants with improved vigor also under non-stress conditions, resulting in crops having improved biomass and/or yield e.g., elongated fibers for the cotton industry, higher oil content.


The term “fiber” is usually inclusive of thick-walled conducting cells such as vessels and tracheids and to fibrillar aggregates of many individual fiber cells. Hence, the term “fiber” refers to (a) thick-walled conducting and non-conducting cells of the xylem; (b) fibers of extraxylary origin, including those from phloem, bark, ground tissue, and epidermis; and (c) fibers from stems, leaves, roots, seeds, and flowers or inflorescences (such as those of Sorghum vulgare used in the manufacture of brushes and brooms).


Example of fiber producing plants, include, but are not limited to, agricultural crops such as cotton, silk cotton tree (Kapok, Ceiba pentandra), desert willow, creosote bush, winterfat, balsa, kenaf, roselle, jute, sisal abaca, flax, corn, sugar cane, hemp, ramie, kapok, coir, bamboo, spanish moss and Agave spp. (e.g. sisal).


As used herein the phrase “fiber quality” refers to at least one fiber parameter which is agriculturally desired, or required in the fiber industry (further described hereinbelow). Examples of such parameters, include but are not limited to, fiber length, fiber strength, fiber fitness, fiber weight per unit length, maturity ratio and uniformity (further described hereinbelow.


Cotton fiber (lint) quality is typically measured according to fiber length, strength and fineness. Accordingly, the lint quality is considered higher when the fiber is longer, stronger and finer.


As used herein the phrase “fiber yield” refers to the amount or quantity of fibers produced from the fiber producing plant.


As used herein the term “increasing” refers to at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, increase in yield, seed yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant as compared to a native plant [i.e., a plant not modified with the biomolecules (polynucleotide or polypeptides) of the invention, e.g., a non-transformed plant of the same species which is grown under the same growth conditions).


The phrase “expressing within the plant an exogenous polynucleotide” as used herein refers to upregulating the expression level of an exogenous polynucleotide within the plant by introducing the exogenous polynucleotide into a plant cell or a plant and expressing by recombinant means, as further described herein below.


As used herein “expressing” refers to expression at the mRNA and optionally to polypeptide level.


As used herein, the phrase “exogenous polynucleotide” refers to a heterologous nucleic acid sequence which may not be naturally expressed within the plant or which overexpression in the plant is desired. The exogenous polynucleotide may be introduced into the plant in a stable or transient manner, so as to produce a ribonucleic acid (RNA) molecule and/or a polypeptide molecule. It should be noted that the exogenous polynucleotide may comprise a nucleic acid sequence which is identical or partially homologous to an endogenous nucleic acid sequence of the plant.


The term “endogenous” as used herein refers to any polynucleotide or polypeptide which is present and/or naturally expressed within a plant or a cell thereof. According to some embodiments of the invention the exogenous polynucleotide comprises a nucleic acid sequence which is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851.


According to some embodiments of the invention, the homology is a global homology, i.e., an homology over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.


According to some embodiments of the invention, the identity is a global identity, i.e., an identity over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.


Identity (e.g., percent homology) can be determined using any homology comparison software, including for example, the BlastN software of the National Center of Biotechnology Information (NCBI) such as by using default parameters.


According to some embodiments of the invention the exogenous polynucleotide is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least to about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs:1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851.


According to some embodiments of the invention the exogenous polynucleotide is set forth by SEQ ID NO: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, or 1644.


According to an aspect of some embodiments of the invention, there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


According to some embodiments of the invention the exogenous polynucleotide is set forth by the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


According to an aspect of some embodiments of the invention, there is provided a method of increasing oil content, fiber yield and/or fiber quality of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs:1627, 1629 and 1631, thereby increasing the oil content, fiber yield and/or fiber quality of the plant.


According to an aspect of some embodiments of the invention, there is provided a method of increasing oil content, fiber yield and/or fiber quality of a plant, comprising expressing within the plant an exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1627, 1629, and 1631, thereby increasing the oil content, fiber yield and/or fiber quality of the plant.


According to some embodiments of the invention the exogenous polynucleotide is set forth by the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1627, 1629, and 1631.


As used herein the term “polynucleotide” refers to a single or double stranded nucleic acid sequence which is isolated and provided in the form of an RNA sequence, a complementary polynucleotide sequence (cDNA), a genomic polynucleotide sequence and/or a composite polynucleotide sequences (e.g., a combination of the above).


The term “isolated” refers to at least partially separated from the natural environment e.g., from a plant cell.


As used herein the phrase “complementary polynucleotide sequence” refers to a sequence, which results from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such a sequence can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.


As used herein the phrase “genomic polynucleotide sequence” refers to a sequence derived (isolated) from a chromosome and thus it represents a contiguous portion of a chromosome.


As used herein the phrase “composite polynucleotide sequence” refers to a sequence, which is at least partially complementary and at least partially genomic. A composite sequence can include some exonal sequences required to encode the polypeptide of the present invention, as well as some intronic sequences interposing therebetween. The intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements.


According to some embodiments of the invention, the exogenous polynucleotide of the invention encodes a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs:488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, and 5558-8091.


Homology (e.g., percent homology) can be determined using any homology comparison software, including for example, the BlastP or TBLASTN software of the National Center of Biotechnology Information (NCBI) such as by using default parameters, when starting from a polypeptide sequence; or the tBLASTX algorithm (available via the NCBI) such as by using default parameters, which compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database.


Homologous sequences include both orthologous and paralogous sequences. The term “paralogous” relates to gene-duplications within the genome of a species leading to paralogous genes. The term “orthologous” relates to homologous genes in different organisms due to ancestral relationship.


One option to identify orthologues in monocot plant species is by performing a reciprocal blast search. This may be done by a first blast involving blasting the sequence-of-interest against any sequence database, such as the publicly available NCBI database which may be found at: Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov. If orthologues in rice were sought, the sequence-of-interest would be blasted against, for example, the 28,469 full-length cDNA clones from Oryza sativa Nipponbare available at NCBI. The blast results may be filtered. The full-length sequences of either the filtered results or the non-filtered results are then blasted back (second blast) against the sequences of the organism from which the sequence-of-interest is derived. The results of the first and second blasts are then compared. An orthologue is identified when the sequence resulting in the highest score (best hit) in the first blast identifies in the second blast the query sequence (the original sequence-of-interest) as the best hit. Using the same rational a paralogue (homolog to a gene in the same organism) is found. In case of large sequence families, the ClustalW program may be used [Hypertext Transfer Protocol://World Wide Web (dot) ebi (dot) ac (dot) uk/Tools/clustalw2/index (dot) html], followed by a neighbor-joining tree (Hypertext Transfer Protocol://en (dot) wikipedia (dot) org/wiki/Neighbor-joining) which helps visualizing the clustering.


According to some embodiments of the invention, the exogenous polynucleotide of the invention encodes a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs:488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, and 5558-8091.


According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, 5554-5556 or 5557.


According to an aspect of some embodiments of the invention, the method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs:488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, and 5558-8091, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


According to an aspect of some embodiments of the invention, the method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid to sequence encoding a polypeptide at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs:488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, and 5558-8091, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


According to an aspect of some embodiments of the invention, the method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs:488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


According to an aspect of some embodiments of the invention, there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.


According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, 5554-5556 or 5557.


According to an aspect of some embodiments of the invention, there is provided a method of increasing oil content, fiber yield and/or fiber quality of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 5470, 5476, and 5481, thereby increasing the oil content, fiber yield and/or fiber quality of the plant.


According to an aspect of some embodiments of the invention, the method of increasing oil content, fiber yield and/or fiber quality of a plant is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 5470, 5476, and 5481, thereby increasing the oil content, fiber yield and/or fiber quality of a plant.


According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 5470, 5476, or 5481.


Nucleic acid sequences encoding the polypeptides of the present invention may be optimized for expression. Examples of such sequence modifications include, but are not limited to, an altered G/C content to more closely approach that typically found in the plant species of interest, and the removal of codons atypically found in the plant species commonly referred to as codon optimization.


The phrase “codon optimization” refers to the selection of appropriate DNA nucleotides for use within a structural gene or fragment thereof that approaches codon usage within the plant of interest. Therefore, an optimized gene or nucleic acid sequence refers to a gene in which the nucleotide sequence of a native or naturally occurring gene has been modified in order to utilize statistically-preferred or statistically-favored codons within the plant. The nucleotide sequence typically is examined at the DNA level and the coding region optimized for expression in the plant species determined using any suitable procedure, for example as described in Sardana et al. (1996, Plant Cell Reports 15:677-681). In this method, the standard deviation of codon usage, a measure of codon usage bias, may be calculated by first finding the squared proportional deviation of usage of each codon of the native gene relative to that of highly expressed plant genes, followed by a calculation of the average squared deviation. The formula used is: 1 SDCU=n=1N[(Xn−Yn)/Yn]2/N, where Xn refers to the frequency of usage of codon n in highly expressed plant genes, where Yn to the frequency of usage of codon n in the gene of interest and N refers to the total number of codons in the gene of interest. A Table of codon usage from highly expressed genes of dicotyledonous plants is compiled using the data of Murray et al. (1989, Nuc Acids Res. 17:477-498).


One method of optimizing the nucleic acid sequence in accordance with the preferred codon usage for a particular plant cell type is based on the direct use, without performing any extra statistical calculations, of codon optimization Tables such as those provided on-line at the Codon Usage Database through the NIAS (National Institute of Agrobiological Sciences) DNA bank in Japan (Hypertext Transfer Protocol://World Wide Web (dot) kazusa (dot) or (dot) jp/codon/). The Codon Usage Database contains codon usage tables for a number of different species, with each codon usage Table having been statistically determined based on the data present in Genbank.


By using the above Tables to determine the most preferred or most favored codons for each amino acid in a particular species (for example, rice), a naturally-occurring nucleotide sequence encoding a protein of interest can be codon optimized for that particular plant species. This is effected by replacing codons that may have a low statistical incidence in the particular species genome with corresponding codons, in regard to an amino acid, that are statistically more favored. However, one or more less-favored codons may be selected to delete existing restriction sites, to create new ones at potentially useful junctions (5′ and 3′ ends to add signal peptide or termination cassettes, internal sites that might be used to cut and splice segments together to produce a correct full-length sequence), or to eliminate nucleotide sequences that may negatively effect mRNA stability or expression.


The naturally-occurring encoding nucleotide sequence may already, in advance to of any modification, contain a number of codons that correspond to a statistically-favored codon in a particular plant species. Therefore, codon optimization of the native nucleotide sequence may comprise determining which codons, within the native nucleotide sequence, are not statistically-favored with regards to a particular plant, and modifying these codons in accordance with a codon usage table of the particular plant to produce a codon optimized derivative. A modified nucleotide sequence may be fully or partially optimized for plant codon usage provided that the protein encoded by the modified nucleotide sequence is produced at a level higher than the protein encoded by the corresponding naturally occurring or native gene. Construction of synthetic genes by altering the codon usage is described in for example PCT Patent Application 93/07278.


According to some embodiments of the invention, the exogenous polynucleotide is a non-coding RNA.


As used herein the phrase ‘non-coding RNA” refers to an RNA molecule which does not encode an amino acid sequence (a polypeptide). Examples of such non-coding RNA molecules include, but are not limited to, an antisense RNA, a pre-miRNA (precursor of a microRNA), or a precursor of a Piwi-interacting RNA (piRNA).


Non-limiting examples of non-coding RNA polynucleotides are provided in SEQ ID NOs: 211-217, 278-284, 486 and 487.


Thus, the invention encompasses nucleic acid sequences described hereinabove; fragments thereof, sequences hybridizable therewith, sequences homologous thereto, sequences encoding similar polypeptides with different codon usage, altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion.


The invention provides an isolated polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs:1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851.


According to some embodiments of the invention the nucleic acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.


According to some embodiments of the invention the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


According to some embodiments of the invention the isolated polynucleotide is set forth by SEQ ID NO: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, or 1644.


The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, and 5558-8091.


According to some embodiments of the invention the amino acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.


The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.


The invention provides an isolated polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least to about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to an amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, and 5558-8091.


According to some embodiments of the invention the amino acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.


According to some embodiments of the invention, the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.


According to some embodiments of the invention, the polypeptide is set forth by SEQ ID NO: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, 5554-5556 or 5557.


According to an aspect of some embodiments of the invention there is provided a nucleic acid construct comprising the isolated polynucleotide of the invention and a promoter for directing transcription of the nucleic acid sequence in a host cell.


The invention also encompasses fragments of the above described polypeptides and polypeptides having mutations, such as deletions, insertions or substitutions of one or more amino acids, either naturally occurring or man induced, either randomly or in a targeted fashion.


The term ‘“plant” as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, roots (including tubers), and plant cells, tissues and organs. The plant may be in any form including suspension cultures, embryos, meristematic regions, callus tissue, leaves, gametophytes, sporophytes, pollen, and microspores. Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp, Areca catechu, Astelia fragrans, Astragalus cicer, Baikiaea plurijuga, Betula spp., Brassica spp., Bruguiera gymnorrhiza, Burkea africana, Butea frondosa, Cadaba farinosa, Calliandra spp, Camellia sinensis, Canna indica, Capsicum spp., Cassia spp., Centroema pubescens, Chacoomeles spp., Cinnamomum cassia, Coffea arabica, Colophospermum mopane, Coronillia varia, Cotoneaster serotina, Crataegus spp., Cucumis spp., Cupressus spp., Cyathea dealbata, Cydonia oblonga, Cryptomeria japonica, Cymbopogon spp., Cynthea dealbata, Cydonia oblonga, Dalbergia monetaria, Davallia divaricata, Desmodium spp., Dicksonia squarosa, Dibeteropogon amplectens, Dioclea spp, Dolichos spp., Dorycnium rectum, Echinochloa pyramidalis, Ehraffia spp., Eleusine coracana, Eragrestis spp., Erythrina spp., Eucalypfus spp., Euclea schimperi, Eulalia vi/losa, Pagopyrum spp., Feijoa sellowlana, Fragaria spp., Flemingia spp, Freycinetia banksli, Geranium thunbergii, GinAgo biloba, Glycine javanica, Gliricidia spp, Gossypium hirsutum, Grevillea spp., Guibourtia coleosperma, Hedysarum spp., Hemaffhia altissima, Heteropogon contoffus, Hordeum vulgare, Hyparrhenia rufa, Hypericum erectum, Hypeffhelia dissolute, Indigo incamata, Iris spp., Leptarrhena pyrolifolia, Lespediza spp., Lettuca spp., Leucaena leucocephala, Loudetia simplex, Lotonus bainesli, Lotus spp., Macrotyloma axillare, Malus spp., Manihot esculenta, Medicago saliva, Metasequoia glyptostroboides, Musa sapientum, Nicotianum spp., Onobrychis spp., Ornithopus spp., Oryza spp., Peltophorum africanum, Pennisetum spp., Persea gratissima, Petunia spp., Phaseolus spp., Phoenix canariensis, Phormium cookianum, Photinia spp., Picea glauca, Pinus spp., Pisum sativam, Podocarpus totara, Pogonarthria fleckii, Pogonaffhria squarrosa, Populus spp., Prosopis cineraria, Pseudotsuga menziesii, Pterolobium stellatum, Pyrus communis, Quercus spp., Rhaphiolepsis umbellata, Rhopalostylis sapida, Rhus natalensis, Ribes grossularia, Ribes spp., Robinia pseudoacacia, Rosa spp., Rubus spp., Salix spp., Schyzachyrium sanguineum, Sciadopitys vefficillata, Sequoia sempervirens, Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburus alopecuroides, Stylosanthos humilis, Tadehagi spp, Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp., Vitis vinifera, Watsonia pyramidata, Zantedeschia aethiopica, Zea mays, amaranth, artichoke, asparagus, broccoli, Brussels sprouts, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed rape, okra, onion, potato, rice, soybean, straw, sugar beet, sugar cane, sunflower, tomato, squash tea, maize, wheat, barely, rye, oat, peanut, pea, lentil and alfalfa, cotton, rapeseed, canola, pepper, sunflower, tobacco, eggplant, eucalyptus, a tree, an ornamental plant, a perennial grass and a forage crop. Alternatively algae and other non-Viridiplantae can be used for the methods of the present invention.


According to some embodiments of the invention, the plant used by the method of the invention is a crop plant such as rice, maize, wheat, barley, peanut, potato, sesame, olive tree, palm oil, banana, soybean, sunflower, canola, sugarcane, alfalfa, millet, leguminosae (bean, pea), flax, lupinus, rapeseed, tobacco, poplar and cotton.


According to some embodiments of the invention, there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, the nucleic acid construct of some embodiments of the invention and/or the polypeptide of some embodiments of the invention.


According to some embodiments of the invention, expressing the exogenous polynucleotide of the invention within the plant is effected by transforming one or more cells of the plant with the exogenous polynucleotide, followed by generating a mature plant from the transformed cells and cultivating the mature plant under conditions suitable for expressing the exogenous polynucleotide within the mature plant.


According to some embodiments of the invention, the transformation is effected by introducing to the plant cell a nucleic acid construct which includes the exogenous polynucleotide of some embodiments of the invention and at least one promoter for directing transcription of the exogenous polynucleotide in a host cell (a plant cell). Further details of suitable transformation approaches are provided hereinbelow.


As mentioned, the nucleic acid construct according to some embodiments of the invention comprises a promoter sequence and the isolated polynucleotide of the invention.


According to some embodiments of the invention, the isolated polynucleotide is operably linked to the promoter sequence.


A coding nucleic acid sequence is “operably linked” to a regulatory sequence (e.g., promoter) if the regulatory sequence is capable of exerting a regulatory effect on the coding sequence linked thereto.


As used herein, the term “promoter” refers to a region of DNA which lies upstream of the transcriptional initiation site of a gene to which RNA polymerase binds to initiate transcription of RNA. The promoter controls where (e.g., which portion of a plant) and/or when (e.g., at which stage or condition in the lifetime of an organism) the gene is expressed.


Any suitable promoter sequence can be used by the nucleic acid construct of the present invention. Preferably the promoter is a constitutive promoter, a tissue-specific, or an abiotic stress-inducible promoter.


According to some embodiments of the invention, the promoter is a plant promoter, which is suitable for expression of the exogenous polynucleotide in a plant cell.


Suitable constitutive promoters include, for example, CaMV 35S promoter (SEQ ID NO:8094; Odell et al., Nature 313:810-812, 1985); Arabidopsis At6669 promoter (SEQ ID NO:8093; see PCT Publication No. WO04081173A2) or the novel At6669 promoter (SEQ ID NO:8096); maize Ubi 1 (Christensen et al., Plant Sol. Biol. 18:675-689, 1992); rice actin (McElroy et al., Plant Cell 2:163-171, 1990); pEMU (Last et al., Theor. Appl. Genet. 81:581-588, 1991); CaMV 19S (Nilsson et al., Physiol. Plant 100:456-462, 1997); GOS2 (de Pater et al, Plant J November; 2(6):837-44, 1992); ubiquitin (Christensen et al, Plant Mol. Biol. 18: 675-689, 1992); Rice cyclophilin (Bucholz et al, Plant Mol. Biol. 25(5):837-43, 1994); Maize H3 histone (Lepetit et al, Mol. Gen. Genet. 231: 276-285, 1992); Actin 2 (An et al, Plant J. 10(1); 107-121, 1996) and Synthetic Super MAS (Ni et al., The Plant Journal 7: 661-76, 1995). Other constitutive promoters include those in U.S. Pat. Nos. 5,659,026, 5,608,149; 5,608,144; 5,604,121; 5,569,597: 5,466,785; 5,399,680; 5,268,463; and 5,608,142.


Suitable tissue-specific promoters include, but not limited to, leaf-specific promoters [such as described, for example, by Yamamoto et al., Plant J. 12:255-265, 1997; Kwon et al., Plant Physiol. 105:357-67, 1994; Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994; Gotor et al., Plant J. 3:509-18, 1993; Orozco et al., Plant Mol. Biol. 23:1129-1138, 1993; and Matsuoka et al., Proc. Natl. Acad. Sci. USA 90:9586-9590, 1993], seed-preferred promoters [e.g., Napin (originated from Brassica napus which is characterized by a seed specific promoter activity; Stuitje A. R. et. al. Plant Biotechnology Journal 1 (4): 301-309; SEQ ID NO:8095), from seed specific genes (Simon, et al., Plant Mol. Biol. 5. 191, 1985; Scofield, et al., J. Biol. Chem. 262: 12202, 1987; Baszczynski, et al., Plant Mol. Biol. 14: 633, 1990), Brazil Nut albumin (Pearson' et al., Plant Mol. Biol. 18: 235-245, 1992), legumin (Ellis, et al. Plant Mol. Biol. 10: 203-214, 1988), Glutelin (rice) (Takaiwa, et al., Mol. Gen. Genet. 208: 15-22, 1986; Takaiwa, et al., FEBS Letts. 221: 43-47, 1987), Zein (Matzke et al Plant Mol Biol, 143). 323-32 1990), napA (Stalberg, et al, Planta 199: 515-519, 1996), Wheat SPA (Albanietal, Plant Cell, 9: 171-184, 1997), sunflower oleosin (Cummins, et al., Plant Mol. Biol. 19: 873-876, 1992)], endosperm specific promoters [e.g., wheat LMW and HMW, glutenin-1 (Mol Gen Genet 216:81-90, 1989; NAR 17:461-2), wheat a, b and g gliadins (EMBO3:1409-15, 1984), Barley ltrl promoter, barley B1, C, D hordein (Theor Appl Gen 98:1253-62, 1999; Plant J 4:343-55, 1993; Mol Gen Genet 250:750-60, 1996), Barley DOF (Mena et al, The Plant Journal, 116(1): 53-62, 1998), Biz2 (EP99106056.7), Synthetic promoter (Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998), rice prolamin NRP33, rice-globulin Glb-1 (Wu et al, Plant Cell Physiology 39(8) 885-889, 1998), rice alpha-globulin REB/OHP-1 (Nakase et al. Plant Mol. Biol. 33: 513-S22, 1997), rice ADP-glucose PP (Trans Res 6:157-68, 1997), maize ESR gene family (Plant J 12:235-46, 1997), sorgum gamma-kafirin (PMB 32:1029-35, 1996)], embryo specific promoters [e.g., rice OSH1 (Sato et al, Proc. Natl. Acad. Sci. USA, 93: 8117-8122), KNOX (Postma-Haarsma of al, Plant Mol. Biol. 39:257-71, 1999), rice oleosin (Wu et at, J. Biochem., 123:386, 1998)], and flower-specific promoters [e.g., AtPRP4, chalene synthase (chsA) (Van der Meer, et al., Plant Mol. Biol. 15, 95-109, 1990), LAT52 (Twell et al Mol. Gen Genet. 217:240-245; 1989), apetala-3] and root promoters such as the ROOTP promoter [SEQ ID NO: 8097].


Suitable abiotic stress-inducible promoters include, but not limited to, salt-inducible promoters such as RD29A (Yamaguchi-Shinozalei et al., Mol. Gen. Genet. 236:331-340, 1993); drought-inducible promoters such as maize rab17 gene promoter (Pla et. al., Plant Mol. Biol. 21:259-266, 1993), maize rab28 gene promoter (Busk et. al., Plant J. 11:1285-1295, 1997) and maize Ivr2 gene promoter (Pelleschi et. al., Plant Mol. Biol. 39:373-380, 1999); heat-inducible promoters such as heat tomato hsp80-promoter from tomato (U.S. Pat. No. 5,187,267).


As mentioned above, and further described in Example 15 of the Examples section which follows, the present inventors have uncovered a novel promoter to sequences (regulatory nucleic acid sequences) which can be used to express a polynucleotide-of-interest in a plant.


Thus, according to an aspect of some embodiments of the invention, there is provided an isolated polynucleotide comprising the nucleic acid sequence set forth by SEQ ID NO:8096.


According to some embodiments of the invention the isolated polynucleotide is capable of regulating expression of the heterologous polynucleotide in a host cell.


According to some embodiments of the invention the heterologous polynucleotide is operably linked to the regulatory nucleic acid sequence set forth by SEQ ID NO: 8096.


According to an aspect of some embodiments of the invention, there is provided a nucleic acid construct comprising the isolated polynucleotide set forth by SEQ ID NO:8096.


According to some embodiments of the invention the nucleic acid construct further comprising at least one heterologous polynucleotide operably linked to the isolated polynucleotide.


According to some embodiments of the invention, the regulatory nucleic acid sequence of the invention ranges in length from about 500 nucleotides to about 4000 nucleotides and includes one or more sequence regions which are capable of recognizing and binding RNA polymerase II and other proteins (trans-acting transcription factors) involved in transcription.


According to some embodiments of the invention, the regulatory sequence is positioned 1-500 bp upstream of the ATG codon of the coding nucleic acid sequence, although it will be appreciated that regulatory sequences can also exert their effect when positioned elsewhere with respect to the coding nucleic acid sequence (e.g., within an intron).


As is clearly illustrated in the Examples section which follows, the novel At6669 promoter sequence of some embodiments of the invention is capable of regulating expression of a coding nucleic acid sequence (e.g., a reporter gene such as GUS, luciferase) operably linked thereto (see Example 17 of the Examples section which follows).


According to some embodiments of the invention, the regulatory nucleic acid sequences of the invention are modified to create variations in the molecule sequences such as to enhance their promoting activities, using methods known in the art, such as PCR-based DNA modification, or standard DNA mutagenesis techniques, or by chemically synthesizing the modified polynucleotides.


Accordingly, the regulatory nucleic acid sequence of the invention (e.g., SEQ ID NO: 8096) may be truncated or deleted and still retain the capacity of directing the transcription of an operably linked heterologous DNA sequence. The minimal length of a promoter region can be determined by systematically removing sequences from the 5′ and 3′-ends of the isolated polynucleotide by standard techniques known in the art, including but not limited to removal of restriction enzyme fragments or digestion with nucleases. Consequently, any sequence fragments, portions, or regions of the disclosed promoter polynucleotide sequences of the invention can be used as regulatory sequences. It will be appreciated that modified sequences (mutated, truncated and the like) can acquire different transcriptional properties such as the direction of different pattern of gene expression as compared to the unmodified element.


Optionally, the sequences set forth in SEQ ID NO:8096 may be modified, for example for expression in a range of plant systems. In another approach, novel hybrid promoters can be designed or engineered by a number of methods. Many promoters contain upstream sequences which activate, enhance or define the strength and/or specificity of the promoter, such as described, for example, by Atchison [Ann. Rev. Cell Biol. 4:127 (1988)]. T-DNA genes, for example contain “TATA” boxes defining the site of transcription initiation and other upstream elements located upstream of the transcription initiation site modulate transcription levels [Gelvin In: Transgenic Plants (Kung, S.-D. and Us, R., eds, San Diego: Academic Press, pp. 49-87, (1988)]. Another chimeric promoter combined a trimer of the octopine synthase (ocs) activator to the mannopine synthase (mas) activator plus promoter and reported an increase in expression of a reporter gene [Min Ni et al., The Plant Journal 7:661 (1995)]. The upstream regulatory sequences of the promoter polynucleotide sequences of the invention can be used for the construction of such chimeric or hybrid promoters. Methods for construction of variant promoters include, but are not limited to, combining control elements of different promoters or duplicating portions or regions of a promoter (see for example, U.S. Pat. Nos. 5,110,732 and 5,097,025). Those of skill in the art are familiar with the specific conditions and procedures for the construction, manipulation and isolation of macromolecules (e.g., DNA molecules, plasmids, etc.), generation of recombinant organisms and the screening and isolation of genes, [see for example Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, (1989); Mailga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press, (1995); Birren et al., Genome Analysis: volume 1, Analyzing DNA, (1997); volume 2, Detecting Genes, (1998); volume 3, Cloning Systems, (1999); and volume 4, Mapping Genomes, (1999), Cold Spring Harbor, N.Y].


According to some embodiments of the invention the heterologous polynucleotide, which is regulated by the regulatory nucleic acid sequence set forth by SEQ ID NO:8096, comprises a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


According to some embodiments of the invention the heterologous polynucleotide, which is regulated by the regulatory nucleic acid sequence set forth by SEQ ID NO:8096, encodes an amino acid sequence at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous to SEQ ID NO: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, 5554-5556 or 5557.


According to some embodiments of the invention the heterologous polynucleotide, which is regulated by the regulatory nucleic acid sequence set forth by SEQ ID NO:8096, comprises a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, to at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs: 1627, 1629 and 1631.


According to some embodiments of the invention the heterologous polynucleotide, which is regulated by the regulatory nucleic acid sequence set forth by SEQ ID NO:8096, encodes an amino acid sequence at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous to SEQ ID NO: 5470, 5476 and 5481.


According to some embodiments of the invention, the method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant is effected by expressing within the plant a nucleic acid construct which comprises the nucleic acid sequence set forth by SEQ ID NO: 8096 and a heterologous polynucleotide sequence which comprises a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to SEQ ID NO: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644, wherein the nucleic acid sequence is capable of regulating expression of the heterologous polynucleotide in a host cell.


According to some embodiments of the invention, the method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant is effected by expressing within the plant a nucleic acid construct which comprises the nucleic acid sequence set forth by SEQ ID NO: 8096 and a heterologous polynucleotide sequence which encodes an amino acid sequence at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous to SEQ ID NO: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, 5554-5556 or 5557, wherein the nucleic acid sequence is capable of regulating expression of the heterologous polynucleotide in a host cell.


According to some embodiments of the invention, the method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant is effected by expressing within the plant a nucleic acid construct which comprises the nucleic acid sequence set forth by SEQ ID NO: 8096 and a heterologous polynucleotide sequence which comprises a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to SEQ ID NO: 1627, 1629 or 1631, wherein the nucleic acid sequence is capable of regulating expression of the heterologous polynucleotide in a host cell.


According to some embodiments of the invention, the method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant is effected by expressing within the plant a nucleic acid construct which comprises the nucleic acid sequence set forth by SEQ ID NO: 8096 and a heterologous polynucleotide sequence which encodes an amino acid sequence at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at to least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous to SEQ ID NO: 5470, 5476 or 5481, wherein the nucleic acid sequence is capable of regulating expression of the heterologous polynucleotide in a host cell.


The nucleic acid construct of some embodiments of the invention can further include an appropriate selectable marker and/or an origin of replication. According to some embodiments of the invention, the nucleic acid construct utilized is a shuttle vector, which can propagate both in E. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible with propagation in cells. The construct according to the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.


The nucleic acid construct of some embodiments of the invention can be utilized to stably or transiently transform plant cells. In stable transformation, the exogenous polynucleotide is integrated into the plant genome and as such it represents a stable and inherited trait. In transient transformation, the exogenous polynucleotide is expressed by the cell transformed but it is not integrated into the genome and as such it represents a transient trait.


There are various methods of introducing foreign genes into both monocotyledonous and dicotyledonous plants (Potrykus, I., Annu. Rev. Plant. Physiol., Plant. Mol. Biol. (1991) 42:205-225; Shimamoto et al., Nature (1989) 338:274-276).


The principle methods of causing stable integration of exogenous DNA into plant genomic DNA include two main approaches:


(i) Agrobacterium-mediated gene transfer: Klee et al. (1987) Annu. Rev. Plant Physiol. 38:467-486; Klee and Rogers in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 2-25; Gatenby, in Plant Biotechnology, eds. Kung, S, and Arntzen, C. J., Butterworth Publishers, Boston, Mass. (1989) p. 93-112.


(ii) Direct DNA uptake: Paszkowski et al., in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 52-68; including methods for direct uptake of DNA into protoplasts, Toriyama, K. et al. (1988) Bio/Technology 6:1072-1074. DNA uptake induced by brief electric shock of plant cells: Zhang et al. Plant Cell Rep. (1988) 7:379-384. Fromm et al. Nature (1986) 319:791-793. DNA injection into plant cells or tissues by particle bombardment, Klein et al. Bio/Technology (1988) 6:559-563; McCabe et al. Bio/Technology (1988) 6:923-926; Sanford, Physiol. Plant. (1990) 79:206-209; by the use of micropipette systems: Neuhaus et al., Theor. Appl. Genet. (1987) 75:30-36; Neuhaus and Spangenberg, Physiol. Plant. (1990) 79:213-217; glass fibers or silicon carbide whisker transformation of cell cultures, embryos or callus tissue, U.S. Pat. No. 5,464,765 or by the direct incubation of DNA with germinating pollen, DeWet et al. in Experimental Manipulation of Ovule Tissue, eds. Chapman, G. P. and Mantell, S. H. and Daniels, W. Longman, London, (1985) p. 197-209; and Ohta, Proc. Natl. Acad. Sci. USA (1986) 83:715-719.


The Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A widely used approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. See, e.g., Horsch et al. in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9. A supplementary approach employs the Agrobacterium delivery system in combination with vacuum infiltration. The Agrobacterium system is especially viable in the creation of transgenic dicotyledonous plants.


There are various methods of direct DNA transfer into plant cells. In electroporation, the protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues.


Following stable transformation plant propagation is exercised. The most to common method of plant propagation is by seed. Regeneration by seed propagation, however, has the deficiency that due to heterozygosity there is a lack of uniformity in the crop, since seeds are produced by plants according to the genetic variances governed by Mendelian rules. Basically, each seed is genetically different and each will grow with its own specific traits. Therefore, it is preferred that the transformed plant be produced such that the regenerated plant has the identical traits and characteristics of the parent transgenic plant. Therefore, it is preferred that the transformed plant be regenerated by micropropagation which provides a rapid, consistent reproduction of the transformed plants.


Micropropagation is a process of growing new generation plants from a single piece of tissue that has been excised from a selected parent plant or cultivar. This process permits the mass reproduction of plants having the preferred tissue expressing the fusion protein. The new generation plants which are produced are genetically identical to, and have all of the characteristics of, the original plant. Micropropagation allows mass production of quality plant material in a short period of time and offers a rapid multiplication of selected cultivars in the preservation of the characteristics of the original transgenic or transformed plant. The advantages of cloning plants are the speed of plant multiplication and the quality and uniformity of plants produced.


Micropropagation is a multi-stage procedure that requires alteration of culture medium or growth conditions between stages. Thus, the micropropagation process involves four basic stages: Stage one, initial tissue culturing; stage two, tissue culture multiplication; stage three, differentiation and plant formation; and stage four, greenhouse culturing and hardening. During stage one, initial tissue culturing, the tissue culture is established and certified contaminant-free. During stage two, the initial tissue culture is multiplied until a sufficient number of tissue samples are produced to meet production goals. During stage three, the tissue samples grown in stage two are divided and grown into individual plantlets. At stage four, the transformed plantlets are transferred to a greenhouse for hardening where the plants' tolerance to light is gradually increased so that it can be grown in the natural environment.


According to some embodiments of the invention, the transgenic plants are generated by transient transformation of leaf cells, meristematic cells or the whole plant.


Transient transformation can be effected by any of the direct DNA transfer methods described above or by viral infection using modified plant viruses.


Viruses that have been shown to be useful for the transformation of plant hosts include CaMV, Tobacco mosaic virus (TMV), brome mosaic virus (BMV) and Bean Common Mosaic Virus (BV or BCMV). Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (bean golden mosaic virus; BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al., Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants are described in WO 87/06261.


According to some embodiments of the invention, the virus used for transient transformations is avirulent and thus is incapable of causing severe symptoms such as reduced growth rate, mosaic, ring spots, leaf roll, yellowing, streaking, pox formation, tumor formation and pitting. A suitable avirulent virus may be a naturally occurring avirulent virus or an artificially attenuated virus. Virus attenuation may be effected by using methods well known in the art including, but not limited to, sub-lethal heating, chemical treatment or by directed mutagenesis techniques such as described, for example, by Kurihara and Watanabe (Molecular Plant Pathology 4:259-269, 2003), Gal-on et al. (1992), Atreya et al. (1992) and Huet et al. (1994).


Suitable virus strains can be obtained from available sources such as, for example, the American Type culture Collection (ATCC) or by isolation from infected plants. Isolation of viruses from infected plant tissues can be effected by techniques well known in the art such as described, for example by Foster and Tatlor, Eds. “Plant Virology Protocols From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998. Briefly, tissues of an infected plant believed to contain a high concentration of a suitable virus, preferably young leaves and flower petals, are ground in a buffer solution (e.g., phosphate buffer solution) to produce a virus infected sap which can be used in subsequent inoculations.


Construction of plant RNA viruses for the introduction and expression of non-viral exogenous polynucleotide sequences in plants is demonstrated by the above references as well as by Dawson, W. O. et al., Virology (1989) 172:285-292; Takamatsu et al. EMBO J. (1987) 6:307-311; French et al. Science (1986) 231:1294-1297; Takamatsu et al. FEBS Letters (1990) 269:73-76; and U.S. Pat. No. 5,316,931.


When the virus is a DNA virus, suitable modifications can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus can then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat protein which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA.


In one embodiment, a plant viral polynucleotide is provided in which the native coat protein coding sequence has been deleted from a viral polynucleotide, a non-native plant viral coat protein coding sequence and a non-native promoter, preferably the subgenomic promoter of the non-native coat protein coding sequence, capable of expression in the plant host, packaging of the recombinant plant viral polynucleotide, and ensuring a systemic infection of the host by the recombinant plant viral polynucleotide, has been inserted. Alternatively, the coat protein gene may be inactivated by insertion of the non-native polynucleotide sequence within it, such that a protein is produced. The recombinant plant viral polynucleotide may contain one or more additional non-native subgenomic promoters. Each non-native subgenomic promoter is capable of transcribing or expressing adjacent genes or polynucleotide sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters. Non-native (foreign) polynucleotide sequences may be inserted adjacent the native plant viral subgenomic promoter or the native and a non-native plant viral subgenomic promoters if more than one polynucleotide sequence is included. The non-native polynucleotide sequences are transcribed or expressed in the host plant under control of the subgenomic promoter to produce the desired products.


In a second embodiment, a recombinant plant viral polynucleotide is provided as in the first embodiment except that the native coat protein coding sequence is placed adjacent one of the non-native coat protein subgenomic promoters instead of a non-native coat protein coding sequence.


In a third embodiment, a recombinant plant viral polynucleotide is provided in which the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral polynucleotide. The inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters. Non-native polynucleotide sequences may be inserted adjacent the non-native subgenomic plant viral promoters such that the sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the desired product.


In a fourth embodiment, a recombinant plant viral polynucleotide is provided as in the third embodiment except that the native coat protein coding sequence is replaced by a non-native coat protein coding sequence.


The viral vectors are encapsidated by the coat proteins encoded by the recombinant plant viral polynucleotide to produce a recombinant plant virus. The recombinant plant viral polynucleotide or recombinant plant virus is used to infect appropriate host plants. The recombinant plant viral polynucleotide is capable of replication in the host, systemic spread in the host, and transcription or expression of foreign gene(s) (exogenous polynucleotide) in the host to produce the desired protein.


Techniques for inoculation of viruses to plants may be found in Foster and Taylor, eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998; Maramorosh and Koprowski, eds. “Methods in Virology” 7 vols, Academic Press, New York 1967-1984; Hill, S. A. “Methods in Plant Virology”, Blackwell, Oxford, 1984; Walkey, D. G. A. “Applied Plant Virology”, Wiley, New York, 1985; and Kado and Agrawa, eds. “Principles and Techniques in Plant Virology”, Van Nostrand-Reinhold, New York.


In addition to the above, the polynucleotide of the present invention can also be introduced into a chloroplast genome thereby enabling chloroplast expression.


A technique for introducing exogenous polynucleotide sequences to the genome of the chloroplasts is known. This technique involves the following procedures. First, plant cells are chemically treated so as to reduce the number of chloroplasts per cell to to about one. Then, the exogenous polynucleotide is introduced via particle bombardment into the cells with the aim of introducing at least one exogenous polynucleotide molecule into the chloroplasts. The exogenous polynucleotides selected such that it is integratable into the chloroplast's genome via homologous recombination which is readily effected by enzymes inherent to the chloroplast. To this end, the exogenous polynucleotide includes, in addition to a gene of interest, at least one polynucleotide stretch which is derived from the chloroplast's genome. In addition, the exogenous polynucleotide includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all of the copies of the chloroplast genomes following such selection will include the exogenous polynucleotide. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507 which are incorporated herein by reference. A polypeptide can thus be produced by the protein expression system of the chloroplast and become integrated into the chloroplast's inner membrane.


Since processes which increase oil content, yield, growth rate, biomass, vigor, nitrogen use efficiency and/or abiotic stress tolerance of a plant can involve multiple genes acting additively or in synergy (see, for example, in Quesda et al., Plant Physiol. 130:951-063, 2002), the present invention also envisages expressing a plurality of exogenous polynucleotides in a single host plant to thereby achieve superior effect on oil content, yield, growth rate, biomass, vigor, nitrogen use efficiency and/or abiotic stress tolerance.


Expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing multiple nucleic acid constructs, each including a different exogenous polynucleotide, into a single plant cell. The transformed cell can than be regenerated into a mature plant using the methods described hereinabove.


Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing into a single plant-cell a single nucleic-acid construct including a plurality of different exogenous polynucleotides. Such a construct can be designed with a single promoter sequence which can transcribe a polycistronic messenger RNA including all the different exogenous polynucleotide sequences. To enable co-translation of the different polypeptides encoded by the polycistronic messenger RNA, the polynucleotide sequences can be inter-linked via an internal to ribosome entry site (IRES) sequence which facilitates translation of polynucleotide sequences positioned downstream of the IRES sequence. In this case, a transcribed polycistronic RNA molecule encoding the different polypeptides described above will be translated from both the capped 5′ end and the two internal IRES sequences of the polycistronic RNA molecule to thereby produce in the cell all different polypeptides. Alternatively, the construct can include several promoter sequences each linked to a different exogenous polynucleotide sequence.


The plant cell transformed with the construct including a plurality of different exogenous polynucleotides, can be regenerated into a mature plant, using the methods described hereinabove.


Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by introducing different nucleic acid constructs, including different exogenous polynucleotides, into a plurality of plants. The regenerated transformed plants can then be cross-bred and resultant progeny selected for superior abiotic stress tolerance, water use efficiency, fertilizer use efficiency, growth, biomass, yield, oil content and/or vigor traits, using conventional plant breeding techniques.


According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.


Non-limiting examples of abiotic stress conditions include, salinity, drought, water deprivation, excess of water (e.g., flood, waterlogging), etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.


According to an aspect of some embodiments of the invention there is provided a method of expressing a polypeptide of interest in a cell, the method is effected by transforming the cell with a nucleic acid construct which comprises a polynucleotide sequence encoding the polypeptide of interest operably linked to the isolated polynucleotide set forth by SEQ ID NO: 8096, thereby expressing the polypeptide of interest in the cell.


According to some embodiments of the invention, the polypeptide of interest comprises the amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about to 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous to the polypeptide selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.


According to some embodiments of the invention, the polypeptide of interest comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 488-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.


According to some embodiments of the invention, the polypeptide of interest comprises the amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous to the polypeptide selected from the group consisting of SEQ ID NOs:5470, 5476 and 5481.


According to some embodiments of the invention, the polypeptide of interest comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 5470, 5476 and 5481.


According to some embodiments of the invention, the polynucleotide encoding the polypeptide of interest comprises the nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


According to some embodiments of the invention, the polynucleotide encoding the polypeptide of interest comprises the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.


According to some embodiments of the invention, the polynucleotide encoding the polypeptide of interest comprises the nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs: 1627, 1629 and 1631.


According to some embodiments of the invention, the polynucleotide encoding the polypeptide of interest comprises the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1627, 1629 and 1631.


Thus, the invention encompasses transgenic cells (e.g., transgenic plant cells), plants exogenously expressing the polynucleotide(s) (e.g., transgenic plants), the nucleic acid constructs and/or polypeptide(s) of the invention, and methods of generating or producing same. Once expressed within the plant cell or the entire plant, the level of the polypeptide encoded by the exogenous polynucleotide can be determined by methods well known in the art such as, activity assays, Western blots using antibodies capable of specifically binding the polypeptide, Enzyme-Linked Immuno Sorbent Assay (ELISA), radio-immuno-assays (RIA), immunohistochemistry, immunocytochemistry, immunofluorescence and the like.


Methods of determining the level in the plant of the RNA transcribed from the exogenous polynucleotide are well known in the art and include, for example, Northern blot analysis, reverse transcription polymerase chain reaction (RT-PCR) analysis (including quantitative, semi-quantitative or real-time RT-PCR) and RNA-in situ hybridization.


The sequence information and annotations uncovered by the present teachings can be harnessed in favor of classical breeding. Thus, sub-sequence data of those to polynucleotides described above, can be used as markers for marker assisted selection (MAS), in which a marker is used for indirect selection of a genetic determinant or determinants of a trait of interest (e.g., biomass, growth rate, oil content, yield, abiotic stress tolerance, water use efficiency, nitrogen use efficiency and/or fertilizer use efficiency). Nucleic acid data of the present teachings (DNA or RNA sequence) may contain or be linked to polymorphic sites or genetic markers on the genome such as restriction fragment length polymorphism (RFLP), microsatellites and single nucleotide polymorphism (SNP), DNA fingerprinting (DFP), amplified fragment length polymorphism (AFLP), expression level polymorphism, polymorphism of the encoded polypeptide and any other polymorphism at the DNA or RNA sequence.


Examples of marker assisted selections include, but are not limited to, selection for a morphological trait (e.g., a gene that affects form, coloration, male sterility or resistance such as the presence or absence of awn, leaf sheath coloration, height, grain color, aroma of rice); selection for a biochemical trait (e.g., a gene that encodes a protein that can be extracted and observed; for example, isozymes and storage proteins); selection for a biological trait (e.g., pathogen races or insect biotypes based on host pathogen or host parasite interaction can be used as a marker since the genetic constitution of an organism can affect its susceptibility to pathogens or parasites).


The polynucleotides and polypeptides described hereinabove can be used in a wide range of economical plants, in a safe and cost effective manner.


Plant lines exogenously expressing the polynucleotide or the polypeptide of the invention are screened to identify those that show the greatest increase of the desired plant trait.


The effect of the transgene (the exogenous polynucleotide encoding the polypeptide) on abiotic stress tolerance can be determined using known methods such as detailed below and in the Examples section which follows.


Abiotic stress tolerance—Transformed (i.e., expressing the transgene) and non-transformed (wild type) plants are exposed to an abiotic stress condition, such as water deprivation, suboptimal temperature (low temperature, high temperature), nutrient deficiency, nutrient excess, a salt stress condition, osmotic stress, heavy metal toxicity, anaerobiosis, atmospheric pollution and UV irradiation.


Salinity tolerance assay—Transgenic plants with tolerance to high salt concentrations are expected to exhibit better germination, seedling vigor or growth in high salt. Salt stress can be effected in many ways such as, for example, by irrigating the plants with a hyperosmotic solution, by cultivating the plants hydroponically in a hyperosmotic growth solution (e.g., Hoagland solution), or by culturing the plants in a hyperosmotic growth medium [e.g., 50% Murashige-Skoog medium (MS medium)]. Since different plants vary considerably in their tolerance to salinity, the salt concentration in the irrigation water, growth solution, or growth medium can be adjusted according to the specific characteristics of the specific plant cultivar or variety, so as to inflict a mild or moderate effect on the physiology and/or morphology of the plants (for guidelines as to appropriate concentration see, Bernstein and Kafkafi, Root Growth Under Salinity Stress In: Plant Roots, The Hidden Half 3rd ed. Waisel Y, Eshel A and Kafkafi U. (editors) Marcel Dekker Inc., New York, 2002, and reference therein).


For example, a salinity tolerance test can be performed by irrigating plants at different developmental stages with increasing concentrations of sodium chloride (for example 50 mM, 100 mM, 200 mM, 400 mM NaCl) applied from the bottom and from above to ensure even dispersal of salt. Following exposure to the stress condition the plants are frequently monitored until substantial physiological and/or morphological effects appear in wild type plants. Thus, the external phenotypic appearance, degree of wilting and overall success to reach maturity and yield progeny are compared between control and transgenic plants.


Quantitative parameters of tolerance measured include, but are not limited to, the average wet and dry weight, growth rate, leaf size, leaf coverage (overall leaf area), the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as abiotic stress tolerant plants.


Osmotic tolerance test—Osmotic stress assays (including sodium chloride and mannitol assays) are conducted to determine if an osmotic stress phenotype was sodium chloride-specific or if it was a general osmotic stress related phenotype. Plants which are tolerant to osmotic stress may have more tolerance to drought and/or freezing. For salt and osmotic stress germination experiments, the medium is supplemented for example with 50 mM, 100 mM, 200 mM NaCl or 100 mM, 200 mM NaCl, 400 mM to mannitol.


Drought tolerance assay/Osmoticum assay—Tolerance to drought is performed to identify the genes conferring better plant survival after acute water deprivation. To analyze whether the transgenic plants are more tolerant to drought, an osmotic stress produced by the non-ionic osmolyte sorbitol in the medium can be performed. Control and transgenic plants are germinated and grown in plant-agar plates for 4 days, after which they are transferred to plates containing 500 mM sorbitol. The treatment causes growth retardation, then both control and transgenic plants are compared, by measuring plant weight (wet and dry), yield, and by growth rates measured as time to flowering.


Conversely, soil-based drought screens are performed with plants overexpressing the polynucleotides detailed above. Seeds from control Arabidopsis plants, or other transgenic plants overexpressing the polypeptide of the invention are germinated and transferred to pots. Drought stress is obtained after irrigation is ceased accompanied by placing the pots on absorbent paper to enhance the soil-drying rate. Transgenic and control plants are compared to each other when the majority of the control plants develop severe wilting. Plants are re-watered after obtaining a significant fraction of the control plants displaying a severe wilting. Plants are ranked comparing to controls for each of two criteria: tolerance to the drought conditions and recovery (survival) following re-watering.


Cold stress tolerance—To analyze cold stress, mature (25 day old) plants are transferred to 4° C. chambers for 1 or 2 weeks, with constitutive light. Later on plants are moved back to greenhouse. Two weeks later damages from chilling period, resulting in growth retardation and other phenotypes, are compared between both control and transgenic plants, by measuring plant weight (wet and dry), and by comparing growth rates measured as time to flowering, plant size, yield, and the like.


Heat stress tolerance—Heat stress tolerance is achieved by exposing the plants to temperatures above 34° C. for a certain period. Plant tolerance is examined after transferring the plants back to 22° C. for recovery and evaluation after 5 days relative to internal controls (non-transgenic plants) or plants not exposed to neither cold or heat stress.


Water use efficiency—can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content can be measured in control and transgenic plants. Fresh weight (FW) is immediately recorded; then leaves are soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) is recorded. Total dry weight (DW) is recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) is calculated according to the following Formula I:





RWC=[(FW−DW)/(TW−DW)]×100  Formula I


Fertilizer use efficiency—To analyze whether the transgenic plants are more responsive to fertilizers, plants are grown in agar plates or pots with a limited amount of fertilizer, as described, for example, in Yanagisawa et al (Proc Natl Acad Sci USA. 2004; 101:7833-8). The plants are analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain. The parameters checked are the overall size of the mature plant, its wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf verdure is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots, oil content, etc. Similarly, instead of providing nitrogen at limiting amounts, phosphate or potassium can be added at increasing concentrations. Again, the same parameters measured are the same as listed above. In this way, nitrogen use efficiency (NUE), phosphate use efficiency (PUE) and potassium use efficiency (KUE) are assessed, checking the ability of the transgenic plants to thrive under nutrient restraining conditions.


Nitrogen use efficiency—To analyze whether the transgenic Arabidopsis plants are more responsive to nitrogen, plant are grown in 0.75-3 mM (nitrogen deficient conditions) or 6-10 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 25 days or until seed production. The plants are then analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain/seed production. The parameters checked can be the overall size of the plant, wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf greenness is highly correlated), to amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots and oil content. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher measured parameters levels than wild-type plants, are identified as nitrogen use efficient plants.


Nitrogen Use efficiency assay using plantlets—The assay is done according to Yanagisawa-S. et al. with minor modifications (“Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions” Proc. Natl. Acad. Sci. USA 101, 7833-7838). Briefly, transgenic plants which are grown for 7-10 days in 0.5×MS [Murashige-Skoog] supplemented with a selection agent are transferred to two nitrogen-limiting conditions: MS media in which the combined nitrogen concentration (NH4NO3 and KNO3) was 0.75 mM or 0.05 mM. Plants are allowed to grow for additional 30-40 days and then photographed, individually removed from the Agar (the shoot without the roots) and immediately weighed (fresh weight) for later statistical analysis. Constructs for which only T1 seeds are available are sown on selective media and at least 20 seedlings (each one representing an independent transformation event) are carefully transferred to the nitrogen-limiting media. For constructs for which T2 seeds are available, different transformation events are analyzed. Usually, 20 randomly selected plants from each event are transferred to the nitrogen-limiting media allowed to grow for 3-4 additional weeks and individually weighed at the end of that period. Transgenic plants are compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS) under the same promoter or transgenic plants carrying the same promoter but lacking a reporter gene are used as control.


Nitrogen determination—The procedure for N (nitrogen) concentration determination in the structural parts of the plants involves the potassium persulfate digestion method to convert organic N to NO3 (Purcell and King 1996 Argon. J. 88:111-113, the modified Cd mediated reduction of NO3 to NO2 (Vodovotz 1996 Biotechniques 20:390-394) and the measurement of nitrite by the Griess assay (Vodovotz 1996, supra). The absorbance values are measured at 550 nm against a standard curve of NaNO2. The procedure is described in details in Samonte et al. 2006 to Agron. J. 98:168-176.


Germination tests—Germination tests compare the percentage of seeds from transgenic plants that could complete the germination process to the percentage of seeds from control plants that are treated in the same manner. Normal conditions are considered for example, incubations at 22° C. under 22-hour light 2-hour dark daily cycles. Evaluation of germination and seedling vigor is conducted between 4 and 14 days after planting. The basal media is 50% MS medium (Murashige and Skoog, 1962 Plant Physiology 15, 473-497).


Germination is checked also at unfavorable conditions such as cold (incubating at temperatures lower than 10° C. instead of 22° C.) or using seed inhibition solutions that contain high concentrations of an osmolyte such as sorbitol (at concentrations of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM, and up to 1000 mM) or applying increasing concentrations of salt (of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM NaCl).


The effect of the transgene on plant's vigor, growth rate, biomass, yield and/or oil content can be determined using known methods.


Plant vigor—The plant vigor can be calculated by the increase in growth parameters such as leaf area, fiber length, rosette diameter, plant fresh weight and the like per time.


Growth rate—The growth rate can be measured using digital analysis of growing plants. For example, images of plants growing in greenhouse on plot basis can be captured every 3 days and the rosette area can be calculated by digital analysis. Rosette area growth is calculated using the difference of rosette area between days of sampling divided by the difference in days between samples.


Evaluation of growth rate can be done by measuring plant biomass produced, rosette area, leaf size or root length per time (can be measured in cm2 per day of leaf area).


Relative growth area can be calculated using Formula II.





Relative growth rate area=Regression coefficient of area along time course  Formula II


Thus, the relative growth area rate is in units of 1/day and length growth rate is in units of 1/day.


Seed yield—Evaluation of the seed yield per plant can be done by measuring the to amount (weight or size) or quantity (i.e., number) of dry seeds produced and harvested from 8-16 plants and divided by the number of plants.


For example, the total seeds from 8-16 plants can be collected, weighted using e.g., an analytical balance and the total weight can be divided by the number of plants. Seed yield per growing area can be calculated in the same manner while taking into account the growing area given to a single plant. Increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants capable of growing in a given area.


In addition, seed yield can be determined via the weight of 1000 seeds. The weight of 1000 seeds can be determined as follows: seeds are scattered on a glass tray and a picture is taken. Each sample is weighted and then using the digital analysis, the number of seeds in each sample is calculated.


The 1000 seeds weight can be calculated using formula III:





1000 Seed Weight=number of seed in sample/sample weight×1000  Formula III


The Harvest Index can be calculated using Formula IV





Harvest Index=Average seed yield per plant/Average dry weight  Formula IV


Grain protein concentration—Grain protein content (g grain protein m−2) is estimated as the product of the mass of grain N (g grain N m−2) multiplied by the N/protein conversion ratio of k-5.13 (Mosse 1990, supra). The grain protein concentration is estimated as the ratio of grain protein content per unit mass of the grain (g grain protein kg−1 grain).


Fiber length—Fiber length can be measured using fibrograph. The fibrograph system was used to compute length in terms of “Upper Half Mean” length. The upper half mean (UHM) is the average length of longer half of the fiber distribution. The fibrograph measures length in span lengths at a given percentage point (Hypertext Transfer Protocol://World Wide Web (dot) cottoninc (dot) com/ClassificationofCotton/?Pg=4#Length).


According to some embodiments of the invention, increased yield of corn may be manifested as one or more of the following: increase in the number of plants per growing area, increase in the number of ears per plant, increase in the number of rows to per ear, number of kernels per ear row, kernel weight, thousand kernel weight (1000-weight), ear length/diameter, increase oil content per kernel and increase starch content per kernel.


As mentioned, the increase of plant yield can be determined by various parameters. For example, increased yield of rice may be manifested by an increase in one or more of the following: number of plants per growing area, number of panicles per plant, number of spikelets per panicle, number of flowers per panicle, increase in the seed filling rate, increase in thousand kernel weight (1000-weight), increase oil content per seed, increase starch content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.


Similarly, increased yield of soybean may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, increase protein content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.


Increased yield of canola may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.


Increased yield of cotton may be manifested by an increase in one or more of the following: number of plants per growing area, number of bolls per plant, number of seeds per boll, increase in the seed filling rate, increase in thousand seed weight (1000-weight), increase oil content per seed, improve fiber length, fiber strength, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.


Oil content—The oil content of a plant can be determined by extraction of the oil from the seed or the vegetative portion of the plant. Briefly, lipids (oil) can be removed from the plant (e.g., seed) by grinding the plant tissue in the presence of specific solvents (e.g., hexane or petroleum ether) and extracting the oil in a continuous extractor. Indirect oil content analysis can be carried out using various known methods such as Nuclear Magnetic Resonance (NMR) Spectroscopy, which measures the resonance energy absorbed by hydrogen atoms in the liquid state of the sample [See for example, Conway T F. and Earle F R., 1963, Journal of the American Oil Chemists' Society; Springer Berlin/Heidelberg, ISSN: 0003-021X (Print) 1558-9331 (Online)]; the Near Infrared (NI) Spectroscopy, which utilizes the absorption of near infrared energy (1100-2500 nm) by the sample; and a method described in WO/2001/023884, which is based on extracting oil a solvent, evaporating the solvent in a gas stream which forms oil particles, and directing a light into the gas stream and oil particles which forms a detectable reflected light.


Thus, the present invention is of high agricultural value for promoting the yield of commercially desired crops (e.g., biomass of vegetative organ such as poplar wood, or reproductive organ such as number of seeds or seed biomass).


Any of the transgenic plants described hereinabove or parts thereof may be processed to produce a feed, meal, protein or oil preparation, such as for ruminant animals.


The transgenic plants described hereinabove, which exhibit an increased oil content can be used to produce plant oil (by extracting the oil from the plant).


The plant oil (including the seed oil and/or the vegetative portion oil) produced according to the method of the invention may be combined with a variety of other ingredients. The specific ingredients included in a product are determined according to the intended use. Exemplary products include animal feed, raw material for chemical modification, biodegradable plastic, blended food product, edible oil, biofuel, cooking oil, lubricant, biodiesel, snack food, cosmetics, and fermentation process raw material. Exemplary products to be incorporated to the plant oil include animal feeds, human food products such as extruded snack foods, breads, as a food binding agent, aquaculture feeds, fermentable mixtures, food supplements, sport drinks, nutritional food bars, multi-vitamin supplements, diet drinks, and cereal foods.


According to some embodiments of the invention, the oil comprises a seed oil.


According to some embodiments of the invention, the oil comprises a vegetative portion oil.


According to some embodiments of the invention, the plant cell forms a part of a plant.


As used herein the term “about” refers to ±10%.


The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.


The term “consisting of means “including and limited to”.


The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.


As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.


Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.


Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.


As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known to manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.


Various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.


EXAMPLES

Reference is now made to the following examples, which together with the above descriptions illustrate some embodiments of the invention in a non limiting fashion.


Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, “Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., “Current Protocols in Molecular Biology”, John Wiley and Sons, Baltimore, Md. (1989); Perbal, “A Practical Guide to Molecular Cloning”, John Wiley & Sons, New York (1988); Watson et al., “Recombinant DNA”, Scientific American Books, New York; Birren et al. (eds) “Genome Analysis: A Laboratory Manual Series”, Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; “Cell Biology: A Laboratory Handbook”, Volumes I-III Cellis, J. E., ed. (1994); “Current Protocols in Immunology” Volumes I-III Coligan J. E., ed. (1994); to Stites et al. (eds), “Basic and Clinical Immunology” (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), “Selected Methods in Cellular Immunology”, W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; “Oligonucleotide Synthesis” Gait, M. J., ed. (1984); “Nucleic Acid Hybridization” Hames, B. D., and Higgins S. J., eds. (1985); “Transcription and Translation” Hames, B. D., and Higgins S. J., Eds. (1984); “Animal Cell Culture” Freshney, R. I., ed. (1986); “Immobilized Cells and Enzymes” IRL Press, (1986); “A Practical Guide to Molecular Cloning” Perbal, B., (1984) and “Methods in Enzymology” Vol. 1-317, Academic Press; “PCR Protocols: A Guide To Methods And Applications”, Academic Press, San Diego, Calif. (1990); Marshak et al., “Strategies for Protein Purification and Characterization—A Laboratory Course Manual” CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.


General Experimental and Bioinformatics Methods

RNA extraction—Tissues growing at various growth conditions (as described below) were sampled and RNA was extracted using TRIzol Reagent from Invitrogen [Hypertext Transfer Protocol://World Wide Web (dot) invitrogen (dot) com/content (dot)cfm?pageid=469]. Approximately 30-50 mg of tissue was taken from samples. The weighed tissues were ground using pestle and mortar in liquid nitrogen and resuspended in 500 μl of TRIzol Reagent. To the homogenized lysate, 100 μl of chloroform was added followed by precipitation using isopropanol and two washes with 75% ethanol. The RNA was eluted in 30 μl of RNase-free water. RNA samples were cleaned up using Qiagen's RNeasy minikit clean-up protocol as per the manufacturer's protocol (QIAGEN Inc, CA USA). For convenience, each micro-array expression information tissue type has received an expression Set ID.


Correlation analysis—was performed for selected genes according to some to embodiments of the invention, in which the characterized parameters (measured parameters according to the correlation IDs) were used as “x axis” for correlation with the tissue transcriptom which was used as the “Y axis”. For each gene and measured parameter a correlation coefficient “R” was calculated [using Pearson correlation test Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html] along with a p-value for the significance of the correlation. When the correlation coefficient (R) between the levels of a gene's expression in a certain tissue and a phenotypic performance across ecotypes/variety/hybrid is high in absolute value (between 0.5-1), there is an association between the gene (specifically the expression level of this gene) the phenotypic characteristic (e.g., improved nitrogen use efficiency, abiotic stress tolerance, yield, growth rate and the like). A positive correlation indicates that the expression of the gene in a certain tissue or developmental stage and the correlation vector (phenotype performance) are positively associated (both, expression and phenotypic performance increase or decrease simultaneously) while a negative correlation indicates a negative association (while the one is increasing the other is decreasing and vice versa). Genes which expression thereof in certain tissue significantly correlates with certain trait are presented in Table 26 along with their correlation coefficient (R, calculated using Pearson correlation) and the p-values under the category of the biodiesel ecotypes vector set.


Example 1
Identification of Genes and Predicted Role Using Bioinformatics Tools

The present inventors have identified polynucleotides which can increase plant yield, seed yield, oil yield, oil content, biomass, growth rate, fiber yield and/or quality, abiotic stress tolerance, nitrogen use efficiency and/or vigor of a plant, as follows.


The nucleotide sequence datasets used here were from publicly available databases or from sequences obtained using the Solexa technology (e.g. Barley and Sorghum). Sequence data from 100 different plant species was introduced into a single, to comprehensive database. Other information on gene expression, protein annotation, enzymes and pathways were also incorporated. Major databases used include:


Genomes



Arabidopsis genome [TAIR genome version 8 (Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/)]; Rice genome [build 6.0 (Hypertext Transfer Protocol:// http://rice (dot) plantbiology(dot)msu(dot)edu/index.shtml];


Poplar [Populus trichocarpa release 1.1 from JGI (assembly release v1.0) (Hypertext Transfer Protocol://World Wide Web (dot) genome (dot) jgi-psf (dot) org/)];


Brachypodium [JGI 4× assembly, Hypertext Transfer Protocol://World Wide Web (dot) brachpodium (dot) org)];


Soybean [DOE-JGI SCP, version Glymal (Hypertext Transfer Protocol://World Wide Web (dot) phytozome (dot) net/)];


Grape [French-Italian Public Consortium for Grapevine Genome Characterization grapevine genome (Hypertext Transfer Protocol://World Wide Web (dot) genoscope (dot) cns (dot) fr/)];


Castobean [TIGR/J Craig Venter Institute 4× assembly [(Hypertext Transfer Protocol://msc (dot) jcvi (dot) org/r communis];



Sorghum [DOE-JGI SCP, version Sbi1 [Hypertext Transfer Protocol://World Wide Web (dot) phytozome (dot) net/)];


Partially assembled genome of Maize [Hypertext Transfer Protocol://maizesequence (dot) org/];


Expressed EST and mRNA Sequences were Extracted from the Following Databases:


EST and RNA sequences from NCBI (Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/dbEST/);


RefSeq (Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/RefSeq/);


TAIR (Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/);


Protein and Pathway Databases


Uniprot [Hypertext Transfer Protocol://World Wide Web (dot) uniprot (dot) org/].


AraCyc [Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/biocyc/index (dot) jsp].


ENZYME [Hypertext Transfer Protocol://expasy (dot) org/enzyme/].


Microarray Datasets were Downloaded from:


GEO (Hypertext Transfer Protocol://World Wide Web.ncbi.nlm.nih.gov/geo/) TAIR (Hypertext Transfer Protocol://World Wide Web.arabidopsis.org/).


Proprietary microarray data (See WO2008/122980) and Examples 2-9 below.


QTL and SNPs Information


Gramene [Hypertext Transfer Protocol://World Wide Web (dot) gramene (dot) org/qt1/].


Panzea [Hypertext Transfer Protocol://World Wide Web (dot) panzea (dot) org/index (dot) html].


Database Assembly—was performed to build a wide, rich, reliable annotated and easy to analyze database comprised of publicly available genomic mRNA, ESTs DNA sequences, data from various crops as well as gene expression, protein annotation and pathway data QTLs, and other relevant information.


Database assembly is comprised of a toolbox of gene refining, structuring, annotation and analysis tools enabling to construct a tailored database for each gene discovery project. Gene refining and structuring tools enable to reliably detect splice variants and antisense transcripts, generating understanding of various potential phenotypic outcomes of a single gene. The capabilities of the “LEADS” platform of Compugen LTD for analyzing human genome have been confirmed and accepted by the scientific community [see e.g., “Widespread Antisense Transcription”, Yelin, et al. (2003) Nature Biotechnology 21, 379-85; “Splicing of Alu Sequences”, Lev-Maor, et al. (2003) Science 300 (5623), 1288-91; “Computational analysis of alternative splicing using EST tissue information”, Xie H et al. Genomics 2002], and have been proven most efficient in plant genomics as well.


EST clustering and gene assembly—For gene clustering and assembly of organisms with available genome sequence data (arabidopsis, rice, castorbean, grape, brachypodium, poplar, soybean, sorghum) the genomic LEADS version (GANG) was to employed. This tool allows most accurate clustering of ESTs and mRNA sequences on genome, and predicts gene structure as well as alternative splicing events and anti-sense transcription.


For organisms with no available full genome sequence data, “expressed LEADS” clustering software was applied.


Gene annotation—Predicted genes and proteins were annotated as follows:


Blast search [Hypertext Transfer Protocol://blast (dot) ncbi (dot) nlm (dot) nih (dot) gov/Blast (dot) cgi] against all plant UniProt [Hypertext Transfer Protocol://World Wide Web (dot) uniprot (dot) org/] sequences was performed. Open reading frames of each putative transcript were analyzed and longest ORF with higher number of homologues was selected as predicted protein of the transcript. The predicted proteins were analyzed by InterPro [Hypertext Transfer Protocol://World Wide Web (dot) ebi (dot) ac (dot) uk/interpro/].


Blast against proteins from AraCyc and ENZYME databases was used to map the predicted transcripts to AraCyc pathways.


Predicted proteins from different species were compared using blast algorithm [Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/Blast (dot) cgi] to validate the accuracy of the predicted protein sequence, and for efficient detection of orthologs.


Gene expression profiling—Several data sources were exploited for gene expression profiling which combined microarray data and digital expression profile (see below). According to gene expression profile, a correlation analysis was performed to identify genes which are co-regulated under different developmental stages and environmental conditions and which are associated with different phenotypes.


Publicly available microarray datasets were downloaded from TAIR and NCBI GEO sites, renormalized, and integrated into the database. Expression profiling is one of the most important resource data for identifying genes important for yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.


A digital expression profile summary was compiled for each cluster according to all keywords included in the sequence records comprising the cluster. Digital expression, also known as electronic Northern Blot, is a tool that displays virtual expression profile based on the EST sequences forming the gene cluster. The tool provides the expression profile of a cluster in terms of plant anatomy (e.g., the tissue/organ in which the gene is expressed), developmental stage (e.g., the developmental stages at which a gene can be found/expressed) and profile of treatment (provides the physiological conditions under which a gene is expressed such as drought, cold, pathogen infection, etc). Given a random distribution of ESTs in the different clusters, the digital expression provides a probability value that describes the probability of a cluster having a total of N ESTs to contain X ESTs from a certain collection of libraries. For the probability calculations, the following is taken into consideration: a) the number of ESTs in the cluster, b) the number of ESTs of the implicated and related libraries, c) the overall number of ESTs available representing the species. Thereby clusters with low probability values are highly enriched with ESTs from the group of libraries of interest indicating a specialized expression.


Recently, the accuracy of this system was demonstrated by Portnoy et al., 2009 (Analysis Of The Melon Fruit Transcriptome Based On 454 Pyrosequencing) in: Plant & Animal Genomes XVII Conference, San Diego, Calif. Transcriptomic analysis, based on relative EST abundance in data was performed by 454 pyrosequencing of cDNA representing mRNA of the melon fruit. Fourteen double strand cDNA samples obtained from two genotypes, two fruit tissues (flesh and rind) and four developmental stages were sequenced. GS FLX pyrosequencing (Roche/454 Life Sciences) of non-normalized and purified cDNA samples yielded 1,150,657 expressed sequence tags that assembled into 67,477 unigenes (32,357 singletons and 35,120 contigs). Analysis of the data obtained against the Cucurbit Genomics Database [Hypertext Transfer Protocol://World Wide Web (dot) icugi (dot) org/] confirmed the accuracy of the sequencing and assembly. Expression patterns of selected genes fitted well their qRT-PCR data.


Example 2
Production of Arabidopsis Transcriptom and High Throughput Correlation Analysis of Yield, Biomass and/or Vigor Related Parameters Using 44K Arabidopsis Full Genome Oligonucleotide Micro-Array

To produce a high throughput correlation analysis, the present inventors utilized an Arabidopsis thaliana oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 40,000 A. thaliana genes and transcripts designed based on data from the TIGR ATH1 v.5 database and Arabidopsis MPSS (University of Delaware) databases. To define correlations between the levels of RNA expression and yield, biomass components or vigor related parameters, various plant characteristics of 15 different Arabidopsis ecotypes were analyzed. Among them, nine ecotypes encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.


Experimental Procedures


RNA extraction—Five tissues at different developmental stages including root, leaf, flower at anthesis, seed at 5 days after flowering (DAF) and seed at 12 DAF, representing different plant characteristics, were sampled and RNA was extracted as described above. The Expression sets (e.g., roots, leaf etc.) are included in Table 26 below.


Yield components and vigor related parameters assessment—Eight out of the nine Arabidopsis ecotypes were used in each of 5 repetitive blocks (named A, B, C, D and E), each containing 20 plants per plot. The plants were grown in a greenhouse at controlled conditions in 22° C., and the N:P:K fertilizer [20:20:20; weight ratios; Nitrogen (N), phosphorus (P) and potassium (K)] was added. During this time data was collected, documented and analyzed. Additional data was collected through the seedling stage of plants grown in a tissue culture in vertical grown transparent agar plates. Most of chosen parameters were analyzed by digital imaging.


Digital imaging in tissue culture assays—A laboratory image acquisition system was used for capturing images of plantlets sawn in square agar plates. The image acquisition system consists of a digital reflex camera (Canon EOS 300D) attached to a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which included 4 light units (4×150 Watts light bulb) and located in a darkroom.


Digital imaging in greenhouse assays—The image capturing process was repeated every 3-4 days starting at day 7 till day 30. The same camera attached to a 24 mm focal length lens (Canon EF series), placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The white tubs were square shape with measurements of 36×26.2 cm and 7.5 cm deep. During the capture process, the tubs were placed beneath the iron mount, while avoiding direct sun light and casting of shadows. This process was repeated every 3-4 days for up to 30 days.


An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing program, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 6 Mega Pixels (3072×2048 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).


Leaf analysis—Using the digital analysis leaves data was calculated, including leaf number, area, perimeter, length and width. On day 30, 3-4 representative plants were chosen from each plot of blocks A, B and C. The plants were dissected, each leaf was separated and was introduced between two glass trays, a photo of each plant was taken and the various parameters (such as leaf total area, laminar length etc.) were calculated from the images. The blade circularity was calculated as laminar width divided by laminar length.


Root analysis—During 17 days, the different ecotypes were grown in transparent agar plates. The plates were photographed every 2 days starting at day 7 in the photography room and the roots development was documented (FIGS. 3A-F). The growth rate of roots was calculated according to Formula V.





Relative growth rate of root coverage=Regression coefficient of root coverage along time course.  Formula V


Vegetative growth rate analysis—was calculated according to Formula VI. The analysis was ended with the appearance of overlapping plants.





Relative vegetative growth rate area=Regression coefficient of vegetative area along time course.  Formula VI


For comparison between ecotypes the calculated rate was normalized using plant developmental stage as represented by the number of true leaves. In cases where plants with 8 leaves had been sampled twice (for example at day 10 and day 13), only the largest sample was chosen and added to the Anova comparison.


Seeds in siliques analysis—On day 70, 15-17 siliques were collected from each plot in blocks D and E. The chosen siliques were light brown color but still intact. The siliques from each plot were opened in the photography room, the seeds were scatter on a glass tray and photographed using a high resolution digital camera. Using the images the number of seeds per silique was determined


Seeds average weight—At the end of the experiment all seeds from plots of blocks A-C were collected. An average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.


Oil percentage in seeds—At the end of the experiment all seeds from plots of blocks A-C were collected. Columbia seeds from 3 plots were mixed grounded and then mounted onto the extraction chamber. 210 ml of n-Hexane (Cat No. 080951 Biolab Ltd.) were used as the solvent. The extraction was performed for 30 hours at medium heat 50° C. Once the extraction has ended the n-Hexane was evaporated using the evaporator at 35° C. and vacuum conditions. The process was repeated twice. The information gained from the Soxhlet extractor (Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes, Polytechnisches J. (Dingier's) 1879, 232, 461) was used to create a calibration curve for the Low Resonance NMR. The content of oil of all seed samples was determined using the Low Resonance NMR (MARAN Ultra—Oxford Instrument) and its MultiQuant sowftware package.


Silique length analysis—On day 50 from sowing, 30 siliques from different plants in each plot were sampled in block A. The chosen siliques were green-yellow in color and were collected from the bottom parts of a grown plant's stem. A digital photograph was taken to determine silique's length.


Dry weight and seed yield—On day 80 from sowing, the plants from blocks A-C were harvested and left to dry at 30° C. in a drying chamber. The biomass and seed weight of each plot was separated, measured and divided by the number of plants. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C. in a drying chamber; Seed yield per plant=total seed weight per plant (gr).


Oil yield—The oil yield was calculated using Formula VII.





Seed Oil yield=Seed yield per plant (gr)*Oil % in seed  Formula VII


Harvest Index—The harvest index was calculated using Formula IV as described above [Harvest Index=Average seed yield per plant/Average dry weight].


Experimental Results


Nine different Arabidopsis ecotypes were grown and characterized for 18 parameters (named as correlation vectors in Table 26). The measured parameters are provided in Tables 1 and 2 below. Correlations of gene's expression in various tissues with these phenotypic measurements are presented in Table 26, as “Arabidopsis 1” in vector set column.









TABLE 1







Measured parameters in Arabidopsis ecotypes























Total





Seed
Oil


Dry

leaf





yield
yield
Oil
1000
matter

area





per
per
%
Seed
per

per
Seeds
Silique



plant
plant
per
weight
plant
Harvest
plant
per
length


Ecotype
(gr)
(mg)
seed
(gr)
(gr)
Index
(cm2)
silique
(cm)



















An-1
0.34
118.63
34.42
0.0203
0.64
0.53
46.86
45.44
1.06


Col-0
0.44
138.73
31.19
0.0230
1.27
0.35
109.89
53.47
1.26


Ct-1
0.59
224.06
38.05
0.0252
1.05
0.56
58.36
58.47
1.31


Cvi
0.42
116.26
27.76
0.0344
1.28
0.33
56.80
35.27
1.47


(N8580)











Gr-6
0.61
218.27
35.49
0.0202
1.69
0.37
114.66
48.56
1.24


Kondara
0.43
142.11
32.91
0.0263
1.34
0.32
110.82
37.00
1.09


Ler-1
0.36
114.15
31.56
0.0205
0.81
0.45
88.49
39.38
1.18


Mt-0
0.62
190.06
30.79
0.0226
1.21
0.51
121.79
40.53
1.18


Shakdara
0.55
187.62
34.02
0.0235
1.35
0.41
93.04
25.53
1.00





Table 1. Provided are the values of each of the parameters measured in Arabidopsis ecotypes:


Seed yield per plant (gram); oil yield per plant (mg); oil % per seed; 1000 seed weight (gr); dry matter per plant (gr); harvest index; total leaf area per plant (cm2); seeds per silique; Silique length (cm).


″gr.″ = grams; ″mg″ = miligrams; ″cm″ = centimeters″.













TABLE 2







Additional measured parameters in Arabidopsis ecotypes





















Fresh








Relat.
Root
Root
weight


Leaf




Veg.
root
length
length
per
Lam.
Lam.
width/
Blade


Ecotype
GR
growth
day 7
day 13
plant
Leng.
width
length
circularity





An-1
0.313
0.631
0.937
4.419
1.510
2.767
1.385
0.353
0.509


Col-0
0.378
0.664
1.759
8.530
3.607
3.544
1.697
0.288
0.481


Ct-1
0.484
1.176
0.701
5.621
1.935
3.274
1.460
0.316
0.450


Cvi
0.474
1.089
0.728
4.834
2.082
3.785
1.374
0.258
0.370


(N8580)











Gr-6
0.425
0.907
0.991
5.957
3.556
3.690
1.828
0.356
0.501


Kondara
0.645
0.774
1.163
6.372
4.338
4.597
1.650
0.273
0.376


Ler-1
0.430
0.606
1.284
5.649
3.467
3.877
1.510
0.305
0.394


Mt-0
0.384
0.701
1.414
7.060
3.479
3.717
1.817
0.335
0.491


Shakdara
0.471
0.782
1.251
7.041
3.710
4.149
1.668
0.307
0.409





Table 2. Provided are the values of each of the parameters measured in Arabidopsis ecotypes:


Veg. GR = vegetative growth rate (cm2/day) until 8 true leaves; Relat. Root growth = relative root growth (cm/day); Root length day 7 (cm); Root length day 13 (cm); fresh weight per plant (gr) at bolting stage;


Lam. Leng. = Lamima length (cm); Lam. Width = Lamina width (cm); Leaf width/length; Blade circularity.






Example 3
Production of Arabidopsis Transcriptom and High Throughput Correlation Analysis of Normal and Nitrogen Limiting Conditions Using 44K Arabidopsis Oligonucleotide Micro-Array

In order to produce a high throughput correlation analysis, the present inventors utilized an Arabidopsis oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem (dot) agilent (dot) com/Scripts/PDS (dot) asp?1 Page=50879]. The array oligonucleotide represents about to 44,000 Arabidopsis genes and transcripts. To define correlations between the levels of RNA expression with NUE, yield components or vigor related parameters various plant characteristics of 14 different Arabidopsis ecotypes were analyzed. Among them, ten ecotypes encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.


Experimental Procedures


RNA extraction—Two tissues of plants [leaves and stems] growing at two different nitrogen fertilization levels (1.5 mM Nitrogen or 6 mM Nitrogen) were sampled and RNA was extracted as described above. The Expression sets (e.g., roots, leaf etc.) are included in Table 26 below.


Assessment of Arabidopsis yield components and vigor related parameters under different nitrogen fertilization levels—10 Arabidopsis accessions in 2 repetitive plots each containing 8 plants per plot were grown at greenhouse. The growing protocol used was as follows: surface sterilized seeds were sown in Eppendorf tubes containing 0.5× Murashige-Skoog basal salt medium and grown at 23° C. under 12-hour light and 12-hour dark daily cycles for 10 days. Then, seedlings of similar size were carefully transferred to pots filled with a mix of perlite and peat in a 1:1 ratio. Constant nitrogen limiting conditions were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 2 mM CaCl2, 1.25 mM KH2PO4, 1.50 mM MgSO4, 5 mM KCl, 0.01 mM H3BO3 and microelements, while normal irrigation conditions (Normal Nitrogen conditions) was achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3, supplemented with 2 mM CaCl2, 1.25 mM KH2PO4, 1.50 mM MgSO4, 0.01 mM H3BO3 and microelements. To follow plant growth, trays were photographed the day nitrogen limiting conditions were initiated and subsequently every 3 days for about 15 additional days. Rosette plant area was then determined from the digital pictures. ImageJ software was used for quantifying the plant size from the digital pictures [Hypertext Transfer Protocol://rsb (dot) info (dot) nih (dot) gov/ij/] utilizing proprietary scripts designed to analyze the size of rosette area from individual plants as a function of time. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).


Data parameters collected are summarized in Table 26 below.


Assessment of NUE, yield components and vigor-related parameters—Ten Arabidopsis ecotypes were grown in trays, each containing 8 plants per plot, in a greenhouse with controlled temperature conditions for about 12 weeks. Plants were irrigated with different nitrogen concentration as described above depending on the treatment applied. During this time, data was collected documented and analyzed. Most of chosen parameters were analyzed by digital imaging.


Digital Imaging—Greenhouse Assay


An image acquisition system, which consists of a digital reflex camera (Canon EOS 400D) attached with a 55 mm focal length lens (Canon EF-S series) placed in a custom made Aluminum mount, was used for capturing images of plants planted in containers within an environmental controlled greenhouse. The image capturing process was repeated every 2-3 days starting at day 9-12 till day 16-19 (respectively) from transplanting.


An image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).


Leaf analysis—Using the digital analysis leaves data was calculated, including leaf number, leaf blade area, plot coverage, rosette diameter and rosette area.


Relative growth rate area: The growth rate and the relative growth rate of the rosette and the leaves were calculated according to the following Formulas VIII and IX:










Growth





rate

=


Δ





Area


Δ





t






Formula





VIII







Relative





growth





rate

=



Δ





Area


Δ





t


*

1

Δ






Area

t





0









Formula





IX









    • Δt is the current analyzed image day subtracted from the initial day (Meaning that area growth rate is in units of cm2/day and length growth rate is in units of cm/day).

    • Though the examples shown here are for Area growth rate parameters, the Length growth rate parameters are calculated using similar formulas.





Seed yield and 1000 seeds weight—At the end of the experiment all seeds from all plots were collected and weighed in order to measure seed yield per plant in terms of total seed weight per plant (gr). For the calculation of 1000 seed weight, an average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.


Dry weight and seed yield—At the end of the experiment, plant were harvested and left to dry at 30° C. in a drying chamber. The biomass was separated from the seeds, weighed and divided by the number of plants. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C. in a drying chamber.


Harvest Index—The harvest index was calculated using formula IV (Harvest Index=Average seed yield per plant/Average dry weight).


T50 days to flowering—Each of the repeats was monitored for flowering date. Days of flowering was calculated from sowing date till 50% of the plots flowered.


Plant nitrogen level—The chlorophyll content of leaves is a good indicator of the nitrogen plant status since the degree of leaf greenness is highly correlated to this parameter. Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Based on this measurement, parameters such as the ratio between seed yield per nitrogen unit [seed yield/N level=seed yield per plant [gr]/SPAD unit], plant DW per nitrogen unit [DW/N level=plant biomass per plant [g]/SPAD unit], and nitrogen level per gram of biomass [N level/DW=SPAD unit/plant biomass per plant (gr)] were calculated.


Percent of seed yield reduction—measures the amount of seeds obtained in plants when grown under nitrogen-limiting conditions compared to seed yield produced at normal nitrogen levels expressed in %.









TABLE 3







Additional measured parameters in Arabidopsis ecotypes

















N 1.5
N 1.5






N 1.5
mM
mM




N 1.5
N 1.5
mM
Leaf
RGR of




mM
mM
Leaf
Blade
Rosette
N 1.5



Rosette
Rosette
Number
Area
Area
mM



Arabidopsis

Area
Area 10
10
10
3
t50


2 NUE
8 day
day
day
day
day
Flowering





Bay-0
0.760
1.430
6.875
0.335
0.631
15.967


Col-0
0.709
1.325
7.313
0.266
0.793
20.968


Ct-1
1.061
1.766
7.313
0.374
0.502
14.836


Gr-6
1.157
1.971
7.875
0.387
0.491
24.708


kondara
0.996
1.754
7.938
0.373
0.605
23.566


Mc-0
1.000
1.832
7.750
0.370
0.720
23.698


Mt-0
0.910
1.818
7.625
0.386
0.825
18.059


No-0
0.942
1.636
7.188
0.350
0.646
19.488


Oy-o
1.118
1.996
8.625
0.379
0.668
23.568


Shakadara
0.638
1.150
5.929
0.307
0.636
21.888





Table 3. Provided are the values of each of the parameters measured in Arabidopsis ecotypes:


N 1.5 mM Rosette Area 8 day (measured in cm2); N 1.5 mM Rosette Area 10 day (measured in cm2); N 1.5 mM Leaf Number 10 day; N 1.5 mM Leaf Blade Area 10 day (measured in cm2); N 1.5 mM RGR of Rosette Area 3 day; N 1.5 mM t50 Flowering (measured in days);


″cm″ = centimeters″.













TABLE 4







Additional measured parameters in Arabidopsis ecotypes


















N 1.5







N 1.5
mM seed
N 1.5




N 1.5
N 1.5
mM
yield per
mM seed



N 1.5
mM
mM
1000
rosette
yield



Arabidopsis

mM Dry
Seed
Harvest
Seeds
area
per leaf


2 NUE
Weight
Yield
Index
weight
day 10
blade
















Bay-0
0.164
0.032
0.192
0.016
0.022
0.095


Col-0
0.124
0.025
0.203
0.016
0.019
0.095


Ct-1
0.082
0.023
0.295
0.018
0.014
0.063


Gr-6
0.113
0.010
0.085
0.014
0.005
0.026


kondara
0.184
0.006
0.031
0.018
0.003
0.015


Mc-0
0.124
0.009
0.071
0.022
0.005
0.024


Mt-0
0.134
0.032
0.241
0.015
0.018
0.084


No-0
0.106
0.019
0.179
0.014
0.013
0.059


Oy-o
0.148
0.012
0.081
0.022
0.007
0.034


Shakadara
0.171
0.014
0.079
0.019
0.012
0.044





Table 4. Provided are the values of each of the parameters measured in Arabidopsis ecotypes:


N 1.5 mM Dry Weight (measured in grams); N 1.5 mM Seed Yield (measured in gr/plant); N 1.5 mM Harvest Index; N 1.5 mM 1000 Seeds weight (measured in grams); N 1.5 mM seed yield per rosette area day 10 (measured in gr/plant*cm2); N 1.5 mM seed yield per leaf blade (measured in gr/plant*cm2);













TABLE 5







Additional measured parameters in Arabidopsis ecotypes















N 6 mM



N 6 mM
N 6 mM
N 6 mM
Leaf Blade



Arabidopsis

Rosette Area
Rosette Area
Leaf Number
Area


2 NUE
8 day
10 day
10 day
10 day





Bay-0
0.759
1.406
6.250
0.342


Col-0
0.857
1.570
7.313
0.315


Ct-1
1.477
2.673
8.063
0.523


Gr-6
1.278
2.418
8.750
0.449


kondara
1.224
2.207
8.063
0.430


Mc-0
1.095
2.142
8.750
0.430


Mt-0
1.236
2.474
8.375
0.497


No-0
1.094
1.965
7.125
0.428


Oy-o
1.410
2.721
9.438
0.509


Shakadara
0.891
1.642
6.313
0.405





Table 5. Provided are the values of each of the parameters measured in Arabidopsis ecotypes: N 6 mM Rosette Area 8 day; N 6 mM Rosette Area 10 day; N 6 mM Leaf Number 10 day; N 6 mM Leaf Blade Area 10 day.













TABLE 6







Additional measured parameters in Arabidopsis ecotypes














N 6 mM RGR




N 6 mM



of Rosette
N 6 mM
N 6 mM
N 6 mM
N 6 mM
1000



Arabidopsis

Area
t50
Dry
Seed
Harvest
Seeds


2 NUE
3 day
Flowering
Weight
Yield
Index
weight
















Bay-0
0.689137
16.3714
0.41875
0.11575
0.279999
0.014743


Col-0
1.023853
20.5
0.53125
0.165163
0.308528
0.016869


Ct-1
0.614345
14.63465
0.381875
0.108469
0.283603
0.01777


Gr-6
0.600985
24
0.5175
0.08195
0.158357
0.012078


kondara
0.476947
23.378
0.49625
0.067544
0.136182
0.01601


Mc-0
0.650762
23.59507
0.579375
0.119181
0.205875
0.015535


Mt-0
0.675597
15.0327
0.50125
0.138769
0.276265
0.015434


No-0
0.584219
19.74969
0.6275
0.106956
0.170622
0.014038


Oy-o
0.612997
22.88714
0.649375
0.138088
0.21248
0.016601


Shakadara
0.515469
18.80415
0.573125
0.094813
0.165557
0.016081





Table 6. Provided are the values of each of the parameters measured in Arabidopsis ecotypes: N 6 mM RGR of Rosette Area 3 day; N 6 mM t50 Flowering (measured in days); N 6 mM Dry Weight (measured in gr/plant); N 6 mM Seed Yield (measured in gr/plant); N 6 mM Harvest Index; N 6 mM 1000 Seeds weight (measured in gr); “gr.” = grams; “mg” = miligrams; “cm” = centimeters”.













TABLE 7







Additional measured parameters in Arabidopsis ecotypes










Arabidopsis 2

N 6 mM seed yield/rosette
N 6 mM seed yield/leaf


NUE
area day 10 day
blade












Bay-0
0.082439
0.339198


Col-0
0.105792
0.52646


Ct-1
0.040511
0.207182


Gr-6
0.033897
0.182671


kondara
0.030718
0.157924


Mc-0
0.055634
0.277238


Mt-0
0.057027
0.281182


No-0
0.055374
0.252332


Oy-o
0.050715
0.271258


Shakadara
0.058181
0.235472





Table 7. Provided are the values of each of the parameters measured in Arabidopsis ecotypes: N 6 mM seed yield/rosette area day 10 day (measured in gr/plant * cm2); N 6 mM seed yield/leaf blade (measured in gr/plant * cm2);













TABLE 8







Additional measured parameters in Arabidopsis ecotypes

















N 6 mM
N 6 mM
N 6 mM



N 1.5 mM




DW/SPAD
spad/DW
Seed



seed



Arabidopsis

N 6 mM
(biomas/
(gN/g
yield/N
N 1.5 mM
N 1.5 mM
N 1.5 mM
yield/


2
Spad/FW
Nunit)
plant)
unit
Spad/FW
SPAD/DW
DW/SPAD
spad


















Bay-0
22.49
0.01862
53.7055
0.004209
45.59
167.3004
0.005977
0.001155


Gr-6
28.27
0.018307
54.6248
0.002953
42.11
241.0608
0.004148
0.000361


kondara
17.64
0.028131
35.54803
0.002333
28.15
157.8231
0.006336
0.000191


Mt-0
33.32
0.015042
66.47908
0.005299
53.11
194.9767
0.005129
0.001234


Shakadara
39
0.014694
68.05368
0.003255
67
169.3431
0.005905
0.000466





Table 8. Provided are the values of each of the parameters measured in Arabidopsis ecotypes: N 6 mM Spad/FW; N 6 mM DW/SPAD (biomas/Nunit); N 6 mM spad/DW (gN/g plant); N 6 mM Seed yield/N unit (measured in gr/N units); N 1.5 mM Spad/FW (measured in 1/gr); N 1.5 mM SPAD/DW (measured in 1/gr); N 1.5 mM DW/SPAD (measured in 1/gr); N 1.5 mM seed yield/spad (measured in gr);






Experimental Results

10 different Arabidopsis accessions (ecotypes) were grown and characterized for 33 parameters as described above (Tables 3-8). The average for each of the measured parameters was calculated using the JMP software. Subsequent correlation analysis was performed between the characterized parameters in the Arabidopsis ecotypes (which are used as x axis for correlation) and the tissue transcriptom, and genes exhibiting a significant correlation to selected traits (classified using the correlation vector) are presented in Table 26 below along with their correlation values (R, calculated using Pearson correlation) and the p-values under the category of the vector sets Arabidopsis 2 NUE vector and Arabidopsis 2.


Example 4
Production of Tomato Transcriptom and High Throughput Correlation Analysis Using 44K Tomato Oligonucleotide Micro-Array

In order to produce a high throughput correlation analysis, the present inventors utilized a Tomato oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1 Page=50879]. The array oligonucleotide represents about 44,000 Toamto genes and transcripts. In order to define correlations between the levels of RNA expression with ABST, yield components or vigor related parameters various plant characteristics of 18 different Tomato varieties were analyzed. Among them, 10 varieties encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.


I. Correlation of Tomato Varieties Across Ecotype Grown Under 50% Irrigation Conditions


Experimental Procedures


Growth procedure—Tomato variety was grown under normal conditions (4-6 Liters/m2 per day) until flower stage. At this time, irrigation was reduced to 50% compared to normal conditions.


RNA extraction—Two tissues at different developmental stages [flower and lea representing different plant characteristics, were sampled and RNA was extracted as described above. The Expression sets (e.g., flower and leaf) are included in Table 26 below.


Tomato yield components and vigor related parameters under 50% water irrigation assessment—10 Tomato varieties in 3 repetitive blocks (named A, B, and C), each containing 6 plants per plot were grown at net house. Plants were phenotyped on a daily basis following the standard descriptor of tomato (Table 11, below). Harvest was conducted while 50% of the fruits were red (mature). Plants were separated to the vegetative part and fruits, of them, 2 nodes were analyzed for additional inflorescent parameters such as size, number of flowers, and inflorescent weight. Fresh weight of all vegetative material was measured. Fruits were separated to colors (red vs. green) and in accordance with the fruit size (small, medium and large). Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).


Data parameters collected are summarized in Table 9, hereinbelow.









TABLE 9







Tomato correlated parameters (vectors)








Correlated parameter with
Correlation Id











50% Irrigation; Vegetative fresh weight [gr.]
1


50% Irrigation; Fruit per plant [gr.]
2


50% Irrigation; Inflorescence weight [gr.]
3


50% Irrigation; number of flowers
4


50% Irrigation; relative Water use efficiency
5


50% Irrigation; Ripe fruit average weight [gr.]
7


50% Irrigation: SPAD
8


Normal Irrigation; vegetative fresh weight [gr.]
9


Normal Irrigation; Fruit per plant [gr.]
10


Normal Irrigation; Inflorescence weight [gr.]
11


Normal Irrigation; number of flowers
12


Normal Irrigation; relative Water use efficiency
13


Normal Irrigation; number of fruit per plant
14


Normal Irrigation; Ripe fruit average weight [gr.]
15


Normal Irrigation; SPAD
16


50% Irrigation; Vegetative fresh weight [gr.]/Normal
17


Irrigation; vegetative fresh weight [gr.]


50% Irrigation; Fruit per plant [gr.]/Normal Irrigation;
18


Fruit per plant [gr.]


50% Irrigation; Inflorescence weight [gr.]/Normal
19


Irrigation; Inflorescence weight [gr.]


50% Irrigation; number of flowers/Normal Irrigation;
20


number of flowers


50% Irrigation; relative Water use efficiency/Normal
21


Irrigation; Water use efficiency


50% Irrigation; Ripe fruit average weight [gr.]/Normal
22


Irrigation; Ripe fruit average weight [gr.]


50% Irrigation: SPAD/Normal Irrigation; SPAD
23





Table 9. Provided are the tomato correlated parameters. “gr.” = grams; “SPAD” =chlorophyll levels;






Fruit Weight (grams)—At the end of the experiment [when 50% of the fruits were ripe (red)] all fruits from plots within blocks A-C were collected. The total fruits were counted and weighted. The average fruits weight was calculated by dividing the total fruit weight by the number of fruits.


Plant vegetative Weight (grams)—At the end of the experiment [when 50% of the fruit were ripe (red)] all plants from plots within blocks A-C were collected. Fresh weight was measured (grams).


Inflorescence Weight (grams)—At the end of the experiment [when 50% of the fruits were ripe (red)] two Inflorescence from plots within blocks A-C were collected. The Inflorescence weight (gr.) and number of flowers per inflorescence were counted.


SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.


Water use efficiency (WUE)—can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content was measured in control and transgenic plants. Fresh weight (FW) was immediately recorded; then leaves were soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) was recorded. Total dry weight (DW) was recorded after drying to the leaves at 60° C. to a constant weight. Relative water content (RWC) was calculated according to the following Formula I [(FW−DW/TW−DW)×100] as described above.


Plants that maintain high relative water content (RWC) compared to control lines were considered more tolerant to drought than those exhibiting reduced relative water content


Experimental Results


10 different Tomato varieties (accessions) were grown and characterized for 23 parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 10, 11 and 12 below. Subsequent correlation analysis between expression of selected genes in various transcriptom expression sets and the measured parameters in tomato accessions (Tables 10-12) was conducted, and results were integrated to the database and provided in Table 26 below under the category of the vector sets Tomato vectors field Normal, Tomato vectors field Drought.









TABLE 10







Measured parameters in Tomato accessions















Variety
2
10
1
9
7
15
18
17


















612
0.47
0.83
2.62
1.53
0.01
0.05
0.57
1.72


613
0.48
0.34
1.09
3.17
0.19
0.01
1.41
0.34


617
2.04
0.49
2.63
2.24
0.10
0.01
4.20
1.18


618
0.25
0.45
2.71
1.98
0.00
0.05
0.55
1.36


622
0.29
0.21
1.95
3.21
0.01
0.01
1.39
0.61


623
1.02
0.31
1.76
2.75
0.00
0.01
3.28
0.64


626
0.27
0.85
2.21
1.89
0.00
0.03
0.32
1.17


629
0.53
0.33
1.76
1.65
0.14
0.00
1.62
1.06


630
0.55
0.31
0.63
3.01
0.04
0.00
1.76
0.21


631
0.41
0.29
1.11
2.29
0.09
0.01
1.42
0.48





Table 10: Provided are the measured yield components and vigor related parameters under normal or 50% water irrigation for the tomato accessions (Varieties) according to the Correlation ID numbers (described in Table 9 above) as follows: 2 [50% Irrigation; Fruit per plant (gr.)]; 10 [Normal Irrigation; Fruit per plant (gr.)]; 1 [50% Irrigation; Vegetative fresh weight (gr.)]; 9 [Normal Irrigation; vegetative fresh weight (gr.)]; 7 [50% Irrigation; ripe Fruit average weight (gr.)]; 15 [Normal Irrigation; Ripe fruit average weight (gr.)]; 18 [50% Irrigation; Fruit per plant (gr.)/Normal Irrigation; Fruit per plant (gr.)]; 17 [50% Irrigation; Vegetative fresh weight (gr.)/Normal Irrigation; vegetative fresh weight (gr.)].













TABLE 11







Additional measured parameters in Tomato accessions













Variety
22
8
16
5
13
23
















612
0.19
49.30
49.70
72.12
72.83
0.99


613
24.37
67.10
37.20
74.51
76.47
1.80


617
20.26
56.00
48.20
66.13
54.79
1.16


618
0.04
38.90
43.40
68.33
77.61
0.90


622
0.86
50.20
58.50
73.21
64.71
0.86


623
0.74
60.50
51.10
62.50
75.25
1.18


626
0.17
54.70
57.90
62.82
56.77
0.94


629
27.89
47.70
54.50
75.22
100.00
0.88


630
11.79
58.10
41.60
63.68
63.16
1.40


631
9.98
59.40
59.10
62.31
75.13
1.01





Table 11: Provided are the measured yield components and vigor related parameters under 50% water irrigation for the tomato accessions (Varieties) according to the Correlation (Corr.) ID numbers (described in Table 9 above) as follows: 22 [50% Irrigation; Ripe fruit average weight (gr.)/Normal Irrigation; Ripe fruit average weight (gr.)]; 8 [50% Irrigation: SPAD]; 16 [Normal Irrigation; SPAD]; 5 [50% Irrigation; relative Water use efficiency]; 13 [Normal Irrigation; relative Water use efficiency]; 23 [50% Irrigation: SPAD/Normal Irrigation; SPAD].













TABLE 12







Additional measured parameters in Tomato accessions














Variety
21
4
12
3
11
20
19

















612
0.99
16.67
5.67
0.37
1.17
2.94
0.32


613
0.97
6.50
19.33
0.41
0.34
0.34
1.19


617
1.21
11.67
9.67
0.55
0.44
1.21
1.25


618
0.88
25.33
8.33
0.31
11.31
3.04
0.03


622
1.13
14.67
10.00
0.30
0.73
1.47
0.42


623
0.83
29.67
7.00
0.31
0.83
4.24
0.38


626
1.11
18.33
5.33
8.36
1.02
3.44
8.20


629
0.75
12.67
9.00
0.44
0.66
1.41
0.67


630
1.01
12.67
10.67
0.27
0.70
1.19
0.38


631
0.83
11.33
9.00
0.43
0.33
1.26
1.31





Table 12: Provided are the measured yield components and vigor related parameters under 50% water irrigation for the tomato accessions (Varieties) according to the Correlation (Corr.) ID numbers (described in Table 9 above) as follows: 21 [50% Irrigation; relative Water use efficiency/Normal Irrigation; Water use efficiency]; 4 [50% Irrigation; number of flowers]; 12 [Normal Irrigation; number of flowers]; 3 [50% Irrigation; Inflorescence weight (gr.)]; 11 [Normal Irrigation; Inflorescence weight (gr.)]; 20 [50% Irrigation; number of flowers/Normal Irrigation; number of flowers]; 19 [50% Irrigation; Inflorescence weight (gr.)/Normal Irrigation; Inflorescence weight (gr.)].






II. Correlation of Tomato Varieties Under Stress Built Under 50% Irrigation Conditions


Experimental Procedures


Growth procedure—Tomato varieties were grown under normal conditions (4-6 to Liters/m2 per day) until flower stage. At this time, irrigation was reduced to 50% compared to normal conditions. Tissue sample were taken during the stress developed period every two days.


RNA extraction—All 10 selected Tomato varieties were sampled per each treatment. Two tissues [leaves and flowers] growing at 50% irrigation or under normal conditions were sampled and RNA was extracted using TRIzol Reagent from Invitrogen [Hypertext Transfer Protocol://World Wide Web (dot) invitrogen (dot) com/content (dot)cfm?pageid=469]. The Expression sets (e.g., flower and leaf) are included in Table 26 below. Extraction of RNA from tissues was performed as described in Example 2 above.


Correlation of early vigor traits across collection of tomato ecotypes under high salinity concentration—Ten tomato varieties were grown in 3 repetitive plots, each containing 17 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Tomato seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio. Following germination, the trays were transferred to either high salinity growth conditions (100 mM NaCl solution) or to normal growth conditions [full Hogland; KNO3—0.808 grams/liter, MgSO4—0.12 grams/liter, KH2 PO4—0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]—40.5 grams/liter; Mn—20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution's pH should be 6.5-6.8].


Tomato vigor related parameters under 100 mM NaCl—Following 5 weeks of growing, plant were harvested and analyzed for leaf number, plant height, and plant weight (data parameters are summarized in Table 13). Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).









TABLE 13







Tomato correlated parameters (vectors)











Correlation



Correlated parameter with
Id







100 mM NaCl: leaf Number
1



100 mM NaCl: Plant height
2



100 mM NaCl: Plant biomass
3



Normal: leaf Number
4



Normal: Plant height
5



100 mM NaCl: leaf Number/Normal: leaf Number
6



100 mM NaCl: Plant height/Normal: Plant height
7







Table 13. Provided are the tomato correlated parameters (ID numbers 1-7).






Experimental Results


10 different Tomato varieties were grown and characterized for 7 parameters as to described above (Table 13). The average for each of the measured parameters was calculated using the JMP software and values are summarized in Tables 14 below. Subsequent correlation analysis between expression of selected genes in various transcriptom expression sets and the average measured parameters was conducted and the results were integrated to the database and provided in Table 26 hereinbelow under the vector sets: Tomato vectors bath Normal, and Tomato vectors bath Salinity.









TABLE 14







Measured parameters in tomato accessions









Corr. ID














Variety
1
4
2
5
3
6
7

















1139
3.56
6.56
5.60
45.33
0.36
0.54
0.12


2078
3.94
6.89
6.46
47.78
0.44
0.57
0.14


2958
5.00
7.33
8.47
40.78
0.26
0.68
0.21


5077
4.00
6.22
8.56
55.33
0.71
0.64
0.15


5080
3.56
6.33
8.87
56.22
0.46
0.56
0.16


5084
4.39
6.44
7.56
48.67
0.54
0.68
0.16


5085
3.17
5.89
8.64
55.78
0.66
0.54
0.15


5088
3.72
5.56
5.57
37.44
0.40
0.67
0.15


5089
4.00
6.11
5.82
49.56
0.52
0.65
0.12


5092
4.28
5.67
9.36
46.33
0.45
0.75
0.20





Table 14. Provided are the measured vigor related parameters under 100 mM NaCl or normal conditions for the tomato accessions (Varieties) according to the Correlation (Corr.) ID numbers (described in Table 13 above) as follows: 1 [100 mM NaCl: leaf Number]; 4 [Normal: leaf Number]; 2 [100 mM NaCl: Plant height]; 5 [Normal: Plant height]; 3 [100 mM NaCl: Plant biomass]; 6 [100 mM NaCl: leaf Number/Normal: leaf Number]; 7 [100 mM NaCl: Plant height/Normal: Plant height].






Example 5
Production of B. juncea Transcriptom and High Throughput Correlation Analysis with Yield Parametrers Using 44K B. juncea Oligonucleotide Micro-Arrays

In order to produce a high throughput correlation analysis, the present inventors utilized a B. juncea oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1 Page=50879]. The array oligonucleotide represents about 60,000 B. juncea genes and transcripts. In order to define correlations between the levels of RNA expression with yield components or vigor related parameters, various plant characteristics of 11 different B. juncea varieties were analyzed and used for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.


Correlation of B. juncea Genes' Expression Levels with Phenotypic Characteristics Across Ecotype


Experimental Procedures


11 B. juncea varieties were grown in three repetitive plots, in field. Briefly, the growing protocol was as follows: B. juncea seeds were sown in soil and grown under normal condition till harvest. In order to define correlations between the levels of RNA expression with yield components or vigor related parameters, the 11 different B. juncea varieties were analyzed and used for gene expression analyses.


RNA extraction—All 11 selected B. juncea varieties were sample per each treatment. Plant tissues [leaf, Pod, Lateral meristem and flower] growing under normal conditions were sampled and RNA was extracted as described above. The Expression sets (e.g., leaf, Pod, Lateral meristem and flower) are included in Table 26 below.


The collected data parameters were as follows:


Fresh weight (plot-harvest) [gr/plant]—total fresh weight per plot at harvest time normalized to the number of plants per plot.


Seed Weight [milligrams/plant]—total seeds from each plot was extracted, weighted and normalized for plant number in each plot.


Harvest index—The harvest index was calculated: seed weight/fresh weight


Days till bolting/flowering—number of days till 50% bolting/flowering for each plot.


SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken for each plot.


Main branch—average node length—total length/total number of nods on main branch.


Lateral branch—average node length—total length/total number of nods on lateral branch.


Main branch—20th length—the length of the pod on the 20th node from the apex of main branch.


Lateral branch—20th length—the length of the pod on the 20th node from the apex of lateral branch.


Main branch—20th seed No.—number of seeds in the pod on the 20th node from the apex of main branch.


Lateral branch—20th seed number—number of seeds in the pod on the 20th node from the apex of lateral branch.


Number of lateral branches—total number of lateral branches, average of three plants per plot.


Main branch height [cm]—total length of main branch.


Min-lateral branch position—lowest node on the main branch that has developed lateral branch.


Max-lateral branch position [#node of main branch]—highest node on the main branch that has developed lateral branch.


Max-number of nodes in lateral branch—the highest number of node that a lateral branch had per plant.


Max length of lateral branch [cm]—the highest length of lateral branch per plant.


Max diameter of lateral branch [mm]—the highest base diameter that a lateral branch had per plant.


Oil Content—Indirect oil content analysis was carried out using Nuclear Magnetic Resonance (NMR) Spectroscopy, which measures the resonance energy absorbed by hydrogen atoms in the liquid state of the sample [See for example, Conway T F. and Earle F R., 1963, Journal of the American Oil Chemists' Society; Springer Berlin/Heidelberg, ISSN: 0003-021X (Print) 1558-9331 (Online)];


Fresh weight (single plant) (gr/plant)—average fresh weight of three plants per plot taken at the middle of the season.


Main branch base diameter [mm]—the based diameter of main branch, average of three plants per plot.


1000 Seeds [gr]—weight of 1000 seeds per plot.


Experimental Results


Eleven different B. juncea varieties (i.e., seed ID 646, 648, 650, 657, 661, 662, 663, 664, 669, 670, 671) were grown and characterized for 23 parameters as specified above. The average for each of the measured parameters was calculated using the JMP software and values are summarized in Table 15 below. Subsequent correlation analysis between the various transcriptom expression sets and the average parameters, was conducted. Results were then integrated to the database and selected correlations are shown in Table 26, below, under the vector set Juncea ecotypes vector.









TABLE 15







Measured parameters in B. juncea accessions









Seed ID


















Parameter
646
648
650
657
661
662
663
664
669
670
671





















Fresh weight
69.2
45.2
39.3
49.1
44.0
46.4
36.1
32.6
33.2
63.2
60.9


(plot-harvest)


[gr/plant]


Seed Weight
4.38
5.72
5.53
6.87
5.81
6.28
4.58
4.37
4.48
5.66
7.06


per plant


harvest
0.06
0.13
0.14
0.14
0.13
0.14
0.13
0.13
0.14
0.09
0.12


index*103


days till
57.3
60.3
59.7
56.3
55.0
46.7
59.0
54.3
59.7
57.3
53.0


bolting


days till
66.0
69.7
69.3
66.0
61.3
53.0
69.7
63.7
69.7
71.0
58.3


flowering


SPAD
33.0
30.0
32.8
37.5
41.4
35.4
33.2
32.9
34.8
31.8
41.5


Main branch -
0.5
0.4
0.6
0.4
0.4
0.7
0.4
0.6
0.6
0.6
1.6


average node


length


Lateral branch -
0.7
0.4
0.7
0.6
0.6
0.8
0.6
0.8
1.0
0.8
0.9


average node


length


Main branch -
4.3
3.7
3.6
3.5
2.7
5.2
3.9
4.0
3.5
3.7
4.0


20th length


Lateral branch -
4.3
3.7
4.1
3.4
3.1
4.0
4.3
4.2
4.1
4.0
3.9


20th length


Main branch -
13.2
13.7
10.4
14.1
9.8
15.2
12.0
12.7
9.9
11.6
15.6


20th seed No.


Lateral branch -
13.0
14.0
13.2
13.4
11.0
13.1
11.9
13.4
11.2
13.2
14.0


20th seed


number


Number of
15.2
14.9
13.6
14.9
14.0
9.8
16.4
14.3
14.6
14.1
16.8


lateral


branches


Main branch
140.7
125.2
112.4
133.4
142.0
101.5
145.4
131.6
129.9
131.6
116.4


height [cm]


Min-Lateral
6.8
6.3
5.6
3.7
3.0
3.1
7.8
6.2
5.6
4.9
5.3


branch position


Max-Lateral
15.2
14.9
13.6
14.9
14.0
10.9
16.4
14.3
14.6
14.1
16.8


branch position


[#node of main


branch]


Max-Number
5.2
7.0
5.2
7.0
6.6
9.4
6.1
5.2
5.7
6.6
6.0


of nodes in


lateral branch


Max Length of
40.4
47.2
41.6
60.5
59.8
59.4
47.3
47.3
44.7
58.7
47.2


lateral branch


[cm]


Max Diameter
4.2
4.9
4.3
5.7
5.9
5.7
4.5
4.9
4.7
5.6
5.5


of lateral


branch [mm]


Oil Content
40.2
40.7
40.9
38.6
40.1
42.6
41.3
40.8
40.8
38.1
37.2


Fresh Weight
197.8
142.2
147.2
243.3
192.3
163.8
164.4
181.1
176.2
217.9
261.1


(single plant)


(gr/plant)


Main branch
14.5
12.0
19.9
14.3
12.6
12.3
12.6
12.9
12.6
13.8
13.6


base diameter


[mm]


1000 Seeds [gr]
3.8
2.2
3.3
2.4
2.0
3.1
3.3
3.1
3.4
3.4
2.4





Table 15: Provided are the values of each of the parameters (as described above) measured in B. juncea accessions (Seed ID) under normal conditions.






Example 6
Production of B. juncea Transcriptom and High Throughput Correlation Analysis with Yield Parameters of juncea Grown Under Various Population Densities Using 44K B. juncea Oligonucleotide Micro-Arrays

In order to produce a high throughput correlation analysis, the present inventors utilized a B. juncea oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1 Page=50879]. The array oligonucleotide represents about 60,000 B. juncea genes and transcripts. In order to define correlations between the levels of RNA expression with yield components or vigor related parameters, various plant characteristics of two different B. juncea varieties grown under seven different population densities were analyzed and used for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.


Correlation of B. juncea Genes' Expression Levels with Phenotypic Characteristics Across Seven Population Densities for Two Ecotypes


Experimental Procedures


Two B. juncea varieties (646 and 671) were grown in a field under seven population densities (10, 60, 120, 160, 200, 250 and 300 plants per m2) in two repetitive plots. Briefly, the growing protocol was as follows: B. juncea seeds were sown in soil and grown under normal condition till harvest. In order to define correlations between the levels of RNA expression with yield components or vigor related parameters, the two different B. juncea varieties grown under various population densities were analyzed and used for gene expression analyses. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test for each ecotype independently.


RNA extraction—the two B. juncea varieties grown under seven population densities were sample per each treatment. Plant tissues [Flower and Lateral meristem] growing under Normal conditions were sampled and RNA was extracted as described above. For convenience, each micro-array expression information tissue type has received a Set ID. The Expression sets (e.g., Flower and Lateral meristem) are included in Table 26 below.


The collected data parameters were as follows:


Fresh weight (plot-harvest) [gr/plant]—total fresh weight per plot at harvest time normalized to the number of plants per plot.


Seed weight [gr/plant]—total seeds from each plot was extracted, weighted and normalized for plant number in each plot.


Harvest index—The harvest index was calculated: seed weight/fresh weight


Days till bolting/flowering—number of days till 50% bolting/flowering for each plot.


SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken for each plot.


Main branch—average node length—total length/total number of nods on main branch.


Lateral branch—average node length—total length/total number of nods on lateral branch.


Main branch—20th length—the length of the pod on the 20th node from the apex of main branch.


Lateral branch—20th length—the length of the pod on the 20th node from the apex of lateral branch.


Main branch—20th seed No.—number of seeds in the pod on the 20th node from the apex of main branch.


Lateral branch—20th seed number—number of seeds in the pod on the 20th node from the apex of lateral branch.


Number of lateral branches—total number of lateral branches, average of three plants per plot.


Main branch height [cm]—total length of main branch.


Min-Lateral branch position—lowest node on the main branch that has developed lateral branch.


Max-Lateral branch position [#node of main branch]—highest node on the main branch that has developed lateral branch.


Max-number of nodes in lateral branch—the highest number of node that a lateral branch had per plant.


Max-length of lateral branch [cm]—the highest length of lateral branch per plant.


Max diameter of lateral branch [mm]—the highest base diameter that a lateral branch had per plant.


Oil content—Indirect oil content analysis was carried out using Nuclear to Magnetic Resonance (NMR) Spectroscopy, which measures the resonance energy absorbed by hydrogen atoms in the liquid state of the sample [See for example, Conway TF. and Earle FR., 1963, Journal of the American Oil Chemists' Society; Springer Berlin/Heidelberg, ISSN: 0003-021X (Print) 1558-9331 (Online)];


Fresh weight (single plant) (gr/plant)—average fresh weight of three plants per plot taken at the middle of the season.


Main branch base diameter [mm]—the based diameter of main branch, average of three plants per plot.


1000 Seeds [gr]—weight of 1000 seeds per plot.


Main branch—total number of pods—total number of pods on the main branch, average of three plants per plot.


Main branch—dist. 1-20—the length between the youngest pod and pod number 20 on the main branch, average of three plants per plot.


Lateral branch—total number of pods—total number of pods on the lowest lateral branch, average of three plants per plot.


Lateral branch—dis. 1-20—the length between the youngest pod and pod number 20 on the lowest lateral branch, average of three plants per plot.


Dry weight/plant—weight of total plants per plot at harvest after three days at oven at 60° C. normalized for the number of plants per plot.


Total leaf area—Total leaf area per plot was calculated based on random three plants and normalized for number of plants per plot.


Total Perim.—total perimeter of leaves, was calculated based on random three plants and normalized for number of plants per plot.


Experimental Results


Two B. juncea varieties were grown under seven different population densities and characterized for 29 parameters as specified above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Table 16 below. Subsequent correlation analysis between the expression of selected genes in various transcriptom expression sets and the average parameters was conducted. Results were then integrated to the database and are provided in Table 26, below, under the vector sets Juncea population densities.









TABLE 16







Measured parameters in B. juncea accessions at various population densities









Popul. Density (plants per m2)















10
60
120
160
200
250
300


















Main branch
7.37
6.90
5.62
4.99
6.45
3.95
8.77


base diameter


[mm]


fresh Weight
0.07
0.04
0.03
0.02
0.04
0.02
0.07


(single plant)


[gr/plant]


Main branch
116.0
115.5
111.3
106.0
117.5
108.0
157.3


height [cm]


Number of
16.17
19.17
15.83
19.33
18.33
17.83
12.83


lateral branches


Min-Lateral
5.00
11.00
7.00
11.00
9.00
9.00
3.00


branch position


Max-Lateral
20.00
23.00
19.00
24.00
22.00
20.00
16.00


branch position


Max-Number of
6.00
4.00
4.00
4.00
6.00
4.00
11.00


nodes in lateral


branch


Max-Length of
78.00
41.00
43.00
36.00
40.00
42.00
109.0


lateral branch


[cm]


Max-Diameter
4.40
2.90
2.50
2.00
3.40
2.50
8.00


of lateral branch


[mm]


Main branch-
15.17
15.33
17.67
16.50
23.17
16.83
33.83


total number of


pods


Main branch-
37.58
27.90
31.22
26.05
27.72
31.85
45.25


dist. 1-20


Main branch-
5.10
4.63
4.60
4.67
4.73
4.68
4.43


20th length


Main branch-
17.67
17.67
18.00
18.50
17.67
17.50
13.17


20th seed No.


Lateral branch-
14.00
11.67
10.67
10.17
12.50
9.83
18.50


total number of


pods


Lateral branch-
28.25
17.53
19.08
15.65
15.23
17.73
21.58


dis. 1-20


Lateral branch-
4.95
4.48
4.37
4.33
4.35
4.40
4.72


20th length


Lateral branch-
14.55
19.33
17.00
18.83
15.67
17.17
11.17


20th seed number


Oil Content
26.78
29.62
29.57
30.59
29.87
25.22
37.55


SPAD
40.89
41.95
40.48
37.93
39.50
45.57
39.21


days till bolting
53.00
50.50
48.00
53.00
50.00
51.50
51.50


days till
62.50
64.00
64.00
64.00
64.00
62.50
61.00


flowering


fresh weight (at
0.05
0.02
0.01
0.01
0.01
0.01
0.04


harvest)/plant


dry weight/plant
0.01
0.01
0.00
0.00
0.00
0.00
0.01


Seed
0.00
0.00
0.00
0.00
0.00
0.00
0.00


Weight/plant


1000 Seeds [gr]
1.56
1.75
1.62
1.99
1.92
1.54
2.77


Total Leaf Area
76.39
37.49
25.00
14.33
50.79
29.13
218.2


Total Perim.
219.1
100.5
68.0
37.9
97.5
61.2
329.0





Table 16: Provided are the values of each of the parameters (as described above) measured in B. juncea (Seed ID 671) grown in seven population densities (Populat. Density) under normal conditions. Param. = parameter.






Example 7
Production of Sorghum Transcriptom and High Throughput Correlation Analysis with Yield, NUE, and ABST Related Parameters Measured in Fields Using 44K Sorghum Oligonucleotide Micro-Arrays

In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a sorghum oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1 Page=50879]. The array oligonucleotide represents about 44,000 sorghum genes and transcripts. In order to define correlations between the levels of RNA expression with ABST, yield and NUE components or vigor related parameters, various plant characteristics of 17 different sorghum hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.


Correlation of Sorghum Varieties Across Ecotypes Grown Under Low Nitrogen, Regular Growth and Severe Drought Conditions


Experimental Procedures


17 Sorghum varieties were grown in 3 repetitive plots, in field. Briefly, the growing protocol was as follows:


1. Regular growth conditions: sorghum plants were grown in the field using commercial fertilization and irrigation protocols.


2. Low Nitrogen fertilization conditions: sorghum plants were fertilized with 50% less amount of nitrogen in the field than the amount of nitrogen applied in the regular growth treatment. All the fertilizer was applied before flowering.


3. Drought stress: sorghum seeds were sown in soil and grown under normal condition until around 35 days from sowing, around V8. At this point, irrigation was stopped, and severe drought stress was developed. In order to define correlations between the levels of RNA expression with NUE, drought, and yield components or vigor related parameters, the 17 different sorghum varieties were analyzed. Among them, 10 varieties encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.


Analyzed Sorghum tissues—All 10 selected Sorghum hybrids were sample per each treatment. Plant tissues [Flag leaf, Flower meristem and Flower] growing under low nitrogen, severe drought stress and plants grown under Normal conditions were sampled and RNA was extracted as described above.


The following parameters were collected using digital imaging system:


Average Grain Area (cm2)—At the end of the growing period the grains were separated from the Plant ‘Head’. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.


Average Grain Length (cm)—At the end of the growing period the grains were separated from the Plant ‘Head’. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The sum of grain lengths (longest axis) was measured from those images and was divided by the number of grains.


Head Average Area (cm2) At the end of the growing period 5 ‘Heads’ were, photographed and images were processed using the below described image processing system. The ‘Head’ area was measured from those images and was divided by the number of ‘Heads’.


Head Average Length (cm) At the end of the growing period 5 ‘Heads’ were, photographed and images were processed using the below described image processing system. The ‘Head’ length (longest axis) was measured from those images and was to divided by the number of ‘Heads’.


The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).


Additional parameters were collected either by sampling 5 plants per plot or by measuring the parameter across all the plants within the plot.


Total Seed Weight per Head (gr.)—At the end of the experiment (plant ‘Heads’) heads from plots within blocks A-C were collected. 5 heads were separately threshed and grains were weighted, all additional heads were threshed together and weighted as well. The average grain weight per head was calculated by dividing the total grain weight by number of total heads per plot (based on plot). In case of 5 heads, the total grains weight of 5 heads was divided by 5.


FW Head per Plant gr—At the end of the experiment (when heads were harvested) total and 5 selected heads per plots within blocks A-C were collected separately. The heads (total and 5) were weighted (gr.) separately and the average fresh weight per plant was calculated for total (FW Head/Plant gr based on plot) and for 5 (FW Head/Plant gr based on 5 plants).


Plant height—Plants were characterized for height during growing period at 5 time points. In each measure, plants were measured for their height using a measuring Tape. Height was measured from ground level to top of the longest leaf.


Plant leaf number—Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.


Relative Growth Rate was calculated using Formulas X and XI as follows:


Formula X Relative growth rate of plant height=Regression coefficient of plant height along time course.


Formula XI Relative growth rate of plant leaf number=Regression coefficient of plant leaf number along time course.


SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.


Vegetative dry weight and Heads—At the end of the experiment (when Inflorescence were dry) all Inflorescence and vegetative material from plots within blocks A-C were collected. The biomass and Heads weight of each plot was separated, measured and divided by the number of Heads.


Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours;


Harvest Index (HI) (Sorghum)—The harvest index was calculated using Formula XII.


Formula XII: Harvest Index=Average grain dry weight per Head/(Average vegetative dry weight per Head+Average Head dry weight)


FW Heads/(FW Heads+FW Plants)—The total fresh weight of heads and their respective plant biomass were measured at the harvest day. The heads weight was divided by the sum of weights of heads and plants.


Experimental Results


17 different sorghum hybrids were grown and characterized for different parameters: The average for each of the measured parameter was calculated using the JMP software (Tables 17-21) and a subsequent correlation analysis was performed (Table 26 below) under the vector sets “Vectors Sorghum Field Normal” or Vectors Sorghum Field NUE”.









TABLE 17








Sorghum correlated parameters (vectors)









Correlation set
Correlation ID











Total Seed Weight/Head gr based on plot-normal
1


Total Seed Weight/Head gr based on 5 heads-normal
2


Head Average Length cm-normal
3


Average Seed Area cm2-normal
4


Average Seed Length cm-normal
5


FW Head/Plant gr based on 5 plants-normal
6


FW Head/Plant gr based on plot-normal
7


Final Plant Height cm-normal
8


Total Seed Weight/Head gr based on plot-NUE
9


Total Seed Weight/Head gr based on 5 heads-NUE
10


Head Average Area cm2-NUE
11


Head Average Perimeter cm-NUE
12


Head Average Length cm-NUE
13


Average Seed Area cm2-NUE
14


Average Seed Perimeter cm-NUE
15


Average Seed Length cm-NUE
16


Average Seed Width cm-NUE
17


Upper Ratio Average Seed Area-NUE
18


Lower Ratio Average Seed Area-NUE
19


FW Head/Plant gr based on 5 plants-NUE
20


FW Head/Plant gr based on plot-NUE
21


FW/Plant gr based on plot-NUE
22


Leaf SPAD 64 Days Post Sowing-NUE
23


FW Heads/(FW Heads + FW Plants) all plot-NUE
24


NUpE [biomass/SPAD](Low N)
25


NUE2 (total biomass/SPAD) (Low N)
26


NUE [yield/SPAD](Low N)
27


NUE [yield/SPAD](NORMAL)
28


NUE2 (total biomass/SPAD) (Normal)
29


NUpE [biomass/SPAD](NORMAL)
30


Total Seed Weight/Head gr based on plot-NUE
9


Total Seed Weight/Head gr based on 5 heads-NUE
10


Head Average Area cm2-NUE
11


Head Average Perimeter cm-NUE
12


Head Average Length cm-NUE
13


Average Seed Area cm2-NUE
14


Average Seed Perimeter cm-NUE
15


Average Seed Length cm-NUE
16


Average Seed Width cm-NUE
17


Upper Ratio Average Seed Area-NUE
18


Lower Ratio Average Seed Area-NUE
19


FW Head/Plant gr based on 5 plants-NUE
20


FW Head/Plant gr based on plot-NUE
21


FW/Plant gr based on plot-NUE
22


Leaf SPAD 64 Days Post Sowing-NUE
23


FW Heads/(FW Heads + FW Plants) all plot-NUE
24


NUpE [biomass/SPAD](Low N)
25


NUE2 (total biomass/SPAD) (Low N)
26


NUE [yield/SPAD](Low N)
27


NUE [yield/SPAD](NORMAL)
28


NUE2 (total biomass/SPAD) (Normal)
29


NUpE [biomass/SPAD](NORMAL)
30


Total Seed Weight/Head gr based on plot-Drought
31


Head Average Area cm2-Drought
32


Head Average Perimeter cm-Drought
33


Head Average Length cm-Drought
34


Head Average Width cm-Drought
35


RGR of Leaf Num-Drought
36


Final Plant Height cm-NUE
37


HI-normal
38





Table 17. Provided are the Sorghum correlated parameters (vectors). “gr.” = grams; “SPAD” = chlorophyll levels; “FW” = Plant Fresh weight; “DW” = Plant Dry weight; “normal” = standard growth conditions.













TABLE 18







Measured parameters in Sorghum


accessions under normal conditions









parameter
















Ecotype
1
2
3
4
5
6
7
8
38



















20
31.1
47.4
25.6
0.105
0.386
406
175
95.2
201


21
26.4
46.3
26.8
0.112
0.402
518
223
79.2
127


22
18.7
28.4
21
0.131
0.445
148
56.4
198
51.8


24
38.4
70.4
26.8
0.129
0.45
423
112
234
122


25







189
54.5


26







195
93.9


27
47.7
63.5
31.3
0.11
0.4
424
126
117
327


28
31
44.5
23.2
0.113
0.405
386
108
92.8
231


29
40
56.6
25.7
0.102
0.384
410
124
113
241


30
38.4
60
28.8
0.118
0.419
329
103
97.5
304


31
32.1
45.5
28.1
0.121
0.43
391
82.3
98
336


32
32.7
58.2
23
0.111
0.4
436
77.6
100
350


33
32.8
70.6
28.1
0.117
0.409
430
91.2
106
293


34
51.5
70.1
30
0.108
0.401
441
150
151
411


35
35.7
54
30.5
0.105
0.395
416
109
117
285


36
38.3
59.9
27.2
0.11
0.395
430
108
124
283


37
42.4
52.6
29.3
0.105
0.392
428
131
126
204





Table 18: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under normal conditions. Growth conditions are specified in the experimental procedure section.













TABLE 19







Measured parameters in Sorghum accessions under Low nitrogen conditions









parameter


















Ecotype
9
10
11
12
13
14
15
16
17
18
19





















20
25.90
50.30
96.20
56.30
23.20
0.11
1.19
0.38
0.35
1.18
0.82


21
30.60
50.90
215.00
79.20
25.60
0.11
1.23
0.40
0.35
1.31
0.77


22
19.40
36.10
98.60
53.20
20.90
0.14
1.37
0.45
0.39
1.11
0.81


24
35.60
73.10
183.00
76.20
28.40
0.12
1.29
0.42
0.37
1.21
0.79


25
25.20
37.90
120.00
67.30
24.30
0.14
1.41
0.47
0.38
1.19
0.78


26
22.20
36.40
110.00
59.50
22.60
0.13
1.40
0.48
0.36
1.18
0.80


27
50.00
71.70
172.00
79.30
32.10
0.12
1.27
0.41
0.37
1.16
0.83


28
27.50
35.00
84.80
51.50
20.40
0.12
1.26
0.41
0.36
1.23
0.79


29
51.10
76.70
156.00
69.90
26.70
0.12
1.26
0.41
0.36
1.17
0.81


30
36.80
57.60
137.00
66.20
26.30
0.13
1.35
0.43
0.38
1.22
0.77


31
29.40
42.90
138.00
67.40
25.40
0.13
1.38
0.45
0.37
1.24
0.74


32
26.70
36.50
96.50
57.90
23.10
0.12
1.28
0.42
0.36
1.19
0.80


33
29.40
68.60
158.00
70.60
27.90
0.12
1.27
0.41
0.36
1.23
0.79


34
51.10
71.80
164.00
73.80
28.90
0.12
1.26
0.41
0.36
1.16
0.82


35
37.00
49.30
138.00
66.90
27.60
0.11
1.23
0.40
0.34
1.34
0.80


36
39.90
43.90
135.00
65.40
25.50
0.12
1.28
0.41
0.37
1.21
0.81


37
41.80
52.10
166.00
76.00
30.30
0.11
1.22
0.40
0.35
1.21
0.81





Table 19: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.













TABLE 20







Additional measured parameters in Sorghum accessions under low nitrogen growth conditions









parameter



















Ecotype
20
21
22
23
24
25
26
27
28
29
30
37






















20
388.00
215.00
205.00
38.30
0.51
5.34
6.02
0.68
0.72
4.50
3.78
104


21
429.00
205.00
200.00
39.00
0.51
5.12
5.91
0.78



80.9


22
298.00
73.50
341.00
42.30
0.17
8.05
8.50
0.46
0.43
8.17
7.74
205


24
280.00
123.00
241.00
40.90
0.39
5.88
6.75
0.87
0.86
7.86
7.01
125


25
208.00
153.00
538.00
43.10
0.21
12.50
13.00
0.58
0.58
10.70
10.10
225


26
304.00
93.20
359.00
39.90
0.19
9.02
9.58
0.56
0.69
8.34
7.65
208


27
436.00
134.00
149.00
42.70
0.48
3.50
4.67
1.17
1.05
4.40
3.34
121


28
376.00
77.40
129.00
43.30
0.38
2.98
3.61
0.63
0.69
3.74
3.05
100


29
475.00
130.00
179.00
39.00
0.42
4.58
5.89
1.31
0.93
4.83
3.90
121


30
438.00
99.80
124.00
42.70
0.44
2.91
3.77
0.86
0.84
3.67
2.83
94.5


31
383.00
76.90
101.00
40.10
0.43
2.53
3.26
0.74
0.72
2.89
2.18
110


32
375.00
84.20
132.00
44.00
0.39
3.00
3.61
0.61
0.72
2.91
2.19
115


33
425.00
92.20
118.00
45.40
0.44
2.59
3.24
0.65
0.71
3.12
2.41
105


34
434.00
139.00
177.00
44.80
0.44
3.95
5.10
1.14
1.17
4.75
3.58
174


35
409.00
113.00
144.00
42.60
0.44
3.37
4.24
0.87
0.79
3.69
2.90
116


36
378.00
95.50
127.00
43.80
0.43
2.90
3.81
0.91
0.85
3.85
3.01
139


37
432.00
129.00
180.00
46.70
0.42
3.86
4.76
0.89
0.98
5.84
4.85
144





Table 20: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.













TABLE 21







Measured parameters in Sorghum


accessions under drought conditions









parameter













Ecotype
31
32
33
34
35
36
















20
22.1
83.1
52.8
21.6
4.83
0.0971


21
16.8
108
64.5
21.9
6.31
0.178


22
9.19
88.7
56.6
21.6
5.16
0.162


24
104
136
64.4
22
7.78
0.212








0.167


26
3.24
90.8
53.2
21
5.28
0.21


27
22
124
71.7
28.6
5.49
0.149


28
9.97
86.1
55.6
21.3
5.04
0.0808


29
18.6
85.2
53
20.8
5.07
0.138


30
29.3
113
69.8
24.7
5.77


31
10.5
101
65.1
24.3
5.37
0.108


32
14.8
80.4
55.3
21.9
4.66
0.117


33
12.9
127
69.1
25
6.35
0.108


34
18.2
86.4
53.3
19.5
5.58
0.265


35
11.6
92.3
56.3
20.4
5.76
0.125


36
18.6
77.9
49.1
16.8
5.86
0.12


37
16.4
76.9
51.9
18.9
5.1





Table 21: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under drought conditions. Growth conditions are specified in the experimental procedure section.






Example 8
Production of Maize Transcriptom and High Throughput Correlation Analysis with Yield Related Parameters Using 44K Maize Oligonucleotide Micro-Arrays

In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a maize oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 44,000 maize genes and transcripts. In order to define correlations between the levels of RNA expression with yield and NUE components or vigor related parameters, various plant characteristics of 12 different maize hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.


Correlation of Maize Hybrids Across Ecotypes Grown Under Regular Growth Conditions


Experimental Procedures


12 Maize hybrids were grown in 3 repetitive plots, in field. Maize seeds were planted and plants were grown in the field using commercial fertilization and irrigation protocols. In order to define correlations between the levels of RNA expression with NUE and yield components or vigor related parameters, the 12 different maize hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.


Analyzed Sorghum tissues—All 10 selected maize hybrids were sample per each treatment. Plant tissues [Flag leaf, Flower meristem, Grain, Cobs, Internodes] growing under Normal conditions were sampled and RNA was extracted as described above.


The following parameters were collected using digital imaging system:


Grain Area (cm2)—At the end of the growing period the grains were separated to from the ear. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.


Grain Length and Grain width (cm)—At the end of the growing period the grains were separated from the ear. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The sum of grain lengths/or width (longest axis) was measured from those images and was divided by the number of grains.


Ear Area (cm2)—At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear area was measured from those images and was divided by the number of Ears.


Ear Length and Ear Width (cm) At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear length and width (longest axis) was measured from those images and was divided by the number of ears.


The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).


Additional parameters were collected either by sampling 6 plants per plot or by measuring the parameter across all the plants within the plot.


Normalized Grain Weight per plant (gr.)—At the end of the experiment all ears from plots within blocks A-C were collected. 6 ears were separately threshed and grains were weighted, all additional ears were threshed together and weighted as well. The average grain weight per ear was calculated by dividing the total grain weight by number of total ears per plot (based on plot). In case of 6 ears, the total grains weight of 6 ears was divided by 6.


Ear FW (gr.)—At the end of the experiment (when ears were harvested) total and 6 selected ears per plots within blocks A-C were collected separately. The plants with (total and 6) were weighted (gr.) separately and the average ear per plant was calculated for total (Ear FW per plot) and for 6 (Ear FW per plant).


Plant height and Ear height—Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located


Leaf number per plant—Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.


Relative Growth Rate was calculated using Formulas X and XI (described above).


SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Data were taken after 46 and 54 days after sowing (DPS)


Dry weight per plant—At the end of the experiment (when Inflorescence were dry) all vegetative material from plots within blocks A-C were collected.


Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours;


Harvest Index (HI) (Maize)—The harvest index was calculated using Formula XIII.





Harvest Index=Average grain dry weight per Ear/(Average vegetative dry weight per Ear+Average Ear dry weight)  Formula XIII


Percent Filled Ear [%]—it was calculated as the percentage of the Ear area with grains out of the total ear.


Cob diameter [cm]—The diameter of the cob without grains was measured using a ruler.


Kernel Row Number per Ear—The number of rows in each ear was counted.


Experimental Results


12 different maize hybrids were grown and characterized for different to parameters: The average for each of the measured parameter was calculated using the JMP software (Tables 22-25) and a subsequent correlation analysis was performed (Table 26) using the “Vectors Maize normal”.









TABLE 22







Maize correlated parameters (vectors)








Correlations
Correlation ID











Normal-Ear weight per plot (42 plants per plot) [0-RH]
1


Normal-seed yield per 1 plant rest of the plot [0-RH in
2


Kg]


Normal-Seed yield per dunam [kg]
3


Normal-Plant Height 19.7.09
4


Normal-Plant Height 29.07.09
5


Normal-Plant Height 03.08.09
6


Normal-Plant Height 10.08.09
7


Normal-Final Plant Height
8


Normal-Final Main Ear Height
9


Normal-Leaf No 3.08.09
10


Normal-Final Leaf Number
11


Normal-Stalk width 20/08/09 close to TP5
12


Normal-Ear Length cm
13


Normal-Ear with mm
14


Normal-Ear length of filled area cm
15


Normal-No of rows per ear
16


Normal-SPAD 29.7.09
17


Normal-SPAD 3.8.09
18


Normal-SPAD 10.8.09
19


Normal-SPAD 1.9.09 R1-2
20


Normal-SPAD 6.9.09 R3-R4
21


Normal-NUE yield kg/N applied in soil kg
22


Normal-NUE at grain filling [R3-R4] yield Kg/N in
23


plant SPAD


Normal-NUE at early grain filling [R1-R2] yield Kg/N
24


in plant SPAD


Normal-Yield/stalk width
25


Normal-LAI
26


Normal-Yield/LAI
27





Table 22. SPAD 46DPS and SPAD 54DPS: Chlorophyl level after 46 and 54 days after sowing (DPS).













TABLE 23







Measured parameters in Maize accessions under normal conditions









parameter

















ecotype
1
2
3
4
5
6
7
8
9
10




















30G54
8.94
0.167
1340
27
19.8
74.3
101
273
130
9.39


32P75
7.02
0.136
1090
70.7
45.3
33.4
168
260
122
11.1


32W86
7.53
0.15
1200
70.2
48
75.8
183
288
128
11.8


32Y52
7.99
0.159
1270
67.5
45.7
55.9
160
238
113
11.3


3394
8.48
0.15
1200
23.8
16.9
72.3
102
287
135
9


Brasco
5.63
0.117
937
63.2
44.9
58.1
174
225
94.3
11.4


Oropesa
6.1
0.123
986
59.4
38.8
62.2
157
264
121
11.2


Pampero
6.66
0.131
1050
65.1
48.6
58.7
185
252
108
11.8


SC7201
8.21
0.153
1230
25.1
17.9
75.7
122
279
140
9.28


Simon
8.4
0.171
1370
58.7
45.4
51.6
178
278
112
12


SSC5007
1.88
0.0376
301
61.2
40.9
64.3
153
164
60.4
10.8





Table 23. Provided are the values of each of the parameters (as described above) measured in maize accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.













TABLE 24







Additional measured parameters in Maize accessions


under regular growth conditions









parameter

















ecotype
11
12
13
14
15
16
17
18
19
20




















30G54
11.8
2.91
19.9
51.1
16.2
16.1
49.6
50.9
60.3
56.9


32P75
11.1
2.64
20.2
46.3
17.5
14.7
48.4
46.7
55.8
57.2


32W86
13.3
2.71
18.1
45.9
17.7
15.4
45.7
43.7
60.3
59.3


32Y52
11.8
2.9
19.9
47.6
18.4
15.9
49.8
50.5
58.6
61.6


3394
11.9
2.7
19.5
51.4
15.7
16.2
48.3
51
60.4
58.6


Brasco
12.3
2.62
17.7
47.4
14.7
15.2
48.2
49
53.7
61.2


Oropesa
12.4
2.92
17.7
47.3
12.9
16
45.4
46.5
56.1
60.2


Pampero
12.2
2.72
17.3
46.8
14
14.8
47.9
46.7
55.2
61.1


SC7201
11.7
2.66
17.5
48.3
12.3
17.7
48.9
50.9
57.3
57.5


Simon
12.6
2.84
20.5
49.3
18.8
15.4
46.2
49.4
52.8
62.2


SSC5007
9.28
2.26
19.9
41.8
16.1
14.3
42.4
45.9
57.2
52





Table 24. Provided are the values of each of the parameters (as described above) measured in maize accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.













TABLE 25







Additional measured parameters in Maize accessions


under regular growth conditions









parameter














ecotype
21
22
23
24
25
26
27

















30G54
59.9
4.45
25
23.4
457
3.21
426


32P75
60.9
3.62
17.8
19.1
412
3.95
313


32W86
56.9
4.01
20.3
20.3
443
3.33
307


32Y52
58.7
4.24
20
20.7
439
4.01
362


3394
58.7
4.01
19
20.5
447
3.86
314


Brasco
63.2
3.12
13.9
15.4
357
4.19
225


Oropesa
59.8
3.29
16.2
16.4
337
3.97
266


Pampero
62.4
3.5
17.2
17.2
386
4.32
262


SC7201
57.2
4.09
21.5
21
472
4.31


Simon
61.9
4.55
21
22
482
2.89
482


SSC5007
49.3
1
5.52
5.72
140





Table 25. Provided are the values of each of the parameters (as described above) measured in maize accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.






Example 9
Correlation Analyses

Table 26 hereinbelow provides representative results of the correlation analyses described in Examples 2-8 above.









TABLE 26







Correlation analyses












Gene

Expression





Name
Vector Set
Set
Correlation Vector
R
P















LYD1

Arabidopsis 2 NUE

stem
N 1.5 mM seed yield per
−0.90
1.09E−03





rossete area day 10


LYD1

Arabidopsis 2 NUE

stem
N 1.5 mM seed yield per
−0.88
1.94E−03





leaf blead


LYD1

Arabidopsis 2 NUE

leaf
N 1.5 mM Leaf Blade
−0.81
4.87E−03





Area 10 day


LYD10

Arabidopsis 1

seed5daf
Lamina width
−0.87
0.01


LYD10

Arabidopsis 1

seed5daf
Total Leaf Area per plant
−0.85
0.02


LYD10

Arabidopsis 2 NUE

leaf
N 1.5 mM t50 Flowering
−0.80
0.01


LYD101

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.89
0.04





plant)


LYD101

Arabidopsis 2

stem
N 6 mMSpad/FW
−0.89
0.04


LYD101

Arabidopsis 2

stem
N 6 mM spad/DW (gN/g
−0.89
0.04





plant)


LYD102

Arabidopsis 2

stem
N 6 mM spad/DW (gN/g
−0.95
0.01





plant)


LYD102

Arabidopsis 2

stem
N 1.5 mM Spad/FW
−0.85
0.07


LYD102

Arabidopsis 2

stem
N 6 mM Seed yield/N
−0.84
0.07





unit


LYD103

Arabidopsis 1

seed5daf
Harvest Index
−0.86
0.01


LYD103

Arabidopsis 2 NUE

leaf
N 6 mM Dry Weight
0.71
0.02


LYD103

Arabidopsis 1

root
fresh weight
0.71
0.05


LYD104

Arabidopsis 1

seed5daf
seed yield per plant
0.70
0.08


LYD104

Arabidopsis 2 NUE

leaf
N 6 mM RGR of Rosette
0.70
0.02





Area 3 day


LYD104

Arabidopsis 2 NUE

stem
N 6 mM 1000 Seeds
0.71
0.03





weight


LYD105

Arabidopsis 2

leaf
N 1.5 mM seed
−0.91
0.03





yield/spad


LYD105

Arabidopsis 2

stem
N 1.5 mM DW/SPAD
−0.86
0.06


LYD105

Arabidopsis 2 NUE

leaf
N 1.5 mM seed yield per
−0.85
1.94E−03





rossete area day 10


LYD106

Arabidopsis 2

leaf
N 1.5 mM seed
−0.98
4.57E−03





yield/spad


LYD106

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.97
0.01





unit


LYD106

Arabidopsis 2 NUE

stem
N 1.5 mM Leaf Blade
−0.79
0.01





Area 10 day


LYD107

Arabidopsis 2

leaf
N 6 mMSpad/FW
−0.97
0.01


LYD107

Arabidopsis 2

leaf
N 1.5 mM Spad/FW
−0.88
0.05


LYD107

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.82
0.09





plant)


LYD109

Juncea ecotypes

Mature
Min-Lateral branch
−0.96
0.01



vector
flower
position


LYD109

Juncea ecotypes

Mature
Min-Lateral branch
−0.96
0.01



vector
flower
position


LYD109

Juncea ecotypes

Mature
Min-Lateral branch
−0.94
0.02



vector
flower
position


LYD11

Arabidopsis 2

stem
N 6 mMSpad/FW
−0.94
0.02


LYD11

Arabidopsis 1

seed5daf
Lamina length
−0.90
0.01


LYD11

Arabidopsis 2

leaf
N 6 mMSpad/FW
−0.88
0.05


LYD110

Juncea ecotypes

Mature
Lateral branch-average
−0.99
2.13E−03



vector
flower
node length


LYD110

Juncea ecotypes

Mature
Lateral branch-average
−0.91
0.03



vector
flower
node length


LYD110

Juncea ecotypes

Mature
Main branch-average
−0.89
0.04



vector
flower
node length


LYD112

Juncea ecotypes

Mature
SPAD
−0.88
0.05



vector
flower


LYD112

Juncea ecotypes

Mature
Max-Length of lateral
−0.83
0.08



vector
flower
branch [cm]


LYD112

Juncea ecotypes

Mature
Max-Diameter of lateral
−0.83
0.08



vector
flower
branch [mm]


LYD113

Juncea ecotypes

Flower
Days till flowering
−0.92
0.01



vector


LYD113

Juncea ecotypes

Flower
Days till flowering
−0.92
0.01



vector


LYD113

Juncea ecotypes

Flower
Days till flowering
−0.91
0.01



vector


LYD114

Juncea population

flower
days till flowering
−0.93
0.02



densities


LYD114

Juncea population

flower
Oil content
−0.91
0.03



densities


LYD114

Juncea ecotypes

Mature
Lateral branch-20th
−0.88
0.05



vector
flower
length


LYD115

Juncea ecotypes

Flower
Fresh weight (plot-
−0.82
0.05



vector

harvest) [gr/plant]


LYD115

Juncea ecotypes

Mature
Lateral branch-20th
−0.80
0.10



vector
flower
seed number


LYD115

Juncea ecotypes

Mature
Lateral branch-20th
−0.80
0.10



vector
flower
seed number


LYD117

Juncea ecotypes

Mature
1000 Seeds [gr]
−0.92
0.03



vector
flower


LYD117

Juncea ecotypes

Mature
1000 Seeds [gr]
−0.91
0.03



vector
flower


LYD117

Juncea ecotypes

Mature
Lateral branch-20th
−0.88
0.05



vector
flower
length


LYD118

Juncea population

flower
Main branch-total
−0.92
0.03



densities

number of pods


LYD118

Juncea ecotypes

Mature
Lateral branch-20th
−0.83
0.09



vector
flower
seed number


LYD118

Juncea population

meristem
days till bolting
−0.79
0.03



densities


LYD119

Juncea ecotypes

Flower
Main branch-20th seed
−0.97
1.05E−03



vector

number


LYD119

Juncea ecotypes

Flower
Main branch-20th seed
−0.97
1.23E−03



vector

number


LYD119

Juncea population

flower
Main branch-total
−0.96
0.01



densities

number of pods


LYD12

Arabidopsis 1

flower
Lamina width
−0.85
0.01


LYD12

Arabidopsis 1

flower
fresh weight
−0.78
0.02


LYD12

Arabidopsis 1

flower
Total Leaf Area per plant
−0.78
0.02


LYD120

Juncea ecotypes

Mature
Lateral branch-average
−0.98
2.56E−03



vector
flower
node length


LYD120

Juncea ecotypes

Mature
Main branch-average
−0.95
0.01



vector
flower
node length


LYD120

Juncea ecotypes

Mature
Lateral branch-average
−0.89
0.04



vector
flower
node length


LYD122

Juncea ecotypes

Mature
Max-Lateral branch
−0.99
1.78E−03



vector
flower
position [#node of main





branch]


LYD122

Juncea ecotypes

Mature
Number of lateral
−0.99
1.91E−03



vector
flower
branches


LYD122

Juncea ecotypes

Mature
Days till bolting
−0.98
3.54E−03



vector
flower


LYD123

Juncea ecotypes

Mature
Lateral branch-20th
−0.81
0.10



vector
flower
seed number


LYD123

Juncea ecotypes

Mature
Lateral branch-20th
−0.80
0.10



vector
flower
seed number


LYD123

Juncea ecotypes

Flower
Lateral branch-average
−0.78
0.07



vector

node length


LYD124

Juncea ecotypes

Mature
Lateral branch-average
−0.97
0.01



vector
flower
node length


LYD124

Juncea ecotypes

Mature
Main branch-average
−0.94
0.02



vector
flower
node length


LYD124

Juncea population

meristem
Main branch-dist. 1-20
−0.93
2.35E−03



densities


LYD13

Arabidopsis 2

leaf
N 1.5 mM DW/SPAD
−0.98
2.80E−03


LYD13

Arabidopsis 2

stem
N 1.5 mM seed
−0.89
0.04





yield/spad


LYD13

Arabidopsis 2

stem
N 6 mM spad/DW (gN/g
−0.89
0.05





plant)


LYD14

Arabidopsis 2 NUE

leaf
N 6 mM seed yield/leaf
0.70
0.02





blade


LYD14

Arabidopsis 2 NUE

stem
N 1.5 mM Seed Yield
0.70
0.04


LYD14

Arabidopsis 2 NUE

stem
N 1.5 mM Harvest Index
0.71
0.02


LYD142
Tomato vectors bath
leaf
SPAD Normal
−0.74
0.04



Normal


LYD142
Tomato vectors bath
root
leaf No Normal
0.72
0.04



Normal


LYD142
Tomato vectors field
leaf
Weight Flower clusters
0.97
2.66E−06



Normal

(Normal)


LYD144
Tomato vectors bath
leaf
LeafNo NaCl/Normal
−0.75
0.01



Salinity


LYD144
Tomato vectors bath
root
leaf No Normal
0.72
0.05



Normal


LYD144
Tomato vectors bath
root
Plant biomass NaCl
0.74
0.01



Salinity


LYD146
Tomato vectors field
flower
Weight Flower clusters
0.71
0.02



Normal

(Normal)


LYD146
Tomato vectors field
flower
Weight Flower clusters
0.75
0.01



Normal

(Normal)


LYD146
Tomato vectors field
leaf
average red fruit weight
0.78
0.01



Normal

(Normal)


LYD149

Arabidopsis 2

stem
N 1.5 mM seed
−0.99
1.18E−03





yield/spad


LYD149

Arabidopsis 2

stem
N 1.5 mM seed
−0.98
4.29E−03





yield/spad


LYD149

Arabidopsis 2

stem
N 6 mM Seed yield/N
−0.94
0.02





unit


LYD150

Arabidopsis 1

seed5daf
Lamina length
−0.99
2.07E−05


LYD150

Arabidopsis 1

seed5daf
fresh weight
−0.93
2.61E−03


LYD150

Arabidopsis 2

leaf
N 1.5 mM DW/SPAD
−0.90
0.04


LYD152

Arabidopsis 2

stem
N 1.5 mM seed
−0.94
0.02





yield/spad


LYD152

Arabidopsis 1

seed5daf
root length day 13
−0.89
0.01


LYD152

Arabidopsis 2

stem
N 6 mM Seed yield/N
−0.85
0.07





unit


LYD153

Arabidopsis 2

stem
N 6 mM spad/DW (gN/g
−0.86
0.06





plant)


LYD153

Arabidopsis 2

stem
N 1.5 mM seed
−0.84
0.08





yield/spad


LYD153

Arabidopsis 2 NUE

leaf
N 1.5 mM Leaf Blade
−0.77
0.01





Area 10 day


LYD156
Tomato vectors field
leaf
RWC (Normal)
−0.73
0.02



Normal


LYD156
Tomato vectors field
flower
SPAD 100% RWC
−0.70
0.02



Normal

(Normal)


LYD156
Tomato vectors bath
leaf
leaf No Normal
0.70
0.05



Normal


LYD157
Tomato vectors field
flower
Num of flowers
0.71
0.02



Drought

(Drought)


LYD157
Tomato vectors field
flower
Num of Flower
0.74
0.01



Drought

Drought/Normal


LYD157
Tomato vectors field
leaf
Weight Flower clusters
0.75
0.01



Normal

(Normal)


LYD158
Tomato vectors bath
root
Plant height NaCl
−0.79
0.01



Salinity


LYD158
Tomato vectors field
leaf
FW drought/Normal
0.74
0.01



Drought


LYD158
Tomato vectors field
flower
Weight Flower clusters
0.78
0.01



Normal

(Normal)


LYD159

Juncea population

flower
Min-Lateral branch
−0.93
0.02



densities

position


LYD159

Juncea population

flower
Number of lateral
−0.90
0.04



densities

branches


LYD159

Juncea population

flower
Min-Lateral branch
−0.90
0.04



densities

position


LYD16

Arabidopsis 1

seed12
Lamina length
−0.83
0.01




daf


LYD16

Arabidopsis 2 NUE

stem
N 1.5 mM t50 Flowering
−0.81
0.01


LYD16

Arabidopsis 2 NUE

stem
N 6 mM t50 Flowering
−0.78
0.01


LYD166

Juncea population

flower
days till flowering
−0.96
0.01



densities


LYD166

Juncea ecotypes

Meristem
Harvest index
−0.96
4.90E−05



vector


LYD166

Juncea ecotypes

Mature
Main branch-average
−0.95
0.01



vector
flower
node length


LYD167

Juncea ecotypes

Mature
Lateral branch-20th
−0.92
0.03



vector
flower
length


LYD167

Juncea ecotypes

Mature
1000 Seeds [gr]
−0.92
0.03



vector
flower


LYD167

Juncea ecotypes

Mature
1000 Seeds [gr]
−0.89
0.05



vector
flower


LYD172

Juncea ecotypes

Mature
Oil content
−0.96
0.01



vector
flower


LYD172

Juncea ecotypes

Mature
Oil content
−0.95
0.01



vector
flower


LYD172

Juncea population

meristem
Main branch-dist. 1-20
−0.92
3.48E−03



densities


LYD173

Juncea ecotypes

Flower
Days till flowering
−0.96
2.00E−03



vector


LYD173

Juncea ecotypes

Flower
Main branch-20th seed
−0.95
3.45E−03



vector

number


LYD173

Juncea ecotypes

Flower
Main branch-average
−0.94
0.01



vector

node length


LYD174

Juncea ecotypes

Flower
Oil content
−0.95
3.82E−03



vector


LYD174

Juncea ecotypes

Mature
Fresh weight (single
−0.90
0.04



vector
flower
plant) [gr/plant]


LYD174

Juncea ecotypes

Mature
Main branch base
−0.89
0.04



vector
flower
diameter [mm]


LYD176

Juncea population

meristem
Lateral branch-20th
−0.97
3.50E−04



densities

length


LYD176

Juncea population

meristem
Lateral branch-20th
−0.95
8.42E−04



densities

length


LYD176

Juncea ecotypes

Flower
Oil content
−0.95
3.65E−03



vector


LYD177

Juncea ecotypes

Mature
Oil content
−0.98
2.20E−03



vector
flower


LYD177

Juncea population

meristem
Main branch-dist. 1-20
−0.97
2.64E−04



densities


LYD177

Juncea ecotypes

Mature
Oil content
−0.95
0.01



vector
flower


LYD178

Juncea ecotypes

Flower
Oil content
−0.98
5.68E−04



vector


LYD178

Juncea population

meristem
Max-Number of nodes in
−0.93
2.41E−03



densities

lateral branch


LYD178

Juncea population

meristem
Total leaf area
−0.91
4.77E−03



densities


LYD18

Arabidopsis 2

stem
N 1.5 mM seed
−0.94
0.02





yield/spad


LYD18

Arabidopsis 2 NUE

leaf
N 1.5 mM Harvest Index
−0.93
9.33E−05


LYD18

Arabidopsis 2 NUE

leaf
N 1.5 mM Seed Yield
−0.93
1.09E−04


LYD180

Juncea ecotypes

Mature
Oil content
−0.99
7.31E−04



vector
flower


LYD180

Juncea population

flower
Dry weight/hectare
−0.98
3.24E−03



densities


LYD180

Juncea population

flower
Seed weight/hectare
−0.97
0.01



densities


LYD184

Juncea population

meristem
Number of lateral
−0.88
0.01



densities

branches


LYD184

Juncea population

flower
Main branch-total
−0.85
0.07



densities

number of pods


LYD184

Juncea population

meristem
Max-Lateral branch
−0.84
0.02



densities

position


LYD185

Juncea population

flower
Main branch height [cm]
−0.96
0.01



densities


LYD185

Juncea population

flower
Main branch height [cm]
−0.93
0.02



densities


LYD185

Juncea population

meristem
Min-Lateral branch
−0.93
2.59E−03



densities

position


LYD186

Juncea ecotypes

Mature
SPAD
−0.99
1.20E−03



vector
flower


LYD186

Juncea population

meristem
days till bolting
−0.93
2.05E−03



densities


LYD186

Juncea ecotypes

Mature
Main branch base
−0.93
0.02



vector
flower
diameter [mm]


LYD187

Juncea ecotypes

Mature
Main branch-average
−0.98
2.49E−03



vector
flower
node length


LYD187

Juncea population

meristem
Lateral branch-20th
−0.98
1.34E−04



densities

length


LYD187

Juncea ecotypes

Mature
Lateral branch-average
−0.97
0.01



vector
flower
node length


LYD188

Juncea ecotypes

Mature
Oil content
−0.86
0.06



vector
flower


LYD188

Juncea ecotypes

Mature
Oil content
−0.85
0.07



vector
flower


LYD188

Juncea ecotypes

Flower
Max-Diameter of lateral
−0.74
0.09



vector

branch [mm]


LYD190

Juncea population

flower
Main branch-total
−0.98
3.93E−03



densities

number of pods


LYD190

Juncea population

flower
Main branch-total
−0.84
0.08



densities

number of pods


LYD190

Juncea ecotypes

Meristem
Oil content
−0.81
0.01



vector


LYD192

Juncea ecotypes

Mature
Number of lateral
−0.96
0.01



vector
flower
branches


LYD192

Juncea ecotypes

Mature
Days till flowering
−0.96
0.01



vector
flower


LYD192

Juncea ecotypes

Mature
Max-Lateral branch
−0.95
0.01



vector
flower
position [#node of main





branch]


LYD193

Juncea population

meristem
Lateral branch-20th
−0.98
1.68E−04



densities

length


LYD193

Juncea ecotypes

Flower
Oil content
−0.96
2.40E−03



vector


LYD193

Juncea ecotypes

Flower
Oil content
−0.94
0.01



vector


LYD194

Juncea population

meristem
Fresh weight (at
−0.97
3.34E−04



densities

harvest)/plant


LYD194

Juncea population

meristem
Seed weight/plant
−0.97
4.26E−04



densities


LYD194

Juncea population

meristem
Fresh Weight (single
−0.96
4.67E−04



densities

plant) [gr/plant]


LYD195
Tomato vectors bath
root
leaf No Normal
−0.74
0.04



Normal


LYD195
Tomato vectors field
flower
average red fruit weight
0.71
0.02



Normal

(Normal)


LYD195
Tomato vectors field
flower
Weight Flower clusters
0.85
1.98E−03



Normal

(Normal)


LYD197

Arabidopsis 2 NUE

stem
N 1.5 mM Rosette Area
−0.90
9.86E−04





8 day


LYD197

Arabidopsis 2 NUE

stem
N 1.5 mM Rosette Area
−0.85
3.86E−03





10 day


LYD197

Arabidopsis 2 NUE

stem
N 1.5 mM t50 Flowering
−0.83
2.68E−03


LYD2

Arabidopsis 2

leaf
N 1.5 mM seed
−0.92
0.03





yield/spad


LYD2

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.85
0.07





unit


LYD2

Arabidopsis 2

leaf
N 1.5 mM seed
−0.85
0.07





yield/spad


LYD20

Arabidopsis 2

stem
N 6 mMSpad/FW
−0.92
0.03


LYD20

Arabidopsis 2

stem
N 6 mM spad/DW (gN/g
−0.84
0.07





plant)


LYD20

Arabidopsis 1

seed5daf
Dry matter per plant
−0.81
0.03


LYD200

Juncea population

meristem
days till flowering
−0.93
2.17E−03



densities


LYD200

Juncea population

meristem
Main branch-20th seed
−0.90
0.01



densities

number


LYD200

Juncea population

meristem
Main branch base
−0.88
0.01



densities

diameter [mm]


LYD201

Juncea population

flower
Main branch-20th length
−0.99
2.18E−03



densities


LYD201

Juncea population

flower
SPAD
−0.98
3.77E−03



densities


LYD201

Juncea ecotypes

Mature
Number of lateral
−0.98
4.51E−03



vector
flower
branches


LYD202

Juncea ecotypes

Mature
Oil content
−0.98
3.86E−03



vector
flower


LYD202

Juncea ecotypes

Mature
Oil content
−0.97
0.01



vector
flower


LYD202

Juncea ecotypes

Mature
Main branch-20th
−0.92
0.03



vector
flower
length


LYD204

Juncea ecotypes

Flower
Oil content
−0.96
1.88E−03



vector


LYD204

Juncea ecotypes

Flower
Oil content
−0.96
2.82E−03



vector


LYD204

Juncea ecotypes

Mature
Main branch base
−0.95
0.01



vector
flower
diameter [mm]


LYD206

Juncea population

meristem
Main branch-dist. 1-20
−0.93
2.14E−03



densities


LYD206

Juncea population

meristem
Main branch-20th length
−0.91
4.19E−03



densities


LYD206

Juncea population

meristem
Lateral branch-20th
−0.90
0.01



densities

length


LYD208

Juncea population

meristem
Min-Lateral branch
−0.93
2.48E−03



densities

position


LYD208

Juncea ecotypes

Meristem
Main branch-20th seed
−0.92
5.22E−04



vector

number


LYD208

Juncea population

meristem
Min-Lateral branch
−0.91
4.45E−03



densities

position


LYD209

Juncea population

flower
Seed weight/plant
−0.99
1.23E−03



densities


LYD209

Juncea population

flower
Dry weight/plant
−0.99
1.57E−03



densities


LYD209

Juncea population

flower
Fresh weight (at
−0.99
1.93E−03



densities

harvest)/plant


LYD21

Arabidopsis 2 NUE

stem
N 1.5 mM RGR of
0.70
0.02





Rosette Area 3 day


LYD21

Arabidopsis 2 NUE

leaf
N 1.5 mM RGR of
0.71
0.02





Rosette Area 3 day


LYD21

Arabidopsis 1

seed12daf
root length day 13
0.72
0.04


LYD212

Arabidopsis 2

leaf
N 1.5 mM seed
−0.94
0.02





yield/spad


LYD212

Arabidopsis 2 NUE

leaf
N 1.5 mM Harvest Index
−0.94
7.06E−05


LYD212

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.92
0.03





unit


LYD213

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.93
0.02





plant)


LYD213

Arabidopsis 1

seed5daf
Oil % per seed
−0.92
3.48E−03


LYD213

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.89
0.04





unit


LYD214

Arabidopsis 2 NUE

leaf
N 1.5 mM Biomass
−0.81
4.74E−03





reduction compared to 6 mM


LYD214

Arabidopsis 2

stem
N 1.5 mM seed
−0.80
0.10





yield/spad


LYD214

Arabidopsis 2

stem
N 6 mM Seed yield/N
−0.76
0.14





unit


LYD215

Arabidopsis 2

stem
N 1.5 mM DW/SPAD
−0.88
0.05


LYD215

Arabidopsis 1

seed5daf
Dry matter per plant
−0.80
0.03


LYD215

Arabidopsis 2

leaf
N 1.5 mM DW/SPAD
−0.79
0.11


LYD216

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.97
0.01





plant)


LYD216

Arabidopsis 2

leaf
N 1.5 mM Spad/FW
−0.87
0.06


LYD216

Arabidopsis 2

leaf
N 6 mMSpad/FW
−0.85
0.07


LYD217

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.88
0.05





plant)


LYD217

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.87
0.06





unit


LYD217

Arabidopsis 2

leaf
N 1.5 mM seed
−0.82
0.09





yield/spad


LYD219

Arabidopsis 2 NUE

stem
N 1.5 mM Leaf Blade
−0.86
3.09E−03





Area 10 day


LYD219

Arabidopsis 2 NUE

stem
N 6 mM Leaf Blade Area
−0.82
0.01





10 day


LYD219

Arabidopsis 2 NUE

stem
N 6 mM Rosette Area 8
−0.82
0.01





day


LYD22

Arabidopsis 2

stem
N 1.5 mM DW/SPAD
−0.97
0.01


LYD22

Arabidopsis 2

leaf
N 1.5 mM DW/SPAD
−0.94
0.02


LYD22

Arabidopsis 2

stem
N 1.5 mM DW/SPAD
−0.94
0.02


LYD220

Arabidopsis 2 NUE

stem
N 1.5 mM Leaf Blade
−0.90
1.06E−03





Area 10 day


LYD220

Arabidopsis 2 NUE

leaf
N 1.5 mM Leaf Number
−0.73
0.02





10 day


LYD220

Arabidopsis 1

root
Oil % per seed
−0.72
0.05


LYD221

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.93
0.02





plant)


LYD221

Arabidopsis 2 NUE

leaf
N 1.5 mM seed yield per
−0.85
2.02E−03





rossete area day 10


LYD221

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.84
0.08





unit


LYD222

Arabidopsis 2

leaf
N 1.5 mM SPAD/DW
−0.96
0.01


LYD222

Arabidopsis 1

seed5daf
seed yield per plant
−0.86
0.01


LYD222

Arabidopsis 1

seed5daf
Oil yield per plant
−0.84
0.02


LYD223

Arabidopsis 1

leaf
root length day 13
−0.87
0.01


LYD223

Arabidopsis 1

leaf
Lamina width
−0.86
0.01


LYD223

Arabidopsis 1

leaf
Total Leaf Area per plant
−0.84
0.01


LYD224

Arabidopsis 2 NUE

stem
N 1.5 mM Rosette Area
−0.86
2.64E−03





8 day


LYD224

Arabidopsis 1

seed12daf
Vegetative growth rate
−0.85
0.01


LYD224

Arabidopsis 2 NUE

stem
N 1.5 mM Rosette Area
−0.82
0.01





10 day


LYD23

Arabidopsis 2

leaf
N 1.5 mM DW/SPAD
−0.79
0.11


LYD23

Arabidopsis 1

leaf
Lamina length
−0.76
0.03


LYD23

Arabidopsis 1

flower
seed weight
−0.76
0.03


LYD232
Tomato vectors field
flower
Weight Flower clusters
0.81
4.44E−03



Normal

(Normal)


LYD232
Tomato vectors bath
root
leaf No Normal
0.89
3.36E−03



Normal


LYD233
Tomato vectors field
leaf
average red fruit weight
0.71
0.02



Normal

(Normal)


LYD233
Tomato vectors field
leaf
Weight Flower clusters
0.88
7.54E−04



Normal

(Normal)


LYD233
Tomato vectors field
leaf
Weight Flower clusters
0.90
4.31E−04



Normal

(Normal)


LYD234
Tomato vectors bath
leaf
leaf No NaCl
−0.78
0.01



Salinity


LYD234
Tomato vectors field
flower
Num of Flower
0.70
0.02



Drought

Drought/NUE


LYD234
Tomato vectors field
flower
flower cluster weight
0.77
0.01



Drought

Drought/NUE


LYD235
Tomato vectors field
leaf
average red fruit weight
0.76
0.01



Normal

(Normal)


LYD235
Tomato vectors field
leaf
average red fruit weight
0.76
0.01



Normal

(Normal)


LYD235
Tomato vectors field
leaf
Weight Flower clusters
0.94
5.12E−05



Normal

(Normal)


LYD236
Tomato vectors bath
leaf
Plant biomass NaCl
−0.72
0.02



Salinity


LYD236
Tomato vectors field
flower
Fruit yield/Plant
0.71
0.02



Normal

(Normal)


LYD236
Tomato vectors field
flower
Num of Flower
0.72
0.02



Drought

Drought/Normal


LYD244

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.90
0.04





plant)


LYD244

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.89
0.04





unit


LYD244

Arabidopsis 2 NUE

stem
N 1.5 mM Rosette Area
−0.86
2.96E−03





8 day


LYD245

Arabidopsis 1

root
Lamina length
−0.76
0.03


LYD245

Arabidopsis 2 NUE

leaf
N 1.5 mM 1000 Seeds
−0.74
0.01





weight


LYD245

Arabidopsis 2 NUE

leaf
N 6 mM Seed Yield
0.71
0.02


LYD246

Arabidopsis 1

leaf
Lamina length
−0.87
0.01


LYD246

Arabidopsis 1

seed5daf
fresh weight
−0.82
0.02


LYD246

Arabidopsis 1

seed5daf
Total Leaf Area per plant
−0.82
0.02


LYD248

Juncea ecotypes

Flower
Min-Lateral branch
−0.95
4.36E−03



vector

position


LYD248

Juncea ecotypes

Flower
Min-Lateral branch
−0.94
0.01



vector

position


LYD248

Juncea ecotypes

Flower
Min-Lateral branch
−0.93
0.01



vector

position


LYD250

Juncea ecotypes

Flower
Harvest index
−0.91
0.01



vector


LYD250

Juncea population

meristem
days till bolting
−0.89
0.01



densities


LYD250

Juncea ecotypes

Mature
Main branch base
−0.86
0.06



vector
flower
diameter [mm]


LYD252

Juncea ecotypes

Flower
Seed weight per plant
−0.95
3.69E−03



vector


LYD252

Juncea ecotypes

Flower
Main branch-average
−0.82
0.05



vector

node length


LYD252

Juncea population

meristem
Min-Lateral branch
−0.80
0.03



densities

position


LYD253

Juncea ecotypes

Mature
Max-Lateral branch
−0.97
0.01



vector
flower
position [#node of main





branch]


LYD253

Juncea ecotypes

Mature
Number of lateral
−0.96
0.01



vector
flower
branches


LYD253

Juncea ecotypes

Mature
Days till bolting
−0.96
0.01



vector
flower


LYD256

Juncea ecotypes

Mature
Harvest index
−0.99
1.47E−03



vector
flower


LYD256

Juncea population

meristem
Max-Lateral branch
−0.90
0.01



densities

position


LYD256

Juncea ecotypes

Leaf
Harvest index
−0.90
3.57E−04



vector


LYD257

Juncea ecotypes

Mature
Oil content
−0.94
0.02



vector
flower


LYD257

Juncea ecotypes

Flower
Main branch height [cm]
−0.92
0.01



vector


LYD257

Juncea population

meristem
Main branch-dist. 1-20
−0.89
0.01



densities


LYD259

Juncea ecotypes

Mature
Main branch-20th seed
−0.81
0.10



vector
flower
number


LYD259

Juncea ecotypes

Mature
Max-Number of nodes in
−0.78
0.12



vector
flower
lateral branch


LYD259

Juncea ecotypes

Mature
Main branch-20th
−0.78
0.12



vector
flower
length


LYD260

Juncea ecotypes

Flower
Main branch height [cm]
−0.89
0.02



vector


LYD260

Juncea ecotypes

Mature
Oil content
−0.82
0.09



vector
flower


LYD260

Juncea ecotypes

Mature
Oil content
−0.79
0.11



vector
flower


LYD261

Juncea ecotypes

Mature
Main branch-average
−0.99
5.05E−04



vector
flower
node length


LYD261

Juncea ecotypes

Mature
Main branch-average
−0.99
2.01E−03



vector
flower
node length


LYD261

Juncea ecotypes

Mature
Main branch-average
−0.97
0.01



vector
flower
node length


LYD262

Juncea ecotypes

Flower
Number of lateral
−0.94
0.01



vector

branches


LYD262

Juncea ecotypes

Flower
Max-Lateral branch
−0.94
0.01



vector

position [#node of main





branch]


LYD262

Juncea ecotypes

Mature
Days till bolting
−0.78
0.12



vector
flower


LYD264

Juncea ecotypes

Flower
Lateral branch-average
−0.89
0.02



vector

node length


LYD264

Juncea population

meristem
Min-Lateral branch
−0.81
0.03



densities

position


LYD264

Juncea ecotypes

Flower
Main branch-average
−0.80
0.06



vector

node length


LYD265

Juncea population

meristem
Min-Lateral branch
−0.85
0.02



densities

position


LYD265

Juncea ecotypes

Mature
Oil content
−0.81
0.10



vector
flower


LYD265

Juncea ecotypes

Meristem
SPAD
−0.75
0.02



vector


LYD266

Juncea ecotypes

Flower
Fresh weight (plot-
−0.98
5.15E−04



vector

harvest) [gr/plant]


LYD266

Juncea ecotypes

Mature
Main branch-average
−0.94
0.02



vector
flower
node length


LYD266

Juncea ecotypes

Flower
Fresh weight (single
−0.93
0.01



vector

plant) [gr/plant]


LYD267

Juncea population

meristem
Seed weight/hectare
−0.86
0.01



densities


LYD267

Juncea population

meristem
Dry weight/hectare
−0.85
0.02



densities


LYD267

Juncea ecotypes

Flower
Main branch-20th
−0.82
0.05



vector

length


LYD268

Juncea ecotypes

Mature
Lateral branch-20th
−0.98
4.50E−03



vector
flower
length


LYD268

Juncea ecotypes

Mature
1000 Seeds [gr]
−0.95
0.01



vector
flower


LYD268

Juncea population

meristem
Lateral branch-20th
−0.89
0.01



densities

length


LYD269

Juncea ecotypes

Mature
Fresh weight (plot-
−0.71
0.18



vector
flower
harvest) [gr/plant]


LYD269

Juncea population

meristem
Min-Lateral branch
−0.71
0.07



densities

position


LYD269

Juncea ecotypes

Leaf
Lateral branch-20th
0.70
0.02



vector

length


LYD270

Juncea population

flower
Number of lateral
−0.92
0.03



densities

branches


LYD270

Juncea population

flower
Min-Lateral branch
−0.91
0.03



densities

position


LYD270

Juncea population

flower
Min-Lateral branch
−0.85
0.07



densities

position


LYD271

Juncea population

flower
Seed weight/hectare
−0.92
0.03



densities


LYD271

Juncea ecotypes

Leaf
Min-Lateral branch
−0.90
4.47E−04



vector

position


LYD271

Juncea population

meristem
Main branch-dist. 1-20
−0.88
0.01



densities


LYD273

Juncea ecotypes

Mature
Lateral branch-20th
−0.98
2.82E−03



vector
flower
length


LYD273

Juncea population

flower
Max-Number of nodes in
−0.91
0.03



densities

lateral branch


LYD273

Juncea population

flower
Lateral branch-total
−0.88
0.05



densities

number of pods


LYD275

Juncea population

flower
Fresh weight (at
−0.96
0.01



densities

harvest)/plant


LYD275

Juncea population

flower
Dry weight/plant
−0.96
0.01



densities


LYD275

Juncea population

flower
Seed weight/plant
−0.95
0.01



densities


LYD276

Juncea population

meristem
Main branch-dist. 1-20
−0.92
3.81E−03



densities


LYD276

Juncea ecotypes

Mature
Lateral branch-20th
−0.92
0.03



vector
flower
length


LYD276

Juncea population

meristem
Lateral branch-20th
−0.90
0.01



densities

length


LYD278

Juncea ecotypes

Mature
Main branch-20th
−0.98
3.28E−03



vector
flower
length


LYD278

Juncea population

flower
Main branch base
−0.98
4.41E−03



densities

diameter [mm]


LYD278

Juncea population

flower
Main branch base
−0.97
0.01



densities

diameter [mm]


LYD279

Juncea population

meristem
Main branch-20th length
−0.98
1.19E−04



densities


LYD279

Juncea population

flower
days till bolting
−0.94
0.02



densities


LYD279

Juncea ecotypes

Mature
Oil content
−0.93
0.02



vector
flower


LYD282

Juncea ecotypes

Mature
Main branch-average
−0.99
1.73E−03



vector
flower
node length


LYD282

Juncea ecotypes

Mature
Main branch-average
−0.98
2.52E−03



vector
flower
node length


LYD282

Juncea ecotypes

Mature
Main branch-average
−0.98
4.09E−03



vector
flower
node length


LYD283

Juncea population

flower
Main branch-total
−0.99
9.63E−04



densities

number of pods


LYD283

Juncea ecotypes

Mature
Main branch-average
−0.94
0.02



vector
flower
node length


LYD283

Juncea population

meristem
Main branch-20th length
−0.91
4.46E−03



densities


LYD285

Juncea ecotypes

Mature
Main branch-20th
−1.00
3.85E−04



vector
flower
length


LYD285

Juncea population

flower
days till bolting
−0.97
0.01



densities


LYD285

Juncea ecotypes

Mature
Main branch-20th
−0.93
0.02



vector
flower
length


LYD286

Juncea population

flower
1000Seeds [gr]
−1.00
1.73E−05



densities


LYD286

Juncea ecotypes

Flower
Oil content
−0.95
3.31E−03



vector


LYD286

Juncea population

flower
Max-Lateral branch
0.90
0.04



densities

position


LYD287

Arabidopsis 2

leaf
N 1.5 mM seed
−0.99
1.85E−03





yield/spad


LYD287

Arabidopsis 2

leaf
N 6 mMSpad/FW
−0.98
4.23E−03


LYD287

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.96
0.01





plant)


LYD288

Juncea population

meristem
Min-Lateral branch
−0.87
0.01



densities

position


LYD288

Juncea ecotypes

Meristem
SPAD
−0.87
2.28E−03



vector


LYD288

Juncea ecotypes

Leaf
Seed weight per plant
−0.85
1.74E−03



vector


LYD3

Arabidopsis 2

stem
N 1.5 mM seed
−0.98
4.15E−03





yield/spad


LYD3

Arabidopsis 2

leaf
N 1.5 mM seed
−0.93
0.02





yield/spad


LYD3

Arabidopsis 2

stem
N 1.5 mM SPAD/DW
−0.90
0.04


LYD33
Tomato vectors field
flower
FW/Plant (Normal)
−0.79
0.01



Normal


LYD33
Tomato vectors field
flower
FW/Plant (Normal)
−0.72
0.02



Normal


LYD33
Tomato vectors field
flower
average red fruit weight
0.70
0.02



Normal

(Normal)


LYD34
Tomato vectors bath
leaf
Plant biomass NaCl
−0.84
2.15E−03



Salinity


LYD34
Tomato vectors bath
leaf
Plant biomass NaCl
−0.83
3.15E−03



Salinity


LYD34
Tomato vectors field
leaf
Weight Flower clusters
0.71
0.02



Normal

(Normal)


LYD35
Tomato vectors bath
leaf
Plant biomass NaCl
−0.82
3.39E−03



Salinity


LYD35
Tomato vectors field
leaf
Fruit yield/Plant
0.71
0.02



Normal

(Normal)


LYD35
Tomato vectors field
leaf
Fruit yield/Plant
0.72
0.02



Normal

(Normal)


LYD36
Tomato vectors field
flower
FW drought/Normal
0.71
0.02



Drought


LYD36
Tomato vectors field
leaf
average red fruit weight
0.71
0.02



Normal

(Normal)


LYD36
Tomato vectors field
flower
FW/Plant Drought
0.72
0.02



Drought


LYD37
Tomato vectors field
flower
FW/Plant Drought
0.73
0.02



Drought


LYD37
Tomato vectors field
flower
average red fruit weight
0.73
0.02



Normal

(Normal)


LYD37
Tomato vectors field
leaf
Weight Flower clusters
0.74
0.02



Normal

(Normal)


LYD38
Tomato vectors field
leaf
average red fruit weight
0.70
0.02



Normal

(Normal)


LYD38
Tomato vectors field
flower
Weight Flower clusters
0.70
0.02



Normal

(Normal)


LYD38
Tomato vectors field
leaf
Weight Flower clusters
0.72
0.02



Normal

(Normal)


LYD4

Arabidopsis 2 NUE

stem
N 6 mM t50 Flowering
−0.81
0.01


LYD4

Arabidopsis 2 NUE

stem
N 1.5 mM Seed yield
−0.73
0.03





reduction compared to 6 mM


LYD4

Arabidopsis 2 NUE

stem
N 1.5 mM t50 Flowering
−0.73
0.03


LYD40
Tomato vectors bath
leaf
leaf No Normal
0.70
0.05



Normal


LYD40
Tomato vectors field
leaf
Num of Flower
0.72
0.02



Drought

Drought/Normal


LYD40
Tomato vectors field
leaf
Weight Flower clusters
0.80
0.01



Normal

(Normal)


LYD41
Tomato vectors field
flower
FW/Plant Drought
0.77
0.01



Drought


LYD41
Tomato vectors field
flower
average red fruit weight
0.78
0.01



Normal

(Normal)


LYD41
Tomato vectors field
flower
FW drought/Normal
0.83
2.70E−03



Drought


LYD42
Tomato vectors bath
leaf
LeafNo NaCl/Normal
−0.80
0.01



Salinity


LYD42
Tomato vectors field
leaf
FW/Plant Drought
0.71
0.02



Drought


LYD42
Tomato vectors field
flower
Num of flowers
0.72
0.02



Drought

(Drought)


LYD43
Tomato vectors field
flower
FW drought/Normal
0.70
0.02



Drought


LYD43
Tomato vectors field
flower
average red fruit weight
0.73
0.02



Normal

(Normal)


LYD43
Tomato vectors field
leaf
Weight Flower clusters
0.74
0.02



Normal

(Normal)


LYD44
Tomato vectors field
leaf
Fruit yield/Plant
0.72
0.02



Normal

(Normal)


LYD44
Tomato vectors field
leaf
flower cluster weight
0.83
2.79E−03



Drought

Drought/NUE


LYD44
Tomato vectors field
leaf
Weight flower clusters
0.84
2.55E−03



Drought

(Drought)


LYD45
Tomato vectors bath
leaf
Plant height Normal
0.71
0.05



Normal


LYD45
Tomato vectors field
flower
average red fruit weight
0.74
0.01



Normal

(Normal)


LYD45
Tomato vectors bath
root
leaf No Normal
0.76
0.03



Normal


LYD47
Tomato vectors bath
leaf
Plant Height NaCl/NUE
0.71
0.02



Salinity


LYD47
Tomato vectors bath
leaf
Plant Height NaCl/NUE
0.72
0.02



Salinity


LYD47
Tomato vectors field
leaf
average red fruit weight
0.72
0.02



Normal

(Normal)


LYD48
Tomato vectors field
flower
average red fruit weight
0.75
0.01



Normal

(Normal)


LYD48
Tomato vectors field
flower
average red fruit weight
0.78
0.01



Normal

(Normal)


LYD48
Tomato vectors field
leaf
Fruit yield/Plant
0.84
2.27E−03



Normal

(Normal)


LYD49
Tomato vectors bath
leaf
LeafNo NaCl/Normal
−0.79
0.01



Salinity


LYD49
Tomato vectors bath
leaf
LeafNo NaCl/Normal
−0.78
0.01



Salinity


LYD49
Tomato vectors field
leaf
Weight Flower clusters
0.71
0.02



Normal

(Normal)


LYD5

Arabidopsis 1

seed5daf
root length day 7
−0.96
7.18E−04


LYD5

Arabidopsis 2

leaf
N 1.5 mM DW/SPAD
−0.95
0.01


LYD5

Arabidopsis 2

stem
N 1.5 mM seed
−0.95
0.01





yield/spad


LYD50
Tomato vectors field
flower
FW/Plant (Normal)
−0.71
0.02



Normal


LYD50
Tomato vectors field
leaf
FW drought/Normal
0.71
0.02



Drought


LYD50
Tomato vectors field
flower
FW/Plant Drought
0.71
0.02



Drought


LYD51
Tomato vectors field
leaf
FW drought/Normal
0.70
0.02



Drought


LYD51
Tomato vectors field
leaf
Weight Flower clusters
0.71
0.02



Normal

(Normal)


LYD51
Tomato vectors bath
leaf
Plant Height NaCl/NUE
0.75
0.01



Salinity


LYD52
Tomato vectors bath
leaf
SPAD Normal
−0.78
0.02



Normal


LYD52
Tomato vectors field
leaf
Num of Flower
0.72
0.02



Drought

Drought/Normal


LYD52
Tomato vectors field
flower
average red fruit weight
0.73
0.02



Normal

(Normal)


LYD53
Tomato vectors field
leaf
Fruit Yield
−0.70
0.02



Drought

Drought/Normal


LYD53
Tomato vectors field
leaf
Fruit yield/Plant
0.71
0.02



Normal

(Normal)


LYD53
Tomato vectors field
leaf
flower cluster weight
0.72
0.02



Drought

Drought/NUE


LYD55
Tomato vectors field
flower
average red fruit weight
0.73
0.02



Normal

(Normal)


LYD55
Tomato vectors field
leaf
average red fruit weight
0.78
0.01



Normal

(Normal)


LYD55
Tomato vectors field
leaf
Weight Flower clusters
0.78
0.01



Normal

(Normal)


LYD57
Tomato vectors bath
root
Plant biomass NaCl
−0.74
0.01



Salinity


LYD57
Tomato vectors field
leaf
average red fruit weight
0.71
0.02



Normal

(Normal)


LYD57
Tomato vectors field
flower
average red fruit weight
0.73
0.02



Normal

(Normal)


LYD58
Tomato vectors field
flower
Fruit yield/Plant
0.74
0.02



Normal

(Normal)


LYD58
Tomato vectors field
flower
Num of Flower
0.77
0.01



Drought

Drought/Normal


LYD58
Tomato vectors field
flower
Num of Flower
0.78
0.01



Drought

Drought/Normal


LYD59
Tomato vectors bath
leaf
Plant height Normal
−0.80
0.02



Normal


LYD59
Tomato vectors field
flower
Fruit yield/Plant
0.74
0.02



Normal

(Normal)


LYD59
Tomato vectors field
flower
Num of Flower
0.74
0.01



Drought

Drought/Normal


LYD6

Arabidopsis 2

stem
N 1.5 mM seed
−0.97
0.01





yield/spad


LYD6

Arabidopsis 2

stem
N 6 mM Seed yield/N
−0.96
0.01





unit


LYD6

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.91
0.03





unit


LYD61
Tomato vectors field
flower
FW/Plant Drought
0.70
0.02



Drought


LYD61
Tomato vectors field
flower
average red fruit weight
0.74
0.01



Normal

(Normal)


LYD61
Tomato vectors bath
leaf
leaf No Normal
0.76
0.03



Normal


LYD62
Tomato vectors field
flower
Fruit yield/Plant
0.77
0.01



Normal

(Normal)


LYD62
Tomato vectors field
flower
average red fruit weight
0.80
0.01



Normal

(Normal)


LYD63
Tomato vectors field
flower
Fruit yield/Plant
0.70
0.02



Normal

(Normal)


LYD63
Tomato vectors field
flower
Weight Flower clusters
0.71
0.02



Normal

(Normal)


LYD63
Tomato vectors field
leaf
Num of Flower
0.72
0.02



Drought

Drought/NUE


LYD65
Tomato vectors field
leaf
average red fruit weight
0.71
0.02



Normal

(Normal)


LYD65
Tomato vectors field
leaf
Fruit yield/Plant
0.73
0.02



Normal

(Normal)


LYD66
Tomato vectors bath
root
leaf No Normal
−0.81
0.02



Normal


LYD66
Tomato vectors field
leaf
FW/Plant Drought
0.70
0.02



Drought


LYD66
Tomato vectors field
flower
average red fruit weight
0.72
0.02



Normal

(Normal)


LYD67
Tomato vectors bath
leaf
leaf No Normal
0.73
0.04



Normal


LYD67
Tomato vectors bath
root
leaf No Normal
0.81
0.02



Normal


LYD67
Tomato vectors field
flower
average red fruit weight
0.84
2.62E−03



Normal

(Normal)


LYD69

Arabidopsis 2 NUE

stem
N 1.5 mM Rosette Area
−0.88
1.64E−03





10 day


LYD69

Arabidopsis 2 NUE

leaf
N 1.5 mM t50 Flowering
−0.88
8.38E−04


LYD69

Arabidopsis 2 NUE

leaf
N 1.5 mM Seed yield
−0.85
1.64E−03





reduction compared to 6 mM


LYD7

Arabidopsis 2

stem
N 1.5 mM seed
−0.88
0.05





yield/spad


LYD7

Arabidopsis 2

leaf
N 1.5 mM SPAD/DW
−0.79
0.11


LYD7

Arabidopsis 2 NUE

stem
N 1.5 mM Biomass
−0.74
0.02





reduction compared to 6 mM


LYD73
Tomato vectors bath
leaf
LeafNo NaCl/Normal
−0.84
2.20E−03



Salinity


LYD73
Tomato vectors bath
leaf
LeafNo NaCl/Normal
−0.79
0.01



Salinity


LYD73
Tomato vectors bath
leaf
leaf No NaCl
−0.75
0.01



Salinity


LYD74
Tomato vectors bath
root
Plant height NaCl
−0.83
2.69E−03



Salinity


LYD74
Tomato vectors field
leaf
average red fruit weight
0.72
0.02



Normal

(Normal)


LYD74
Tomato vectors field
flower
average red fruit weight
0.73
0.02



Normal

(Normal)


LYD75
Tomato vectors bath
leaf
LeafNo NaCl/Normal
−0.72
0.02



Salinity


LYD75
Tomato vectors bath
leaf
LeafNo NaCl/Nue
−0.70
0.02



Salinity


LYD75
Tomato vectors field
flower
Fruit yield/Plant
0.71
0.02



Normal

(Normal)


LYD76
Tomato vectors bath
root
Plant biomass NaCl
−0.73
0.02



Salinity


LYD76
Tomato vectors bath
leaf
Plant Height NaCl/NUE
0.71
0.02



Salinity


LYD76
Tomato vectors field
leaf
FW drought/Normal
0.75
0.01



Drought


LYD80

Arabidopsis 2

leaf
N 1.5 mM SPAD/DW
−0.85
0.07


LYD80

Arabidopsis 2

leaf
N 1.5 mM SPAD/DW
−0.83
0.08


LYD80

Arabidopsis 2 NUE

leaf
N 1.5 mM t50 Flowering
−0.82
3.45E−03


LYD82
Tomato vectors field
leaf
Num of Flower
−0.73
0.02



Drought

Drought/NUE


LYD82
Tomato vectors field
flower
average red fruit weight
0.71
0.02



Normal

(Normal)


LYD82
Tomato vectors bath
leaf
leaf No Normal
0.73
0.04



Normal


LYD84

Arabidopsis 2 NUE

stem
N 1.5 mM Rosette Area
−0.82
0.01





8 day


LYD84

Arabidopsis 2 NUE

stem
N 1.5 mM Leaf Blade
−0.75
0.02





Area 10 day


LYD84

Arabidopsis 2 NUE

stem
N 1.5 mM seed yield per
0.70
0.02





leaf blead


LYD85

Arabidopsis 2 NUE

stem
N 1.5 mM Seed yield
−0.81
0.01





reduction compared to 6 mM


LYD85

Arabidopsis 2 NUE

stem
N 6 mM t50 Flowering
−0.78
0.01


LYD85

Arabidopsis 1

root
Lamina length
−0.78
0.02


LYD86

Arabidopsis 2

leaf
N 6 mMSpad/FW
−0.98
4.21E−03


LYD86

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.92
0.03





plant)


LYD86

Arabidopsis 2

leaf
N 1.5 mM Spad/FW
−0.88
0.05


LYD87
Tomato vectors bath
leaf
Plant Height NaCl/NUE
0.70
0.02



Salinity


LYD87
Tomato vectors bath
leaf
leaf No Normal
0.72
0.05



Normal


LYD87
Tomato vectors field
leaf
FW/Plant Drought
0.76
0.01



Drought


LYD88

Arabidopsis 2

leaf
N 1.5 mM seed
−0.73
0.16





yield/spad


LYD88

Arabidopsis 1

seed5daf
Total Leaf Area per plant
−0.71
0.08


LYD88

Arabidopsis 2

stem
N 1.5 mM seed
−0.71
0.18





yield/spad


LYD89

Arabidopsis 2 NUE

stem
N 6 mM Seed Yield
0.71
0.02


LYD89

Arabidopsis 2 NUE

leaf
N 6 mM Seed Yield
0.72
0.02


LYD89

Arabidopsis 2 NUE

stem
N 1.5 mM RGR of
0.72
0.03





Rosette Area 3 day


LYD9

Arabidopsis 1

leaf
Harvest Index
−0.95
3.37E−04


LYD9

Arabidopsis 1

flower
Harvest Index
−0.91
1.68E−03


LYD9

Arabidopsis 1

root
Harvest Index
−0.90
2.07E−03


LYD90

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.91
0.03





plant)


LYD90

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.88
0.05





plant)


LYD90

Arabidopsis 2

leaf
N 1.5 mM Spad/FW
−0.85
0.07


LYD91
Tomato vectors bath
root
SPAD Normal
−0.74
0.03



Normal


LYD91
Tomato vectors field
leaf
Weight Flower clusters
0.87
1.11E−03



Normal

(Normal)


LYD91
Tomato vectors field
leaf
Weight Flower clusters
0.92
1.48E−04



Normal

(Normal)


LYD92

Arabidopsis 2

stem
N 6 mMDW/SPAD
−0.91
0.03





(biomas/Nunit)


LYD92

Arabidopsis 2

leaf
N 6 mMDW/SPAD
−0.88
0.05





(biomas/Nunit)


LYD92

Arabidopsis 1

flower
Vegetative growth rate
−0.80
0.02


LYD94

Arabidopsis 2

stem
N 6 mM Seed yield/N
−0.78
0.12





unit


LYD94

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.73
0.16





unit


LYD94

Arabidopsis 2

leaf
N 6 mM Seed yield/N
−0.72
0.17





unit


LYD95

Arabidopsis 2

leaf
N 1.5 mM DW/SPAD
−0.86
0.06


LYD95

Arabidopsis 2

leaf
N 1.5 mM DW/SPAD
−0.86
0.06


LYD95

Arabidopsis 2

stem
N 1.5 mM DW/SPAD
−0.86
0.06


LYD96

Arabidopsis 2

stem
N 1.5 mM seed
−0.87
0.05





yield/spad


LYD96

Arabidopsis 2

stem
N 6 mM Seed yield/N
−0.86
0.06





unit


LYD96

Arabidopsis 2

leaf
N 1.5 mM DW/SPAD
−0.84
0.07


LYD97

Arabidopsis 2 NUE

leaf
N 1.5 mM Dry Weight
−0.83
2.85E−03


LYD97

Arabidopsis 2

stem
N 1.5 mM DW/SPAD
−0.82
0.09


LYD97

Arabidopsis 2 NUE

leaf
N 1.5 mM Dry Weight
−0.81
4.94E−03


LYD99

Arabidopsis 2

leaf
N 1.5 mM Spad/FW
−0.92
0.03


LYD99

Arabidopsis 2

leaf
N 6 mM spad/DW (gN/g
−0.77
0.13





plant)


LYD99

Arabidopsis 2

leaf
N 6 mM Spad/FW
−0.75
0.15


LYD119_H36
Vectors Sorghum
flag
Average Seed Area cm2-
0.872264
0.00216



Field Normal
leaf
normal


LYD119
Vectors Sorghum
flag
Average Seed Area cm2-
0.834752
0.005118


H36
Field Normal
leaf
normal


LYD119_H36
Vectors Sorghum
flag
Average Seed Length
0.794902
0.010459



Field Normal
leaf
cm-normal


LYD119_H36
Vectors Sorghum
flower
Average Seed Area cm2-
0.783305
0.012525



Field Normal

normal


LYD119_H36
Vectors Sorghum
flower
Average Seed
0.781653
0.01284



Field Normal

Area_cm2-normal


LYD119_H36
Vectors Sorghum
Flag
Average Seed Length
0.760239
0.017416



Field Normal
leaf
cm-normal


LYD119_H36
Vectors Sorghum
flower
Average Seed Length
0.751083
0.019664



Field Normal

cm-normal


LYD119_H36
Vectors Sorghum
flower
Average Seed Length
0.750346
0.019853



Field Normal

cm-normal


LYD119_H36
Vectors Sorghum
Flag
FW/Plant gr based on
0.704512
0.022922



Field NUE
leaf
plot-NUE


LYD148_H9
Vectors Sorghum
flower
Average Seed Area cm2-
0.802856
0.009183



Field Normal

normal


LYD148_H9
Vectors Sorghum
flower
Average Seed Length
0.7751
0.014142



Field Normal

cm-normal


LYD148_H9
Vectors Sorghum
flower
Average Seed Area cm2-
0.752476
0.01931



Field Normal

normal


LYD148_H9
Vectors Sorghum
flower
Average Seed Length
0.718216
0.0293



Field Normal

cm-normal


LYD196_H4
Vectors Sorghum
flower
FW/Plant gr based on
0.717177
0.019566



Field NUE
meristem
plot-NUE


LYD196_H4
Vectors Sorghum
flower
Total Seed Weight/Head
0.715781
0.030116



Field Normal
meristem
gr based on 5 heads-





normal


LYD196_H4
Vectors Sorghum
flower
Total Seed Weight/Head
0.71153
0.031578



Field Normal
meristem
gr based on plot-normal


LYD128_H9
Vectors Sorghum
flower
FW Head/Plant gr based
0.857557
0.003116



Field Normal
meristem
on plot-normal


LYD128_H9
Vectors Sorghum
flower
FW/Plant gr based on
0.817108
0.0039



Field NUE
meristem
plot-NUE


LYD128_H9
Vectors Sorghum
flag
Upper Ratio Average
0.751105
0.012277



Field NUE
leaf
Seed Area-NUE


LYD128_H9
Vectors Sorghum
flower
NUpE
0.745956
0.013234



Field Normal
meristem
[biomass/SPAD](NORMAL)


LYD128_H9
Vectors Sorghum
flower
NUE2 (total
0.74293
0.013821



Field Normal
meristem
biomass/SPAD)





(Normal)


LYD128_H9
Vectors Sorghum
flower
Lower Ratio Average
0.724484
0.017794



Field NUE
meristem
Seed Area-NUE


LYD128_H9
Vectors Sorghum
flower
NUE2 (total
0.719047
0.019102



Field NUE
meristem
biomass/SPAD) (Low N)


LYD238_H8
Vectors Sorghum
flower
Leaf SPAD 64 Days Post
0.903146
0.000342



Field NUE
meristem
Sowing-NUE


LYD238_H8
Vectors Sorghum
flower
Total Seed Weight/Head
0.720223
0.028638



Field Normal
meristem
gr based on plot-normal


LYD238_H8
Vectors Sorghum
flower
NUpE
0.710718
0.021232



Field Normal
meristem
[biomass/SPAD](NORMAL)


LYD238_H8
Vectors Sorghum
flower
NUE [yield/
0.701844
0.023676



Field Normal
meristem
SPAD](NORMAL)


LYD238_H9
Vectors Sorghum
flag
Upper Ratio Average
0.818415
0.003797



Field NUE
leaf
Seed Area-NUE


LYD238_H9
Vectors Sorghum
flower
FW Head/Plant gr based
0.817259
0.007148



Field Normal
meristem
on plot-normal


LYD238_H9
Vectors Sorghum
flower
NUE2 (total
0.800525
0.005403



Field Normal
meristem
biomass/SPAD)





(Normal)


LYD238_H9
Vectors Sorghum
flower
NUpE
0.771903
0.008899



Field Normal
meristem
[biomass/SPAD](NORMAL)


LYD238_H9
Vectors Sorghum
flower
Total Seed Weight/Head
0.749855
0.01998



Field Normal
meristem
gr based on plot-normal


LYD238_H9
Vectors Sorghum
flower
Average Seed Perimeter
0.743576
0.013694



Field NUE
meristem
cm-NUE


LYD238_H9
Vectors Sorghum
flower
Average Seed Area cm2-
0.70978
0.021482



Field NUE
meristem
NUE


LYD194_H113
Vectors Sorghum
flower
Average Seed Area cm2-
0.949658
2.64E−05



Field NUE
meristem
NUE


LYD194_H113
Vectors Sorghum
flag
Average Seed Area cm2-
0.903812
0.000333



Field NUE
leaf
NUE


LYD194_H113
Vectors Sorghum
flower
Average Seed Perimeter
0.901429
0.000366



Field NUE
meristem
cm-NUE


LYD194_H113
Vectors Sorghum
flower
Average Seed Area cm2-
0.898971
0.000403



Field NUE

NUE


LYD194_H113
Vectors Sorghum
flower
Average Seed Perimeter
0.883792
0.000692



Field NUE

cm-NUE


LYD194_H113
Vectors Sorghum
flower
Average Seed Length
0.882948
0.000711



Field NUE

cm-NUE


LYD194_H113
Vectors Sorghum
flag
Average Seed Perimeter
0.860641
0.00139



Field NUE
leaf
cm-NUE


LYD194_H113
Vectors Sorghum
flag
Average Seed Length
0.851382
0.001777



Field NUE
leaf
cm-NUE


LYD194_H113
Vectors Sorghum
flower
Average Seed Length
0.849241
0.001876



Field NUE
meristem
cm-NUE


LYD194_H113
Vectors Sorghum
flower
Average Seed Length
0.819745
0.006831



Field Normal
meristem
cm-normal


LYD194_H113
Vectors Sorghum
flower
Average Seed Width cm-
0.808261
0.004658



Field NUE
meristem
NUE


LYD194_H113
Vectors Sorghum
flower
Average Seed Area cm2-
0.798585
0.009854



Field Normal
meristem
normal


LYD194_H113
Vectors Sorghum
flag
Average Seed Area cm2-
0.768451
0.015551



Field Normal
leaf
normal


LYD194_H113
Vectors Sorghum
flower
Average Seed Perimeter
0.766791
0.009659



Field NUE
meristem
cm-NUE


LYD194_H113
Vectors Sorghum
flag
Average Seed Length
0.759204
0.017661



Field Normal
leaf
cm-normal


LYD194_H113
Vectors Sorghum
flower
Average Seed Area cm2-
0.724569
0.017774



Field NUE
meristem
NUE


LYD194_H113
Vectors Sorghum
flower
Average Seed Length
0.72005
0.018856



Field NUE
meristem
cm-NUE


LYD194_H113
Vectors Sorghum
flag
Average Seed Width cm-
0.715553
0.019976



Field NUE
leaf
NUE


LYD201_H233
Vectors Sorghum
flag
Upper Ratio Average
0.731792
0.016136



Field NUE
leaf
Seed Area-NUE


LYD201_H235
Vectors Sorghum
flower
Average Seed Width cm-
0.792292
0.006284



Field NUE
meristem
NUE


LYD201_H235
Vectors Sorghum
flower
Average Seed Area cm2-
0.760077
0.010726



Field NUE
meristem
NUE


LYD201_H235
Vectors Sorghum
flower
Average Seed Perimeter
0.735788
0.015276



Field NUE
meristem
cm-NUE


LYD216_H17
Vectors Sorghum
flower
Total Seed Weight/Head
0.840128
0.004584



Field Normal

gr based on 5 heads-





normal


LYD216_H17
Vectors Sorghum
flower
NUE [yield/
0.704678
0.022876



Field Normal
meristem
SPAD](NORMAL)


LYD235_H20
Vectors Sorghum
flower
FW Head/Plant gr based
0.842782
0.002201



Field NUE

on plot-NUE


LYD235_H20
Vectors Sorghum
flower
Average Seed Width cm-
0.834142
0.002696



Field NUE
meristem
NUE


LYD235_H20
Vectors Sorghum
flower
Average Seed Length
0.792999
0.010781



Field Normal
meristem
cm-normal


LYD235_H20
Vectors Sorghum
flower
Average Seed Length
0.792681
0.010835



Field Normal
meristem
cm-normal


LYD235_H20
Vectors Sorghum
flower
Average Seed Area cm2-
0.788256
0.011612



Field Normal
meristem
normal


LYD235_H20
Vectors Sorghum
flag
Total Seed Weight/Head
0.780748
0.007686



Field NUE
leaf
gr based on plot-NUE


LYD235_H20
Vectors Sorghum
flower
Average Seed Area cm2-
0.773497
0.014474



Field Normal
meristem
normal


LYD235_H20
Vectors Sorghum
flag
Total Seed Weight/Head
0.759781
0.010775



Field NUE
leaf
gr based on plot-NUE


LYD235_H20
Vectors Sorghum
flower
Average Seed Width cm-
0.750737
0.012343



Field NUE
meristem
NUE


LYD235_H20
Vectors Sorghum
flag
FW Head/Plant gr based
0.749956
0.019953



Field Normal
leaf
on plot-normal


LYD235_H20
Vectors Sorghum
flag
FW Head/Plant gr based
0.733317
0.015804



Field NUE
leaf
on plot-NUE


LYD235_H20
Vectors Sorghum
flower
Total Seed Weight/Head
0.72168
0.01846



Field NUE

gr based on 5 heads-





NUE


LYD253_H83
Vectors Sorghum
flower
NUpE
0.825415
0.003273



Field NUE
meristem
[biomass/SPAD](Low N)


LYD253_H83
Vectors Sorghum
flower
FW Head/Plant gr based
0.822122
0.003513



Field NUE
meristem
on plot-NUE


LYD253_H83
Vectors Sorghum
flower
NUE2 (total
0.76854
0.009394



Field NUE
meristem
biomass/SPAD) (Low N)


LYD253_H83
Vectors Sorghum
flower
FW/Plant gr based on
0.727157
0.017174



Field NUE
meristem
plot-NUE


LYD253_H83
Vectors Sorghum
flower
FW/Plant gr based on
0.713731
0.020444



Field NUE
meristem
plot-NUE


LYD253_H83
Vectors Sorghum
flower
NUE2 (total
0.71238
0.020794



Field Normal
meristem
biomass/SPAD)





(Normal)


LYD86_H90
Vectors Sorghum
flag
FW Heads/(FW Heads +
0.87859
0.000819



Field NUE
leaf
FW Plants) all plot-NUE


LYD86_H90
Vectors Sorghum
flag
FW Head/Plant gr based
0.86986
0.001069



Field NUE
leaf
on plot-NUE


LYD86_H90
Vectors Sorghum
flower
FW Heads/(FW Heads +
0.861399
0.001361



Field NUE
meristem
FW Plants) all plot-NUE


LYD86_H90
Vectors Sorghum
flower
Total Seed Weight/Head
0.852872
0.003473



Field Normal
meristem
gr based on plot-normal


LYD86_H90
Vectors Sorghum
flower
Head Average Perimeter
0.844364
0.002118



Field NUE
meristem
cm-NUE


LYD86_H90
Vectors Sorghum
flag
NUE2 (total
0.827284
0.003143



Field NUE
leaf
biomass/SPAD) (Low N)


LYD86_H90
Vectors Sorghum
flower
Head Average Perimeter
0.820069
0.003668



Field NUE
meristem
cm-NUE


LYD86_H90
Vectors Sorghum
flower
Head Average Length
0.819341
0.003724



Field NUE
meristem
cm-NUE


LYD86_H90
Vectors Sorghum
flag
NUpE
0.815662
0.004018



Field NUE
leaf
[biomass/SPAD](Low N)


LYD86_H90
Vectors Sorghum
flower
FW Heads/(FW Heads +
0.805569
0.004908



Field NUE

FW Plants) all plot-NUE


LYD86_H90
Vectors Sorghum
flower
NUE2 (total
0.800577
0.005397



Field NUE

biomass/SPAD) (Low N)


LYD86_H90
Vectors Sorghum
flower
NUE [yield/
0.794554
0.006032



Field Normal
meristem
SPAD](NORMAL)


LYD86_H90
Vectors Sorghum
flower
Head Average Area cm2-
0.785066
0.007138



Field NUE
meristem
NUE


LYD86_H90
Vectors Sorghum
flower
FW Head/Plant gr based
0.784583
0.007198



Field NUE

on plot-NUE


LYD86_H90
Vectors Sorghum
flower
Head Average Length
0.781501
0.007588



Field NUE
meristem
cm-NUE


LYD86_H90
Vectors Sorghum
flower
Total Seed Weight/Head
0.768858
0.009347



Field NUE
meristem
gr based on plot-NUE


LYD86_H90
Vectors Sorghum
flower
NUE2 (total
0.767357
0.009573



Field NUE

biomass/SPAD) (Low N)


LYD86_H90
Vectors Sorghum
flower
FW Head/Plant gr based
0.76498
0.009939



Field NUE

on plot-NUE


LYD86_H90
Vectors Sorghum
flower
NUpE
0.759768
0.010777



Field NUE

[biomass/SPAD](Low N)


LYD86_H90
Vectors Sorghum
flower
FW Heads/(FW Heads +
0.759184
0.010874



Field NUE

FW Plants) all plot-NUE


LYD86_H90
Vectors Sorghum
flower
Head Average Area cm2-
0.756213
0.011376



Field NUE
meristem
NUE


LYD86_H90
Vectors Sorghum
flower
FW Head/Plant gr based
0.747381
0.012964



Field NUE
meristem
on 5 plants-NUE


LYD86_H90
Vectors Sorghum
flower
Head Average Length
0.746972
0.020734



Field Normal
meristem
cm-normal


LYD86_H90
Vectors Sorghum
flower
NUE2 (total
0.745693
0.013284



Field Normal
meristem
biomass/SPAD)





(Normal)


LYD86_H90
Vectors Sorghum
flower
NUE [yield/SPAD](Low
0.730988
0.016313



Field NUE
meristem
N)


LYD86_H90
Vectors Sorghum
flower
FW Head/Plant gr based
0.720473
0.018752



Field NUE
meristem
on plot-NUE


LYD86_H90
Vectors Sorghum
flag
FW Head/Plant gr based
0.71657
0.019719



Field NUE
leaf
on plot-NUE


LYD86_H90
Vectors Sorghum
flower
FW Head/Plant gr based
0.710562
0.031916



Field Normal
meristem
on plot-normal


LYD86_H90
Vectors Sorghum
flag
FW/Plant gr based on
0.706497
0.022372



Field NUE
leaf
plot-NUE


LYD86_H91
Vectors Sorghum
flower
NUE2 (total
0.935567
6.97E−05



Field NUE
meristem
biomass/SPAD) (Low N)


LYD86_H91
Vectors Sorghum
flower
NUpE
0.92457
0.000129



Field NUE
meristem
[biomass/SPAD](Low N)


LYD86_H91
Vectors Sorghum
flower
FW Head/Plant gr based
0.920916
0.000155



Field NUE
meristem
on plot-NUE


LYD86_H91
Vectors Sorghum
flower
FW/Plant gr based on
0.90971
0.00026



Field NUE
meristem
plot-NUE


LYD86_H91
Vectors Sorghum
flower
FW Heads/(FW Heads +
0.75019
0.012443



Field NUE
meristem
FW Plants) all plot-NUE


LYD86_H91
Vectors Sorghum
flower
NUpE
0.732664
0.015946



Field NUE

[biomass/SPAD](Low N)


LYD148
Vectors Sorghum
flag
FW Head/Plant gr based
0.7631
0.01675



Field Normal
leaf
on plot-normal


LYD148
Vectors Sorghum
flag
FW Head/Plant gr based
0.713855
0.030772



Field Normal
leaf
on 5 plants-normal


LYD148
Vectors Sorghum
flag
Leaf SPAD 64 Days Post
0.705262
0.022712



Field NUE
leaf
Sowing-NUE


LYD148
Vectors Sorghum
flag
FW Head/Plant gr based
0.7631
0.01675



Field Normal
leaf
on plot-normal


LYD148
Vectors Sorghum
flag
FW Head/Plant gr based
0.713855
0.030772



Field Normal
leaf
on 5 plants-normal


LYD148
Vectors Sorghum
flag
Leaf SPAD 64 Days Post
0.705262
0.022712



Field NUE
leaf
Sowing-NUE


LYD211
Vectors Sorghum
flower
Average Seed Perimeter
0.806516
0.004819



Field NUE
meristem
cm-NUE


LYD211
Vectors Sorghum
flower
Average Seed Perimeter
0.798386
0.005623



Field NUE
meristem
cm-NUE


LYD211
Vectors Sorghum
flower
Total Seed Weight/Head
0.782852
0.012611



Field Normal

gr based on 5 heads-





normal


LYD211
Vectors Sorghum
flower
FW Head/Plant gr based
0.777638
0.013628



Field Normal

on 5 plants-normal


LYD211
Vectors Sorghum
flag
FW Head/Plant gr based
0.770563
0.015094



Field Normal
leaf
on plot-normal


LYD211
Vectors Sorghum
flower
Average Seed Area cm2-
0.753009
0.011935



Field NUE
meristem
NUE


LYD211
Vectors Sorghum
flower
FW Head/Plant gr based
0.742574
0.02192



Field Normal

on 5 plants-normal


LYD211
Vectors Sorghum
flower
Average Seed Length
0.739574
0.014492



Field NUE
meristem
cm-NUE


LYD211
Vectors Sorghum
flower
Average Seed Area cm2-
0.739155
0.014577



Field NUE
meristem
NUE


LYD211
Vectors Sorghum
flower
Average Seed Length
0.737733
0.01487



Field NUE
meristem
cm-NUE


LYD211
Vectors Sorghum
flower
Average Seed Perimeter
0.806516
0.004819



Field NUE
meristem
cm-NUE


LYD211
Vectors Sorghum
flower
Average Seed Perimeter
0.798386
0.005623



Field NUE
meristem
cm-NUE


LYD211
Vectors Sorghum
flower
Total Seed Weight/Head
0.782852
0.012611



Field Normal

gr based on 5 heads-





normal


LYD211
Vectors Sorghum
flower
FW Head/Plant gr based
0.777638
0.013628



Field Normal

on 5 plants-normal


LYD211
Vectors Sorghum
flag
FW Head/Plant gr based
0.770563
0.015094



Field Normal
leaf
on plot-normal


LYD211
Vectors Sorghum
flower
Average Seed Area cm2-
0.753009
0.011935



Field NUE
meristem
NUE


LYD211
Vectors Sorghum
flower
FW Head/Plant gr based
0.742574
0.02192



Field Normal

on 5 plants-normal


LYD211
Vectors Sorghum
flower
Average Seed Length
0.739574
0.014492



Field NUE
meristem
cm-NUE


LYD211
Vectors Sorghum
flower
Average Seed Area cm2-
0.739155
0.014577



Field NUE
meristem
NUE


LYD211
Vectors Sorghum
flower
Average Seed Length
0.737733
0.01487



Field NUE
meristem
cm-NUE


LYD227
Vectors Sorghum
flag
Total Seed Weight/Head
0.870491
0.00105



Field NUE
leaf
gr based on 5 heads-





NUE


LYD227
Vectors Sorghum
flower
Final Plant Height cm-
0.792586
0.006251



Field NUE

NUE


LYD227
Vectors Sorghum
flag
Total Seed Weight/Head
0.768971
0.00933



Field NUE
leaf
gr based on 5 heads-





NUE


LYD227
Vectors Sorghum
flag
FW Head/Plant gr based
0.765842
0.009805



Field NUE
leaf
on plot-NUE


LYD227
Vectors Sorghum
flower
FW Head/Plant gr based
0.755249
0.018619



Field Normal

on plot-normal


LYD227
Vectors Sorghum
flower
Leaf SPAD 64 Days Post
0.739555
0.014496



Field NUE

Sowing-NUE


LYD227
Vectors Sorghum
flag
Total Seed Weight/Head
0.870491
0.00105



Field NUE
leaf
gr based on 5 heads-





NUE


LYD227
Vectors Sorghum
flower
Final Plant Height cm-
0.792586
0.006251



Field NUE

NUE


LYD227
Vectors Sorghum
flag
Total Seed Weight/Head
0.768971
0.00933



Field NUE
leaf
gr based on 5 heads-





NUE


LYD227
Vectors Sorghum
flag
FW Head/Plant gr based
0.765842
0.009805



Field NUE
leaf
on plot-NUE


LYD227
Vectors Sorghum
flower
FW Head/Plant gr based
0.755249
0.018619



Field Normal

on plot-normal


LYD227
Vectors Sorghum
flower
Leaf SPAD 64 Days Post
0.739555
0.014496



Field NUE

Sowing-NUE


LYD228
Vectors Sorghum
flower
FW Head/Plant gr based
0.873907
0.002068



Field Normal

on 5 plants-normal


LYD228
Vectors Sorghum
flower
Head Average Length
0.81557
0.004025



Field Drought
meristem
cm-Drought


LYD228
Vectors Sorghum
flower
Head Average Length
0.81557
0.004025



Field Drought
meristem
cm-Drought


LYD228
Vectors Sorghum
flower
Total Seed Weight/Head
0.776429
0.013871



Field Normal

gr based on plot-normal


LYD228
Vectors Sorghum
flower
Total Seed Weight/Head
0.744137
0.021492



Field Normal

gr based on 5 heads-





normal


LYD228
Vectors Sorghum
flower
Head Average Length
0.739278
0.022836



Field Normal

cm-normal


LYD228
Vectors Sorghum
flower
Head Average Width
0.732502
0.015981



Field Drought

cm-Drought


LYD228
Vectors Sorghum
flower
Head Average Width
0.732502
0.015981



Field Drought

cm-Drought


LYD228
Vectors Sorghum
flower
Head Average Area cm2-
0.730394
0.016445



Field Drought
meristem
Drought


LYD228
Vectors Sorghum
flower
Head Average Area cm2-
0.730394
0.016445



Field Drought
meristem
Drought


LYD228
Vectors Sorghum
flower
Head Average Area cm2-
0.716072
0.019845



Field Drought

Drought


LYD228
Vectors Sorghum
flower
Head Average Area cm2-
0.716072
0.019845



Field Drought

Drought


LYD228
Vectors Sorghum
flower
Average Seed Area cm2-
0.715695
0.01994



Field NUE
meristem
NUE


LYD228
Vectors Sorghum
flower
Average Seed Perimeter
0.70899
0.021694



Field NUE
meristem
cm-NUE


LYD228
Vectors Sorghum
flower
FW Head/Plant gr based
0.873907
0.002068



Field Normal

on 5 plants-normal


LYD228
Vectors Sorghum
flower
Head Average Length
0.81557
0.004025



Field Drought
meristem
cm-Drought


LYD228
Vectors Sorghum
flower
Head Average Length
0.81557
0.004025



Field Drought
meristem
cm-Drought


LYD228
Vectors Sorghum
flower
Total Seed Weight/Head
0.776429
0.013871



Field Normal

gr based on plot-normal


LYD228
Vectors Sorghum
flower
Total Seed Weight/Head
0.744137
0.021492



Field Normal

gr based on 5 heads-





normal


LYD228
Vectors Sorghum
flower
Head Average Length
0.739278
0.022836



Field Normal

cm-normal


LYD228
Vectors Sorghum
flower
Head Average Width
0.732502
0.015981



Field Drought

cm-Drought


LYD228
Vectors Sorghum
flower
Head Average Width
0.732502
0.015981



Field Drought

cm-Drought


LYD228
Vectors Sorghum
flower
Head Average Area cm2-
0.730394
0.016445



Field Drought
meristem
Drought


LYD228
Vectors Sorghum
flower
Head Average Area cm2-
0.730394
0.016445



Field Drought
meristem
Drought


LYD228
Vectors Sorghum
flower
Head Average Area cm2-
0.716072
0.019845



Field Drought

Drought


LYD228
Vectors Sorghum
flower
Head Average Area cm2-
0.716072
0.019845



Field Drought

Drought


LYD228
Vectors Sorghum
flower
Average Seed Area cm2-
0.715695
0.01994



Field NUE
meristem
NUE


LYD228
Vectors Sorghum
flower
Average Seed Perimeter
0.70899
0.021694



Field NUE
meristem
cm-NUE


LYD229
Vectors Sorghum
flag
NUE [yield/
0.708295
0.03272



Field Normal
leaf
SPAD](NORMAL)


LYD229
Vectors Sorghum
flag
Final Plant Height cm-
0.704432
0.022944



Field NUE
leaf
NUE


LYD229
Vectors Sorghum
flag
NUE [yield/
0.708295
0.03272



Field Normal
leaf
SPAD](NORMAL)


LYD229
Vectors Sorghum
flag
Final Plant Height cm-
0.704432
0.022944



Field NUE
leaf
NUE


LYD230
Vectors Sorghum
flag
NUE [yield/
0.759057
0.017696



Field Normal
leaf
SPAD](NORMAL)


LYD230
Vectors Sorghum
flag
NUE [yield/
0.732126
0.024914



Field Normal
leaf
SPAD](NORMAL)


LYD230
Vectors Sorghum
flag
Total Seed Weight/Head
0.720454
0.028562



Field Normal
leaf
gr based on plot-normal


LYD230
Vectors Sorghum
flag
Total Seed Weight/Head
0.71634
0.029928



Field Normal
leaf
gr based on plot-normal


LYD230
Vectors Sorghum
flag
NUE [yield/
0.759057
0.017696



Field Normal
leaf
SPAD](NORMAL)


LYD230
Vectors Sorghum
flag
NUE [yield/
0.732126
0.024914



Field Normal
leaf
SPAD](NORMAL)


LYD230
Vectors Sorghum
flag
Total Seed Weight/Head
0.720454
0.028562



Field Normal
leaf
gr based on plot-normal


LYD230
Vectors Sorghum
flag
Total Seed Weight/Head
0.71634
0.029928



Field Normal
leaf
gr based on plot-normal


LYD231
Vectors Sorghum
flag
NUE [yield/
0.824919
0.006202



Field Normal
leaf
SPAD](NORMAL)


LYD231
Vectors Sorghum
flag
NUE2 (total
0.819131
0.006908



Field Normal
leaf
biomass/SPAD)





(Normal)


LYD231
Vectors Sorghum
flag
NUE2 (total
0.797739
0.009991



Field Normal
leaf
biomass/SPAD)





(Normal)


LYD231
Vectors Sorghum
flag
NUE [yield/
0.769656
0.015289



Field Normal
leaf
SPAD](NORMAL)


LYD231
Vectors Sorghum
flag
NUpE
0.765649
0.016171



Field Normal
leaf
[biomass/SPAD](NORMAL)


LYD231
Vectors Sorghum
flower
RGR of Leaf Num-
0.753255
0.03095



Field Drought
meristem
Drought


LYD231
Vectors Sorghum
flower
RGR of Leaf Num-
0.751245
0.03166



Field Drought
meristem
Drought


LYD231
Vectors Sorghum
flower
NUpE
0.734249
0.024284



Field Normal

[biomass/SPAD](NORMAL)


LYD231
Vectors Sorghum
flag
Total Seed Weight/Head
0.734102
0.024328



Field Normal
leaf
gr based on plot-normal


LYD231
Vectors Sorghum
flag
NUpE
0.729865
0.025594



Field Normal
leaf
[biomass/SPAD](NORMAL)


LYD231
Vectors Sorghum
flower
NUE2 (total
0.70267
0.034768



Field Normal

biomass/SPAD)





(Normal)


LYD231
Vectors Sorghum
flag
NUE [yield/
0.824919
0.006202



Field Normal
leaf
SPAD](NORMAL)


LYD231
Vectors Sorghum
flag
NUE2 (total
0.819131
0.006908



Field Normal
leaf
biomass/SPAD)





(Normal)


LYD231
Vectors Sorghum
flag
NUE2 (total
0.797739
0.009991



Field Normal
leaf
biomass/SPAD)





(Normal)


LYD231
Vectors Sorghum
flag
NUE [yield/
0.769656
0.015289



Field Normal
leaf
SPAD](NORMAL)


LYD231
Vectors Sorghum
flag
NUpE
0.765649
0.016171



Field Normal
leaf
[biomass/SPAD](NORMAL)


LYD231
Vectors Sorghum
flower
RGR of Leaf Num-
0.753255
0.03095



Field Drought
meristem
Drought


LYD231
Vectors Sorghum
flower
RGR of Leaf Num-
0.751245
0.03166



Field Drought
meristem
Drought


LYD231
Vectors Sorghum
flower
NUpE
0.734249
0.024284



Field Normal

[biomass/SPAD](NORMAL)


LYD231
Vectors Sorghum
flag
Total Seed Weight/Head
0.734102
0.024328



Field Normal
leaf
gr based on plot-normal


LYD231
Vectors Sorghum
flag
NUpE
0.729865
0.025594



Field Normal
leaf
[biomass/SPAD](NORMAL)


LYD231
Vectors Sorghum
flower
NUE2 (total
0.70267
0.034768



Field Normal

biomass/SPAD)





(Normal)


LYD119_H22
Vectors Maize
Grain
Normal-Seed yield per
0.8712
0.0048



Normal
Distal
dunam [kg]




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-seed yield per 1
0.8712
0.0048



Normal
Distal
plant rest of the plot




R4-R5
[0-RH in Kg]


LYD119_H22
Vectors Maize
Grain
Normal-NUE yield
0.8712
0.0048



Normal
Distal
kg/N applied in soil kg




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-Ear weight per
0.8457
0.0082



Normal
Distal
plot (42 plants per plot)




R4-R5
[0-RH]


LYD119_H22
Vectors Maize
Grain
Normal-Ear with
0.8237
0.0120



Normal
Distal
mm




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-NUE at early
0.8124
0.0143



Normal
Distal
grain filling [R1-R2]




R4-R5
yield Kg/N in plant





SPAD


LYD119_H22
Vectors Maize
Grain
Normal-Yield/stalk
0.7881
0.0202



Normal
Distal
width




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-Ear weight per
0.7863
0.0207



Normal
Distal
plot (42 plants per plot)




R4-R5
[0-RH]


LYD119_H22
Vectors Maize
Grain
Normal-Yield/LAI
0.7758
0.0236



Normal
Distal




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-SPAD
0.7659
0.0267



Normal
Distal
10.8.09




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-NUE at grain
0.7624
0.0278



Normal
Distal
filling [R3-R4] yield




R4-R5
Kg/N in plant SPAD


LYD119_H22
Vectors Maize
Grain
Normal-SPAD
0.7556
0.0301



Normal
Distal
10.8.09




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-Plant Height
0.7449
0.0340



Normal
Distal
03.08.09




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-Seed yield per
0.7423
0.0349



Normal
Distal
dunam [kg]




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-NUE yield
0.7423
0.0349



Normal
Distal
kg/N applied in soil kg




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-seed yield per 1
0.7423
0.0349



Normal
Distal
plant rest of the plot




R4-R5
[0-RH in Kg]


LYD119_H22
Vectors Maize
Grain
Normal-No of rows
0.7197
0.0441



Normal
Distal
per ear




R4-R5


LYD119_H22
Vectors Maize
Internode
Normal-Plant Height
0.7138
0.0308



Normal
V6-
03.08.09




V8


LYD119_H22
Vectors Maize
Internode
Normal-Final Leaf
0.7123
0.0313



Normal
V6-
Number




V8


LYD119_H22
Vectors Maize
Grain
Normal-Seed yield per
0.8712
0.0048



Normal
Distal
dunam [kg]




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-seed yield per 1
0.8712
0.0048



Normal
Distal
plant rest of the plot




R4-R5
[0-RH in Kg]


LYD119_H22
Vectors Maize
Grain
Normal-NUE yield
0.8712
0.0048



Normal
Distal
kg/N applied in soil kg




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-Ear weight per
0.8457
0.0082



Normal
Distal
plot (42 plants per plot)




R4-R5
[0-RH]


LYD119_H22
Vectors Maize
Grain
Normal-Ear with
0.8237
0.0120



Normal
Distal
mm




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-NUE at early
0.8124
0.0143



Normal
Distal
grain filling [R1-R2]




R4-R5
yield Kg/N in plant





SPAD


LYD119_H22
Vectors Maize
Grain
Normal-Yield/stalk
0.7881
0.0202



Normal
Distal
width




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-Ear weight per
0.7863
0.0207



Normal
Distal
plot (42 plants per plot)




R4-R5
[0-RH]


LYD119_H22
Vectors Maize
Grain
Normal-Yield/LAI
0.7758
0.0236



Normal
Distal




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-SPAD
0.7659
0.0267



Normal
Distal
10.8.09




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-NUE at grain
0.7624
0.0278



Normal
Distal
filling [R3-R4] yield




R4-R5
Kg/N in plant SPAD


LYD119_H22
Vectors Maize
Grain
Normal-SPAD
0.7556
0.0301



Normal
Distal
10.8.09




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-Plant Height
0.7449
0.0340



Normal
Distal
03.08.09




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-Seed yield per
0.7423
0.0349



Normal
Distal
dunam [kg]




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-NUE yield
0.7423
0.0349



Normal
Distal
kg/N applied in soil kg




R4-R5


LYD119_H22
Vectors Maize
Grain
Normal-seed yield per 1
0.7423
0.0349



Normal
Distal
plant rest of the plot




R4-R5
[0-RH in Kg]


LYD119_H22
Vectors Maize
Grain
Normal-No of rows
0.7197
0.0441



Normal
Distal
per ear




R4-R5


LYD119_H22
Vectors Maize
Internode
Normal-Plant Height
0.7138
0.0308



Normal
V6-
03.08.09




V8


LYD119_H22
Vectors Maize
Internode
Normal-Final Leaf
0.7123
0.0313



Normal
V6-
Number




V8


LYD148_H4
Vectors Maize
Grain
Normal-Final Leaf
0.8457
0.0082



Normal
Distal
Number




R4-R5


LYD148_H4
Vectors Maize
Grain
Normal-Final Leaf
0.8451
0.0082



Normal
Distal
Number




R4-R5


LYD148_H4
Vectors Maize
Internode
Normal-Stalk width
0.7327
0.0387



Normal
R3-
20/08/09 close to TP5




R4


LYD148_H4
Vectors Maize
Internode
Normal-Final Plant
0.7013
0.0353



Normal
V6-
Height




V8


LYD148_H4
Vectors Maize
Grain
Normal-Final Leaf
0.8457
0.0082



Normal
Distal
Number




R4-R5


LYD148_H4
Vectors Maize
Grain
Normal-Final Leaf
0.8451
0.0082



Normal
Distal
Number




R4-R5


LYD148_H4
Vectors Maize
Internode
Normal-Stalk width
0.7327
0.0387



Normal
R3-
20/08/09 close to TP5




R4


LYD148_H4
Vectors Maize
Internode
Normal-Final Plant
0.7013
0.0353



Normal
V6-
Height




V8


LYD148_H5
Vectors Maize
Grain
Normal-Plant Height
0.8416
0.0088



Normal
Distal
19.7.09




R4-R5


LYD148_H5
Vectors Maize
Grain
Normal-Plant Height
0.7924
0.0190



Normal
Distal
29.07.09




R4-R5


LYD148_H5
Vectors Maize
Grain
Normal-Plant Height
0.7544
0.0305



Normal
Distal
10.08.09




R4-R5


LYD148_H5
Vectors Maize
Internode
Normal-Final Leaf
0.7134
0.0309



Normal
V6-
Number




V8


LYD148_H5
Vectors Maize
Grain
Normal-Leaf No
0.7109
0.0481



Normal
Distal
3.08.09




R4-R5


LYD148_H5
Vectors Maize
Grain
Normal-Plant Height
0.8416
0.0088



Normal
Distal
19.7.09




R4-R5


LYD148_H5
Vectors Maize
Grain
Normal-Plant Height
0.7924
0.0190



Normal
Distal
29.07.09




R4-R5


LYD148_H5
Vectors Maize
Grain
Normal-Plant Height
0.7544
0.0305



Normal
Distal
10.08.09




R4-R5


LYD148_H5
Vectors Maize
Internode
Normal-Final Leaf
0.7134
0.0309



Normal
V6-
Number




V8


LYD148_H5
Vectors Maize
Grain
Normal-Leaf No
0.7109
0.0481



Normal
Distal
3.08.09




R4-R5


LYD196_H2
Vectors Maize
Internode
Normal-Final Leaf
0.8907
0.0013



Normal
V6-
Number




V8


LYD196_H2
Vectors Maize
Internode
Normal-Ear length of
0.8319
0.0104



Normal
R3-
filled area cm




R4


LYD196_H2
Vectors Maize
Internode
Normal-Final Leaf
0.8314
0.0055



Normal
V6-
Number




V8


LYD196_H2
Vectors Maize
Internode
Normal-SPAD 1.9.09
0.8154
0.0074



Normal
V6-
R1-2




V8


LYD196_H2
Vectors Maize
Grain
Normal-SPAD 3.8.09
0.7864
0.0206



Normal
Distal




R4-R5


LYD196_H2
Vectors Maize
Leaf
Normal-Stalk width
0.7852
0.0071



Normal
V6-V8
20/08/09 close to TP5


LYD196_H2
Vectors Maize
Internode
Normal-Ear Length
0.7700
0.0254



Normal
R3-
cm




R4


LYD196_H2
Vectors Maize
Leaf
Normal-Stalk width
0.7690
0.0093



Normal
V6-V8
20/08/09 close to TP5


LYD196_H2
Vectors Maize
Internode
Normal-SPAD 1.9.09
0.7431
0.0218



Normal
V6-
R1-2




V8


LYD196_H2
Vectors Maize
Grain
Normal-Ear with
0.7364
0.0372



Normal
Distal
mm




R4-R5


LYD196_H2
Vectors Maize
Grain
Normal-Ear with
0.7354
0.0376



Normal
Distal
mm




R4-R5


LYD196_H2
Vectors Maize
Leaf
Normal-Final Leaf
0.7346
0.0155



Normal
V6-V8
Number


LYD196_H2
Vectors Maize
Internode
Normal-Ear length of
0.7234
0.0425



Normal
R3-
filled area cm




R4


LYD196_H2
Vectors Maize
Internode
Normal-Ear Length
0.7077
0.0495



Normal
R3-
cm




R4


LYD196_H2
Vectors Maize
Internode
Normal-Final Leaf
0.8907
0.0013



Normal
V6-
Number




V8


LYD196_H2
Vectors Maize
Internode
Normal-Ear length of
0.8319
0.0104



Normal
R3-
filled area cm




R4


LYD196_H2
Vectors Maize
Internode
Normal-Final Leaf
0.8314
0.0055



Normal
V6-
Number




V8


LYD196_H2
Vectors Maize
Internode
Normal-SPAD 1.9.09
0.8154
0.0074



Normal
V6-
R1-2




V8


LYD196_H2
Vectors Maize
Grain
Normal-SPAD 3.8.09
0.7864
0.0206



Normal
Distal




R4-R5


LYD196_H2
Vectors Maize
Leaf
Normal-Stalk width
0.7852
0.0071



Normal
V6-V8
20/08/09 close to TP5


LYD196_H2
Vectors Maize
Internode
Normal-Ear Length
0.7700
0.0254



Normal
R3-
cm




R4


LYD196_H2
Vectors Maize
Leaf
Normal-Stalk width
0.7690
0.0093



Normal
V6-V8
20/08/09 close to TP5


LYD196_H2
Vectors Maize
Internode
Normal-SPAD 1.9.09
0.7431
0.0218



Normal
V6-
R1-2




V8


LYD196_H2
Vectors Maize
Grain
Normal-Ear with
0.7364
0.0372



Normal
Distal
mm




R4-R5


LYD196_H2
Vectors Maize
Grain
Normal-Ear with
0.7354
0.0376



Normal
Distal
mm




R4-R5


LYD196_H2
Vectors Maize
Leaf
Normal-Final Leaf
0.7346
0.0155



Normal
V6-V8
Number


LYD196_H2
Vectors Maize
Internode
Normal-Ear length of
0.7234
0.0425



Normal
R3-
filled area cm




R4


LYD196_H2
Vectors Maize
Internode
Normal-Ear Length
0.7077
0.0495



Normal
R3-
cm




R4


LYD128_H5
Vectors Maize
Grain
Normal-Stalk width
0.9266
0.0009



Normal
Distal
20/08/09 close to TP5




R4-R5


LYD128_H5
Vectors Maize
Grain
Normal-Stalk width
0.9266
0.0009



Normal
Distal
20/08/09 close to TP5




R4-R5


LYD128_H6
Vectors Maize
Grain
Normal-Stalk width
0.9266
0.0009



Normal
Distal
20/08/09 close to TP5




R4-R5


LYD228_H7
Vectors Maize
Grain
Normal-Ear Length
0.7279
0.0407



Normal
Distal
cm




R4-R5


LYD228_H7
Vectors Maize
Grain
Normal-SPAD
0.7120
0.0475



Normal
Distal
29.7.09




R4-R5


LYD228_H7
Vectors Maize
Grain
Normal-Ear Length
0.7279
0.0407



Normal
Distal
cm




R4-R5


LYD228_H7
Vectors Maize
Internode
Normal-SPAD
0.7181
0.0448



Normal
R3-
29.7.09




R4


LYD228_H7
Vectors Maize
Grain
Normal-SPAD
0.7120
0.0475



Normal
Distal
29.7.09




R4-R5


LYD228_H7
Vectors Maize
Internode
Normal-LAI
0.7084
0.0492



Normal
V6-




V8


LYD238_H4
Vectors Maize
Internode
Normal-Yield/LAI
0.8504
0.0075



Normal
V6-




V8


LYD238_H4
Vectors Maize
Internode
Normal-Ear Length
0.8010
0.0095



Normal
V6-
cm




V8


LYD238_H4
Vectors Maize
Internode
Normal-Ear length of
0.7414
0.0222



Normal
V6-
filled area cm




V8


LYD238_H4
Vectors Maize
Internode
Normal-Stalk width
0.7132
0.0470



Normal
R3-
20/08/09 close to TP5




R4


LYD238_H4
Vectors Maize
Internode
Normal-Yield/LAI
0.8504
0.0075



Normal
V6-




V8


LYD238_H4
Vectors Maize
Internode
Normal-Ear Length
0.8010
0.0095



Normal
V6-
cm




V8


LYD238_H4
Vectors Maize
Internode
Normal-Ear length of
0.7414
0.0222



Normal
V6-
filled area cm




V8


LYD238_H4
Vectors Maize
Internode
Normal-Stalk width
0.7132
0.0470



Normal
R3-
20/08/09 close to TP5




R4


LYD201_H146
Vectors Maize
Internode
Normal-SPAD 6.9.09
0.7795
0.0226



Normal
R3-
R3-R4




R4


LYD201_H146
Vectors Maize
Leaf
Normal-Final Leaf
0.7537
0.0118



Normal
V6-V8
Number


LYD201_H146
Vectors Maize
Leaf
Normal-Final Leaf
0.7412
0.0142



Normal
V6-V8
Number


LYD201_H146
Vectors Maize
Grain
Normal-Final Plant
0.7330
0.0386



Normal
Distal
Height




R4-R5


LYD201_H146
Vectors Maize
Internode
Normal-SPAD 6.9.09
0.7795
0.0226



Normal
R3-
R3-R4




R4


LYD201_H146
Vectors Maize
Leaf
Normal-Final Leaf
0.7537
0.0118



Normal
V6-V8
Number


LYD201_H146
Vectors Maize
Leaf
Normal-Final Leaf
0.7412
0.0142



Normal
V6-V8
Number


LYD201_H146
Vectors Maize
Grain
Normal-Final Plant
0.7330
0.0386



Normal
Distal
Height




R4-R5


LYD201_H147
Vectors Maize
Internode
Normal-SPAD
0.8859
0.0015



Normal
V6-
29.7.09




V8


LYD201_H147
Vectors Maize
Internode
Normal-Ear weight per
0.8836
0.0016



Normal
V6-
plot (42 plants per plot)




V8
[0-RH]


LYD201_H147
Vectors Maize
Internode
Normal-Ear with
0.8708
0.0022



Normal
V6-
mm




V8


LYD201_H147
Vectors Maize
Internode
Normal-Final Main
0.8612
0.0029



Normal
V6-
Ear Height




V8


LYD201_H147
Vectors Maize
Internode
Normal-NUE at grain
0.8587
0.0030



Normal
V6-
filling [R3-R4] yield




V8
Kg/N in plant SPAD


LYD201_H147
Vectors Maize
Internode
Normal-NUE at early
0.8554
0.0033



Normal
V6-
grain filling [R1-R2]




V8
yield Kg/N in plant





SPAD


LYD201_H147
Vectors Maize
Internode
Normal-Seed yield per
0.8139
0.0076



Normal
V6-
dunam [kg]




V8


LYD201_H147
Vectors Maize
Internode
Normal-NUE yield
0.8139
0.0076



Normal
V6-
kg/N applied in soil kg




V8


LYD201_H147
Vectors Maize
Internode
Normal-seed yield per 1
0.8139
0.0076



Normal
V6-
plant rest of the plot




V8
[0-RH in Kg]


LYD201_H147
Vectors Maize
Internode
Normal-Yield/stalk
0.8120
0.0079



Normal
V6-
width




V8


LYD201_H147
Vectors Maize
Internode
Normal-Final Plant
0.7807
0.0130



Normal
V6-
Height




V8


LYD201_H147
Vectors Maize
Internode
Normal-Ear with
0.7358
0.0238



Normal
V6-
mm




V8


LYD201_H147
Vectors Maize
Grain
Normal-Ear with
0.7273
0.0409



Normal
Distal
mm




R4-R5


LYD201_H147
Vectors Maize
Grain
Normal-Ear with
0.7218
0.0432



Normal
Distal
mm




R4-R5


LYD201_H147
Vectors Maize
Internode
Normal-Final Main
0.7200
0.0287



Normal
V6-
Ear Height




V8


LYD201_H147
Vectors Maize
Internode
Normal-Ear with
0.7173
0.0296



Normal
V6-
mm




V8


LYD201_H147
Vectors Maize
Internode
Normal-No of rows
0.7165
0.0299



Normal
V6-
per ear




V8


LYD201_H147
Vectors Maize
Internode
Normal-Final Plant
0.7109
0.0318



Normal
V6-
Height




V8


LYD201_H147
Vectors Maize
Internode
Normal-No of rows
0.7004
0.0356



Normal
V6-
per ear




V8


LYD201_H147
Vectors Maize
Internode
Normal-SPAD
0.8859
0.0015



Normal
V6-
29.7.09




V8


LYD201_H147
Vectors Maize
Internode
Normal-Ear weight per
0.8836
0.0016



Normal
V6-
plot (42 plants per plot)




V8
[0-RH]


LYD201_H147
Vectors Maize
Internode
Normal-Ear with
0.8708
0.0022



Normal
V6-
mm




V8


LYD201_H147
Vectors Maize
Internode
Normal-Final Main
0.8612
0.0029



Normal
V6-
Ear Height




V8


LYD201_H147
Vectors Maize
Internode
Normal-NUE at grain
0.8587
0.0030



Normal
V6-
filling [R3-R4] yield




V8
Kg/N in plant SPAD


LYD201_H147
Vectors Maize
Internode
Normal-NUE at early
0.8554
0.0033



Normal
V6-
grain filling [R1-R2]




V8
yield Kg/N in plant





SPAD


LYD201_H147
Vectors Maize
Internode
Normal-Seed yield per
0.8139
0.0076



Normal
V6-
dunam [kg]




V8


LYD201_H147
Vectors Maize
Internode
Normal-NUE yield
0.8139
0.0076



Normal
V6-
kg/N applied in soil kg




V8


LYD201_H147
Vectors Maize
Internode
Normal-seed yield per 1
0.8139
0.0076



Normal
V6-
plant rest of the plot




V8
[0-RH in Kg]


LYD201_H147
Vectors Maize
Internode
Normal-Yield/stalk
0.8120
0.0079



Normal
V6-
width




V8


LYD201_H147
Vectors Maize
Internode
Normal-Final Plant
0.7807
0.0130



Normal
V6-
Height




V8


LYD201_H147
Vectors Maize
Internode
Normal-Ear with
0.7358
0.0238



Normal
V6-
mm




V8


LYD201_H147
Vectors Maize
Grain
Normal-Ear with
0.7273
0.0409



Normal
Distal
mm




R4-R5


LYD201_H147
Vectors Maize
Grain
Normal-Ear with
0.7218
0.0432



Normal
Distal
mm




R4-R5


LYD201_H147
Vectors Maize
Internode
Normal-Final Main
0.7200
0.0287



Normal
V6-
Ear Height




V8


LYD201_H147
Vectors Maize
Internode
Normal-Ear with
0.7173
0.0296



Normal
V6-
mm




V8


LYD201_H147
Vectors Maize
Internode
Normal-No of rows
0.7165
0.0299



Normal
V6-
per ear




V8


LYD201_H147
Vectors Maize
Internode
Normal-Final Plant
0.7109
0.0318



Normal
V6-
Height




V8


LYD201_H147
Vectors Maize
Internode
Normal-No of rows
0.7004
0.0356



Normal
V6-
per ear




V8


LYD201_H148
Vectors Maize
Grain
Normal-Ear length of
0.7205
0.0438



Normal
Distal
filled area cm




R4-R5


LYD201_H148
Vectors Maize
Internode
Normal-SPAD
0.7174
0.0296



Normal
V6-
29.7.09




V8


LYD201_H148
Vectors Maize
Grain
Normal-Ear length of
0.7205
0.0438



Normal
Distal
filled area cm




R4-R5


LYD201_H148
Vectors Maize
Internode
Normal-SPAD
0.7174
0.0296



Normal
V6-
29.7.09




V8


LYD216_H9
Vectors Maize
Leaf
Normal-Ear length of
0.7545
0.0117



Normal
V6-V8
filled area cm


LYD216_H9
Vectors Maize
Grain
Normal-Stalk width
0.7367
0.0371



Normal
Distal
20/08/09 close to TP5




R4-R5


LYD216_H9
Vectors Maize
Leaf
Normal-Ear length of
0.7545
0.0117



Normal
V6-V8
filled area cm


LYD216_H9
Vectors Maize
Grain
Normal-Stalk width
0.7367
0.0371



Normal
Distal
20/08/09 close to TP5




R4-R5


LYD216_H10
Vectors Maize
Grain
Normal-SPAD 3.8.09
0.8579
0.0064



Normal
Distal




R4-R5


LYD216_H10
Vectors Maize
Grain
Normal-Ear with
0.8398
0.0091



Normal
Distal
mm




R4-R5


LYD216_H10
Vectors Maize
Grain
Normal-Ear with
0.8112
0.0145



Normal
Distal
mm




R4-R5


LYD216_H10
Vectors Maize
Grain
Normal-SPAD
0.7661
0.0266



Normal
Distal
29.7.09




R4-R5


LYD216_H10
Vectors Maize
Grain
Normal-Ear weight per
0.7540
0.0307



Normal
Distal
plot (42 plants per plot)




R4-R5
[0-RH]


LYD216_H10
Vectors Maize
Internode
Normal-Final Leaf
0.7158
0.0458



Normal
R3-
Number




R4


LYD216_H10
Vectors Maize
Grain
Normal-SPAD 3.8.09
0.8579
0.0064



Normal
Distal




R4-R5


LYD216_H10
Vectors Maize
Grain
Normal-Ear with
0.8398
0.0091



Normal
Distal
mm




R4-R5


LYD216_H10
Vectors Maize
Grain
Normal-Ear with
0.8112
0.0145



Normal
Distal
mm




R4-R5


LYD216_H10
Vectors Maize
Grain
Normal-SPAD
0.7661
0.0266



Normal
Distal
29.7.09




R4-R5


LYD216_H10
Vectors Maize
Grain
Normal-Ear weight per
0.7540
0.0307



Normal
Distal
plot (42 plants per plot)




R4-R5
[0-RH]


LYD216_H10
Vectors Maize
Internode
Normal-Final Leaf
0.7158
0.0458



Normal
R3-
Number




R4


LYD227_H4
Vectors Maize
Internode
Normal-SPAD 3.8.09
0.8421
0.0044



Normal
V6-




V8


LYD227_H4
Vectors Maize
Grain
Normal-Ear with
0.7830
0.0216



Normal
Distal
mm




R4-R5


LYD227_H4
Vectors Maize
Internode
Normal-SPAD 3.8.09
0.8421
0.0044



Normal
V6-




V8


LYD227_H4
Vectors Maize
Grain
Normal-Ear with
0.7830
0.0216



Normal
Distal
mm




R4-R5





Table 26: Correlation analyses.






Example 10
Identification of Genes and Homologues Thereof which Increase Yield, Biomass, Growth Rate, Vigor, Oil Content, Abiotic Stress Tolerance of Plants and Nitrogen Use Efficiency

Based on the above described bioinformatics and experimental tools, the present inventors have identified 217 genes which have a major impact on yield, seed yield, oil to yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency when expression thereof is increased in plants. The identified genes (including genes identified by bioinformatics tools and curated sequences thereof), and polypeptide sequences encoded thereby are summarized in Table 27, hereinbelow.









TABLE 27







Identified polynucleotides which affect plant yield, seed yield, oil yield, oil content, biomass,


growth rate, vigor, fiber yield, fiber quality abiotic stress tolerance and/or nitrogen use


efficiency of a plant















Polypep.


Gene


Polynuc.
SEQ ID


Name
Cluster Name
Organism
SEQ ID NO:
NO:














LYD1
arabidopsis|gb165|AT1G03470

arabidopsis

1
488


LYD2
arabidopsis|gb165|AT1G22800

arabidopsis

2
489


LYD3
arabidopsis|gb165|AT1G32160

arabidopsis

3
490


LYD4
arabidopsis|gb165|AT1G34630

arabidopsis

4
491


LYD5
arabidopsis|gb165|AT1G67650

arabidopsis

5
492


LYD6
arabidopsis|gb165|AT2G15860

arabidopsis

6
493


LYD7
arabidopsis|gb165|AT2G25670

arabidopsis

7
494


LYD9
arabidopsis|gb165|AT3G01720

arabidopsis

8
495


LYD10
arabidopsis|gb165|AT3G15890

arabidopsis

9
496


LYD11
arabidopsis|gb165|AT3G53668

arabidopsis

10
497


LYD12
arabidopsis|gb165|AT3G60980

arabidopsis

11
498


LYD13
arabidopsis|gb165|AT3G61670

arabidopsis

12
499


LYD14
arabidopsis|gb165|AT4G04880

arabidopsis

13
500


LYD16
arabidopsis|gb165|AT4G20480

arabidopsis

14
501


LYD18
arabidopsis|gb165|AT4G24610

arabidopsis

15
502


LYD20
arabidopsis|gb165|AT5G10690

arabidopsis

16
503


LYD21
arabidopsis|gb165|AT5G36930

arabidopsis

17
504


LYD22
arabidopsis|gb165|AT5G51040

arabidopsis

18
505


LYD23
arabidopsis|gb165|AT5G51080

arabidopsis

19
506


LYD25
canola|gb161|EG019886
canola
20
507


LYD26
medicago|09v1|AL377960

medicago

21
508


LYD27
medicago|09v1|BF632009

medicago

22
509


LYD28
medicago|09v1|BI271781

medicago

23
510


LYD29
medicago|09v1|CRPMT000438

medicago

24
511


LYD33
tomato|gb164|AF211815
tomato
25
512


LYD34
tomato|gb164|AI483666
tomato
26
513


LYD35
tomato|09v1|AJ306423
tomato
27
514


LYD36
tomato|gb164|AI485302
tomato
28
515


LYD37
tomato|gb164|AI487977
tomato
29
516


LYD38
tomato|gb164|AI773900
tomato
30
517


LYD40
tomato|09v1|AI782539
tomato
31
518


LYD41
tomato|09v1|BF052865
tomato
32
519


LYD42
tomato|09v1|AW036074
tomato
33
520


LYD43
tomato|gb164|AW037558
tomato
34
521


LYD44
tomato|gb164|AW217297
tomato
35
522


LYD45
tomato|gb164|AW618293
tomato
36
523


LYD47
tomato|gb164|BG123883
tomato
37
524


LYD48
tomato|09v1|BG123886
tomato
38
525


LYD49
tomato|09v1|BG123989
tomato
39
526


LYD50
tomato|09v1|BG127394
tomato
40
527


LYD51
tomato|gb164|BG127506
tomato
41
528


LYD52
tomato|09v1|BG128140
tomato
42
529


LYD53
tomato|gb164|BG128949
tomato
43
530


LYD55
tomato|gb164|BG131146
tomato
44
531


LYD57
tomato|gb164|BG134380
tomato
45
532


LYD58
tomato|09v1|BG134619
tomato
46
533


LYD59
tomato|09v1|BG135632
tomato
47
534


LYD61
tomato|09v1|BG138131
tomato
48
535


LYD62
tomato|09v1|BG734743
tomato
49
536


LYD63
tomato|09v1|BI206677
tomato
50
537


LYD65
tomato|09v1|CK273548
tomato
51
538


LYD66
tomato|gb164|CD002407
tomato
52
539


LYD67
tomato|09v1|BF113276
tomato
53
540


LYD69
arabidopsis|gb165|AT5G25120

arabidopsis

54
541


LYD70
canola|gb161|CB686084
canola
55
542


LYD71
canola|gb161|CD817042
canola
56
543


LYD72
medicago|09v1|AW696637

medicago

57
544


LYD73
tomato|gb164|AA824853
tomato
58
545


LYD74
tomato|09v1|BG124100
tomato
59
546


LYD75
tomato|gb164|BG134552
tomato
60
547


LYD76
tomato|gb164|BP890691
tomato
61
548


LYD78
soybean|gb168|AL388558
soybean
62
549


LYD79
soybean|gb168|BE820644
soybean
63
550


LYD80
arabidopsis|gb165|AT1G21920

arabidopsis

64
551


LYD81
medicago|09v1|BF632274

medicago

65
552


LYD82
tomato|gb164|BG630963
tomato
66
553


LYD84
arabidopsis|gb165|AT5G15254

arabidopsis

67
554


LYD85
arabidopsis|gb165|AT4G29905

arabidopsis

68
555


LYD86
arabidopsis|gb165|AT5G41010

arabidopsis

69
556


LYD87
tomato|gb164|AW930554
tomato
70
557


LYD88
arabidopsis|gb165|AT1G68710

arabidopsis

71
558


LYD89
arabidopsis|gb165|AT5G42730

arabidopsis

72
559


LYD90
arabidopsis|gb165|AT1G18910

arabidopsis

73
560


LYD91
tomato|09v1|BG643473
tomato
74
561


LYD92
arabidopsis|gb165|AT1G19240

arabidopsis

75
562


LYD94
arabidopsis|gb165|AT1G49660

arabidopsis

76
563


LYD95
arabidopsis|gb165|AT1G65295

arabidopsis

77
564


LYD96
arabidopsis|gb165|AT1G76970

arabidopsis

78
565


LYD97
arabidopsis|gb165|AT2G01090

arabidopsis

79
566


LYD99
arabidopsis|gb165|AT3G26380

arabidopsis

80
567


LYD101
arabidopsis|gb165|AT4G14930

arabidopsis

81
568


LYD102
arabidopsis|gb165|AT4G24800

arabidopsis

82
569


LYD103
arabidopsis|gb165|AT5G05060

arabidopsis

83
570


LYD104
arabidopsis|gb165|AT5G23070

arabidopsis

84
571


LYD105
arabidopsis|gb165|AT5G40540

arabidopsis

85
572


LYD106
arabidopsis|gb165|AT5G44930

arabidopsis

86
573


LYD107
arabidopsis|gb165|AT5G62630

arabidopsis

87
574


LYD108
canola|gb161|EV139574
canola
88
575


LYD109
b_juncea|yd3|EVGN00087322220915
b_juncea
89
576


LYD110
b_juncea|yd3|E6ANDIZ01CHGS1
b_juncea
90
577


LYD113
b_juncea|yd3|H07501
b_juncea
91
578


LYD114
b_juncea|gb164|EVGN00337011101441
b_juncea
92
579


LYD117
b_juncea|yd3|E6ANDIZ01AGE3G
b_juncea
93
580


LYD118
b_juncea|yd3|E6ANDIZ01A3PN5
b_juncea
94
581


LYD119
b_juncea|gb164|EVGN01067614512362
b_juncea
95
582


LYD120
b_juncea|yd3|X1E6ANDIZ01EAN1T
b_juncea
96
583


LYD122
b_juncea|yd3|E6ANDIZ01DUORN
b_juncea
97
584


LYD123
b_juncea|gb164|EVGN08545904982944
b_juncea
98
585


LYD124
b_juncea|gb164|EVGN10695305591742
b_juncea
99
586


LYD125
medicago|gb157.2|AW171770

medicago

100
587


LYD126
medicago|gb157.2|BE240432

medicago

101
588


LYD127
soybean|gb166|AW119405
soybean
102
589


LYD128
soybean|gb166|BE210997
soybean
103
590


LYD129
soybean|gb166|BE660895
soybean
104
591


LYD132
soybean|gb168|BF634740
soybean
105
592


LYD133
soybean|gb168|BI418412
soybean
106
593


LYD134
soybean|gb168|BU546353
soybean
107
594


LYD136
soybean|gb168|AW685064
soybean
108
595


LYD139
soybean|gb168|BI969776
soybean
109
596


LYD140
soybean|gb168|CF069839
soybean
110
597


LYD142
tomato|09v1|AI779400
tomato
111
598


LYD144
tomato|09v1|BG135622
tomato
112
599


LYD146
tomato|gb164|DV103976
tomato
113
600


LYD148
sorghum|gb161.crp|AF047899

sorghum

114
601


LYD149
arabidopsis|gb165|AT1G05350

arabidopsis

115
602


LYD150
arabidopsis|gb165|AT1G61180

arabidopsis

116
603


LYD152
arabidopsis|gb165|AT5G02370

arabidopsis

117
604


LYD153
arabidopsis|gb165|AT5G42920

arabidopsis

118
605


LYD156
tomato|gb164|BG125257
tomato
119
606


LYD157
tomato|09v1|BG735318
tomato
120
607


LYD158
tomato|gb164|DB709286
tomato
121
608


LYD159
b_juncea|gb164|DT317712
b_juncea
122
609


LYD166
b_juncea|gb164|EVGN00118027751203
b_juncea
123
610


LYD167
b_juncea|gb164|EVGN00123927221199
b_juncea
124
611


LYD172
b_juncea|yd3|E6ANDIZ01ATVGF
b_juncea
125
612


LYD173
b_juncea|gb164|EVGN00297423550919
b_juncea
126
613


LYD174
b_juncea|yd3|E6ANDIZ01AF3YB
b_juncea
127
614


LYD176
b_juncea|gb164|EVGN00462208651225
b_juncea
128
615


LYD177
b_juncea|gb164|EVGN00465119080454
b_juncea
129
616


LYD178
b_juncea|gb164|EVGN00502808481823
b_juncea
130
617


LYD180
b_juncea|yd3|E6ANDIZ01A6SGI1
b_juncea
131
618


LYD184
b_juncea|yd3|E6ANDIZ01A3ARL
b_juncea
132
619


LYD185
b_juncea|gb164|EVGN01300508721002
b_juncea
133
620


LYD186
b_juncea|yd3|GENL37642
b_juncea
134
621


LYD187
b_juncea|gb164|EVGN01497309140908
b_juncea
135
622


LYD188
b_juncea|yd3|CD813443
b_juncea
136
623


LYD190
b_juncea|yd3|GENBG543253
b_juncea
137
624


LYD192
b_juncea|yd3|A4M2E6ANDIZ01B0ZJK
b_juncea
138
625


LYD193
b_juncea|yd3|E6ANDIZ01A79AV1
b_juncea
139
626


LYD194
b_juncea|yd3|E6ANDIZ01AFJMD
b_juncea
140
627


LYD195
tomato|gb164|AI483451
tomato
141
628


LYD196
maize|gb170|AI586800
maize
142
629


LYD197
arabidopsis|gb165|AT5G63800

arabidopsis

143
630


LYD200
b_juncea|yd3|E7FJ1I304DXRGY
b_juncea
144
631


LYD201
b_juncea|gb164|EVGN00128110990752
b_juncea
145
632


LYD202
b_juncea|gb164|EVGN00179312122996
b_juncea
146
633


LYD204
b_juncea|yd3|E6ANDIZ01A9A19
b_juncea
147
634


LYD206
b_juncea|gb164|EVGN00955015301700
b_juncea
148
635


LYD208
b_juncea|yd3|E6ANDIZ01BZ44C
b_juncea
149
636


LYD209
b_juncea|yd3|E6ANDIZ02G6J79
b_juncea
150
637


LYD211
sorghum|gb161.crp|W59814

sorghum

151
638


LYD212
arabidopsis|gb165|AT1G21560

arabidopsis

152
639


LYD213
arabidopsis|gb165|AT1G63460

arabidopsis

153
640


LYD214
arabidopsis|gb165|AT2G24440

arabidopsis

154
641


LYD215
arabidopsis|gb165|AT2G43350

arabidopsis

155
642


LYD216
arabidopsis|gb165|AT3G03960

arabidopsis

156
643


LYD217
arabidopsis|gb165|AT3G06035

arabidopsis

157
644


LYD219
arabidopsis|gb165|AT3G51250

arabidopsis

158
645


LYD220
arabidopsis|gb165|AT4G16160

arabidopsis

159
646


LYD221
arabidopsis|gb165|AT4G35850

arabidopsis

160
647


LYD222
arabidopsis|gb165|AT4G35985

arabidopsis

161
648


LYD223
arabidopsis|gb165|AT5G13200

arabidopsis

162
649


LYD224
arabidopsis|gb165|AT5G58070

arabidopsis

163
650


LYD225
barley|gb157SOLEXA|AJ476940
barley
164
651


LYD227
sorghum|gb161.crp|BE600694

sorghum

165
652


LYD228
sorghum|gb161.crp|AI724169

sorghum

166
653


LYD229
sorghum|gb161.crp|AW680415

sorghum

167
654


LYD230
sorghum|gb161.crp|AW747687

sorghum

168
655


LYD231
sorghum|gb161.crp|CA827765

sorghum

169
656


LYD232
tomato|09v1|AI774782
tomato
170
657


LYD233
tomato|gb164|AW032486
tomato
171
658


LYD234
tomato|gb164|BG123219
tomato
172
659


LYD235
tomato|09v1|BG132066
tomato
173
660


LYD236
tomato|gb164|BG629499
tomato
174
661


LYD238
barley|gb157SOLEXA|AL504570
barley
175
662


LYD240
barley|gb157SOLEXA|BQ766120
barley
176
663


LYD244
arabidopsis|gb165|AT1G70810

arabidopsis

177
664


LYD245
arabidopsis|gb165|AT2G36410

arabidopsis

178
665


LYD246
arabidopsis|gb165|AT5G17900

arabidopsis

179
666


LYD248
b_juncea|gb164|EVGN00459611963354
b_juncea
180
667


LYD250
b_juncea|yd3|C1E7FJ1I304DWSVV
b_juncea
181
668


LYD252
b_juncea|yd3|E6ANDIZ01CP0S8
b_juncea
182
669


LYD253
b_juncea|yd3|G2BG543337
b_juncea
183
670


LYD256
b_juncea|yd3|G2ES909931
b_juncea
184
671


LYD257
b_juncea|yd3|STE6ANDIZ01D9959
b_juncea
185
672


LYD260
b_juncea|yd3|E6ANDIZ01BMZAP
b_juncea
186
673


LYD261
b_juncea|yd3|E6ANDIZ01A3LGY
b_juncea
187
674


LYD264
b_juncea|yd3|C1E6ANDIZ01B2URL
b_juncea
188
675


LYD266
b_juncea|yd3|GENCX189412
b_juncea
189
676


LYD267
b_juncea|yd3|E6ANDIZ01BB7PO
b_juncea
190
677


LYD268
b_juncea|gb164|EVGN26566813750231
b_juncea
191
678


LYD271
b_juncea|gb164|EVGN08627136613786
b_juncea
192
679


LYD273
b_juncea|yd3|E6ANDIZ01D5PI2
b_juncea
193
680


LYD275
b_juncea|yd3|G2CD811838
b_juncea
194
681


LYD276
b_juncea|yd3|E7FJ1I302CBAW9
b_juncea
195
682


LYD278
b_juncea|yd3|A4M2E6ANDIZ01AZ32J
b_juncea
196
683


LYD279
b_juncea|yd3|GENCD837122
b_juncea
197
684


LYD282
b_juncea|yd3|G2CD837360
b_juncea
198
685


LYD283
b_juncea|yd3|G2H74785
b_juncea
199
686


LYD285
b_juncea|yd3|C1E6ANDIZ01A8PO2
b_juncea
200
687


LYD286
b_juncea|yd3|TT1E6ANDIZ02HFR5M
b_juncea
201
688


LYD287
arabidopsis|gb165|AT5G10860

arabidopsis

202
689


LYD288
b_juncea|yd3|E6ANDIZ01AZRCR
b_juncea
203
690


LYD124_H7
canola|gb161|ES968317
canola
204
691


LYD128_H1
arabidopsis|gb165|AT5G51660

arabidopsis

205
692


LYD267_H0
arabidopsis|gb165|AT1G64790

arabidopsis

206
693


LYD271_H0
arabidopsis|gb165|AT2G47240

arabidopsis

207
694


LYD89_H0
arabidopsis|gb165|AT1G68050

arabidopsis

208
695


LYM104
rice|gb157.2|AK072782
rice
209
696


LYM275
barley|gb157.3|BE421069
barley
210
697


LYD112
b_juncea|gb164|EVGN00224711371076
b_juncea
211



LYD115
b_juncea|yd3|E6ANDIZ01AL3LA
b_juncea
212



LYD259
b_juncea|yd3|CN827195
b_juncea
213



LYD262
b_juncea|yd3|A4M2E6ANDIZ01C3K15
b_juncea
214



LYD265
b_juncea|gb164|EVGN07822109542425
b_juncea
215



LYD269
b_juncea|yd3|A4M2E6ANDIZ02J3I20
b_juncea
216



LYD270
b_juncea|yd3|C1E6ANDIZ01AQ8V8
b_juncea
217



LYD124
b_juncea|gb164|EVGN10695305591742
b_juncea
99
724


LYD152
arabidopsis|gb165|AT5G02370

arabidopsis

117
729


LYD128_H1
arabidopsis|gb165|AT5G51660

arabidopsis

205
749


LYD267_H0
arabidopsis|gb165|AT1G64790

arabidopsis

206
750


LYD12
arabidopsis|gb165|AT3G60980

arabidopsis

218
698


LYD18
arabidopsis|gb165|AT4G24610

arabidopsis

219
502


LYD28
medicago|09v1|BI271781

medicago

220
510


LYD29
medicago|09v1|CRPMT000438

medicago

221
699


LYD35
tomato|gb164|AI483874
tomato
222
700


LYD40
tomato|gb164|AI782539
tomato
223
701


LYD41
tomato|gb164|AJ784615
tomato
224
702


LYD42
tomato|gb164|AW036074
tomato
225
520


LYD45
tomato|gb164|AW618293
tomato
226
703


LYD48
tomato|gb164|BG123886
tomato
227
704


LYD49
tomato|gb164|BG123989
tomato
228
705


LYD50
tomato|gb164|BG127394
tomato
229
706


LYD52
tomato|gb164|BG128140
tomato
230
707


LYD58
tomato|gb164|BG134619
tomato
231
708


LYD59
tomato|gb164|BG135632
tomato
232
709


LYD61
tomato|gb164|BG138131
tomato
233
710


LYD62
tomato|gb164|BG734743
tomato
234
711


LYD63
tomato|gb164|BI206677
tomato
235
537


LYD65
tomato|gb164|BP895649
tomato
236
712


LYD67
tomato|gb164|DB701451
tomato
237
713


LYD74
tomato|gb164|AI490774
tomato
238
714


LYD82
tomato|gb164|BG630963
tomato
239
715


LYD84
arabidopsis|gb165|AT5G15254

arabidopsis

240
716


LYD91
tomato|gb164|BG643473
tomato
241
717


LYD106
arabidopsis|gb165|AT5G44930

arabidopsis

242
718


LYD108
canola|gb161|EV139574
canola
243
719


LYD118
b_juncea|yd3|E6ANDIZ01A3PN5
b_juncea
244
720


LYD119
b_juncea|gb164|EVGN01067614512362
b_juncea
245
721


LYD120
b_juncea|yd3|X1E6ANDIZ01EAN1T
b_juncea
246
722


LYD123
b_juncea|gb164|EVGN08545904982944
b_juncea
247
723


LYD127
soybean|gb166|AW119405
soybean
248
725


LYD133
soybean|gb168|BI418412
soybean
249
593


LYD142
tomato|gb164|AI779400
tomato
250
726


LYD144
tomato|gb164|AW429188
tomato
251
727


LYD150
arabidopsis|gb165|AT1G61180

arabidopsis

252
728


LYD153
arabidopsis|gb165|AT5G42920

arabidopsis

253
605


LYD157
tomato|gb164|BG735318
tomato
254
607


LYD174
b_juncea|yd3|E6ANDIZ01AF3YB
b_juncea
255
614


LYD185
b_juncea|gb164|EVGN01300508721002
b_juncea
256
730


LYD192
b_juncea|yd3|A4M2E6ANDIZ01B0ZJK
b_juncea
257
731


LYD208
b_juncea|yd3|E6ANDIZ01BZ44C
b_juncea
258
732


LYD212
arabidopsis|gb165|AT1G21560

arabidopsis

259
733


LYD222
arabidopsis|gb165|AT4G35985

arabidopsis

260
648


LYD231
sorghum|gb161.crp|CA827765

sorghum

261
734


LYD232
tomato|gb164|AI774782
tomato
262
735


LYD235
tomato|gb164|BG132066
tomato
263
736


LYD248
b_juncea|gb164|EVGN00459611963354
b_juncea
264
737


LYD250
b_juncea|yd3|C1E7FJ1I304DWSVV
b_juncea
265
738


LYD252
b_juncea|yd3|E6ANDIZ01CP0S8
b_juncea
266
669


LYD260
b_juncea|yd3|E6ANDIZ01BMZAP
b_juncea
267
739


LYD261
b_juncea|yd3|E6ANDIZ01A3LGY
b_juncea
268
740


LYD264
b_juncea|yd3|C1E6ANDIZ01B2URL
b_juncea
269
741


LYD268
b_juncea|yd3|C1E6ANDIZ01DMZ45
b_juncea
270
742


LYD271
b_juncea|gb164|EVGN08627136613786
b_juncea
271
743


LYD273
b_juncea|yd3|E6ANDIZ01D5PI2
b_juncea
272
744


LYD276
b_juncea|yd3|E7FJ1I302CBAW9
b_juncea
273
745


LYD278
b_juncea|yd3|A4M2E6ANDIZ01AZ32J
b_juncea
274
746


LYD283
b_juncea|yd3|G2H74785
b_juncea
275
747


LYD286
b_juncea|yd3|TT1E6ANDIZ02HFR5M
b_juncea
276
748


LYD124_H7
canola|gb161|ES968317
canola
277
691


LYD112
b_juncea|gb164|EVGN00224711371076
b_juncea
278



LYD115
b_juncea|yd3|E6ANDIZ01AL3LA
b_juncea
279



LYD259
b_juncea|yd3|CN827195
b_juncea
280



LYD262
b_juncea|yd3|A4M2E6ANDIZ01C3K15
b_juncea
281



LYD265
b_juncea|gb164|EVGN07822109542425
b_juncea
282



LYD269
b_juncea|yd3|A4M2E6ANDIZ02J3I20
b_juncea
283



LYD270
b_juncea|yd3|C1E6ANDIZ01AQ8V8
b_juncea
284






Table 27:


Provided are the identified genes, their annotation, organism and polynucleotide and polypeptide sequence identifiers.


“polynucl.” = polynucleotide;


“polypep.” = polypeptide.






Example 11
Identification of Homologous Sequences that Increase Seed Yield, Oil Yield, Growth Rate, Oil Content, Fiber Yield, Fiber Quality, Biomass, Vigor, ABST and/or NUE of a Plant

The concepts of orthology and paralogy have recently been applied to functional characterizations and classifications on the scale of whole-genome comparisons. Orthologs and paralogs constitute two major types of homologs: The first evolved from a common ancestor by specialization, and the latter are related by duplication events. It is assumed that paralogs arising from ancient duplication events are likely to have to diverged in function while true orthologs are more likely to retain identical function over evolutionary time.


To identify putative orthologs of the genes affecting plant yield, oil yield, oil content, seed yield, growth rate, vigor, biomass, abiotic stress tolerance and/or nitrogen use efficiency, all sequences were aligned using the BLAST (Basic Local Alignment Search Tool). Sequences sufficiently similar were tentatively grouped. These putative orthologs were further organized under a Phylogram—a branching diagram (tree) assumed to be a representation of the evolutionary relationships among the biological taxa. Putative ortholog groups were analyzed as to their agreement with the phylogram and in cases of disagreements these ortholog groups were broken accordingly.


Expression data was analyzed and the EST libraries were classified using a fixed vocabulary of custom terms such as developmental stages (e.g., genes showing similar expression profile through development with up regulation at specific stage, such as at the seed filling stage) and/or plant organ (e.g., genes showing similar expression profile across their organs with up regulation at specific organs such as seed). The annotations from all the ESTs clustered to a gene were analyzed statistically by comparing their frequency in the cluster versus their abundance in the database, allowing the construction of a numeric and graphic expression profile of that gene, which is termed “digital expression”. The rationale of using these two complementary methods with methods of phenotypic association studies of QTLs, SNPs and phenotype expression correlation is based on the assumption that true orthologs are likely to retain identical function over evolutionary time. These methods provide different sets of indications on function similarities between two homologous genes, similarities in the sequence level—identical amino acids in the protein domains and similarity in expression profiles.


The search and identification of homologous genes involves the screening of sequence information available, for example, in public databases such as the DNA Database of Japan (DDBJ), Genbank, and the European Molecular Biology Laboratory Nucleic Acid Sequence Database (EMBL) or versions thereof or the MIPS database. A number of different search algorithms have been developed, including but not limited to the suite of programs referred to as BLAST programs. There are five implementations of BLAST, three designed for nucleotide sequence queries (BLASTN, BLASTX, and to TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, Trends in Biotechnology: 76-80, 1994; Birren et al., Genome Analysis, I: 543, 1997). Such methods involve alignment and comparison of sequences. The BLAST algorithm calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information. Other such software or algorithms are GAP, BESTFIT, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch (J. Mol. Biol. 48: 443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps.


The homologous genes may belong to the same gene family. The analysis of a gene family may be carried out using sequence similarity analysis. To perform this analysis one may use standard programs for multiple alignments e.g. Clustal W. A neighbour-joining tree of the proteins homologous to the genes in this invention may be used to provide an overview of structural and ancestral relationships. Sequence identity may be calculated using an alignment program as described above. It is expected that other plants will carry a similar functional gene (ortholog) or a family of similar genes and those genes will provide the same preferred phenotype as the genes presented here. Advantageously, these family members may be useful in the methods of the invention. Example of other plants are included here but not limited to, barley (Hordeum vulgare), Arabidopsis (Arabidopsis thaliana), maize (Zea mays), cotton (Gossypium), Oilseed rape (Brassica napus), Rice (Oryza sativa), Sugar cane (Saccharum officinarum), Sorghum (Sorghum bicolor), Soybean (Glycine max), Sunflower (Helianthus annuus), Tomato (Lycopersicon esculentum), Wheat (Triticum aestivum).


The above-mentioned analyses for sequence homology can be carried out on a full-length sequence, but may also be based on a comparison of certain regions such as conserved domains. The identification of such domains, would also be well within the realm of the person skilled in the art and would involve, for example, a computer readable format of the nucleic acids of the present invention, the use of alignment software programs and the use of publicly available information on protein domains, conserved motifs and boxes. This information is available in the PRODOM (Hypertext to Transfer Protocol://World Wide Web (dot) biochem (dot) ucl (dot) ac (dot) uk/bsm/dbbrowser/protocol/prodomqry (dot) html), PIR (Hypertext Transfer Protocol://pir (dot) Georgetown (dot) edu/) or Pfam (Hypertext Transfer Protocol://World Wide Web (dot) sanger (dot) ac (dot) uk/Software/Pfam/) database. Sequence analysis programs designed for motif searching may be used for identification of fragments, regions and conserved domains as mentioned above. Preferred computer programs include, but are not limited to, MEME, SIGNALSCAN, and GENESCAN.


A person skilled in the art may use the homologous sequences provided herein to find similar sequences in other species and other organisms. Homologues of a protein encompass, peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived. To produce such homologues, amino acids of the protein may be replaced by other amino acids having similar properties (conservative changes, such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break a-helical structures or 3-sheet structures). Conservative substitution tables are well known in the art (see for example Creighton (1984) Proteins. W.H. Freeman and Company). Homologues of a nucleic acid encompass nucleic acids having nucleotide substitutions, deletions and/or insertions relative to the unmodified nucleic acid in question and having similar biological and functional activity as the unmodified nucleic acid from which they are derived.


Table 28, hereinbelow, lists a summary of orthologous and homologous sequences of the polynucleotide sequences and polypeptide sequences presented in Table 27 above, which were identified from the databases using the NCBI BLAST software (e.g., using the Blastp and tBlastn algorithms) and needle (EMBOSS package) as being at least 80% homologous to the selected polynucleotides and polypeptides, and which are expected to increase plant yield, seed yield, oil yield, oil content, growth rate, fiber yield, fiber quality, biomass, vigor, ABST and/or NUE of a plant.









TABLE 28







Homologous polynucleotides and polypeptides which can increase plant yield, seed yield, oil


yield, oil content, growth rate, fiber yield, fiber quality, biomass, vigor, ABST and/or NUE of


a plant

















Homolog.





Homolog

Polypep.
To


Polynucl.
to

SEQ
polypep.
%


SEQ
Gene

ID
SEQ ID
global


ID NO:
Name
cluster name
NO:
NO:
identity
Algor.
















814
LYD1
arabidopsis_lyrata|09v1|JGIAL000277_P1
4852
488
88.1
globlastp


815
LYD2
arabidopsis_lyrata|09v1|JGIAL002442_T1
4853
489
95.28
glotblastn


816
LYD2
radish|gb164|EV527506_P1
4854
489
85.1
globlastp


817
LYD2
radish|gb164|EV543672_T1
4855
489
84.15
glotblastn


818
LYD3
arabidopsis_lyrata|09v1|JGIAL003335_P1
4856
490
97
globlastp


819
LYD3
canola|10v1|CD816459_P1
4857
490
87.3
globlastp


820
LYD3
canola|gb161|CD816459_P1
4858
490
87
globlastp


821
LYD3
radish|gb164|EV536106_P1
4859
490
83.8
globlastp


822
LYD4
arabidopsis_lyrata|09v1|JGIAL003600_P1
4860
491
96.3
globlastp


823
LYD4
canola|gb161|DY022340_P1
4861
491
81.1
globlastp


824
LYD4
canola|10v1|DY022340_P1
4862
491
80.9
globlastp


825
LYD5
arabidopsis_lyrata|09v1|JGIAL006945_P1
4863
492
88.9
globlastp


826
LYD6
arabidopsis_lyrata|09v1|JGIAL011942_P1
4864
493
94.6
globlastp


827
LYD6
canola|10v1|EE470649_P1
4865
493
83.6
globlastp


828
LYD6
canola|gb161|CD835605_T1
4866
493
83.46
glotblastn


829
LYD6
canola|10v1|DY005922_P1
4867
493
82.6
globlastp


830
LYD7
arabidopsis_lyrata|09v1|JGIAL013304_P1
4868
494
95.3
globlastp


831
LYD7
radish|gb164|EV526280_P1
4869
494
84.2
globlastp


832
LYD7
canola|10v1|EE464842_P1
4870
494
81.4
globlastp


833
LYD7
b_rapa|gb162|DN960346_P1
4871
494
81.4
globlastp


834
LYD9
arabidopsis_lyrata|09v1|JGIAL008425_P1
4872
495
96.8
globlastp


835
LYD9
canola|10v1|CX188920_P1
4873
495
87.5
globlastp


836
LYD9
canola|gb161|CX188920_P1
4874
495
87.2
globlastp


837
LYD10
arabidopsis_lyrata|09v1|JGIAL010075_P1
4875
496
94.2
globlastp


838
LYD11
arabidopsis_lyrata|09v1|JGIAL018613_P1
4876
497
91.7
globlastp


839
LYD12
arabidopsis_lyrata|09v1|JGIAL019555_P1
4877
498
80.3
globlastp


840
LYD13
arabidopsis_lyrata|09v1|JGIAL019486_T1
4878
499
94.88
glotblastn


841
LYD14
arabidopsis_lyrata|09v1|JGIAL023385_P1
4879
500
94.1
globlastp


842
LYD14
canola|10v1|CD829595_P1
4880
500
87.9
globlastp


843
LYD14
canola|gb161|CD829595_P1
4880
500
87.9
globlastp


844
LYD14
radish|gb164|EY944220_P1
4881
500
83.9
globlastp


845
LYD18
arabidopsis_lyrata|09v1|JGIAL025644_P1
4882
502
98
globlastp


846
LYD20
arabidopsis_lyrata|09v1|JGIAL020751_T1
4883
503
93.97
glotblastn


847
LYD22
arabidopsis_lyrata|09v1|JGIAL029529_P1
4884
505
93.6
globlastp


848
LYD22
canola|10v1|H07584_P1
4885
505
86.2
globlastp


849
LYD22
canola|gb161|H07584_P1
4885
505
86.2
globlastp


850
LYD22
canola|10v1|CD822100_P1
4886
505
85.1
globlastp


851
LYD22
canola|gb161|CD822100_P1
4886
505
85.1
globlastp


852
LYD22
radish|gb164|EV538885_P1
4887
505
85.1
globlastp


853
LYD22
thellungiella|gb167|DN772903_P1
4888
505
85.1
globlastp


854
LYD22
b_juncea|10v2|E6ANDIZ01CL8L1_P1
4889
505
84.6
globlastp


855
LYD22
canola|10v1|EG020309_P1
4890
505
84.6
globlastp


856
LYD22
canola|gb161|EG020309_P1
4890
505
84.6
globlastp


857
LYD22
radish|gb164|EV537868_P1
4891
505
84.6
globlastp


858
LYD22
b_rapa|gb162|EX016229_P1
4892
505
84
globlastp


859
LYD22
radish|gb164|EV525209_P1
4893
505
84
globlastp


860
LYD22
radish|gb164|EV537841_P1
4894
505
84
globlastp


861
LYD22
radish|gb164|EW732032_P1
4895
505
83.5
globlastp


862
LYD23
arabidopsis_lyrata|09v1|JGIAL029534_P1
4896
506
85.5
globlastp


863
LYD25
radish|gb164|EV527157_T1
4897
507
92.39
glotblastn


864
LYD25
b_rapa|gb162|EX019886_P1
4898
507
86.4
globlastp


865
LYD25
radish|gb164|EV528812_P1
4899
507
86.4
globlastp


866
LYD25
b_oleracea|gb161|EH428988_P1
4900
507
86.1
globlastp


867
LYD25
arabidopsis_lyrata|09v1|JGIAL027442_P1
4901
507
83.5
globlastp


868
LYD25
arabidopsis|10v1|AT5G42030_P1
4902
507
83.3
globlastp


869
LYD26
soybean|gb168|BU547748_P1
4903
508
83.8
globlastp


870
LYD26
pigeonpea|10v1|SRR054580S0003992_P1
4904
508
83.5
globlastp


871
LYD26
soybean|gb168|AL377960_P1
4905
508
83.5
globlastp


872
LYD26
peanut|10v1|ES759373_P1
4906
508
80.7
globlastp


873
LYD26
bean|gb167|FD790445_P1
4907
508
80.4
globlastp


874
LYD29
lotus|09v1|BP083688_P1
4908
511
81.6
globlastp


875
LYD29
soybean|gb168|CB891857_P1
4909
511
80.3
globlastp


876
LYD33
potato|gb157.2|BG351683_P1
4910
512
96.5
globlastp


877
LYD33
solanum_phureja|09v1|SPHAF211815_P1
4910
512
96.5
globlastp


878
LYD33
potato|10v1|BG351683_P1
4910
512
96.5
globlastp


879
LYD33
potato|gb157.2|CK718359_T1
4911
512
91.67
glotblastn


880
LYD33
eggplant|10v1|FS026710_P1
4912
512
89.9
globlastp


881
LYD33
pepper|gb171|CO776598_P1
4913
512
87.6
globlastp


882
LYD33
tobacco|gb162|DV161243_P1
4914
512
83.8
globlastp


883
LYD33
solanum_phureja|09v1|SPHAW622515_T1
4915
512
80.21
glotblastn


884
LYD34
solanum_phureja|09v1|SPHAI483666_P1
4916
513
98.1
globlastp


885
LYD34
pepper|gb171|BM062207_P1
4917
513
92.7
globlastp


886
LYD35
solanum_phureja|09v1|SPHAJ306423_P1
4918
514
91.6
globlastp


887
LYD35
potato|gb157.2|AJ306423_P1
4919
514
91.1
globlastp


888
LYD35
potato|10v1|AJ306423_P1
4920
514
90.9
globlastp


889
LYD35
pepper|gb171|CA515906_P1
4921
514
82.5
globlastp


890
LYD35
nicotiana_benthamiana|gb162|
4922
514
80.7
globlastp




CK280498_P1


891
LYD36
solanum_phureja|09v1|SPHAI485302_P1
4923
515
95.8
globlastp


892
LYD36
pepper|gb171|BM064313_P1
4924
515
89.4
globlastp


893
LYD37
potato|10v1|BE921890_P1
4925
516
89.1
globlastp


894
LYD37
potato|gb157.2|BE921890_P1
4925
516
89.1
globlastp


895
LYD37
solanum_phureja|09v1|SPHAI487977_T1
4926
516
88.24
glotblastn


896
LYD37
eggplant|10v1|FS013887_P1
4927
516
85.3
globlastp


897
LYD37
solanum_phureja|09v1|SPHBW686911_T1
4928
516
83.68
glotblastn


898
LYD37
solanum_phureja|09v1|SPHCRPSP002839_T1
4929
516
83.26
glotblastn


899
LYD37
pepper|gb171|CA522394_P1
4930
516
80.7
globlastp


900
LYD37
solanum_phureja|09v1|SPHCRPSP002387_P1
4931
516
80.1
globlastp


901
LYD40
solanum_phureja|09v1|SPHAI782539_P1
4932
518
89.5
globlastp


902
LYD41
potato|10v1|BF052865_P1
4933
519
84
globlastp


903
LYD41
nicotiana_benthamiana|gb162|
4934
519
80
glotblastn




CK280334_T1


904
LYD42
potato|10v1|BE919699_P1
4935
520
87.4
globlastp


905
LYD42
solanum_phureja|09v1|SPHAW036074_P1
4936
520
87.4
globlastp


906
LYD42
potato|gb157.2|BE919699_T1
4937
520
86.94
glotblastn


907
LYD43
solanum_phureja|09v1|SPHAW037558_P1
4938
521
95.9
globlastp


908
LYD43
eggplant|10v1|FS004461_P1
4939
521
90.3
globlastp


909
LYD43
pepper|gb171|EB084651_P1
4940
521
88.4
globlastp


910
LYD43
tobacco|gb162|EB429609_P1
4941
521
88.3
globlastp


911
LYD43
petunia|gb171|FN008650_P1
4942
521
86.9
globlastp


912
LYD44
solanum_phureja|09v1|SPHAW217297_P1
4943
522
91.1
globlastp


913
LYD44
eggplant|10v1|FS043660_P1
4944
522
90.3
globlastp


914
LYD44
potato|gb157.2|BQ514775_P1
4945
522
90.3
globlastp


915
LYD44
pepper|gb171|GD056569_P1
4946
522
86.6
globlastp


916
LYD44
tobacco|gb162|AF211657_T1
4947
522
83.12
glotblastn


917
LYD47
potato|gb157.2|BG095639_P1
4948
524
97.1
globlastp


918
LYD47
potato|10v1|BG095639_P1
4949
524
96.4
globlastp


919
LYD47
solanum_phureja|09v1|SPHBG123883_P1
4950
524
95.7
globlastp


920
LYD47
potato|gb157.2|BG097730_P1
4951
524
95.3
globlastp


921
LYD47
eggplant|10v1|FS002881_P1
4952
524
89.5
globlastp


922
LYD47
pepper|gb171|BM063195_P1
4953
524
89.5
globlastp


923
LYD47
tobacco|gb162|EB426460_P1
4954
524
83
globlastp


924
LYD48
solanum_phureja|09v1|SPHBG123886_T1
4955
525
92.64
glotblastn


925
LYD48
eggplant|10v1|FS025632_P1
4956
525
88.7
globlastp


926
LYD48
potato|10v1|CV503109_T1
4957
525
87.94
glotblastn


927
LYD50
solanum_phureja|09v1|SPHBG127394_P1
4958
527
94.1
globlastp


928
LYD50
pepper|gb171|BM064159_P1
4959
527
87.7
globlastp


929
LYD50
pepper|gb171|CA517048_P1
4960
527
80.7
globlastp


930
LYD50
tomato|09v1|BG131854_P1
4961
527
80.7
globlastp


931
LYD50
tomato|gb164|BG131854_P1
4961
527
80.7
globlastp


932
LYD50
potato|10v1|BI406827_T1
4962
527
80.67
glotblastn


933
LYD50
potato|gb157.2|BI406827_T1
4962
527
80.67
glotblastn


934
LYD50
solanum_phureja|09v1|SPHBG131854_P1
4963
527
80.3
globlastp


935
LYD50
tobacco|gb162|CN498866_P1
4964
527
80.1
globlastp


936
LYD51
potato|gb157.2|CK851783_P1
4965
528
98.9
globlastp


937
LYD51
potato|10v1|BG887178_P1
4965
528
98.9
globlastp


938
LYD51
potato|gb157.2|CV286494_P1
4966
528
98.4
globlastp


939
LYD51
potato|gb157.2|BG887178_P1
4967
528
95.7
globlastp


940
LYD51
solanum_phureja|09v1|SPHBG127506_P1
4968
528
95.7
globlastp


941
LYD51
pepper|gb171|CO776357_P1
4969
528
91.4
globlastp


941
LYD224
pepper|gb171|CO776357_P1
4969
650
80.1
globlastp


942
LYD51
eggplant|10v1|FS010852_P1
4970
528
88.6
globlastp


943
LYD51
tobacco|gb162|DV157738_P1
4971
528
88.1
globlastp


944
LYD51
tobacco|gb162|EB446434_P1
4972
528
86.5
globlastp


944
LYD224
tobacco|gb162|EB446434_P1
4972
650
81.2
globlastp


945
LYD51
tomato|09v1|BG135563_P1
4973
528
84.3
globlastp


946
LYD51
tomato|gb164|BG135563_P1
4973
528
84.3
globlastp


947
LYD51
papaya|gb165|AM903594_P1
4974
528
83.2
globlastp


948
LYD51
triphysaria|gb164|DR172528_P1
4975
528
83.2
globlastp


948
LYD224
triphysaria|gb164|DR172528_P1
4975
650
82.8
globlastp


949
LYD51
antirrhinum|gb166|AJ792731_P1
4976
528
82.8
globlastp


949
LYD224
antirrhinum|gb166|AJ792731_P1
4976
650
80.7
globlastp


950
LYD51
cacao|gb167|CU507814_P1
4977
528
82.7
globlastp


951
LYD51
potato|10v1|BG890660_P1
4978
528
82.7
globlastp


952
LYD51
potato|gb157.2|BG890660_P1
4978
528
82.7
globlastp


953
LYD51
triphysaria|10v1|DR172528_P1
4979
528
82.7
globlastp


953
LYD224
triphysaria|10v1|DR172528_P1
4979
650
82.3
globlastp


954
LYD51
castorbean|09v1|XM002523459_P1
4980
528
82.4
globlastp


955
LYD51
ipomoea_nil|10v1|BJ557864_P1
4981
528
82.3
globlastp


956
LYD51
ipomoea|gb157.2|BJ557864_P1
4982
528
82.3
globlastp


957
LYD51
petunia|gb171|FN009866_T1
4983
528
82.26
glotblastn


958
LYD51
cotton|10v1|BG440664_P1
4984
528
82.2
globlastp


959
LYD51
pepper|gb171|CO910024_P1
4985
528
82.2
globlastp


960
LYD51
blueberry|10v1|CV090845_P1
4986
528
81.6
globlastp


961
LYD51
cotton|gb164|BG440664_P1
4987
528
81.6
globlastp


962
LYD51
peanut|10v1|ES719286_P1
4988
528
81.6
globlastp


963
LYD51
peanut|gb171|EH042075_P1
4988
528
81.6
globlastp


964
LYD51
solanum_phureja|09v1|SPHBI203337_P1
4989
528
81.6
globlastp


965
LYD51
walnuts|gb166|CV195852_P1
4990
528
81.6
globlastp


966
LYD51
poplar|gb170|BI068309_P1
4991
528
81.2
globlastp


967
LYD51
chestnut|gb170|SRR006295S0012962_P1
4992
528
81.1
globlastp


968
LYD51
lettuce|10v1|DW075260_P1
4993
528
81.1
globlastp


969
LYD51
lettuce|gb157.2|DW075260_P1
4993
528
81.1
globlastp


970
LYD51
lettuce|gb157.2|DW138454_P1
4994
528
81.1
globlastp


971
LYD51
oil_palm|gb166|ES370588_T1
4995
528
81.08
glotblastn


972
LYD51
poplar|10v1|BI068309_P1
4996
528
80.6
globlastp


973
LYD51
dandelion|10v1|DR399893_P1
4997
528
80.5
globlastp


974
LYD51
oak|10v1|SRR006307S0007944_P1
4998
528
80.5
globlastp


975
LYD51
cichorium|gb171|EH690884_P1
4999
528
80.5
globlastp


976
LYD51
lettuce|gb157.2|DW145838_P1
5000
528
80.5
globlastp


977
LYD51
monkeyflower|09v1|CV520488_P1
5001
528
80.5
globlastp


978
LYD51
monkeyflower|10v1|CV520488_P1
5001
528
80.5
globlastp


979
LYD51
lettuce|10v1|DW043917_P1
5000
528
80.5
globlastp


980
LYD51
eschscholzia|10v1|CD476754_P1
5002
528
80.2
globlastp


981
LYD51
curcuma|10v1|DY383234_P1
5003
528
80.1
globlastp


982
LYD51
nasturtium|10v1|GH162572_P1
5004
528
80.1
globlastp


983
LYD51
tamarix|gb166|CF199524_P1
5005
528
80.1
globlastp


984
LYD51
cassava|09v1|CK652227_T1
5006
528
80
glotblastn


985
LYD51
heritiera|10v1|SRR005794S0007518_P1
5007
528
80
globlastp


986
LYD51
oak|10v1|CR627779_P1
5008
528
80
globlastp


987
LYD51
oak|10v1|FN742298_P1
5008
528
80
globlastp


988
LYD51
kiwi|gb166|FG411068_P1
5009
528
80
globlastp


989
LYD51
lettuce|gb157.2|DW043917_P1
5010
528
80
globlastp


990
LYD51
monkeyflower|09v1|GO964150_P1
5011
528
80
globlastp


991
LYD51
oak|gb170|DB996542_T1
5012
528
80
glotblastn


992
LYD51
oak|gb170|SRR006309S0020036_P1
5013
528
80
globlastp


993
LYD52
solanum_phureja|09v1|SPHBG128140_P1
5014
529
92
globlastp


994
LYD52
tomato|09v1|BF052558_P1
5015
529
80.4
globlastp


995
LYD53
solanum_phureja|09v1|SPHBG128949_P1
5016
530
89.7
globlastp


996
LYD53
potato|10v1|CK718279_T1
5017
530
88.79
glotblastn


997
LYD53
potato|gb157.2|CK718279_T1
5018
530
87
glotblastn


998
LYD53
solanum_phureja|09v1|SPHAJ785469_P1
5019
530
82.5
globlastp


999
LYD55
potato|gb157.2|BG591939_P1
5020
531
90.1
globlastp


1000
LYD55
solanum_phureja|09v1|SPHBG131146_P1
5021
531
89.4
globlastp


1001
LYD55
eggplant|10v1|FS010619_P1
5022
531
86.5
globlastp


1002
LYD55
potato|10v1|BG591939_P1
5023
531
84.6
globlastp


1003
LYD55
pepper|gb171|BM062230_P1
5024
531
80
globlastp


1004
LYD57
solanum_phureja|09v1|SPHBG134380_P1
5025
532
91.3
globlastp


1005
LYD57
pepper|gb171|BM063304_T1
5026
532
88.37
glotblastn


1006
LYD58
solanum_phureja|09v1|SPHBG134619_T1
5027
533
83.21
glotblastn


1007
LYD58
solanum_phureja|09v1|SPHBG627533_P1
5028
533
81.3
globlastp


1008
LYD59
solanum_phureja|09v1|SPHBG135632_P1
5029
534
97.7
globlastp


1009
LYD59
potato|10v1|BE920142_P1
5030
534
97.5
globlastp


1010
LYD59
potato|gb157.2|BE920142_P1
5030
534
97.5
globlastp


1011
LYD59
eggplant|10v1|FS003439_P1
5031
534
93.8
globlastp


1012
LYD59
tomato|09v1|TOMTRALTBE_P1
5032
534
83.4
globlastp


1013
LYD59
tomato|gb164|TOMTRALTBE_P1
5032
534
83.4
globlastp


1014
LYD59
grape|gb160|BQ796337_P1
5033
534
81.6
globlastp


1015
LYD59
monkeyflower|10v1|GO970770_P1
5034
534
80.7
globlastp


1016
LYD59
prunus|10v1|BU039926_P1
5035
534
80.2
globlastp


1017
LYD59
chestnut|gb170|AF417293_T1
5036
534
80.18
glotblastn


1018
LYD59
poplar|10v1|BU823552_P1
5037
534
80
globlastp


1019
LYD61
solanum_phureja|09v1|SPHBG138131_P1
5038
535
98.5
globlastp


1020
LYD61
potato|10v1|BG889997_P1
5039
535
98.2
globlastp


1021
LYD61
potato|gb157.2|BG889997_P1
5040
535
97.9
globlastp


1022
LYD61
eggplant|10v1|FS032594_P1
5041
535
93.9
globlastp


1023
LYD62
solanum_phureja|09v1|SPHCV504049_P1
5042
536
90.5
globlastp


1024
LYD62
potato|gb157.2|CV504049_P1
5043
536
88.5
globlastp


1025
LYD65
potato|10v1|CK273548_P1
5044
538
83.6
globlastp


1026
LYD65
potato|gb157.2|CK273548_P1
5044
538
83.6
globlastp


1027
LYD65
solanum_phureja|09v1|SPHCK273548_P1
5045
538
83.3
globlastp


1028
LYD66
solanum_phureja|09v1|SPHCD002407_P1
5046
539
96.4
globlastp


1029
LYD66
tomato|09v1|FG549581_P1
5047
539
95.2
globlastp


1030
LYD66
solanum_phureja|09v1|SPHGO374369_P1
5048
539
95.2
globlastp


1031
LYD66
potato|10v1|EG013178_P1
5049
539
92.8
globlastp


1032
LYD66
solanum_phureja|09v1|SPHAI486008_P1
5050
539
92.8
globlastp


1033
LYD66
solanum_phureja|09v1|SPHCK468681_P1
5051
539
91.6
globlastp


1034
LYD66
solanum_phureja|09v1|SPHSRR015435S0258823_P1
5052
539
90.4
globlastp


1035
LYD66
pepper|gb171|GD112009_P1
5053
539
88
globlastp


1036
LYD66
tomato|09v1|AI486008_P1
5054
539
86.7
globlastp


1037
LYD66
pepper|gb171|CA524720_P1
5055
539
86.7
globlastp


1038
LYD66
tomato|gb164|AI486008_P1
5054
539
86.7
globlastp


1039
LYD66
eggplant|10v1|FS049175_P1
5056
539
85.7
globlastp


1040
LYD66
petunia|gb171|FN013481_P1
5057
539
82.6
globlastp


1041
LYD66
petunia|gb171|CV294587_P1
5058
539
81.4
globlastp


1042
LYD66
tobacco|gb162|EB451442_P1
5059
539
80.5
globlastp


1043
LYD67
solanum_phureja|09v1|SPHBF113276_P1
5060
540
96.7
globlastp


1044
LYD67
potato|10v1|BQ514597_P1
5061
540
87.7
globlastp


1045
LYD67
potato|gb157.2|BQ514597_P1
5061
540
87.7
globlastp


1046
LYD69
arabidopsis_lyrata|09v1|JGIAL022233_P1
5062
541
91.5
globlastp


1047
LYD69
arabidopsis|10v1|AT5G25130_P1
5063
541
90.9
globlastp


1048
LYD69
arabidopsis|gb165|AT5G25130_P1
5063
541
90.9
globlastp


1049
LYD69
arabidopsis|10v1|AT5G25140_P1
5064
541
81.9
globlastp


1050
LYD69
arabidopsis|10v1|AT5G25180_P1
5065
541
81
globlastp


1051
LYD70
b_rapa|gb162|CO749669_P1
5066
542
99
globlastp


1052
LYD70
canola|10v1|CB686270_P1
5067
542
87.8
globlastp


1053
LYD70
canola|gb161|CB686270_P1
5067
542
87.8
globlastp


1054
LYD70
b_oleracea|gb161|DY026133_T1
5068
542
87.18
glotblastn


1055
LYD70
radish|gb164|AF052690_P1
5069
542
86.1
globlastp


1056
LYD70
thellungiella|gb167|BM985518_T1
5070
542
80.26
glotblastn


1057
LYD71
b_oleracea|gb161|DY027446_P1
543
543
100
globlastp


1058
LYD71
canola|gb161|CD817725_P1
5071
543
97.1
globlastp


1059
LYD71
b_rapa|gb162|CV544359_P1
5072
543
96.3
globlastp


1060
LYD71
b_juncea|10v2|E6ANDIZ01BK9AI_P1
5073
543
94.2
globlastp


1061
LYD72
canola|10v1|CD818215_P1
5074
544
81.7
globlastp


1062
LYD72
canola|gb161|CD825357_P1
5075
544
81.7
globlastp


1063
LYD72
canola|10v1|CD836921_P1
5076
544
81.5
globlastp


1064
LYD72
cucumber|09v1|CK755361_P1
5077
544
81.4
globlastp


1065
LYD72
sunflower|10v1|CD848269_P1
5078
544
81.2
globlastp


1066
LYD72
melon|10v1|DV634181_P1
5079
544
81
globlastp


1067
LYD72
artemisia|gb164|EY053079_T1
5080
544
80.94
glotblastn


1068
LYD72
tomato|09v1|AI779245_P1
5081
544
80.9
globlastp


1069
LYD72
monkeyflower|09v1|GO998343_P1
5082
544
80.7
globlastp


1070
LYD72
monkeyflower|10v1|GO998343_P1
5082
544
80.7
globlastp


1071
LYD72
radish|gb164|EW716526_P1
5083
544
80.7
globlastp


1072
LYD72
dandelion|10v1|DY820612_T1
5084
544
80.68
glotblastn


1073
LYD72
arabidopsis|10v1|AT4G27070_T1
5085
544
80.68
glotblastn


1074
LYD72
arabidopsis_lyrata|09v1|JGIAL030016_P1
5086
544
80.3
globlastp


1075
LYD72
nasturtium|10v1|SRR032558S0038114_P1
5087
544
80.1
globlastp


1076
LYD73
solanum_phureja|09v1|SPHAA824853_T1
5088
545
97.84
glotblastn


1077
LYD73
monkeyflower|10v1|GR111848_P1
5089
545
83.2
globlastp


1078
LYD73
triphysaria|10v1|EY174824_P1
5090
545
82.7
globlastp


1079
LYD73
monkeyflower|09v1|GR111848_T1
5091
545
82.66
glotblastn


1080
LYD73
triphysaria|gb164|EY174824_T1
5092
545
82.11
glotblastn


1081
LYD73
pigeonpea|10v1|SRR054580S0040813_P1
5093
545
81
globlastp


1082
LYD73
apple|gb171|CN444478_P1
5094
545
80.8
globlastp


1083
LYD73
prunus|gb167|AJ872422_P1
5095
545
80.5
globlastp


1084
LYD73
soybean|gb168|AL380796_P1
5096
545
80.4
globlastp


1085
LYD73
prunus|10v1|CN445461_T1
5097
545
80.27
glotblastn


1086
LYD73
cowpea|gb166|FF394654_T1
5098
545
80.22
glotblastn


1087
LYD74
potato|gb157.2|BE919413_P1
5099
546
96.3
globlastp


1088
LYD74
solanum_phureja|09v1|SPHAA824836_P1
5099
546
96.3
globlastp


1089
LYD74
potato|10v1|BE919413_P1
5099
546
96.3
globlastp


1090
LYD74
potato|gb157.2|CK262220_P1
5100
546
94.3
globlastp


1091
LYD74
potato|gb157.2|BG890062_P1
5101
546
93.5
globlastp


1092
LYD74
tomato|09v1|TOMPSI_P1
5102
546
93.5
globlastp


1093
LYD74
tomato|gb164|TOMPSI_P1
5102
546
93.5
globlastp


1094
LYD74
potato|gb157.2|BE921836_P1
5103
546
93.1
globlastp


1095
LYD74
solanum_phureja|09v1|SPHTOMPSI_P1
5103
546
93.1
globlastp


1096
LYD74
potato|10v1|BE921836_P1
5103
546
93.1
globlastp


1097
LYD74
pepper|gb171|AA840636_P1
5104
546
91.9
globlastp


1098
LYD74
eggplant|10v1|FS024905_P1
5105
546
91.1
globlastp


1099
LYD74
tobacco|gb162|CV017194_P1
5106
546
91.1
globlastp


1100
LYD74
nicotiana_benthamiana|gb162|
5107
546
90.7
globlastp




CN655516_P1


1101
LYD74
tobacco|gb162|CO046507_P1
5108
546
90.7
globlastp


1102
LYD74
tobacco|gb162|CV016100_P1
5109
546
90.7
globlastp


1103
LYD74
nicotiana_benthamiana|gb162|
5110
546
90.2
globlastp




CN655239_P1


1104
LYD74
tobacco|gb162|BU673932_P1
5110
546
90.2
globlastp


1105
LYD74
nicotiana_benthamiana|gb162|
5111
546
89.8
globlastp




CN741940_P1


1106
LYD74
petunia|gb171|CV295755_P1
5112
546
89.4
globlastp


1107
LYD74
nicotiana_benthamiana|gb162|
5113
546
89
globlastp




CN742501_P1


1108
LYD74
lettuce|gb157.2|DW043670_P1
5114
546
87.9
globlastp


1109
LYD74
lettuce|gb157.2|DW145751_P1
5114
546
87.9
globlastp


1110
LYD74
lettuce|10v1|CV700018_P1
5114
546
87.9
globlastp


1111
LYD74
antirrhinum|gb166|AJ790880_P1
5115
546
87.8
globlastp


1112
LYD74
lettuce|gb157.2|CV700018_P1
5116
546
87.4
globlastp


1113
LYD74
lettuce|10v1|DW074491_P1
5117
546
87.4
globlastp


1114
LYD74
lettuce|gb157.2|DW074491_P1
5117
546
87.4
globlastp


1115
LYD74
prunus|gb167|AJ872311_P1
5118
546
86.8
globlastp


1116
LYD74
kiwi|gb166|FG400771_P1
5119
546
86.7
globlastp


1117
LYD74
centaurea|gb166|EL930984_P1
5120
546
86.6
globlastp


1118
LYD74
dandelion|10v1|DQ160108_P1
5121
546
86.6
globlastp


1119
LYD74
dandelion|gb161|DQ160108_P1
5121
546
86.6
globlastp


1120
LYD74
lettuce|gb157.2|DW047470_P1
5122
546
86.6
globlastp


1121
LYD74
cucumber|09v1|CK085482_P1
5123
546
86.2
globlastp


1122
LYD74
apple|gb171|AY347803_P1
5124
546
86
globlastp


1123
LYD74
apple|gb171|CN878571_P1
5125
546
86
globlastp


1124
LYD74
melon|10v1|DV631727_P1
5126
546
85.8
globlastp


1125
LYD74
artemisia|10v1|EY032037_P1
5127
546
85.8
globlastp


1126
LYD74
artemisia|gb164|EY032037_P1
5128
546
85.8
globlastp


1127
LYD74
artemisia|gb164|EY033150_P1
5127
546
85.8
globlastp


1128
LYD74
senecio|gb170|DY658127_P1
5129
546
85.8
globlastp


1129
LYD74
strawberry|gb164|CO816702_P1
5130
546
85.8
globlastp


1130
LYD74
sunflower|gb162|BU672054_P1
5131
546
85.8
globlastp


1131
LYD74
sunflower|10v1|BU672054_P1
5132
546
85.4
globlastp


1132
LYD74
catharanthus|gb166|EG554591_P1
5133
546
85.4
globlastp


1133
LYD74
sunflower|10v1|CD845700_P1
5134
546
85.4
globlastp


1134
LYD74
cotton|10v1|CA993646_P1
5135
546
85.1
globlastp


1135
LYD74
cotton|10v1|CD485707_P1
5136
546
85
globlastp


1136
LYD74
beet|gb162|BQ487964_P1
5137
546
85
globlastp


1137
LYD74
castorbean|09v1|EG656437_P1
5138
546
85
globlastp


1138
LYD74
chestnut|gb170|SRR006295S0033318_P1
5139
546
85
globlastp


1139
LYD74
cynara|gb167|GE589113_P1
5140
546
85
globlastp


1140
LYD74
poplar|10v1|BI068408_P1
5141
546
85
globlastp


1141
LYD74
spurge|gb161|DV128345_P1
5142
546
85
globlastp


1142
LYD74
sunflower|gb162|CD845700_P1
5143
546
85
globlastp


1143
LYD74
triphysaria|gb164|EY127386_P1
5144
546
85
globlastp


1144
LYD74
ipomoea_nil|10v1|BJ554139_P1
5145
546
84.8
globlastp


1145
LYD74
ipomoea_batatas|10v1|BM878729_P1
5146
546
84.7
globlastp


1146
LYD74
cotton|gb164|CA993646_P1
5147
546
84.7
globlastp


1147
LYD74
triphysaria|10v1|EY127386_P1
5148
546
84.6
globlastp


1148
LYD74
triphysaria|10v1|SRR023500S0001172_P1
5149
546
84.6
globlastp


1149
LYD74
cassava|09v1|DV443354_P1
5150
546
84.6
globlastp


1150
LYD74
cassava|gb164|DV443354_P1
5150
546
84.6
globlastp


1151
LYD74
citrus|gb166|BQ623380_P1
5151
546
84.6
globlastp


1152
LYD74
poplar|gb170|BI068408_P1
5152
546
84.6
globlastp


1153
LYD74
cleome_gynandra|10v1|SRR015532S0002528_P1
5153
546
84.3
globlastp


1154
LYD74
cleome_spinosa|10v1|SRR015531S0000163_P1
5154
546
84.3
globlastp


1155
LYD74
soybean|gb168|BE316989_P1
5155
546
84.3
globlastp


1156
LYD74
soybean|gb168|BE324912_P1
5156
546
84.3
globlastp


1157
LYD74
b_juncea|10v2|E6ANDIZ01A1BN1_P1
5157
546
84.1
globlastp


1158
LYD74
cassava|09v1|CK644716_P1
5158
546
84.1
globlastp


1159
LYD74
b_juncea|10v2|E6ANDIZ01AVS2X_P1
5159
546
84.1
globlastp


1160
LYD74
b_juncea|10v2|E6ANDIZ01AH1XS_P1
5160
546
84.1
globlastp


1161
LYD74
b_juncea|10v2|E6ANDIZ01A1C0H_P1
5161
546
84.1
globlastp


1162
LYD74
b_juncea|gb164|EVGN00147211371919_P1
5161
546
84.1
globlastp


1163
LYD74
b_rapa|gb162|CO750665_P1
5162
546
84.1
globlastp


1164
LYD74
lotus|09v1|LLCN824968_P1
5163
546
84.1
globlastp


1165
LYD74
maize|gb170|LLDQ245113_P1
5161
546
84.1
globlastp


1166
LYD74
radish|gb164|EW722654_P1
5164
546
84.1
globlastp


1167
LYD74
radish|gb164|EV524798_P1
5165
546
83.9
globlastp


1168
LYD74
tragopogon|10v1|SRR020205S0005883_T1
5166
546
83.81
glotblastn


1169
LYD74
ginseng|10v1|DV553807_P1
5167
546
83.8
globlastp


1170
LYD74
cacao|gb167|CA798006_P1
5168
546
83.8
globlastp


1171
LYD74
b_juncea|10v2|E6ANDIZ01A31EZ_P1
5169
546
83.7
globlastp


1172
LYD74
b_juncea|10v2|E6ANDIZ01AJQWT_P1
5170
546
83.7
globlastp


1173
LYD74
canola|10v1|BQ704518_P1
5171
546
83.7
globlastp


1174
LYD74
heritiera|10v1|SRR005794S0008009_P1
5172
546
83.7
globlastp


1175
LYD74
b_juncea|gb164|EVGN00120108451580_P1
5173
546
83.7
globlastp


1176
LYD74
b_juncea|10v2|E6ANDIZ01A2E3P_P1
5174
546
83.7
globlastp


1177
LYD74
b_juncea|gb164|EVGN00145618710181_P1
5174
546
83.7
globlastp


1178
LYD74
banana|10v1|DN238032_P1
5175
546
83.7
globlastp


1179
LYD74
canola|gb161|BQ704518_P1
5171
546
83.7
globlastp


1180
LYD74
canola|10v1|CX281752_P1
5170
546
83.7
globlastp


1181
LYD74
coffea|10v1|DV667224_P1
5176
546
83.7
globlastp


1182
LYD74
coffea|gb157.2|DV667224_P1
5176
546
83.7
globlastp


1183
LYD74
grape|gb160|BM436396_P1
5177
546
83.7
globlastp


1184
LYD74
pigeonpea|gb171|GR472607_P1
5178
546
83.7
globlastp


1185
LYD74
radish|gb164|EX754159_P1
5179
546
83.5
globlastp


1186
LYD74
arabidopsis_lyrata|09v1|JGIAL018741_P1
5180
546
83.4
globlastp


1187
LYD74
b_juncea|10v2|E6ANDIZ01A04A0_P1
5181
546
83.4
globlastp


1188
LYD74
canola|10v1|H07415_P1
5182
546
83.4
globlastp


1189
LYD74
artemisia|10v1|EY036894_P1
5183
546
83.4
globlastp


1190
LYD74
artemisia|gb164|EY036894_P1
5184
546
83.4
globlastp


1191
LYD74
b_juncea|gb164|EVGN00049825240489_P1
5182
546
83.4
globlastp


1192
LYD74
b_oleracea|gb161|AM385055_P1
5185
546
83.4
globlastp


1193
LYD74
b_rapa|gb162|L37611_P1
5181
546
83.4
globlastp


1194
LYD74
canola|gb161|CB686447_P1
5182
546
83.4
globlastp


1195
LYD74
canola|10v1|CX281522_P1
5181
546
83.4
globlastp


1196
LYD74
thellungiella|gb167|DN772761_P1
5186
546
83.4
globlastp


1197
LYD74
pigeonpea|10v1|GW358832_T1
5187
546
83.33
glotblastn


1198
LYD74
aquilegia|10v1|DR939805_P1
5188
546
83.3
globlastp


1199
LYD74
b_juncea|10v2|E6ANDIZ01A1B2W_P1
5189
546
83.3
globlastp


1200
LYD74
b_juncea|gb164|EVGN00016619570173_P1
5189
546
83.3
globlastp


1201
LYD74
b_oleracea|gb161|CO729370_P1
5189
546
83.3
globlastp


1202
LYD74
canola|10v1|CN728998_P1
5189
546
83.3
globlastp


1203
LYD74
canola|gb161|CN728998_P1
5189
546
83.3
globlastp


1204
LYD74
cassava|gb164|CK644716_P1
5190
546
83.3
globlastp


1205
LYD74
cowpea|gb166|FC458212_P1
5191
546
83.3
globlastp


1206
LYD74
iceplant|gb164|BE034750_P1
5192
546
83.3
globlastp


1207
LYD74
eucalyptus|gb166|ES588553_P1
5193
546
83.1
globlastp


1208
LYD74
oak|10v1|CU657211_P1
5194
546
83
globlastp


1209
LYD74
oak|10v1|FP027604_P1
5194
546
83
globlastp


1210
LYD74
oak|10v1|FP030258_P1
5194
546
83
globlastp


1211
LYD74
arabidopsis|10v1|AT3G54890_P1
5195
546
83
globlastp


1212
LYD74
poplar|10v1|BI068471_P1
5196
546
83
globlastp


1213
LYD74
poplar|gb170|BI068471_P1
5196
546
83
globlastp


1214
LYD74
curcuma|10v1|DY387256_P1
5197
546
82.7
globlastp


1215
LYD74
nasturtium|10v1|SRR032558S0028852_P1
5198
546
82.6
globlastp


1216
LYD74
oak|gb170|CU657211_P1
5199
546
82.6
globlastp


1217
LYD74
bean|gb167|CB280571_P1
5200
546
82.5
globlastp


1218
LYD74
liriodendron|gb166|FD489797_P1
5201
546
82.5
globlastp


1219
LYD74
peanut|10v1|EC391290_P1
5202
546
82.5
globlastp


1220
LYD74
peanut|gb171|EC391290_P1
5202
546
82.5
globlastp


1221
LYD74
monkeyflower|09v1|DV207796_P1
5203
546
82.3
globlastp


1222
LYD74
monkeyflower|10v1|DV207796_P1
5203
546
82.3
globlastp


1223
LYD74
canola|gb161|CX281522_P1
5204
546
82.2
globlastp


1224
LYD74
peanut|10v1|DT044319_P1
5205
546
82.1
globlastp


1225
LYD74
banana|gb167|DN238553_P1
5206
546
82.1
globlastp


1226
LYD74
walnuts|gb166|EL891496_P1
5207
546
82.1
globlastp


1227
LYD74
walnuts|gb166|EL891497_P1
5208
546
81.9
globlastp


1228
LYD74
papaya|gb165|EX243398_P1
5209
546
81.5
globlastp


1229
LYD74
eschscholzia|10v1|CD481243_P1
5210
546
81.3
globlastp


1230
LYD74
monkeyflower|09v1|GO975434_P1
5211
546
81
globlastp


1231
LYD74
rose|gb157.2|EC586509_P1
5212
546
81
globlastp


1232
LYD74
medicago|09v1|LLBE316989_P1
5213
546
80.6
globlastp


1233
LYD74
canola|gb161|CX281752_P1
5214
546
80.5
globlastp


1234
LYD74
acacia|10v1|FS585491_P1
5215
546
80.2
globlastp


1235
LYD74
amborella|gb166|CD482049_T1
5216
546
80.08
glotblastn


1236
LYD75
solanum_phureja|09v1|SPHBG134552_P1
5217
547
98.5
globlastp


1237
LYD75
tomato|09v1|BG133027_P1
5218
547
91.1
globlastp


1238
LYD75
pepper|gb171|BM063537_P1
5219
547
90.5
globlastp


1239
LYD75
solanum_phureja|09v1|SPHBG133027_P1
5220
547
90.3
globlastp


1240
LYD75
potato|10v1|BF052754_P1
5221
547
89.8
globlastp


1241
LYD75
potato|gb157.2|BF052754_P1
5221
547
89.8
globlastp


1242
LYD75
tomato|gb164|AI485840_P1
5222
547
89.8
globlastp


1243
LYD75
solanum_phureja|09v1|SPHAI485840_P1
5223
547
89.4
globlastp


1244
LYD75
triphysaria|10v1|DR173408_P1
5224
547
86.2
globlastp


1245
LYD75
cotton|gb164|AI727065_P1
5225
547
86.1
globlastp


1246
LYD75
cotton|10v1|AI727065_P1
5225
547
86.1
globlastp


1247
LYD75
triphysaria|10v1|EY145965_P1
5226
547
86
globlastp


1248
LYD75
cacao|gb167|CU473969_P1
5227
547
85.7
globlastp


1249
LYD75
monkeyflower|09v1|GO960496_P1
5228
547
85.6
globlastp


1250
LYD75
monkeyflower|10v1|GO945138_P1
5228
547
85.6
globlastp


1251
LYD75
cassava|09v1|DV450411_P1
5229
547
85.5
globlastp


1252
LYD75
catharanthus|gb166|EG554152_T1
5230
547
85.31
glotblastn


1253
LYD75
monkeyflower|09v1|GO945138_P1
5231
547
85.3
globlastp


1254
LYD75
salvia|10v1|CV163176_P1
5232
547
85.1
globlastp


1255
LYD75
tomato|09v1|AI485840_P1
5233
547
85.1
globlastp


1256
LYD75
castorbean|09v1|EG665428_P1
5234
547
85
globlastp


1257
LYD75
poplar|gb170|BI124433_P1
5235
547
85
globlastp


1258
LYD75
poplar|10v1|BI124433_P1
5236
547
84.8
globlastp


1259
LYD75
cotton|gb164|CO071822_T1
5237
547
84.42
glotblastn


1260
LYD75
poplar|10v1|BI070420_P1
5238
547
84.4
globlastp


1261
LYD75
poplar|gb170|BI070420_P1
5238
547
84.4
globlastp


1262
LYD75
kiwi|gb166|FG459967_P1
5239
547
84.3
globlastp


1263
LYD75
cotton|10v1|AI054730_T1
5240
547
83.97
glotblastn


1264
LYD75
kiwi|gb166|FG397568_P1
5241
547
83.9
globlastp


1265
LYD75
citrus|gb166|CD575199_P1
5242
547
83.8
globlastp


1266
LYD75
strawberry|gb164|CO381295_P1
5243
547
83.8
globlastp


1267
LYD75
cotton|10v1|AI726226_P1
5244
547
83.5
globlastp


1268
LYD75
melon|10v1|AM719548_P1
5245
547
83.5
globlastp


1269
LYD75
cotton|gb164|AI054730_P1
5246
547
83.5
globlastp


1270
LYD75
cucumber|09v1|AM718341_P1
5247
547
83.4
globlastp


1271
LYD75
chestnut|gb170|SRR006295S0000051_P1
5248
547
83.2
globlastp


1272
LYD75
pigeonpea|10v1|GR464336_P1
5249
547
83
globlastp


1273
LYD75
oak|10v1|DN949810_P1
5250
547
82.8
globlastp


1274
LYD75
grape|gb160|BQ792527_P1
5251
547
82.7
globlastp


1275
LYD75
soybean|gb168|AA660206_P1
5252
547
82.7
globlastp


1276
LYD75
prunus|10v1|CB819938_P1
5253
547
82.4
globlastp


1277
LYD75
apple|gb171|CN444703_P1
5254
547
82.1
globlastp


1278
LYD75
bean|gb167|FE691109_P1
5255
547
81.6
globlastp


1279
LYD75
prunus|gb167|CB819938_P1
5256
547
81.4
globlastp


1280
LYD75
peanut|10v1|ES717548_P1
5257
547
81.3
globlastp


1281
LYD75
peanut|gb171|ES708081_P1
5258
547
81.3
globlastp


1282
LYD75
artemisia|10v1|EY091466_P1
5259
547
80.7
globlastp


1283
LYD75
medicago|09v1|AA660206_P1
5260
547
80.7
globlastp


1284
LYD75
b_rapa|gb162|CX265583_T1
5261
547
80.6
glotblastn


1285
LYD75
canola|gb161|CN727227_T1
5262
547
80.6
glotblastn


1286
LYD75
soybean|gb168|AW685689_T1
5263
547
80.54
glotblastn


1287
LYD75
artemisia|10v1|EY108330_P1
5264
547
80.5
globlastp


1288
LYD75
canola|10v1|CN727227_P1
5265
547
80.4
globlastp


1289
LYD75
switchgrass|gb167|DN146648_P1
5266
547
80.4
globlastp


1290
LYD75
nasturtium|10v1|SRR032558S0114794_P1
5267
547
80.3
globlastp


1291
LYD75
artemisia|gb164|EY091466_P1
5268
547
80.3
globlastp


1292
LYD75
arabidopsis_lyrata|09v1|JGIAL023205_P1
5269
547
80.2
globlastp


1293
LYD75
lettuce|10v1|DW114885_P1
5270
547
80.1
globlastp


1294
LYD75
lettuce|gb157.2|DW114885_P1
5270
547
80.1
globlastp


1295
LYD75
arabidopsis|10v1|AT4G11820_P1
5271
547
80
globlastp


1296
LYD75
arabidopsis|gb165|AT4G11820_P1
5271
547
80
globlastp


1297
LYD75
b_juncea|gb164|AF148847_P1
5272
547
80
globlastp


1298
LYD75
soybean|gb168|AW428876_P1
5273
547
80
globlastp


1299
LYD76
potato|10v1|BG887381_P1
5274
548
94.3
globlastp


1300
LYD76
potato|gb157.2|BG887381_T1
5275
548
93.63
glotblastn


1301
LYD76
solanum_phureja|09v1|SPHAI894730_P1
5276
548
93.6
globlastp


1302
LYD76
potato|gb157.2|CN464137_P1
5277
548
92.5
globlastp


1303
LYD76
tomato|gb164|AW035287_P1
5278
548
92.5
globlastp


1304
LYD76
solanum_phureja|09v1|SPHBG886634_P1
5279
548
91.7
globlastp


1305
LYD76
tomato|gb164|AI894730_P1
5280
548
91.2
globlastp


1306
LYD76
tomato|gb164|BE435253_P1
5281
548
90.6
globlastp


1307
LYD76
potato|10v1|BG597973_P1
5282
548
90
globlastp


1308
LYD76
pepper|gb171|CA523398_P1
5283
548
90
globlastp


1309
LYD76
pepper|gb171|AY284925_P1
5284
548
89.4
globlastp


1310
LYD76
potato|gb157.2|BG597973_P1
5285
548
89.4
globlastp


1311
LYD76
solanum_phureja|09v1|SPHBG886552_P1
5286
548
87.8
globlastp


1312
LYD76
potato|10v1|BG886634_P1
5287
548
87.3
globlastp


1313
LYD76
potato|gb157.2|BG886634_P1
5287
548
87.3
globlastp


1314
LYD76
potato|gb157.2|BQ513303_P1
5288
548
87.2
globlastp


1315
LYD76
tomato|gb164|CD002116_P1
5289
548
87.2
globlastp


1316
LYD76
potato|10v1|BG886552_P1
5290
548
87.2
globlastp


1317
LYD76
potato|gb157.2|BG886552_T1
5291
548
86.54
glotblastn


1318
LYD76
eggplant|10v1|FS003064_P1
5292
548
86.5
globlastp


1319
LYD76
solanum_phureja|09v1|SPHBP891733_P1
5293
548
85.9
globlastp


1320
LYD76
solanum_phureja|09v1|SPHCV499099_P1
5294
548
85
globlastp


1321
LYD76
potato|gb157.2|CV499099_P1
5295
548
84.9
globlastp


1322
LYD76
tobacco|gb162|AY329046_P1
5296
548
84.4
globlastp


1323
LYD76
potato|gb157.2|BF053339_T1
5297
548
84.38
glotblastn


1324
LYD76
tobacco|gb162|AY329052_P1
5298
548
83.8
globlastp


1325
LYD76
tobacco|gb162|EB429178_P1
5299
548
83.1
globlastp


1326
LYD76
potato|gb157.2|BG098017_P1
5300
548
82.7
globlastp


1327
LYD76
potato|10v1|BI406549_P1
5300
548
82.7
globlastp


1328
LYD76
potato|gb157.2|EG013355_P1
5301
548
82.1
globlastp


1329
LYD76
solanum_phureja|09v1|SPHBI406549_P1
5302
548
82.1
globlastp


1330
LYD76
potato|gb157.2|BI406549_P1
5303
548
81.4
globlastp


1331
LYD76
triphysaria|10v1|EY002368_P1
5304
548
80.9
globlastp


1332
LYD76
tobacco|gb162|AY329063_P1
5305
548
80.8
globlastp


1333
LYD76
monkeyflower|09v1|GR006939_P1
5306
548
80.7
globlastp


1334
LYD76
monkeyflower|10v1|GR006939_P1
5306
548
80.7
globlastp


1335
LYD76
monkeyflower|10v1|CRPMG033362_P1
5307
548
80.3
globlastp


1336
LYD76
monkeyflower|10v1|GR109476_P1
5308
548
80.1
globlastp


1337
LYD76
triphysaria|10v1|EY020547_P1
5309
548
80.1
globlastp


1338
LYD76
cacao|gb167|CU595931_P1
5310
548
80
globlastp


1339
LYD76
melon|10v1|DV632570_P1
5311
548
80
globlastp


1340
LYD76
tobacco|gb162|AF166277_P1
5312
548
80
globlastp


1341
LYD78
pigeonpea|10v1|SRR054580S0035478_P1
5313
549
92.5
globlastp


1342
LYD78
bean|gb167|CB543362_P1
5314
549
90.2
globlastp


1343
LYD78
medicago|09v1|AL388558_P1
5315
549
84
globlastp


1344
LYD78
lotus|09v1|BP051777_P1
5316
549
83.8
globlastp


1345
LYD78
cowpea|gb166|FF399864_T1
5317
549
83.01
glotblastn


1346
LYD79
soybean|gb168|AA660469_P1
5318
550
98.4
globlastp


1347
LYD79
pigeonpea|10v1|SRR054580S0042661_P1
5319
550
96.8
globlastp


1348
LYD79
bean|gb167|CA911516_P1
5319
550
96.8
globlastp


1349
LYD79
cowpea|gb166|FF539866_P1
5320
550
96.8
globlastp


1350
LYD79
liquorice|gb171|FS243942_P1
5321
550
93.7
globlastp


1351
LYD79
medicago|09v1|AA660469_P1
5322
550
92.1
globlastp


1352
LYD79
acacia|10v1|GR481860_P1
5323
550
90.5
globlastp


1353
LYD79
peanut|10v1|ES705666_P1
5324
550
90.5
globlastp


1354
LYD79
peanut|10v1|SRR042413S0025060_P1
5324
550
90.5
globlastp


1355
LYD79
peanut|gb171|ES705666_P1
5324
550
90.5
globlastp


1356
LYD79
cassava|09v1|DV454356_P1
5325
550
85.7
globlastp


1357
LYD79
cassava|gb164|DV454356_P1
5325
550
85.7
globlastp


1358
LYD79
citrus|gb166|CB610995_P1
5326
550
85.7
globlastp


1359
LYD79
poplar|10v1|BU897706_P1
5327
550
82.5
globlastp


1360
LYD79
poplar|gb170|BU897706_P1
5327
550
82.5
globlastp


1361
LYD79
lotus|09v1|BW596764_P1
5328
550
81.5
globlastp


1362
LYD79
coffea|gb157.2|DV693211_T1
5329
550
81.25
glotblastn


1363
LYD79
coffea|10v1|DV693211_P1
5330
550
81.2
globlastp


1364
LYD79
orobanche|10v1|SRR023189S0007343_P1
5331
550
81
globlastp


1365
LYD79
grape|gb160|BQ792370_P1
5332
550
81
globlastp


1366
LYD79
prunus|gb167|AJ823531_P1
5333
550
81
globlastp


1367
LYD79
prunus|gb167|FC864840_P1
5333
550
81
globlastp


1368
LYD79
oak|10v1|FP038176_T1
5334
550
80.95
glotblastn


1369
LYD79
chestnut|gb170|SRR006295S0047496_T1
5334
550
80.95
glotblastn


1370
LYD80
arabidopsis_lyrata|09v1|JGIAL002319_T1
5335
551
95.44
glotblastn


1371
LYD80
canola|10v1|EE449185_P1
5336
551
85.7
globlastp


1372
LYD80
canola|gb161|EL590482_P1
5337
551
82.4
globlastp


1373
LYD81
peanut|10v1|ES721579_T1
5338
552
80.87
glotblastn


1374
LYD84
arabidopsis_lyrata|09v1|JGIAL021222_P1
5339
554
95.3
globlastp


1375
LYD85
arabidopsis_lyrata|09v1|JGIAL025065_P1
5340
555
97
globlastp


1376
LYD85
canola|10v1|CD818889_P1
5341
555
94
globlastp


1377
LYD85
canola|10v1|CD821386_P1
5342
555
94
globlastp


1378
LYD85
canola|gb161|CD821386_P1
5342
555
94
globlastp


1379
LYD85
b_oleracea|gb161|DY019746_P1
5343
555
92.5
globlastp


1380
LYD85
canola|10v1|EE451644_P1
5344
555
92.5
globlastp


1381
LYD85
canola|gb161|CD818889_P1
5344
555
92.5
globlastp


1382
LYD85
canola|10v1|EV007961_P1
5345
555
92.5
globlastp


1383
LYD85
canola|gb161|EV007961_P1
5345
555
92.5
globlastp


1384
LYD85
radish|gb164|FD935048_T1
5346
555
91.04
glotblastn


1385
LYD85
b_rapa|gb162|EX069163_P1
5347
555
91
globlastp


1386
LYD85
radish|gb164|EV538503_P1
5347
555
91
globlastp


1387
LYD85
cleome_gynandra|10v1|SRR015532S0082161_P1
5348
555
80.6
globlastp


1388
LYD86
thellungiella|gb167|BY830502_P1
5349
556
98
globlastp


1389
LYD86
thellungiella|gb167|DN774053_P1
5350
556
98
globlastp


1390
LYD86
b_juncea|10v2|E6ANDIZ01AGKLO_P1
5351
556
96.1
globlastp


1391
LYD86
b_juncea|10v2|E6ANDIZ01C9M4I_P1
5351
556
96.1
globlastp


1392
LYD86
b_juncea|10v2|E6ANDIZ01EOWBA_P1
5351
556
96.1
globlastp


1393
LYD86
b_juncea|10v2|E6ANDIZ02FW8ZO_P1
5351
556
96.1
globlastp


1394
LYD86
canola|10v1|CD818375_P1
5351
556
96.1
globlastp


1395
LYD86
canola|10v1|CN725716_P1
5351
556
96.1
globlastp


1396
LYD86
b_juncea|gb164|EVGN00459709681320_P1
5351
556
96.1
globlastp


1397
LYD86
b_oleracea|gb161|AM057609_P1
5351
556
96.1
globlastp


1398
LYD86
b_rapa|gb162|DY010357_P1
5351
556
96.1
globlastp


1399
LYD86
canola|10v1|CD817105_P1
5351
556
96.1
globlastp


1400
LYD86
canola|gb161|CD817105_P1
5351
556
96.1
globlastp


1401
LYD86
canola|gb161|CD818375_P1
5351
556
96.1
globlastp


1402
LYD86
canola|10v1|CN730342_P1
5351
556
96.1
globlastp


1403
LYD86
canola|gb161|CN730342_P1
5351
556
96.1
globlastp


1404
LYD86
radish|gb164|EV568513_P1
5351
556
96.1
globlastp


1405
LYD86
radish|gb164|EV570136_P1
5351
556
96.1
globlastp


1406
LYD86
b_oleracea|gb161|EE534616_T1
5352
556
96.08
glotblastn


1407
LYD86
canola|gb161|CN725716_T1
5353
556
96.08
glotblastn


1408
LYD86
arabidopsis_lyrata|09v1|BQ834513_P1
5354
556
94.2
globlastp


1409
LYD86
sunflower|10v1|AJ318305_P1
5355
556
94.1
globlastp


1410
LYD86
sunflower|10v1|SFSLX00153819D2_P1
5355
556
94.1
globlastp


1411
LYD86
radish|gb164|FD542635_P1
5356
556
94.1
globlastp


1412
LYD86
artemisia|10v1|SRR019547S0037450_P1
5357
556
92.2
globlastp


1413
LYD86
cleome_gynandra|10v1|SRR015532S0003909_P1
5358
556
92.2
globlastp


1414
LYD86
cleome_spinosa|10v1|SRR015531S0004445_P1
5359
556
92.2
globlastp


1415
LYD86
heritiera|10v1|SRR005795S0007963_P1
5360
556
92.2
globlastp


1416
LYD86
nasturtium|10v1|SRR032558S0118083_P1
5361
556
92.2
globlastp


1417
LYD86
artemisia|10v1|EX980187_P1
5357
556
92.2
globlastp


1418
LYD86
artemisia|gb164|EX980187_P1
5357
556
92.2
globlastp


1419
LYD86
cacao|gb167|CU501402_P1
5360
556
92.2
globlastp


1420
LYD86
cotton|gb164|BE053773_P1
5360
556
92.2
globlastp


1421
LYD86
cotton|gb164|CO120014_P1
5360
556
92.2
globlastp


1422
LYD86
gerbera|09v1|AJ762308_P1
5357
556
92.2
globlastp


1423
LYD86
gerbera|09v1|AJ762481_P1
5357
556
92.2
globlastp


1424
LYD86
lettuce|10v1|DW045900_P1
5357
556
92.2
globlastp


1425
LYD86
lettuce|gb157.2|DW045900_P1
5357
556
92.2
globlastp


1426
LYD86
lettuce|10v1|DW077419_P1
5362
556
92.2
globlastp


1427
LYD86
lettuce|gb157.2|DW077419_P1
5362
556
92.2
globlastp


1428
LYD86
lettuce|10v1|DW084501_P1
5357
556
92.2
globlastp


1429
LYD86
lettuce|gb157.2|DW084501_P1
5357
556
92.2
globlastp


1430
LYD86
lettuce|10v1|DW146736_P1
5357
556
92.2
globlastp


1431
LYD86
safflower|gb162|EL511108_P1
5357
556
92.2
globlastp


1432
LYD86
cotton|10v1|BE053773_P1
5360
556
92.2
globlastp


1433
LYD86
cleome_gynandra|10v1|SRR015532S0086075_T1
5363
556
90.2
glotblastn


1434
LYD86
cleome_spinosa|10v1|SRR015531S0019603_P1
5364
556
90.2
globlastp


1435
LYD86
cyamopsis|10v1|EG983537_P1
5365
556
90.2
globlastp


1436
LYD86
dandelion|10v1|GO663055_P1
5366
556
90.2
globlastp


1437
LYD86
ginseng|10v1|GR874677_P1
5365
556
90.2
globlastp


1438
LYD86
orobanche|10v1|SRR023189S0000905_P1
5365
556
90.2
globlastp


1439
LYD86
orobanche|10v1|SRR023189S0034846_P1
5365
556
90.2
globlastp


1440
LYD86
beet|gb162|EG550343_P1
5365
556
90.2
globlastp


1441
LYD86
canola|gb161|EV056789_P1
5367
556
90.2
globlastp


1442
LYD86
catharanthus|gb166|FD415278_T1
5368
556
90.2
glotblastn


1443
LYD86
centaurea|gb166|EH747270_P1
5369
556
90.2
globlastp


1444
LYD86
coffea|10v1|DV689480_P1
5365
556
90.2
globlastp


1445
LYD86
coffea|gb157.2|DV689480_P1
5365
556
90.2
globlastp


1446
LYD86
cotton|gb164|BF275857_P1
5370
556
90.2
globlastp


1447
LYD86
cynara|gb167|GE588082_P1
5371
556
90.2
globlastp


1448
LYD86
grape|gb160|BM436961_P1
5365
556
90.2
globlastp


1449
LYD86
grape|gb160|CB005160_P1
5365
556
90.2
globlastp


1450
LYD86
iceplant|gb164|BE130459_T1
5372
556
90.2
glotblastn


1451
LYD86
kiwi|gb166|FG438126_P1
5365
556
90.2
globlastp


1452
LYD86
monkeyflower|09v1|DV206392_P1
5373
556
90.2
globlastp


1453
LYD86
petunia|gb171|CV294446_T1
5374
556
90.2
glotblastn


1454
LYD86
brachypodium|09v1|DV477656_P1
5375
556
88.5
globlastp


1455
LYD86
oat|10v2|CN816027_P1
5376
556
88.5
globlastp


1456
LYD86
banana|10v1|DN238995_P1
5377
556
88.5
globlastp


1457
LYD86
banana|gb167|DN238995_P1
5377
556
88.5
globlastp


1458
LYD86
brachypodium|gb169|DV477656_P1
5375
556
88.5
globlastp


1459
LYD86
cowpea|gb166|FC458602_T1
5378
556
88.24
glotblastn


1460
LYD86
ipomoea|gb157.2|EE876485_T1
5379
556
88.24
glotblastn


1461
LYD86
melon|gb165|AM713586_T1
5380
556
88.24
glotblastn


1462
LYD86
oil_palm|gb166|EL693216_T1
5381
556
88.24
glotblastn


1463
LYD86
petunia|gb171|DC240311_T1

556
88.24
glotblastn


1464
LYD86
cassava|09v1|DB935598_P1
5382
556
88.2
globlastp


1465
LYD86
cucumber|09v1|AM713586_P1
5383
556
88.2
globlastp


1466
LYD86
eschscholzia|10v1|SRR014116S0008646_P1
5383
556
88.2
globlastp


1467
LYD86
flax|09v1|EH791278_P1
5384
556
88.2
globlastp


1468
LYD86
ipomoea_batatas|10v1|EE876485_P1
5385
556
88.2
globlastp


1469
LYD86
melon|10v1|AM713586_P1
5383
556
88.2
globlastp


1470
LYD86
nasturtium|10v1|GH170854_P1
5386
556
88.2
globlastp


1471
LYD86
pigeonpea|10v1|GW352442_P1
5382
556
88.2
globlastp


1472
LYD86
salvia|10v1|SRR014553S0003727_P1
5387
556
88.2
globlastp


1473
LYD86
basilicum|10v1|DY322542_P1
5388
556
88.2
globlastp


1474
LYD86
bean|gb167|CA902205_P1
5382
556
88.2
globlastp


1475
LYD86
beech|gb170|SRR006293S0004143_P1
5389
556
88.2
globlastp


1476
LYD86
bruguiera|gb166|BP938976_P1
5382
556
88.2
globlastp


1477
LYD86
castorbean|09v1|XM002527470_P1
5383
556
88.2
globlastp


1478
LYD86
cichorium|gb171|EH707102_P1
5390
556
88.2
globlastp


1479
LYD86
citrus|gb166|BE205724_P1
5382
556
88.2
globlastp


1480
LYD86
liquorice|gb171|FS240673_P1
5382
556
88.2
globlastp


1481
LYD86
liquorice|gb171|FS244039_P1
5382
556
88.2
globlastp


1482
LYD86
liriodendron|gb166|FD490282_P1
5391
556
88.2
globlastp


1483
LYD86
lotus|09v1|LLBU494472_P1
5382
556
88.2
globlastp


1484
LYD86
medicago|09v1|LLCX531914_P1
5392
556
88.2
globlastp


1485
LYD86
poplar|10v1|BU809765_P1
5382
556
88.2
globlastp


1486
LYD86
poplar|gb170|BU809765_P1
5382
556
88.2
globlastp


1487
LYD86
soybean|gb168|BU494472_P1
5382
556
88.2
globlastp


1488
LYD86
soybean|gb168|CA851270_P1
5382
556
88.2
globlastp


1489
LYD86
walnuts|gb166|CB303734_P1
5382
556
88.2
globlastp


1490
LYD86
medicago|09v1|BE316988_P1
5392
556
88.2
globlastp


1491
LYD86
cryptomeria|gb166|BW994702_P1
5393
556
86.8
globlastp


1492
LYD86
wheat|gb164|BE414948_T1
5394
556
86.54
glotblastn


1493
LYD86
wheat|gb164|CA625348_T1
5395
556
86.54
glotblastn


1494
LYD86
wheat|gb164|CD894479_T1
5396
556
86.54
glotblastn


1495
LYD86
barley|10v1|BG299304_P1
5397
556
86.5
globlastp


1496
LYD86
barley|10v1|BG414327_P1
5397
556
86.5
globlastp


1497
LYD86
eggplant|10v1|FS019985_P1
5398
556
86.5
globlastp


1498
LYD86
millet|10v1|EVO454PM061746_P1
5399
556
86.5
globlastp


1499
LYD86
maize|10v1|AI372144_P1
5399
556
86.5
globlastp


1500
LYD86
maize|gb170|AI372144_P1
5399
556
86.5
globlastp


1501
LYD86
nuphar|gb166|CO997227_P1
5400
556
86.5
globlastp


1502
LYD86
pepper|gb171|GD067147_P1
5398
556
86.5
globlastp


1503
LYD86
potato|gb157.2|BG590800_P1
5398
556
86.5
globlastp


1504
LYD86
potato|gb157.2|CN515437_P1
5398
556
86.5
globlastp


1505
LYD86
rice|gb170|OS01G34614_P1
5399
556
86.5
globlastp


1506
LYD86
solanum_phureja|09v1|SPHBG627534_P1
5398
556
86.5
globlastp


1507
LYD86
sorghum|09v1|SB02G010660_P1
5399
556
86.5
globlastp


1508
LYD86
sorghum|09v1|SB07G005435_P1
5399
556
86.5
globlastp


1509
LYD86
sugarcane|10v1|CA072079_P1
5399
556
86.5
globlastp


1510
LYD86
sugarcane|gb157.3|CA072079_P1
5399
556
86.5
globlastp


1511
LYD86
sugarcane|10v1|CA090932_P1
5399
556
86.5
globlastp


1512
LYD86
sugarcane|gb157.3|CA090932_P1
5399
556
86.5
globlastp


1513
LYD86
switchgrass|gb167|DN147235_P1
5399
556
86.5
globlastp


1514
LYD86
switchgrass|gb167|FL725818_P1
5399
556
86.5
globlastp


1515
LYD86
switchgrass|gb167|FL734492_P1
5399
556
86.5
globlastp


1516
LYD86
tobacco|gb162|CV019381_P1
5398
556
86.5
globlastp


1517
LYD86
tomato|09v1|BG627534_P1
5398
556
86.5
globlastp


1518
LYD86
tomato|gb164|BG627534_P1
5398
556
86.5
globlastp


1519
LYD86
wheat|gb164|BE401020_P1
5397
556
86.5
globlastp


1520
LYD86
wheat|gb164|BE402150_P1
5397
556
86.5
globlastp


1521
LYD86
wheat|gb164|CA634446_P1
5397
556
86.5
globlastp


1522
LYD86
potato|10v1|BG590800_P1
5398
556
86.5
globlastp


1523
LYD86
ipomoea_nil|10v1|CJ745906_P1
5401
556
86.3
globlastp


1523
LYD86
ipomoea|gb157.2|CJ745906_T1
5408
556
86.27
glotblastn


1524
LYD86
oak|10v1|FP042379_P1
5402
556
86.3
globlastp


1525
LYD86
oak|10v1|FP042823_P1
5402
556
86.3
globlastp


1526
LYD86
oak|10v1|FP044622_P1
5402
556
86.3
globlastp


1527
LYD86
triphysaria|10v1|SRR023500S0014025_P1
5403
556
86.3
globlastp


1528
LYD86
triphysaria|10v1|SRR023500S0018952_P1
5403
556
86.3
globlastp


1529
LYD86
basilicum|gb157.3|DY322542_P1
5404
556
86.3
globlastp


1530
LYD86
bruguiera|gb166|BP949765_P1
5405
556
86.3
globlastp


1531
LYD86
chestnut|gb170|SRR006295S0023708_P1
5402
556
86.3
globlastp


1532
LYD86
chestnut|gb170|SRR006295S0041620_P1
5402
556
86.3
globlastp


1533
LYD86
oak|gb170|DN949877_P1
5402
556
86.3
globlastp


1534
LYD86
peanut|gb171|EE123506_P1
5406
556
86.3
globlastp


1535
LYD86
pea|09v1|CD860415_P1
5407
556
86.3
globlastp


1536
LYD86
spurge|gb161|DV154503_T1
5409
556
86.27
glotblastn


1537
LYD86
cryptomeria|gb166|BW996232_T1
5410
556
84.91
glotblastn


1538
LYD86
spruce|gb162|CO218164_T1
5411
556
84.91
glotblastn


1539
LYD86
zamia|gb166|DY033916_T1
5412
556
84.91
glotblastn


1540
LYD86
pine|10v1|AW056457_P1
5413
556
84.9
globlastp


1541
LYD86
pine|gb157.2|AW056457_P1
5413
556
84.9
globlastp


1542
LYD86
cynodon|10v1|ES300626_P1
5414
556
84.6
globlastp


1543
LYD86
amborella|gb166|FD435944_P1
5415
556
84.6
globlastp


1544
LYD86
peanut|10v1|ES710826_T1
5416
556
84.31
glotblastn


1545
LYD86
peanut|10v1|GO341045_T1
5417
556
84.31
glotblastn


1546
LYD86
eucalyptus|gb166|CB967699_T1
5418
556
84.31
glotblastn


1547
LYD86
peanut|10v1|EE123506_T1
5419
556
84.31
glotblastn


1548
LYD86
pine|10v1|AA740051_P1
5420
556
83
globlastp


1549
LYD86
pine|gb157.2|AA740051_P1
5420
556
83
globlastp


1550
LYD86
spruce|gb162|CO216054_P1
5420
556
83
globlastp


1551
LYD86
sunflower|gb162|AJ318305_P1
5421
556
82.8
globlastp


1552
LYD86
millet|10v1|EVO454PM026113_P1
5422
556
82.7
globlastp


1553
LYD86
poppy|gb166|FE968146_P1
5423
556
82.7
globlastp


1554
LYD86
prunus|10v1|CV044517_P1
5424
556
82.4
globlastp


1555
LYD86
poppy|gb166|FE966049_P1
5425
556
82.4
globlastp


1556
LYD86
prunus|10v1|CB818579_P1
5424
556
82.4
globlastp


1557
LYD86
prunus|gb167|CB818579_P1
5424
556
82.4
globlastp


1558
LYD86
prunus|gb167|CB820508_P1
5424
556
82.4
globlastp


1559
LYD86
prunus|gb167|CV044517_P1
5424
556
82.4
globlastp


1560
LYD86
radish|gb164|EY904176_P1
5426
556
82.4
globlastp


1561
LYD86
lovegrass|gb167|EH194086_T1
5427
556
82.35
glotblastn


1562
LYD86
monkeyflower|10v1|DV206392_T1
5428
556
82.35
glotblastn


1563
LYD86
solanum_phureja|09v1|SPHDN980135_T1
5429
556
82.35
glotblastn


1564
LYD86
peanut|10v1|SRR042421S0083859_T1

556
82.35
glotblastn


1565
LYD86
marchantia|gb166|BJ851604_P1
5430
556
81.8
globlastp


1566
LYD86
physcomitrella|10v1|BJ185620_P1
5431
556
80.8
globlastp


1567
LYD86
apple|gb171|CN490502_P1
5432
556
80.8
globlastp


1568
LYD86
ginger|gb164|DY360661_P1
5433
556
80.8
globlastp


1569
LYD86
switchgrass|gb167|DN151170_T1

556
80.77
glotblastn


1570
LYD86
fern|gb171|BP917328_T1
5434
556
80.39
glotblastn


1571
LYD86
fern|gb171|DK945205_T1
5434
556
80.39
glotblastn


1572
LYD86
lettuce|10v1|DW146230_T1
5435
556
80.39
glotblastn


1573
LYD86
lettuce|gb157.2|DW146230_T1
5435
556
80.39
glotblastn


1574
LYD86
orobanche|10v1|SRR023497S0014234_T1

556
80.39
glotblastn


1575
LYD87
potato|gb157.2|BQ504596_T1
5436
557
94.44
glotblastn


1576
LYD87
potato|10v1|CV505175_T1

557
93.06
glotblastn


1577
LYD87
eggplant|10v1|FS004333_P1
5437
557
88.7
globlastp


1578
LYD87
potato|10v1|BQ504596_T1

557
87.5
glotblastn


1579
LYD87
solanum_phureja|09v1|SPHAW930554_P1
5438
557
83.1
globlastp


1580
LYD87
solanum_phureja|09v1|SPHAW930554_T1

557
80.56
glotblastn


1581
LYD88
arabidopsis_lyrata|09v1|JGIAL007072_P1
5439
558
97.9
globlastp


1582
LYD88
arabidopsis_lyrata|09v1|JGIAL002750_P1
5440
558
80.7
globlastp


1583
LYD88
arabidopsis|gb165|AT1G26130_P1
5441
558
80.7
globlastp


1584
LYD89
arabidopsis|10v1|AT1G68050_T1
695
559
81.16
glotblastn


1585
LYD90
arabidopsis_lyrata|09v1|JGIAL001987_P1
5442
560
92.5
globlastp


1586
LYD91
potato|10v1|CN215887_P1
5443
561
94.1
globlastp


1587
LYD91
potato|gb157.2|CN215887_P1
5443
561
94.1
globlastp


1588
LYD91
solanum_phureja|09v1|SPHBG643473_P1
5443
561
94.1
globlastp


1589
LYD91
eggplant|10v1|FS027048_P1
5444
561
85.8
globlastp


1590
LYD92
arabidopsis_lyrata|09v1|JGIAL002019_P1
5445
562
91.3
globlastp


1591
LYD92
radish|gb164|EX746761_P1
5446
562
81.7
globlastp


1592
LYD94
arabidopsis_lyrata|09v1|JGIAL004398_P1
5447
563
90.9
globlastp


1593
LYD95
arabidopsis_lyrata|09v1|JGIAL006360_P1
5448
564
94.8
globlastp


1594
LYD95
thellungiella|gb167|BY806085_P1
5449
564
85.3
globlastp


1595
LYD95
canola|10v1|EE555701_P1
5450
564
80.2
globlastp


1596
LYD95
b_rapa|gb162|DY010324_P1
5451
564
80.2
globlastp


1597
LYD95
radish|gb164|EV547048_P1
5452
564
80.2
globlastp


1598
LYD96
arabidopsis_lyrata|09v1|JGIAL007972_P1
5453
565
91.1
globlastp


1599
LYD97
b_juncea|10v2|E6ANDIZ01AHCUW_T1
5454
566
83.87
glotblastn


1600
LYD97
b_juncea|10v2|E6ANDIZ01DGCSI_T1
5454
566
83.87
glotblastn


1601
LYD97
cleome_gynandra|10v1|SRR015532S0011847_T1
5455
566
83.87
glotblastn


1602
LYD97
cleome_spinosa|10v1|SRR015531S0012286_T1
5456
566
83.87
glotblastn


1603
LYD97
prunus|10v1|CN444116_T1
5457
566
83.87
glotblastn


1604
LYD97
b_rapa|gb162|EE527302_T1
5458
566
83.87
glotblastn


1605
LYD97
chestnut|gb170|SRR006295S0004400_T1
5459
566
83.87
glotblastn


1606
LYD97
citrus|gb166|CF509977_T1
5460
566
83.87
glotblastn


1607
LYD97
arabidopsis_lyrata|09v1|JGIAL016247_P1
5461
566
83.6
globlastp


1608
LYD97
artemisia|10v1|SRR019552S0293476_T1
5462
566
82.26
glotblastn


1609
LYD97
b_juncea|10v2|BJ1SLX00052468D2_T1
5463
566
82.26
glotblastn


1610
LYD97
canola|10v1|CD812513_T1
5463
566
82.26
glotblastn


1611
LYD97
canola|10v1|CD813050_T1
5464
566
82.26
glotblastn


1612
LYD97
oak|10v1|DN950354_T1
5465
566
82.26
glotblastn


1613
LYD97
oak|10v1|FP044338_T1
5465
566
82.26
glotblastn


1614
LYD97
b_juncea|gb164|EVGN00599610960902_T1
5466
566
82.26
glotblastn


1615
LYD97
b_juncea|gb164|EVGN00820308641772_T1
5467
566
82.26
glotblastn


1616
LYD97
b_juncea|10v2|E6ANDIZ01A4PGS_T1
5463
566
82.26
glotblastn


1617
LYD97
b_juncea|gb164|EVGN00871713963261_T1
5463
566
82.26
glotblastn


1618
LYD97
b_oleracea|gb161|ES949849_T1
5464
566
82.26
glotblastn


1619
LYD97
b_rapa|gb162|EE517284_T1
5463
566
82.26
glotblastn


1620
LYD97
canola|gb161|CD812513_T1
5463
566
82.26
glotblastn


1621
LYD97
canola|gb161|CD813050_T1
5464
566
82.26
glotblastn


1622
LYD97
canola|gb161|CN736915_T1
5463
566
82.26
glotblastn


1623
LYD97
oak|gb170|DN950354_T1
5465
566
82.26
glotblastn


1624
LYD97
radish|gb164|EW714476_T1
5468
566
82.26
glotblastn


1625
LYD97
spurge|gb161|DV139037_T1
5469
566
82.26
glotblastn


1626
LYD97
canola|10v1|CN736915_T1
5463
566
82.26
glotblastn


1627
LYD97
b_oleracea|gb161|AM057184_T1
5470
566
82.26
glotblastn


1628
LYD97
canola|10v1|CD811653_T1
5470
566
82.26
glotblastn


1629
LYD97
canola|gb161|CD811653_T1
5470
566
82.26
glotblastn


1630
LYD97
canola|10v1|CD838423_T1
5470
566
82.26
glotblastn


1631
LYD97
canola|gb161|CD838423_T1
5470
566
82.26
glotblastn


1632
LYD97
acacia|10v1|FS588284_T1
5471
566
80.65
glotblastn


1633
LYD97
arabidopsis_lyrata|09v1|BQ834172_T1
5472
566
80.65
glotblastn


1634
LYD97
b_juncea|10v2|E6ANDIZ01A3GHB_T1
5473
566
80.65
glotblastn


1635
LYD97
b_juncea|10v2|E6ANDIZ01AT806_T1
5474
566
80.65
glotblastn


1636
LYD97
b_juncea|10v2|E6ANDIZ01CWXC3_T1
5475
566
80.65
glotblastn


1637
LYD97
melon|10v1|AM723468_T1
5476
566
80.65
glotblastn


1638
LYD97
nasturtium|10v1|SRR032558S0093244_T1
5477
566
80.65
glotblastn


1639
LYD97
avocado|10v1|FD505830_T1
5478
566
80.65
glotblastn


1640
LYD97
avocado|gb164|FD505830_T1
5478
566
80.65
glotblastn


1641
LYD97
cacao|gb167|CU469972_T1
5479
566
80.65
glotblastn


1642
LYD97
nuphar|gb166|CD474040_T1
5480
566
80.65
glotblastn


1643
LYD97
poplar|gb170|BI123662_T1
5481
566
80.65
glotblastn


1644
LYD97
radish|gb164|EV535996_T1
5482
566
80.65
glotblastn


1645
LYD97
radish|gb164|EX762610_T1
5483
566
80.65
glotblastn


1646
LYD97
radish|gb164|EX889839_T1
5472
566
80.65
glotblastn


1647
LYD97
tea|10v1|GE651392_T1
5484
566
80.65
glotblastn


1648
LYD97
tea|gb171|GE651392_T1
5484
566
80.65
glotblastn


1649
LYD97
b_juncea|10v2|BJ1SLX00446286D1_P1
5485
566
80.6
globlastp


1650
LYD99
arabidopsis_lyrata|09v1|JGIAL016742_P1
5486
567
93.7
globlastp


1651
LYD99
canola|10v1|CD824755_P1
5487
567
84.3
globlastp


1652
LYD99
canola|gb161|CD824755_T1
5488
567
83.98
glotblastn


1653
LYD101
arabidopsis_lyrata|09v1|JGIAL026794_T1
5489
568
94.94
glotblastn


1654
LYD101
thellungiella|gb167|BY818527_P1
5490
568
84.8
globlastp


1655
LYD101
canola|gb161|CD814430_T1
5491
568
84.13
glotblastn


1656
LYD101
radish|gb164|EX754941_T1
5492
568
82.97
glotblastn


1657
LYD101
canola|gb161|CN733694_P1
5493
568
82.9
globlastp


1658
LYD101
canola|10v1|DY006642_P1
5494
568
82.9
globlastp


1659
LYD101
b_rapa|gb162|EE520760_P1
5495
568
81.7
globlastp


1660
LYD102
arabidopsis_lyrata|09v1|JGIAL025624_T1
5496
569
95.3
glotblastn


1661
LYD103
arabidopsis|10v1|AT5G05040_P1
5497
570
94.8
globlastp


1662
LYD104
arabidopsis_lyrata|09v1|JGIAL021995_P1
5498
571
85.8
globlastp


1663
LYD105
canola|10v1|ES900634_P1
5499
572
89
globlastp


1664
LYD105
canola|gb161|ES900634_P1
5499
572
89
globlastp


1665
LYD105
radish|gb164|EX770229_T1
5500
572
88.67
glotblastn


1666
LYD105
prunus|10v1|DY255399_P1
5501
572
80.6
globlastp


1667
LYD105
poplar|10v1|BU896271_T1
5502
572
80.51
glotblastn


1668
LYD105
poplar|gb170|BU896271_T1
5502
572
80.51
glotblastn


1669
LYD105
castorbean|09v1|XM002521435_P1
5503
572
80.2
globlastp


1670
LYD105
poplar|10v1|CB240481_T1
5504
572
80.17
glotblastn


1671
LYD105
poplar|gb170|CB240481_T1
5504
572
80.17
glotblastn


1672
LYD107
arabidopsis_lyrata|09v1|JGIAL030915_P1
5505
574
95.3
globlastp


1673
LYD108
arabidopsis|10v1|AT1G69260_P1
5506
575
80.4
globlastp


1674
LYD108
arabidopsis_lyrata|09v1|JGIAL007132_T1
5507
575
80.39
glotblastn


1675
LYD109
canola|10v1|CX191086_P1
5508
576
98.1
globlastp


1676
LYD109
b_rapa|gb162|CV545543_P1
5509
576
98.1
globlastp


1677
LYD109
canola|gb161|CD827969_P1
5510
576
94.2
globlastp


1678
LYD109
cotton|10v1|CO090506_P1
5511
576
81.7
globlastp


1679
LYD109
sunflower|gb162|DY905124_P1
5512
576
81.2
globlastp


1680
LYD109
centaurea|gb166|EH713977_T1
5513
576
81.16
glotblastn


1681
LYD109
artemisia|gb164|EY095004_P1
5514
576
81
globlastp


1682
LYD109
cassava|09v1|DV454624_P1
5515
576
80.8
globlastp


1683
LYD109
cotton|gb164|CO090506_P1
5516
576
80.7
globlastp


1684
LYD109
cynara|gb167|GE577297_T1
5517
576
80.51
glotblastn


1685
LYD109
artemisia|10v1|EY095004_P1
5518
576
80.4
globlastp


1686
LYD109
sunflower|10v1|DY905124_T1
5519
576
80.17
glotblastn


1687
LYD109
cichorium|gb171|EH674636_P1
5520
576
80
globlastp


1688
LYD110
arabidopsis_lyrata|09v1|JGIAL020149_P1
5521
577
93.1
globlastp


1689
LYD110
arabidopsis|gb165|AT5G04950_P1
5522
577
93.1
globlastp


1690
LYD110
arabidopsis|10v1|AT5G04950_P1
5522
577
93.1
globlastp


1691
LYD113
arabidopsis_lyrata|09v1|JGIAL025749_P1
5523
578
80.7
globlastp


1692
LYD113
arabidopsis|10v1|AT4G23600_P1
5524
578
80.4
globlastp


1693
LYD113
arabidopsis|gb165|AT4G23600_P1
5524
578
80.4
globlastp


1694
LYD117
canola|gb161|ES899985_T1
5525
580
98.33
glotblastn


1695
LYD117
canola|10v1|ES899985_P1
5526
580
98.3
globlastp


1696
LYD117
b_juncea|gb164|EVGN00853408702074_P1
5527
580
96.7
globlastp


1697
LYD117
arabidopsis_lyrata|09v1|JGIAL010445_P1
5528
580
85
globlastp


1698
LYD117
arabidopsis|10v1|AT3G19030_P1
5529
580
85
globlastp


1699
LYD117
arabidopsis|gb165|AT3G19030_P1
5529
580
85
globlastp


1700
LYD117
canola|10v1|DV643336_P1
5530
580
85
globlastp


1701
LYD117
canola|gb161|DV643336_T1
5531
580
85
glotblastn


1702
LYD117
thellungiella|gb167|BY830657_P1
5532
580
85
globlastp


1703
LYD117
b_juncea|gb164|DT317662_T1
5533
580
83.33
glotblastn


1704
LYD117
b_juncea|10v2|DT317662_P1
5534
580
83.3
globlastp


1705
LYD117
b_rapa|gb162|DN960553_T1
5535
580
81.67
glotblastn


1706
LYD117
b_rapa|gb162|EX140655_P1
5536
580
80
globlastp


1707
LYD117
radish|gb164|EV529011_P1
5537
580
80
globlastp


1708
LYD118
canola|gb161|CD817267_P1
5538
581
95.2
globlastp


1709
LYD118
canola|10v1|CD817267_T1
5539
581
93.98
glotblastn


1710
LYD120
canola|10v1|AI352738_P1
5540
583
96.7
globlastp


1711
LYD120
b_rapa|gb162|CV523156_P1
5541
583
94.6
globlastp


1712
LYD120
canola|gb161|AI352738_P1
5542
583
91.6
globlastp


1713
LYD120
radish|gb164|EW722416_P1
5543
583
85.2
globlastp


1714
LYD122
canola|10v1|CD823303_P1
5544
584
97.8
globlastp


1715
LYD122
b_rapa|gb162|CX268424_P1
5545
584
97.8
globlastp


1716
LYD122
canola|gb161|CD833389_P1
5544
584
97.8
globlastp


1717
LYD122
canola|10v1|CD833389_T1
5546
584
95.52
glotblastn


1718
LYD122
canola|10v1|H07385_P1
5547
584
94.6
globlastp


1719
LYD122
radish|gb164|EV527743_P1
5548
584
85.9
globlastp


1720
LYD122
b_oleracea|gb161|CO729358_T1
5549
584
84.06
glotblastn


1721
LYD122
radish|gb164|EV535258_P1
5550
584
83.3
globlastp


1722
LYD122
radish|gb164|EW724035_P1
5550
584
83.3
globlastp


1723
LYD122
b_rapa|gb162|CX272620_P1
5551
584
82
globlastp


1724
LYD122
canola|10v1|CD828378_P1
5552
584
82
globlastp


1725
LYD122
canola|gb161|CD828378_P1
5552
584
82
globlastp


1726
LYD122
radish|gb164|EX890296_P1
5553
584
81.9
globlastp


1727
LYD122
b_juncea|10v2|E6ANDIZ01B5P5S_P1
5554
584
81.7
globlastp


1728
LYD122
b_juncea|gb164|EVGN01023309282188_P1
5555
584
81.7
globlastp


1729
LYD122
radish|gb164|EX760929_P1
5556
584
81.4
globlastp


1730
LYD122
arabidopsis_lyrata|09v1|JGIAL009885_P1
5557
584
80.2
globlastp


1731
LYD122
radish|gb164|EV567933_P1
5558
584
80.1
globlastp


1732
LYD122
radish|gb164|FD557550_T1
5559
584
80.09
glotblastn


1733
LYD123
canola|10v1|H07806_P1
5560
585
96.3
globlastp


1734
LYD123
canola|gb161|H07806_P1
5560
585
96.3
globlastp


1735
LYD123
b_rapa|gb162|CO750130_P1
5561
585
95.9
globlastp


1736
LYD123
b_rapa|gb162|CX265903_P1
5562
585
82.9
globlastp


1737
LYD128
soybean|gb168|AL369494_T1
5563
590
98.77
glotblastn


1738
LYD128
oak|10v1|FN715603_T1
5564
590
92.92
glotblastn


1739
LYD128
cotton|10v1|CO092231_T1
5565
590
90.74
glotblastn


1740
LYD128
citrus|gb166|CF829285_T1
5566
590
90.15
glotblastn


1741
LYD128
cassava|09v1|DB929656_T1
5567
590
90.12
glotblastn


1742
LYD128
prunus|10v1|CN900288_T1
5568
590
88.92
glotblastn


1743
LYD128
castorbean|09v1|EG658310_T1
5569
590
88.62
glotblastn


1744
LYD128
cucumber|09v1|CSCRP002509_P1
5570
590
87
globlastp


1745
LYD128
poplar|10v1|BU825993_T1
5571
590
86.46
glotblastn


1746
LYD128
poplar|gb170|BU825993_T1
5572
590
86.46
glotblastn


1747
LYD128
nasturtium|10v1|SRR032559S0102172_P1
5573
590
85.1
globlastp


1748
LYD128
aquilegia|10v1|DT733538_T1
5574
590
83.69
glotblastn


1749
LYD128
aquilegia|gb157.3|DT733538_T1
5574
590
83.69
glotblastn


1750
LYD128
spurge|gb161|DV123236_P1
5575
590
83.6
globlastp


1751
LYD128
artemisia|10v1|EY105477_T1
5576
590
82.72
glotblastn


1752
LYD128
pigeonpea|10v1|SRR054580S0061350_P1
5577
590
82.7
globlastp


1753
LYD128
monkeyflower|10v1|DV210221_T1
5578
590
82.46
glotblastn


1754
LYD128
arabidopsis|10v1|AT5G51660_T1
692
590
82.41
glotblastn


1755
LYD128
artemisia|gb164|EY105477_P1
5579
590
82.3
globlastp


1756
LYD128
lettuce|10v1|DW076329_P1
5580
590
82.2
globlastp


1757
LYD128
arabidopsis_lyrata|09v1|JGIAL029590_T1
5581
590
82.1
glotblastn


1757
LYD128_H1
arabidopsis_lyrata|09v1|JGIAL029590_P1
5581
692
96.1
globlastp


1758
LYD128
solanum_phureja|09v1|SPHAW033433_T1
5582
590
81.54
glotblastn


1759
LYD128
tomato|09v1|AW033433_T1
5583
590
81.54
glotblastn


1760
LYD128
tomato|gb164|AW033433_T1
5584
590
80.92
glotblastn


1761
LYD128
maize|gb170|AW267531_T1
5585
590
80.86
glotblastn


1762
LYD128
maize|gb170|LLAW267531_T1
5586
590
80.86
glotblastn


1763
LYD128
sorghum|09v1|SB06G003570_T1
5587
590
80.56
glotblastn


1764
LYD128
switchgrass|gb167|FE616956_T1
5588
590
80.25
glotblastn


1765
LYD129
soybean|gb168|BI967184_P1
5589
591
95.9
globlastp


1766
LYD129
lotus|09v1|AV425312_P1
5590
591
83
globlastp


1767
LYD129
medicago|09v1|AL369300_P1
5591
591
81.4
globlastp


1768
LYD132
soybean|gb168|AW693844_P1
5592
592
99.3
globlastp


1769
LYD132
soybean|gb168|BF004853_P1
5593
592
91.5
globlastp


1770
LYD132
pigeonpea|10v1|SRR054580S0087423_P1
5594
592
83.9
globlastp


1771
LYD132
cowpea|gb166|FF384575_P1
5595
592
80.7
globlastp


1772
LYD132
medicago|09v1|AW191239_P1
5596
592
80.7
globlastp


1773
LYD133
soybean|gb168|CD393324_P1
5597
593
91.8
globlastp


1774
LYD133
cowpea|gb166|FF385910_P1
5598
593
88.1
globlastp


1775
LYD133
medicago|09v1|LLAI737587_T1
5599
593
82.58
glotblastn


1776
LYD133
pea|09v1|AJ784963_P1
5600
593
80.7
globlastp


1777
LYD134
soybean|gb168|BI969393_P1
5601
594
90.8
globlastp


1778
LYD134
pigeonpea|10v1|SRR054580S0012839_P1
5602
594
82.6
globlastp


1779
LYD134
cowpea|gb166|FG838398_P1
5603
594
81.6
globlastp


1780
LYD136
soybean|gb168|BE239778_P1
5604
595
96.5
globlastp


1781
LYD136
cowpea|gb166|EG594237_P1
5605
595
92.3
globlastp


1782
LYD136
peanut|10v1|ES704221_P1
5606
595
85.3
globlastp


1783
LYD136
medicago|09v1|AW685064_P1
5607
595
85.3
globlastp


1784
LYD136
cotton|gb164|AI726457_P1
5608
595
84
globlastp


1785
LYD136
poplar|gb170|BI130072_P1
5609
595
82.9
globlastp


1786
LYD136
poplar|10v1|BI130072_P1
5610
595
82.8
globlastp


1787
LYD136
chestnut|gb170|SRR006295S0010383_T1
5611
595
82.78
glotblastn


1788
LYD136
citrus|gb166|BQ623379_P1
5612
595
82.3
globlastp


1789
LYD136
poplar|10v1|AI163151_P1
5613
595
82.3
globlastp


1790
LYD136
poplar|gb170|AI163151_P1
5613
595
82.3
globlastp


1791
LYD136
castorbean|09v1|EG665587_P1
5614
595
82.1
globlastp


1792
LYD136
cucumber|09v1|DN909551_P1
5615
595
81.6
globlastp


1793
LYD136
cotton|10v1|CO092102_P1
5616
595
81.6
globlastp


1794
LYD136
cotton|gb164|CO092102_P1
5617
595
81.6
globlastp


1795
LYD136
cassava|09v1|FF380826_P1
5618
595
80.1
globlastp


1796
LYD139
soybean|gb168|BE998145_P1
5619
596
94.1
globlastp


1797
LYD139
pigeonpea|10v1|SRR054580S0001303_P1
5620
596
88.8
globlastp


1798
LYD139
bean|gb167|CA911135_P1
5621
596
85.8
globlastp


1799
LYD139
cowpea|gb166|FF543055_P1
5622
596
81.3
globlastp


1800
LYD139
lotus|09v1|BP035957_P1
5623
596
80.8
globlastp


1801
LYD139
peanut|10v1|SRR042413S0028830_P1
5624
596
80.5
globlastp


1802
LYD140
soybean|gb168|CA912345_T1
5625
597
95.28
glotblastn


1803
LYD140
soybean|gb168|BF645424_P1
5626
597
89.7
globlastp


1804
LYD140
bean|gb167|CA912345_T1
5627
597
87.61
glotblastn


1805
LYD140
cowpea|gb166|FF382497_P1
5628
597
87.1
globlastp


1806
LYD140
cowpea|gb166|FF393151_P1
5629
597
84.1
globlastp


1807
LYD140
medicago|09v1|BF645424_P1
5630
597
83.7
globlastp


1808
LYD140
peanut|10v1|GO325551_P1
5631
597
82
globlastp


1809
LYD142
potato|10v1|BQ518275_P1
5632
598
92.2
globlastp


1810
LYD142
potato|gb157.2|BQ518275_P1
5632
598
92.2
globlastp


1811
LYD142
solanum_phureja|09v1|SPHAI779400_P1
5633
598
91.1
globlastp


1812
LYD146
potato|10v1|DN589883_P1
5634
600
97
globlastp


1813
LYD146
potato|gb157.2|DN589883_P1
5634
600
97
globlastp


1814
LYD146
solanum_phureja|09v1|SPHDN589883_P1
5634
600
97
globlastp


1815
LYD146
peanut|10v1|SRR042421S0018443_P1
5635
600
83.3
globlastp


1816
LYD146
liquorice|gb171|FS241344_P1
5636
600
83.3
globlastp


1817
LYD146
pepper|gb171|GD081638_P1
5637
600
82.6
globlastp


1818
LYD146
soybean|gb168|BM528198_P1
5638
600
80.6
globlastp


1819
LYD146
coffea|10v1|EG328835_P1
5639
600
80.3
globlastp


1820
LYD146
heritiera|10v1|SRR005795S0062589_P1
5640
600
80.3
globlastp


1821
LYD146
ipomoea_batatas|10v1|EE880432XX1_P1
5641
600
80.3
globlastp


1822
LYD146
chickpea|09v2|GR390849_P1
5642
600
80.3
globlastp


1823
LYD146
cotton|10v1|DW509770_P1
5643
600
80.3
globlastp


1824
LYD146
cotton|gb164|DW509770_P1
5644
600
80.3
globlastp


1825
LYD146
ipomoea|gb157.2|EE880432_P1
5641
600
80.3
globlastp


1826
LYD148
sugarcane|gb157.3|CA086966_P1
5645
601
97.5
globlastp


1827
LYD148
sugarcane|10v1|CA086966_P1
5645
601
97.5
globlastp


1828
LYD148
sugarcane|gb157.3|CA086964_P1
5646
601
92.9
globlastp


1829
LYD148
sugarcane|gb157.3|CA133201_P1
5647
601
92.9
globlastp


1830
LYD148
maize|10v1|AI855415_P1
5648
601
92.1
globlastp


1831
LYD148
maize|gb170|AI855415_P1
5648
601
92.1
globlastp


1832
LYD148
switchgrass|gb167|DN143352_P1
5649
601
91.2
globlastp


1833
LYD148
sugarcane|gb157.3|BQ535047_P1
5650
601
90.8
globlastp


1834
LYD148
sugarcane|gb157.3|CA066950_P1
5651
601
90.8
globlastp


1835
LYD148
sugarcane|10v1|BQ535149_P1
5650
601
90.8
globlastp


1836
LYD148
switchgrass|gb167|FE639818_P1
5652
601
90.8
globlastp


1837
LYD148
millet|10v1|EVO454PM002672_P1
5653
601
90.4
globlastp


1838
LYD148
millet|10v1|PMSLX0001952D2_P1
5653
601
90.4
globlastp


1839
LYD148
sorghum|09v1|SB08G002850_P1
5654
601
90.4
globlastp


1840
LYD148
sugarcane|gb157.3|BQ479020_P1
5655
601
90.4
globlastp


1841
LYD148
wheat|gb164|CA484173_P1
5656
601
90.4
globlastp


1842
LYD148
maize|10v1|T27554_P1
5657
601
89.2
globlastp


1843
LYD148
maize|gb170|T27554_P1
5657
601
89.2
globlastp


1844
LYD148
millet|10v1|EVO454PM000212_P1
5658
601
89.1
globlastp


1845
LYD148
leymus|gb166|CN465810_P1
5659
601
89.1
globlastp


1846
LYD148
pseudoroegneria|gb167|FF340328_P1
5660
601
89.1
globlastp


1847
LYD148
switchgrass|gb167|FE599346_P1
5661
601
88.9
globlastp


1848
LYD148
wheat|gb164|BE403756_P1
5662
601
88.7
globlastp


1849
LYD148
wheat|gb164|BE399235_P1
5663
601
88.3
globlastp


1850
LYD148
wheat|gb164|WHTWALI_P1
5664
601
88.3
globlastp


1851
LYD148
cynodon|10v1|ES293788_P1
5665
601
87.9
globlastp


1852
LYD148
barley|10v1|BE421842_P1
5666
601
87.9
globlastp


1853
LYD148
barley|gb157SOLEXA|BE421842_P1
5666
601
87.9
globlastp


1854
LYD148
switchgrass|gb167|FE607361_P1
5667
601
87.7
globlastp


1855
LYD148
fescue|gb161|DT682653_P1
5668
601
87.4
globlastp


1856
LYD148
oat|10v2|GO585949_P1
5669
601
87
globlastp


1857
LYD148
brachypodium|09v1|DV469530_P1
5670
601
86.8
globlastp


1858
LYD148
brachypodium|gb169|WHTWALI_P1
5670
601
86.8
globlastp


1859
LYD148
rice|gb170|OS11G05050_P1
5671
601
86.6
globlastp


1860
LYD148
rice|gb170|OS12G05050_P1
5672
601
86.2
globlastp


1861
LYD148
sugarcane|10v1|BQ535105_P1
5673
601
82.1
globlastp


1862
LYD148
sugarcane|gb157.3|CA069553_T1
5674
601
80.33
glotblastn


1863
LYD149
arabidopsis_lyrata|09v1|JGIAL000485_T1
5675
602
97.98
glotblastn


1864
LYD150
arabidopsis|10v1|AT1G61310_P1
5676
603
85.4
globlastp


1865
LYD152
arabidopsis_lyrata|09v1|JGIAL019864_P1
5677
604
87.1
globlastp


1866
LYD153
arabidopsis_lyrata|09v1|JGIAL028781_P1
5678
605
94.7
globlastp


1867
LYD153
canola|10v1|CD834597_T1
5679
605
86.09
glotblastn


1868
LYD156
solanum_phureja|09v1|SPHBG125257_P1
5680
606
93.4
globlastp


1869
LYD156
tobacco|gb162|DW003871_P1
5681
606
86.2
globlastp


1870
LYD157
solanum_phureja|09v1|SPHBG735318_P1
5682
607
97.8
globlastp


1871
LYD157
tobacco|gb162|EB443875_T1
5683
607
92.45
glotblastn


1872
LYD157
triphysaria|10v1|DR173387_P1
5684
607
81
globlastp


1873
LYD157
monkeyflower|09v1|DV206293_T1
5685
607
80.41
glotblastn


1874
LYD157
monkeyflower|10v1|DV206293_P1
5686
607
80.3
globlastp


1875
LYD158
solanum_phureja|09v1|SPHCV302355_P1
5687
608
92.1
globlastp


1876
LYD159
canola|10v1|CD840853_P1
5688
609
99.4
globlastp


1877
LYD159
b_rapa|gb162|CV433375_P1
5689
609
97.5
globlastp


1878
LYD159
canola|10v1|CX188057_P1
5690
609
97.5
globlastp


1879
LYD159
canola|gb161|CX188057_P1
5690
609
97.5
globlastp


1880
LYD159
radish|gb164|EV526121_P1
5691
609
96.3
globlastp


1881
LYD159
arabidopsis_lyrata|09v1|BQ834364_P1
5692
609
95.1
globlastp


1882
LYD159
arabidopsis|10v1|AT1G80920_P1
5692
609
95.1
globlastp


1883
LYD159
arabidopsis|gb165|AT1G80920_P1
5692
609
95.1
globlastp


1884
LYD159
arabidopsis_lyrata|09v1|TMPLEW733261T1_T1
5693
609
95.09
glotblastn


1885
LYD159
radish|gb164|EW713954_P1
5694
609
86.4
globlastp


1886
LYD159
radish|gb164|EV524864_P1
5695
609
83.3
globlastp


1887
LYD166
canola|10v1|BQ704758_P1
5696
610
99.2
globlastp


1888
LYD166
canola|gb161|BQ704758_P1
5696
610
99.2
globlastp


1889
LYD166
radish|gb164|EV534875_P1
5697
610
99.2
globlastp


1890
LYD166
radish|gb164|EV540019_P1
5698
610
99.2
globlastp


1891
LYD166
b_juncea|10v2|E6ANDIZ01A0QZN_P1
5699
610
98.7
globlastp


1892
LYD166
b_oleracea|gb161|DY015712_P1
5700
610
98.4
globlastp


1893
LYD166
arabidopsis|10v1|AT1G09340_P1
5701
610
96.8
globlastp


1894
LYD166
arabidopsis|gb165|AT1G09340_P1
5701
610
96.8
globlastp


1895
LYD166
arabidopsis_lyrata|09v1|JGIAL000901_P1
5702
610
96
globlastp


1896
LYD166
cleome_gynandra|10v1|SRR015532S0001942_P1
5703
610
90.8
globlastp


1897
LYD166
cleome_spinosa|10v1|GR935323_P1
5704
610
90
globlastp


1898
LYD166
cleome_spinosa|10v1|GR933224_P1
5705
610
89.4
globlastp


1899
LYD166
oak|10v1|CU640621_P1
5706
610
86.8
globlastp


1900
LYD166
aquilegia|10v1|DR912555_P1
5707
610
86.8
globlastp


1901
LYD166
chestnut|gb170|SRR006296S0063232_P1
5706
610
86.8
globlastp


1902
LYD166
b_juncea|gb164|EVGN00101514270624_P1
5708
610
86.5
globlastp


1903
LYD166
cassava|gb164|CK651731_P1
5709
610
86.3
globlastp


1904
LYD166
citrus|gb166|CF417618_P1
5710
610
86.1
globlastp


1905
LYD166
cassava|09v1|MESCRP031023_P1
5711
610
85.8
globlastp


1906
LYD166
castorbean|09v1|XM002512495_P1
5712
610
85.8
globlastp


1907
LYD166
radish|gb164|EV535299_P1
5713
610
85.7
globlastp


1908
LYD166
melon|10v1|AM724794_P1
5714
610
85.5
globlastp


1909
LYD166
antirrhinum|gb166|AJ790863_T1
5715
610
85.45
glotblastn


1910
LYD166
ipomoea|gb157.2|BJ556545_P1
5716
610
85.3
globlastp


1911
LYD166
melon|gb165|AM724794_P1
5717
610
85.3
globlastp


1912
LYD166
walnuts|gb166|EL890919_T1
5718
610
85.19
glotblastn


1913
LYD166
prunus|10v1|BU044092_P1
5719
610
85.1
globlastp


1914
LYD166
cotton|10v1|CO070417_P1
5720
610
85
globlastp


1915
LYD166
monkeyflower|09v1|DV206723_P1
5721
610
85
globlastp


1916
LYD166
monkeyflower|10v1|DV206723_P1
5721
610
85
globlastp


1917
LYD166
papaya|gb165|EX256506_P1
5722
610
85
globlastp


1918
LYD166
prunus|gb167|BU044092_P1
5723
610
84.9
globlastp


1919
LYD166
tobacco|gb162|DV159774_P1
5724
610
84.9
globlastp


1920
LYD166
cotton|gb164|CO070417_P1
5725
610
84.7
globlastp


1921
LYD166
cucumber|09v1|AM724794_P1
5726
610
84.5
globlastp


1922
LYD166
triphysaria|10v1|EY144050_P1
5727
610
84.5
globlastp


1923
LYD166
cowpea|gb166|FC457398_P1
5728
610
84.4
globlastp


1924
LYD166
oak|gb170|CU640621_P1
5729
610
84.4
globlastp


1925
LYD166
salvia|10v1|FE536314_P1
5730
610
84.2
globlastp


1926
LYD166
poplar|gb170|BI068409_P1
5731
610
84.2
globlastp


1927
LYD166
poplar|gb170|BU880077_P1
5732
610
84.2
globlastp


1928
LYD166
clover|gb162|BB903013_P1
5733
610
84.1
globlastp


1929
LYD166
poplar|10v1|BU880077_P1
5734
610
83.9
globlastp


1930
LYD166
poplar|10v1|BI068409_P1
5735
610
83.7
globlastp


1931
LYD166
strawberry|gb164|DY667768_T1
5736
610
83.42
glotblastn


1932
LYD166
tomato|09v1|BG123220_P1
5737
610
83.4
globlastp


1933
LYD166
tomato|gb164|BG123220_P1
5737
610
83.4
globlastp


1934
LYD166
apple|gb171|CN444185_P1
5738
610
83.3
globlastp


1935
LYD166
apple|gb171|CN489833_P1
5739
610
83.3
globlastp


1936
LYD166
bean|gb167|CB280711_P1
5740
610
83.1
globlastp


1937
LYD166
grape|gb160|CA810251_P1
5741
610
83.1
globlastp


1938
LYD166
potato|10v1|BE919563_P1
5742
610
83.1
globlastp


1939
LYD166
potato|gb157.2|BE919563_P1
5742
610
83.1
globlastp


1940
LYD166
solanum_phureja|09v1|SPHBG123220_P1
5742
610
83.1
globlastp


1941
LYD166
soybean|gb168|AW697089_P1
5743
610
83.1
globlastp


1942
LYD166
soybean|gb168|BF519945_P1
5744
610
83.1
globlastp


1943
LYD166
lotus|09v1|AV411209_P1
5745
610
82.8
globlastp


1944
LYD166
eggplant|10v1|FS064026_P1
5746
610
82.3
globlastp


1945
LYD166
rhizophora|10v1|SRR005792S0001147_P1
5747
610
82.2
globlastp


1946
LYD166
artemisia|10v1|EY037995_P1
5748
610
81.5
globlastp


1947
LYD166
artemisia|gb164|EY037995_P1
5748
610
81.5
globlastp


1948
LYD166
nicotiana_benthamiana|gb162|
5749
610
81.2
globlastp




CN746126_P1


1949
LYD166
centaurea|gb166|EH725433_T1
5750
610
80.95
glotblastn


1950
LYD166
cichorium|gb171|EH694497_T1
5751
610
80.42
glotblastn


1951
LYD166
cynara|gb167|GE585828_P1
5752
610
80.2
globlastp


1952
LYD166
peanut|10v1|CD037653_P1
5753
610
80.2
globlastp


1953
LYD166
peanut|gb171|CD037653_P1
5754
610
80.2
globlastp


1954
LYD166
lettuce|10v1|CV699894_T1
5755
610
80.16
glotblastn


1955
LYD166
sunflower|10v1|BU671862_P1
5756
610
80.1
globlastp


1956
LYD167
radish|gb164|EV525510_P1
5757
611
99
globlastp


1957
LYD167
radish|gb164|EV536182_P1
5758
611
99
globlastp


1958
LYD167
b_oleracea|gb161|EH425281_P1
5759
611
97.4
globlastp


1959
LYD167
canola|10v1|CB686097_P1
5759
611
97.4
globlastp


1960
LYD167
canola|gb161|CB686097_P1
5759
611
97.4
globlastp


1961
LYD167
b_juncea|gb164|DT317679_P1
5760
611
96.9
globlastp


1962
LYD167
b_rapa|gb162|L37994_P1
5760
611
96.9
globlastp


1963
LYD167
canola|10v1|CD812237_P1
5760
611
96.9
globlastp


1964
LYD167
canola|gb161|CB686288_P1
5760
611
96.9
globlastp


1965
LYD167
canola|gb161|CX281643_P1
5761
611
93.9
globlastp


1966
LYD167
canola|gb161|EE430594_P1
5762
611
93.9
globlastp


1967
LYD167
canola|10v1|EE430594_P1
5763
611
93.4
globlastp


1968
LYD167
b_rapa|gb162|AT002236_P1
5764
611
93.4
globlastp


1969
LYD167
canola|10v1|CX281643_P1
5765
611
93.4
globlastp


1970
LYD167
b_juncea|10v2|BJ1SLX00005575D1_P1
5766
611
92.9
globlastp


1971
LYD167
b_juncea|10v2|E6ANDIZ01A3IXY_P1
5767
611
92.9
globlastp


1972
LYD167
b_juncea|gb164|EVGN00251514510715_P1
5768
611
92.9
globlastp


1973
LYD167
b_rapa|gb162|CV432763_P1
5769
611
92.3
globlastp


1974
LYD167
b_juncea|10v2|OXBJ1SLX00018566D1T1_P1
5770
611
91.8
globlastp


1975
LYD167
radish|gb164|EX749211_P1
5771
611
91.8
globlastp


1976
LYD167
b_juncea|10v2|E6ANDIZ01A8TWA_P1
5772
611
91.3
globlastp


1977
LYD167
b_juncea|10v2|OXBJ1SLX00001660D1T1_P1
5773
611
90.3
globlastp


1978
LYD167
arabidopsis|10v1|AT3G22840_P1
5774
611
89.4
globlastp


1979
LYD167
thellungiella|gb167|DN772992_P1
5775
611
87.3
globlastp


1980
LYD167
arabidopsis_lyrata|09v1|JGIAL010903_P1
5776
611
87.2
globlastp


1981
LYD173
b_rapa|gb162|L46564_P1
5777
613
99.5
globlastp


1982
LYD173
canola|10v1|H07553_P1
5777
613
99.5
globlastp


1983
LYD173
canola|gb161|H07553_P1
5777
613
99.5
globlastp


1984
LYD173
b_oleracea|gb161|AM386159_P1
5778
613
99.1
globlastp


1985
LYD173
canola|10v1|CD818135_P1
5778
613
99.1
globlastp


1986
LYD173
canola|gb161|CD818135_P1
5778
613
99.1
globlastp


1987
LYD173
b_juncea|gb164|EVGN00193213831087_P1
5779
613
98.1
globlastp


1988
LYD173
b_juncea|10v2|E6ANDIZ01A2QZJ_P1
5780
613
96.7
globlastp


1989
LYD173
radish|gb164|EV526485_P1
5781
613
96.7
globlastp


1990
LYD173
radish|gb164|EX757513_P1
5782
613
96.7
globlastp


1991
LYD173
radish|gb164|EV537108_P1
5783
613
94.8
globlastp


1992
LYD173
radish|gb164|EX905183_P1
5784
613
94.8
globlastp


1993
LYD173
radish|gb164|EV546803_P1
5785
613
94.4
globlastp


1994
LYD173
radish|gb164|EY902155_T1
5786
613
94.37
glotblastn


1995
LYD173
b_juncea|10v2|E6ANDIZ01A0NM0_T1
5787
613
87.85
glotblastn


1996
LYD173
thellungiella|gb167|DN773341_P1
5788
613
85
globlastp


1997
LYD173
arabidopsis|10v1|AT1G19570_P1
5789
613
84
globlastp


1998
LYD173
arabidopsis|gb165|AT1G19570_P1
5789
613
84
globlastp


1999
LYD173
b_juncea|10v2|E6ANDIZ01A566R_P1
5790
613
83.6
globlastp


2000
LYD173
radish|gb164|EX747007_P1
5791
613
82.2
globlastp


2001
LYD173
radish|gb164|EW725652_P1
5792
613
81.7
globlastp


2002
LYD173
radish|gb164|EV534906_P1
5793
613
81.2
globlastp


2003
LYD173
arabidopsis_lyrata|09v1|JGIAL002059_T1
5794
613
80.75
glotblastn


2004
LYD173
arabidopsis_lyrata|09v1|JGIAL007795_P1
5795
613
80.3
globlastp


2005
LYD173
cleome_gynandra|10v1|SRR015532S0012442_P1
5796
613
80.3
globlastp


2006
LYD174
canola|10v1|CD813876_P1
5797
614
99.8
globlastp


2007
LYD174
canola|gb161|CD813876_P1
5797
614
99.8
globlastp


2008
LYD174
b_oleracea|gb161|AY065840_P1
5798
614
99.2
globlastp


2009
LYD174
radish|gb164|EW714178_P1
5799
614
97.6
globlastp


2010
LYD174
canola|10v1|CD815711_P1
5800
614
97
globlastp


2011
LYD174
arabidopsis|gb165|AT1G22710_P1
5801
614
94.5
globlastp


2011
LYD174
arabidopsis|10v1|AT1G22710_P1
5803
614
93.6
globlastp


2012
LYD174
canola|gb161|CD825116_P1
5802
614
94
globlastp


2013
LYD174
arabidopsis_lyrata|09v1|JGIAL002431_P1
5804
614
93.2
globlastp


2014
LYD174
canola|10v1|DW998857_P1
5805
614
81.1
globlastp


2015
LYD176
canola|10v1|BQ704660_P1
5806
615
92.9
globlastp


2016
LYD176
canola|gb161|CX187649_P1
5806
615
92.9
globlastp


2017
LYD176
b_rapa|gb162|BG543075_P1
5807
615
91.8
globlastp


2018
LYD176
canola|10v1|CN727120_P1
5808
615
91.3
globlastp


2019
LYD176
canola|gb161|CN727120_P1
5808
615
91.3
globlastp


2020
LYD176
maize|gb170|LLDQ245199_P1
5808
615
91.3
globlastp


2021
LYD176
b_oleracea|gb161|X94979_P1
5809
615
91
globlastp


2022
LYD176
b_nigra|09v1|GT069756_P1
5810
615
87.9
globlastp


2023
LYD176
b_juncea|gb164|EVGN01144714190893_P1
5811
615
87.1
globlastp


2024
LYD176
b_oleracea|gb161|AM386451_P1
5812
615
87
globlastp


2025
LYD176
b_rapa|gb162|CV544363_P1
5813
615
87
globlastp


2026
LYD176
canola|10v1|EG021017_P1
5813
615
87
globlastp


2027
LYD176
canola|gb161|EG021017_P1
5813
615
87
globlastp


2028
LYD176
b_juncea|10v2|E6ANDIZ01AKW0S_P1
5814
615
86.5
globlastp


2029
LYD176
canola|10v1|CN729310_P1
5815
615
86
globlastp


2030
LYD176
canola|gb161|CN729310_P1
5815
615
86
globlastp


2031
LYD176
radish|gb164|EV524460_P1
5816
615
85.9
globlastp


2032
LYD176
thellungiella|gb167|DN773090_P1
5817
615
84.8
globlastp


2033
LYD176
b_rapa|gb162|L47867_P1
5818
615
84.4
globlastp


2034
LYD176
canola|10v1|DY018032_P1
5818
615
84.4
globlastp


2035
LYD176
canola|gb161|DY018032_P1
5818
615
84.4
globlastp


2036
LYD176
b_juncea|10v2|E6ANDIZ01A94EP_P1
5819
615
84.2
globlastp


2037
LYD176
b_juncea|gb164|EVGN00344614610857_P1
5819
615
84.2
globlastp


2038
LYD176
b_juncea|10v2|E6ANDIZ01A1KFY1_P1
5820
615
83.6
globlastp


2039
LYD176
radish|gb164|EW726459_T1
5821
615
83.41
glotblastn


2040
LYD176
radish|gb164|EX771849_P1
5822
615
83.4
globlastp


2041
LYD176
radish|gb164|EV535313_P1
5823
615
82.5
globlastp


2042
LYD176
canola|10v1|H74597_T1
5824
615
82.41
glotblastn


2043
LYD176
canola|gb161|H74597_T1
5824
615
82.41
glotblastn


2044
LYD176
canola|gb161|EV176190_T1
5825
615
82.14
glotblastn


2045
LYD177
b_rapa|gb162|CV546358_P1
5826
616
99
globlastp


2046
LYD177
canola|gb161|EE462120_P1
5827
616
99
globlastp


2047
LYD177
canola|10v1|CX190522_P1
5828
616
95.9
globlastp


2048
LYD177
canola|10v1|EE462120_P1
5828
616
95.9
globlastp


2049
LYD177
canola|gb161|CX190522_P1
5828
616
95.9
globlastp


2050
LYD177
maize|gb170|LLDQ244995_P1
5828
616
95.9
globlastp


2051
LYD177
b_oleracea|gb161|AM057577_P1
5829
616
94.8
globlastp


2052
LYD177
b_juncea|gb164|EVGN00065426350167_P1
5830
616
93.8
globlastp


2053
LYD177
radish|gb164|EV538277_P1
5831
616
93.8
globlastp


2054
LYD177
b_juncea|10v2|E6ANDIZ01A9K6V_P1
5832
616
92.8
globlastp


2055
LYD177
b_juncea|gb164|EVGN00369325751180_P1
5833
616
90.7
globlastp


2056
LYD177
b_juncea|10v2|E6ANDIZ01A42M6_P1
5834
616
84.5
globlastp


2057
LYD178
maize|gb170|LLDQ245347_P1
5835
617
99.3
globlastp


2058
LYD178
canola|10v1|CN728812_P1
5836
617
92
globlastp


2059
LYD178
b_rapa|gb162|EX058232_P1
5837
617
90.9
globlastp


2060
LYD178
canola|gb161|CN728812_P1
5838
617
89.3
globlastp


2061
LYD178
canola|gb161|CN729053_P1
5839
617
86.8
globlastp


2062
LYD178
b_juncea|gb164|EVGN01602408322025_T1
5840
617
84.11
glotblastn


2063
LYD178
b_rapa|gb162|BG543037_T1
5841
617
84.11
glotblastn


2064
LYD178
canola|gb161|H07680_T1
5842
617
84.11
glotblastn


2065
LYD178
b_juncea|10v2|OXBJ1SLX00002305D1T1_P1
5843
617
84.1
globlastp


2066
LYD178
b_oleracea|gb161|EH415446_P1
5844
617
84.1
globlastp


2067
LYD178
radish|gb164|EV539169_T1
5845
617
84
glotblastn


2068
LYD178
radish|gb164|EV528495_P1
5846
617
82.8
globlastp


2069
LYD178
radish|gb164|EV536377_P1
5847
617
82.8
globlastp


2070
LYD178
b_oleracea|gb161|EH425722_T1
5848
617
80.67
glotblastn


2071
LYD178
canola|gb161|CD812131_T1
5849
617
80.13
glotblastn


2072
LYD178
radish|gb164|EX764872_T1
5850
617
80.13
glotblastn


2073
LYD178
canola|10v1|H07680_P1
5851
617
80.1
globlastp


2074
LYD180
canola|10v1|CB686396_P1
5852
618
99.4
globlastp


2075
LYD180
b_rapa|gb162|DN961358_P1
5853
618
99.4
globlastp


2076
LYD180
canola|gb161|CB686396_P1
5852
618
99.4
globlastp


2077
LYD180
b_juncea|gb164|EVGN00529314222143_P1
5854
618
97
globlastp


2078
LYD180
b_oleracea|gb161|AM388617_P1
5854
618
97
globlastp


2079
LYD180
canola|10v1|CD815087_P1
5854
618
97
globlastp


2080
LYD180
canola|gb161|CD815087_P1
5854
618
97
globlastp


2081
LYD180
maize|gb170|LLDQ246015_P1
5854
618
97
globlastp


2082
LYD180
canola|10v1|DY016051_P1
5855
618
96
globlastp


2083
LYD180
b_juncea|10v2|E6ANDIZ01A2BHS_P1
5856
618
94.7
globlastp


2084
LYD180
b_juncea|10v2|E6ANDIZ01AINAF_P1
5857
618
94.7
globlastp


2085
LYD180
b_juncea|10v2|E6ANDIZ01AY5KE_P1
5858
618
93.5
globlastp


2086
LYD180
radish|gb164|EV526021_P1
5859
618
93.5
globlastp


2087
LYD180
radish|gb164|EV565725_P1
5859
618
93.5
globlastp


2088
LYD180
radish|gb164|EV535131_P1
5860
618
92.9
globlastp


2089
LYD180
radish|gb164|FD538226_P1
5861
618
92.9
globlastp


2090
LYD180
b_nigra|09v1|GT069546_P1
5862
618
90.5
globlastp


2091
LYD180
thellungiella|gb167|BM985957_P1
5863
618
86.9
globlastp


2092
LYD180
b_juncea|10v2|E6ANDIZ01A4TK8_P1
5864
618
86.6
globlastp


2093
LYD180
b_rapa|gb162|EX017672_P1
5865
618
84.8
globlastp


2094
LYD180
canola|gb161|DY030344_P1
5865
618
84.8
globlastp


2095
LYD180
radish|gb164|EV572930_P1
5866
618
83.4
globlastp


2096
LYD180
arabidopsis|10v1|AT1G09310_P1
5867
618
82.8
globlastp


2097
LYD180
radish|gb164|EW734914_P1
5868
618
82.8
globlastp


2098
LYD180
arabidopsis_lyrata|09v1|JGIAL000898_P1
5869
618
82.3
globlastp


2099
LYD180
radish|gb164|EV535701_T1
5870
618
82.25
glotblastn


2100
LYD180
canola|10v1|DY030344_P1
5871
618
82.1
globlastp


2101
LYD180
radish|gb164|EW735869_P1
5872
618
82.1
globlastp


2102
LYD180
radish|gb164|EV539268_P1
5873
618
81.5
globlastp


2103
LYD180
radish|gb164|EV547459_P1
5874
618
81.5
globlastp


2104
LYD180
radish|gb164|EV569517_P1
5875
618
81.5
globlastp


2105
LYD180
radish|gb164|EV528599_P1
5876
618
80.4
globlastp


2106
LYD184
canola|10v1|EV128279_P1
5877
619
98.9
globlastp


2107
LYD184
b_rapa|gb162|EX072399_P1
5877
619
98.9
globlastp


2108
LYD184
canola|gb161|EV128279_P1
5877
619
98.9
globlastp


2109
LYD184
canola|10v1|EE427730_P1
5878
619
97.8
globlastp


2110
LYD184
canola|gb161|EE427730_P1
5878
619
97.8
globlastp


2111
LYD184
b_juncea|10v2|E6ANDIZ01A5CK0_P1
5879
619
93.3
globlastp


2112
LYD184
b_juncea|gb164|EVGN00911914081701_P1
5880
619
93.3
globlastp


2113
LYD184
radish|gb164|EX890482_P1
5881
619
90.5
globlastp


2114
LYD184
b_juncea|10v2|E6ANDIZ01A2PDG_P1
5882
619
89.4
globlastp


2115
LYD184
b_juncea|gb164|EVGN01169814532136_P1
5883
619
88.3
globlastp


2116
LYD184
canola|10v1|DY000970_P1
5884
619
86.7
globlastp


2117
LYD184
b_rapa|gb162|L38150_P1
5885
619
86.1
globlastp


2118
LYD184
canola|gb161|DY000970_P1
5886
619
86.1
globlastp


2119
LYD184
radish|gb164|EV538405_P1
5887
619
86
globlastp


2120
LYD184
b_juncea|10v2|E6ANDIZ01A05Y0_P1
5888
619
85.6
globlastp


2121
LYD184
radish|gb164|EX749350_T1
5889
619
84.92
glotblastn


2122
LYD184
b_juncea|10v2|E6ANDIZ01AMLKU_P1
5890
619
84.9
globlastp


2123
LYD185
b_rapa|gb162|L33587_P1
5891
620
96.9
globlastp


2124
LYD185
canola|10v1|CX192408_P1
5892
620
96.2
globlastp


2125
LYD185
canola|gb161|CX192408_P1
5893
620
94.7
globlastp


2126
LYD185
canola|gb161|CX191335_P1
5894
620
87.9
globlastp


2127
LYD185
canola|10v1|H74507_P1
5895
620
86.2
globlastp


2128
LYD185
canola|10v1|CX191541_P1
5896
620
86
globlastp


2129
LYD185
thellungiella|gb167|DN778269_P1
5897
620
81.7
globlastp


2130
LYD185
canola|gb161|CD837602_P1
5898
620
81.6
globlastp


2131
LYD185
arabidopsis_lyrata|09v1|JGIAL002946_P1
5899
620
80.8
globlastp


2132
LYD186
thellungiella|gb167|BY806015_P1
5900
621
94.1
globlastp


2133
LYD186
arabidopsis|10v1|AT1G56700_P1
5901
621
93.2
globlastp


2134
LYD186
arabidopsis_lyrata|09v1|JGIAL005325_T1
5902
621
90.91
glotblastn


2135
LYD186
cleome_gynandra|10v1|SRR015532S0000444_T1
5903
621
80
glotblastn


2136
LYD187
b_oleracea|gb161|AM388405_P1
5904
622
97.4
globlastp


2137
LYD187
canola|gb161|CX190300_P1
5904
622
97.4
globlastp


2138
LYD187
radish|gb164|EV536333_P1
5905
622
97.4
globlastp


2139
LYD187
radish|gb164|EV550518_P1
5906
622
97.4
globlastp


2140
LYD187
canola|10v1|CB686142_P1
5904
622
97.4
globlastp


2141
LYD187
b_oleracea|gb161|DY027529_P1
5907
622
97
globlastp


2142
LYD187
b_rapa|gb162|BG543670_P1
5908
622
97
globlastp


2143
LYD187
canola|gb161|CB686142_P1
5908
622
97
globlastp


2144
LYD187
b_juncea|10v2|E6ANDIZ01BJ4IL_P1
5909
622
96.6
globlastp


2145
LYD187
canola|10v1|BQ704355_P1
5910
622
96.6
globlastp


2146
LYD187
radish|gb164|EV527800_P1
5911
622
96.6
globlastp


2147
LYD187
b_juncea|gb164|EVGN00228415001818_P1
5912
622
96.2
globlastp


2148
LYD187
b_rapa|gb162|CA991704_P1
5912
622
96.2
globlastp


2149
LYD187
canola|10v1|H07333_P1
5912
622
96.2
globlastp


2150
LYD187
canola|gb161|AI352825_P1
5912
622
96.2
globlastp


2151
LYD187
canola|gb161|BQ704355_P1
5913
622
96.2
globlastp


2152
LYD187
canola|gb161|DW998915_P1
5912
622
96.2
globlastp


2153
LYD187
b_oleracea|gb161|DY026491_P1
5914
622
95.8
globlastp


2154
LYD187
arabidopsis_lyrata|09v1|BQ834357_P1
5915
622
95.3
globlastp


2155
LYD187
b_juncea|10v2|E6ANDIZ01A4TV8_P1
5916
622
95.3
globlastp


2156
LYD187
b_juncea|10v2|E7FJ1I304DWYFK1_T1
5917
622
94.87
glotblastn


2157
LYD187
arabidopsis|10v1|AT5G19140_P1
5918
622
94.4
globlastp


2158
LYD187
thellungiella|gb167|BM985860_P1
5919
622
92.3
globlastp


2159
LYD187
radish|gb164|EX747604_P1
5920
622
91.5
globlastp


2160
LYD187
b_juncea|10v2|E6ANDIZ01A2LN8_P1
5921
622
89
globlastp


2161
LYD187
canola|gb161|BQ705035_P1
5922
622
88.5
globlastp


2162
LYD187
cleome_spinosa|10v1|GR934264_P1
5923
622
83.5
globlastp


2163
LYD187
cleome_gynandra|10v1|SRR015532S0000079_P1
5924
622
83.1
globlastp


2164
LYD187
poppy|gb166|FG605794_P1
5925
622
81.8
globlastp


2165
LYD187
prunus|10v1|BF717221_P1
5926
622
81.4
globlastp


2166
LYD187
prunus|gb167|BF717221_P1
5926
622
81.4
globlastp


2167
LYD187
chestnut|gb170|SRR006295S0001356_P1
5927
622
80.9
globlastp


2168
LYD187
liquorice|gb171|FS239166_P1
5928
622
80.9
globlastp


2169
LYD187
walnuts|gb166|CB303568_P1
5929
622
80.9
globlastp


2170
LYD187
walnuts|gb166|CV195685_P1
5930
622
80.9
globlastp


2171
LYD187
nasturtium|10v1|GH162655_P1
5931
622
80.5
globlastp


2172
LYD187
apple|gb171|CN489391_P1
5932
622
80.5
globlastp


2173
LYD187
citrus|gb166|BE208893_P1
5933
622
80.5
globlastp


2174
LYD187
cotton|gb164|AI054521_P1
5934
622
80.5
globlastp


2175
LYD187
oak|10v1|DB997378_T1
5935
622
80.34
glotblastn


2176
LYD187
oak|10v1|FN697150_T1
5935
622
80.34
glotblastn


2177
LYD187
oak|10v1|FN698586_T1
5935
622
80.34
glotblastn


2178
LYD187
oak|10v1|FN699485_T1
5935
622
80.34
glotblastn


2179
LYD187
oak|10v1|FN710897_T1
5935
622
80.34
glotblastn


2180
LYD187
oak|10v1|FN715237_T1
5935
622
80.34
glotblastn


2181
LYD187
oak|10v1|FN755290_T1
5935
622
80.34
glotblastn


2182
LYD187
oak|10v1|FP051976_T1
5935
622
80.34
glotblastn


2183
LYD187
oak|10v1|FP056365_T1
5935
622
80.34
glotblastn


2184
LYD187
oak|10v1|SRR006307S0013969_T1
5935
622
80.34
glotblastn


2185
LYD187
oak|10v1|SRR006307S0041858_T1
5936
622
80.34
glotblastn


2186
LYD187
oak|10v1|SRR006310S0001406_T1
5935
622
80.34
glotblastn


2187
LYD187
oak|10v1|SRR039734S0072419_T1
5937
622
80.34
glotblastn


2188
LYD187
oak|10v1|SRR039739S0033686_T1
5935
622
80.34
glotblastn


2189
LYD187
oak|10v1|SRR039740S0005760_T1
5938
622
80.34
glotblastn


2190
LYD187
clover|gb162|BB904019_T1
5939
622
80.34
glotblastn


2191
LYD187
kiwi|gb166|FG405871_T1
5940
622
80.34
glotblastn


2192
LYD187
radish|gb164|EV542281_P1
5941
622
80.3
globlastp


2193
LYD187
nasturtium|10v1|GH168619_P1
5942
622
80.1
globlastp


2194
LYD187
oak|10v1|FP041304_P1
5943
622
80.1
globlastp


2195
LYD187
apple|gb171|CN865201_P1
5944
622
80.1
globlastp


2196
LYD187
cotton|10v1|AI054521_P1
5945
622
80.1
globlastp


2197
LYD187
oak|gb170|DB997378_P1
5946
622
80.1
globlastp


2198
LYD187
soybean|gb168|AI967327_P1
5947
622
80.1
globlastp


2199
LYD187
soybean|gb168|AW329810_P1
5948
622
80.1
globlastp


2200
LYD187
soybean|gb168|AW348574_P1
5949
622
80.1
globlastp


2201
LYD188
b_juncea|10v2|E6ANDIZ01BEAXG_P1
5950
623
87.5
globlastp


2202
LYD190
arabidopsis_lyrata|09v1|JGIAL000673_P1
5951
624
87.3
globlastp


2203
LYD190
arabidopsis|10v1|AT1G07140_P1
5952
624
86.9
globlastp


2204
LYD190
arabidopsis|gb165|AT1G07140_P1
5952
624
86.9
globlastp


2205
LYD190
canola|gb161|CN729032_T1
5953
624
83.56
glotblastn


2206
LYD190
canola|10v1|FG564672_P1
5954
624
83.1
globlastp


2207
LYD190
cleome_spinosa|10v1|GR931255_P1
5955
624
81
globlastp


2208
LYD193
canola|10v1|CD819193_P1
5956
626
97.9
globlastp


2209
LYD193
canola|10v1|CN828571_P1
5956
626
97.9
globlastp


2210
LYD193
canola|10v1|CX189824_P1
5956
626
97.9
globlastp


2211
LYD193
canola|gb161|CD819193_P1
5956
626
97.9
globlastp


2212
LYD193
b_oleracea|gb161|AM385352_P1
5957
626
97.5
globlastp


2213
LYD193
b_juncea|10v2|E6ANDIZ01A1JPM_P1
5958
626
88.3
globlastp


2214
LYD193
b_oleracea|gb161|AM388770_P1
5959
626
86.2
globlastp


2215
LYD193
canola|10v1|EE475907_P1
5960
626
86.2
globlastp


2216
LYD193
canola|gb161|EE475907_P1
5961
626
83.7
globlastp


2217
LYD193
arabidopsis|10v1|AT4G20260_P1
5962
626
82.7
globlastp


2218
LYD193
arabidopsis|gb165|AT4G20260_P1
5962
626
82.7
globlastp


2219
LYD193
arabidopsis_lyrata|09v1|JGIAL026112_P1
5963
626
81.4
globlastp


2220
LYD194
canola|10v1|CD812567_P1
627
627
100
globlastp


2221
LYD194
canola|10v1|CN732445_P1
627
627
100
globlastp


2222
LYD194
b_oleracea|gb161|AM394359_P1
627
627
100
globlastp


2223
LYD194
canola|gb161|CD812567_P1
627
627
100
globlastp


2224
LYD194
canola|gb161|CN732445_P1
627
627
100
globlastp


2225
LYD194
b_juncea|10v2|E6ANDIZ01A562G_P1
5964
627
98.7
globlastp


2226
LYD194
b_juncea|10v2|E6ANDIZ01ETA4O_P1
5964
627
98.7
globlastp


2227
LYD194
b_juncea|10v2|E6ANDIZ01AQJZN_P1
5964
627
98.7
globlastp


2228
LYD194
b_juncea|gb164|EVGN00414408181524_P1
5964
627
98.7
globlastp


2229
LYD194
b_juncea|10v2|BJ1SLX00017689D2_P1
5964
627
98.7
globlastp


2230
LYD194
b_oleracea|gb161|AM057515_P1
5964
627
98.7
globlastp


2231
LYD194
b_rapa|gb162|CO749437_P1
5964
627
98.7
globlastp


2232
LYD194
b_rapa|gb162|EE526209_P1
5965
627
98.7
globlastp


2233
LYD194
canola|10v1|CD812518_P1
5964
627
98.7
globlastp


2234
LYD194
canola|gb161|CD812518_P1
5964
627
98.7
globlastp


2235
LYD194
canola|10v1|DY001783_P1
5964
627
98.7
globlastp


2236
LYD194
canola|gb161|DY001783_P1
5964
627
98.7
globlastp


2237
LYD194
canola|10v1|H74432_P1
5964
627
98.7
globlastp


2238
LYD194
thellungiella|gb167|BM985987_P1
5964
627
98.7
globlastp


2239
LYD194
radish|gb164|EV524387_P1
5966
627
97.4
globlastp


2240
LYD194
dandelion|10v1|DY803351_P1
5967
627
94.9
globlastp


2241
LYD194
dandelion|gb161|DY803351_P1
5967
627
94.9
globlastp


2242
LYD194
dandelion|10v1|DY825659_P1
5968
627
94.9
globlastp


2243
LYD194
gerbera|09v1|AJ751548_P1
5969
627
94.9
globlastp


2244
LYD194
safflower|gb162|EL511059_P1
5968
627
94.9
globlastp


2245
LYD194
sunflower|gb162|CD849312_P1
5968
627
94.9
globlastp


2246
LYD194
sunflower|gb162|DY937622_P1
5967
627
94.9
globlastp


2247
LYD194
sunflower|10v1|SFSLX00059942D2_P1
5968
627
94.9
globlastp


2248
LYD194
sunflower|gb162|DY953791_P1
5968
627
94.9
globlastp


2249
LYD194
sunflower|10v1|OXSFSLX00055287D2T1_P1
5968
627
94.9
globlastp


2250
LYD194
tragopogon|10v1|SRR020205S0005820_P1
5970
627
93.6
globlastp


2251
LYD194
arabidopsis|10v1|AT2G23090_P1
5971
627
93.6
globlastp


2252
LYD194
lettuce|gb157.2|DW043603_P1
5972
627
93.6
globlastp


2253
LYD194
lettuce|10v1|DW075022_P1
5972
627
93.6
globlastp


2254
LYD194
lettuce|gb157.2|DW075022_P1
5972
627
93.6
globlastp


2255
LYD194
lettuce|gb157.2|DW103809_P1
5972
627
93.6
globlastp


2256
LYD194
lettuce|10v1|DW147737_P1
5972
627
93.6
globlastp


2257
LYD194
lettuce|gb157.2|DW147737_P1
5972
627
93.6
globlastp


2258
LYD194
lettuce|10v1|DW043603_P1
5972
627
93.6
globlastp


2259
LYD194
cichorium|gb171|DT210820_T1
5973
627
92.31
glotblastn


2260
LYD194
arabidopsis_lyrata|09v1|BQ834396_P1
5974
627
92.3
globlastp


2261
LYD194
gerbera|09v1|AJ750006_P1
5975
627
92.3
globlastp


2262
LYD194
artemisia|gb164|EY036549_P1
5976
627
91
globlastp


2263
LYD194
sunflower|gb162|CD849585_P1
5977
627
91
globlastp


2264
LYD194
sunflower|10v1|SFSLX00132901D2_P1
5977
627
91
globlastp


2265
LYD194
sunflower|gb162|DY948679_P1
5977
627
91
globlastp


2266
LYD194
sunflower|gb162|DY954159_P1
5977
627
91
globlastp


2267
LYD194
sunflower|10v1|DY937622_P1
5978
627
89.7
globlastp


2268
LYD194
centaurea|gb166|EH747727_P1
5979
627
89.7
globlastp


2269
LYD194
cotton|gb164|DT049285_P1
5980
627
89.7
globlastp


2270
LYD194
cotton|10v1|BF277062_P1
5980
627
89.7
globlastp


2271
LYD194
ipomoea_nil|10v1|BJ553105_P1
5981
627
88.5
globlastp


2272
LYD194
basilicum|gb157.3|DY323766_P1
5982
627
88.5
globlastp


2273
LYD194
cotton|gb164|BF277062_P1
5983
627
88.5
globlastp


2274
LYD194
iceplant|gb164|BE034180_P1
5984
627
88.5
globlastp


2275
LYD194
ipomoea|gb157.2|BJ553105_P1
5981
627
88.5
globlastp


2276
LYD194
sunflower|10v1|AF495716_T1
5985
627
88.46
glotblastn


2277
LYD194
cleome_spinosa|10v1|SRR015531S0016978_P1
5986
627
87.2
globlastp


2278
LYD194
ipomoea_batatas|10v1|BU690434_P1
5987
627
87.2
globlastp


2279
LYD194
nasturtium|10v1|GH161629_P1
5988
627
87.2
globlastp


2280
LYD194
oak|10v1|DN950139_P1
5989
627
87.2
globlastp


2281
LYD194
orobanche|10v1|SRR023495S0014225_P1
5990
627
87.2
globlastp


2282
LYD194
chestnut|gb170|SRR006295S0000066_P1
5989
627
87.2
globlastp


2283
LYD194
cotton|10v1|CO096638_P1
5991
627
87.2
globlastp


2284
LYD194
cotton|gb164|CO096638_P1
5991
627
87.2
globlastp


2285
LYD194
cowpea|gb166|FC456727_P1
5992
627
87.2
globlastp


2286
LYD194
lotus|09v1|AI967422_P1
5993
627
87.2
globlastp


2287
LYD194
monkeyflower|09v1|GR009199_P1
5994
627
87.2
globlastp


2288
LYD194
monkeyflower|10v1|GO960737_P1
5994
627
87.2
globlastp


2289
LYD194
oak|gb170|DN950139_P1
5989
627
87.2
globlastp


2290
LYD194
sunflower|gb162|BU019187_P1
5995
627
87.2
globlastp


2291
LYD194
tobacco|gb162|CV018430_P1
5990
627
87.2
globlastp


2292
LYD194
tobacco|gb162|EB683810_P1
5990
627
87.2
globlastp


2293
LYD194
artemisia|10v1|SRR019254S0578500_T1
5996
627
87.18
glotblastn


2294
LYD194
cucumber|09v1|AI563048_P1
5997
627
85.9
globlastp


2295
LYD194
melon|10v1|AM715786_P1
5998
627
85.9
globlastp


2296
LYD194
nasturtium|10v1|GH161507_P1
5999
627
85.9
globlastp


2297
LYD194
basilicum|gb157.3|DY322181_P1
6000
627
85.9
globlastp


2298
LYD194
bean|gb167|CA911581_T1
6001
627
85.9
glotblastn


2299
LYD194
cassava|09v1|DV449827_P1
6002
627
85.9
globlastp


2300
LYD194
cassava|gb164|DV449827_P1
6002
627
85.9
globlastp


2301
LYD194
chickpea|09v2|AJ012688_P1
6003
627
85.9
globlastp


2302
LYD194
kiwi|gb166|FG431941_P1
6004
627
85.9
globlastp


2303
LYD194
liquorice|gb171|FS239342_P1
6005
627
85.9
globlastp


2304
LYD194
melon|gb165|AM715786_P1
5998
627
85.9
globlastp


2305
LYD194
peanut|10v1|EE126745_P1
6006
627
85.9
globlastp


2306
LYD194
peanut|gb171|EE126745_P1
6006
627
85.9
globlastp


2307
LYD194
pepper|gb171|BM065729_P1
6007
627
85.9
globlastp


2308
LYD194
petunia|gb171|CV293086_P1
6008
627
85.9
globlastp


2309
LYD194
petunia|gb171|DY395819_P1
6009
627
85.9
globlastp


2310
LYD194
poppy|gb166|FE967024_P1
6010
627
85.9
globlastp


2311
LYD194
rose|10v1|BQ106036_P1
6011
627
85.9
globlastp


2312
LYD194
rose|gb157.2|BQ106036_P1
6011
627
85.9
globlastp


2313
LYD194
soybean|gb168|BE239639_P1
6012
627
85.9
globlastp


2314
LYD194
spruce|gb162|CO225902_P1
6013
627
85.9
globlastp


2315
LYD194
sunflower|gb162|DY958076_P1
6014
627
85.9
globlastp


2316
LYD194
triphysaria|10v1|DR170795_T1
6015
627
85.9
glotblastn


2317
LYD194
triphysaria|gb164|DR170795_T1
6016
627
85.9
glotblastn


2318
LYD194
zamia|gb166|DY033353_P1
6017
627
85.9
globlastp


2319
LYD194
basilicum|10v1|DY322181_P1
6000
627
85.9
globlastp


2320
LYD194
salvia|10v1|SRR014553S0006174_T1
6018
627
84.62
glotblastn


2321
LYD194
sunflower|gb162|CF089569_T1
6019
627
84.62
glotblastn


2322
LYD194
eggplant|10v1|FS001058_P1
6020
627
84.6
globlastp


2323
LYD194
eschscholzia|10v1|CK754622_P1
6021
627
84.6
globlastp


2324
LYD194
oak|10v1|DN949808_P1
6022
627
84.6
globlastp


2325
LYD194
orobanche|10v1|SRR023189S0001513_P1
6023
627
84.6
globlastp


2326
LYD194
pigeonpea|10v1|SRR054580S0170685_P1
6024
627
84.6
globlastp


2327
LYD194
salvia|10v1|CV165022_P1
6025
627
84.6
globlastp


2328
LYD194
salvia|10v1|CV170012_P1
6026
627
84.6
globlastp


2329
LYD194
canola|gb161|EE501998_P1
6027
627
84.6
globlastp


2330
LYD194
chestnut|gb170|SRR006295S0007568_P1
6022
627
84.6
globlastp


2331
LYD194
citrus|gb166|BQ624729_P1
6028
627
84.6
globlastp


2332
LYD194
citrus|gb166|CB610588_P1
6029
627
84.6
globlastp


2333
LYD194
cotton|10v1|DW507921_P1
6030
627
84.6
globlastp


2334
LYD194
cycas|gb166|CB092434_P1
6031
627
84.6
globlastp


2335
LYD194
grape|gb160|CA816369_P1
6032
627
84.6
globlastp


2336
LYD194
oak|gb170|DN949808_P1
6022
627
84.6
globlastp


2337
LYD194
poplar|10v1|AI166137_P1
6033
627
84.6
globlastp


2338
LYD194
poplar|gb170|AI166137_P1
6033
627
84.6
globlastp


2339
LYD194
poplar|10v1|BI125869_P1
6034
627
84.6
globlastp


2340
LYD194
poplar|gb170|BU815949_P1
6035
627
84.6
globlastp


2341
LYD194
poplar|gb170|CV243434_P1
6036
627
84.6
globlastp


2342
LYD194
potato|10v1|BQ117694_P1
6037
627
84.6
globlastp


2343
LYD194
potato|gb157.2|BQ117694_P1
6037
627
84.6
globlastp


2344
LYD194
solanum_phureja|09v1|SPHBG133573_P1
6037
627
84.6
globlastp


2345
LYD194
soybean|gb168|AW350181_P1
6038
627
84.6
globlastp


2346
LYD194
soybean|gb168|CA911585_P1
6039
627
84.6
globlastp


2347
LYD194
strawberry|gb164|CO379357_P1
6040
627
84.6
globlastp


2348
LYD194
tamarix|gb166|CF199285_P1
6041
627
84.6
globlastp


2349
LYD194
tomato|09v1|BG133573_P1
6042
627
84.6
globlastp


2350
LYD194
tomato|gb164|BG133573_P1
6043
627
84.6
globlastp


2351
LYD194
walnuts|gb166|CV196224_P1
6044
627
84.6
globlastp


2352
LYD194
sunflower|gb162|EL461916_P1
6045
627
83.5
globlastp


2353
LYD194
heritiera|10v1|SRR005795S0018549_T1
6046
627
83.33
glotblastn


2354
LYD194
cotton|gb164|DW507921_T1
6047
627
83.33
glotblastn


2355
LYD194
poplar|10v1|BU886510_T1
6048
627
83.33
glotblastn


2356
LYD194
potato|gb157.2|BG596893_T1
6049
627
83.33
glotblastn


2357
LYD194
canola|10v1|EE501998_P1
6050
627
83.3
globlastp


2358
LYD194
cyamopsis|10v1|EG978606_P1
6051
627
83.3
globlastp


2359
LYD194
ipomoea_batatas|10v1|DV037875XX1_P1
6052
627
83.3
globlastp


2360
LYD194
prunus|10v1|BU573631_P1
6053
627
83.3
globlastp


2361
LYD194
salvia|10v1|FE536036_P1
6054
627
83.3
globlastp


2362
LYD194
apple|gb171|CN489087_P1
6055
627
83.3
globlastp


2363
LYD194
apple|gb171|CN490842_P1
6055
627
83.3
globlastp


2364
LYD194
avocado|10v1|FD503400_P1
6056
627
83.3
globlastp


2365
LYD194
avocado|gb164|FD503400_P1
6056
627
83.3
globlastp


2366
LYD194
basilicum|gb157.3|DY323895_P1
6057
627
83.3
globlastp


2367
LYD194
bean|gb167|FD794659_P1
6058
627
83.3
globlastp


2368
LYD194
cassava|09v1|FF534508_P1
6059
627
83.3
globlastp


2369
LYD194
cassava|gb164|DB931786_P1
6059
627
83.3
globlastp


2370
LYD194
coffea|10v1|DV667171_P1
6060
627
83.3
globlastp


2371
LYD194
coffea|gb157.2|DV667171_P1
6060
627
83.3
globlastp


2372
LYD194
cotton|gb164|BE053050_P1
6061
627
83.3
globlastp


2373
LYD194
cotton|gb164|DR457498_P1
6061
627
83.3
globlastp


2374
LYD194
ipomoea|gb157.2|DV037875_P1
6052
627
83.3
globlastp


2375
LYD194
kiwi|gb166|FG487691_P1
6062
627
83.3
globlastp


2376
LYD194
maize|gb170|AW438182_P1
6063
627
83.3
globlastp


2377
LYD194
oil_palm|gb166|EL691360_P1
6064
627
83.3
globlastp


2378
LYD194
pine|10v1|AA739705_P1
6065
627
83.3
globlastp


2379
LYD194
pine|10v1|AL750053_P1
6065
627
83.3
globlastp


2380
LYD194
prunus|gb167|BU043372_P1
6055
627
83.3
globlastp


2381
LYD194
prunus|gb167|CB819316_P1
6055
627
83.3
globlastp


2382
LYD194
soybean|gb168|AI967422_P1
6066
627
83.3
globlastp


2383
LYD194
switchgrass|gb167|DN148035_P1
6067
627
83.3
globlastp


2384
LYD194
prunus|10v1|BU043372_P1
6055
627
83.3
globlastp


2385
LYD194
maize|10v1|AW438182_P1
6063
627
83.3
globlastp


2386
LYD194
antirrhinum|gb166|AJ787336_P1
6068
627
82.5
globlastp


2387
LYD194
banana|10v1|FF560086_P1
6069
627
82.3
globlastp


2388
LYD194
barley|10v1|BE412562_P1
6070
627
82.1
globlastp


2389
LYD194
ginseng|10v1|DV553491_P1
6071
627
82.1
globlastp


2390
LYD194
ipomoea_nil|10v1|BJ554752_P1
6072
627
82.1
globlastp


2391
LYD194
pigeonpea|10v1|GW352154_P1
6073
627
82.1
globlastp


2392
LYD194
banana|10v1|FL659021_P1
6074
627
82.1
globlastp


2393
LYD194
banana|gb167|FL659021_P1
6074
627
82.1
globlastp


2394
LYD194
bean|gb167|CA910834_P1
6075
627
82.1
globlastp


2395
LYD194
cassava|09v1|DV441811_P1
6076
627
82.1
globlastp


2396
LYD194
cassava|gb164|DV441811_P1
6076
627
82.1
globlastp


2397
LYD194
ipomoea|gb157.2|BJ554752_P1
6072
627
82.1
globlastp


2398
LYD194
liquorice|gb171|FS241175_P1
6077
627
82.1
globlastp


2399
LYD194
liriodendron|gb166|CK757811_P1
6078
627
82.1
globlastp


2400
LYD194
lotus|09v1|GO022193_P1
6079
627
82.1
globlastp


2401
LYD194
maize|gb170|LLEC884141_P1
6080
627
82.1
globlastp


2402
LYD194
nuphar|gb166|CK745724_P1
6081
627
82.1
globlastp


2403
LYD194
oil_palm|gb166|EY398455_P1
6082
627
82.1
globlastp


2404
LYD194
papaya|gb165|EX252933_P1
6083
627
82.1
globlastp


2405
LYD194
peanut|gb171|CX127962_P1
6084
627
82.1
globlastp


2406
LYD194
pseudoroegneria|gb167|FF344954_P1
6070
627
82.1
globlastp


2407
LYD194
rye|gb164|BE587111_P1
6070
627
82.1
globlastp


2408
LYD194
sesame|10v1|BU669421_P1
6085
627
82.1
globlastp


2409
LYD194
sesame|gb157.2|BU669421_P1
6085
627
82.1
globlastp


2410
LYD194
sorghum|09v1|SB01G031840_P1
6086
627
82.1
globlastp


2411
LYD194
sugarcane|gb157.3|BQ535447_P1
6087
627
82.1
globlastp


2412
LYD194
sugarcane|gb157.3|CA198410_P1
6087
627
82.1
globlastp


2413
LYD194
tobacco|gb162|CV016265_P1
6088
627
82.1
globlastp


2414
LYD194
sugarcane|10v1|BQ535447_P1
6087
627
82.1
globlastp


2415
LYD194
cotton|10v1|BE053050_P1
6089
627
82.1
globlastp


2416
LYD194
pigeonpea|10v1|SRR054580S0180637_T1
6090
627
82.05
glotblastn


2417
LYD194
cleome_spinosa|10v1|GR931202_P1
6091
627
81
globlastp


2418
LYD194
beech|gb170|SRR006293S0002103_P1
6092
627
81
globlastp


2419
LYD194
monkeyflower|09v1|GO982768_P1
6093
627
81
globlastp


2420
LYD194
monkeyflower|10v1|DV206469_P1
6093
627
81
globlastp


2421
LYD194
blueberry|10v1|CF811639_P1
6094
627
80.8
globlastp


2422
LYD194
cucumber|09v1|AM719428_P1
6095
627
80.8
globlastp


2423
LYD194
cucumber|09v1|DV632453_P1
6096
627
80.8
globlastp


2424
LYD194
eggplant|10v1|FS001750_P1
6097
627
80.8
globlastp


2425
LYD194
melon|10v1|DV632453_P1
6096
627
80.8
globlastp


2426
LYD194
oat|10v2|CN814648_P1
6098
627
80.8
globlastp


2427
LYD194
b_juncea|gb164|EVGN00777512133168_P1
6099
627
80.8
globlastp


2428
LYD194
beet|gb162|BQ585430_P1
6100
627
80.8
globlastp


2429
LYD194
castorbean|09v1|XM002510070_P1
6101
627
80.8
globlastp


2430
LYD194
castorbean|09v1|XM002533116_P1
6102
627
80.8
globlastp


2431
LYD194
cowpea|gb166|DR068342_P1
6103
627
80.8
globlastp


2432
LYD194
cryptomeria|gb166|BW994667_P1
6104
627
80.8
globlastp


2433
LYD194
fescue|gb161|CK803222_P1
6105
627
80.8
globlastp


2434
LYD194
ginger|gb164|DY354931_P1
6106
627
80.8
globlastp


2435
LYD194
lolium|09v1|AU246760_P1
6105
627
80.8
globlastp


2436
LYD194
lolium|10v1|AU246760_P1
6105
627
80.8
globlastp


2437
LYD194
melon|gb165|DV632453_P1
6096
627
80.8
globlastp


2438
LYD194
nuphar|gb166|CD475546_P1
6107
627
80.8
globlastp


2439
LYD194
rice|gb170|OS07G02340_P1
6108
627
80.8
globlastp


2440
LYD194
soybean|gb168|CA910834_P1
6109
627
80.8
globlastp


2441
LYD194
antirrhinum|gb166|AJ788641_T1
6110
627
80.77
glotblastn


2442
LYD194
eucalyptus|gb166|CT983755_T1
6111
627
80.77
glotblastn


2443
LYD194
medicago|09v1|BE239639_P1
6112
627
80
globlastp


2444
LYD195
potato|10v1|BG096397_P1
6113
628
99.6
globlastp


2445
LYD195
potato|gb157.2|BG096397_P1
6113
628
99.6
globlastp


2446
LYD195
solanum_phureja|09v1|SPHAI483451_P1
6113
628
99.6
globlastp


2447
LYD195
tobacco|gb162|AF022775_P1
6114
628
91.8
globlastp


2448
LYD195
tobacco|gb162|EB424611_P1
6115
628
91.8
globlastp


2449
LYD195
eggplant|10v1|FS008855_P1
6116
628
90.2
globlastp


2450
LYD195
tobacco|gb162|AJ344574_P1
6117
628
89.9
globlastp


2451
LYD195
pepper|gb171|BM062010_P1
6118
628
89.5
globlastp


2452
LYD195
potato|10v1|BF459570_P1
6119
628
89.1
globlastp


2453
LYD195
potato|gb157.2|BF459570_P1
6119
628
89.1
globlastp


2454
LYD195
tomato|gb164|BG133462_P1
6120
628
89.1
globlastp


2455
LYD195
solanum_phureja|09v1|SPHBG133462_P1
6121
628
88.7
globlastp


2456
LYD195
tobacco|gb162|CV021257_P1
6122
628
88.7
globlastp


2457
LYD195
petunia|gb171|CV293247_P1
6123
628
88.4
globlastp


2458
LYD195
artemisia|10v1|EY055561_P1
6124
628
88.2
globlastp


2459
LYD195
artemisia|10v1|EY078221_P1
6125
628
88.2
globlastp


2460
LYD195
nasturtium|10v1|GH170063_P1
6126
628
88.2
globlastp


2461
LYD195
lettuce|10v1|DW110506_P1
6127
628
87.8
globlastp


2462
LYD195
lettuce|gb157.2|DW112190_P1
6128
628
87.8
globlastp


2463
LYD195
lettuce|10v1|DW079750_P1
6129
628
87.8
globlastp


2464
LYD195
apple|gb171|CN489101_P1
6130
628
87.5
globlastp


2465
LYD195
centaurea|gb166|EH764503_P1
6131
628
87.3
globlastp


2466
LYD195
lettuce|gb157.2|DW043694_P1
6132
628
87.3
globlastp


2467
LYD195
lettuce|gb157.2|DW079750_P1
6133
628
87.3
globlastp


2468
LYD195
lettuce|gb157.2|DW095151_P1
6134
628
87.3
globlastp


2469
LYD195
lettuce|10v1|DW043694_P1
6132
628
87.3
globlastp


2470
LYD195
dandelion|10v1|DR398855_P1
6135
628
87
globlastp


2471
LYD195
artemisia|10v1|EY114017_P1
6136
628
87
globlastp


2472
LYD195
artemisia|gb164|EY114017_P1
6136
628
87
globlastp


2473
LYD195
lettuce|10v1|DW054823_P1
6137
628
86.9
globlastp


2474
LYD195
lettuce|gb157.2|DW085965_P1
6138
628
86.9
globlastp


2475
LYD195
senecio|gb170|DY658676_P1
6139
628
86.9
globlastp


2476
LYD195
poplar|gb170|AJ224895_P1
6140
628
86.7
globlastp


2477
LYD195
dandelion|10v1|DR398892_P1
6141
628
86.6
globlastp


2478
LYD195
dandelion|gb161|DY819202_P1
6141
628
86.6
globlastp


2479
LYD195
centaurea|gb166|EH732032_T1
6142
628
86.53
glotblastn


2480
LYD195
lettuce|gb157.2|DW078439_T1
6143
628
86.53
glotblastn


2481
LYD195
tragopogon|10v1|SRR020205S0001708_P1
6144
628
86.5
globlastp


2482
LYD195
centaurea|gb166|EH733702_P1
6145
628
86.5
globlastp


2483
LYD195
centaurea|gb166|EH780631_P1
6146
628
86.5
globlastp


2484
LYD195
dandelion|10v1|DY816598_P1
6147
628
86.5
globlastp


2485
LYD195
dandelion|gb161|DY816598_P1
6147
628
86.5
globlastp


2486
LYD195
dandelion|10v1|DY828265_P1
6148
628
86.5
globlastp


2487
LYD195
dandelion|gb161|DY828265_P1
6148
628
86.5
globlastp


2488
LYD195
lettuce|gb157.2|DW077273_P1
6149
628
86.5
globlastp


2489
LYD195
strawberry|gb164|AJ001447_P1
6150
628
86.5
globlastp


2490
LYD195
sunflower|gb162|CF088560_P1
6151
628
86.5
globlastp


2491
LYD195
sunflower|10v1|DY925822_P1
6152
628
86.5
globlastp


2492
LYD195
sunflower|gb162|DY925822_P1
6152
628
86.5
globlastp


2493
LYD195
sunflower|10v1|CF088560_P1
6151
628
86.5
globlastp


2494
LYD195
poplar|10v1|AJ224895_P1
6153
628
86.3
globlastp


2495
LYD195
poplar|10v1|PTU27116_P1
6154
628
86.3
globlastp


2496
LYD195
poplar|gb170|PTU27116_P1
6154
628
86.3
globlastp


2497
LYD195
oak|10v1|EE743854_P1
6155
628
86.2
globlastp


2498
LYD195
chestnut|gb170|SRR006295S0000995_P1
6156
628
86.2
globlastp


2499
LYD195
kiwi|gb166|FG418869_P1
6157
628
86.2
globlastp


2500
LYD195
oak|gb170|EE743854_P1
6156
628
86.2
globlastp


2501
LYD195
prunus|10v1|BU044203_P1
6158
628
86.2
globlastp


2502
LYD195
prunus|gb167|BU044203_P1
6158
628
86.2
globlastp


2503
LYD195
tragopogon|10v1|SRR020205S0055567_T1
6159
628
86.12
glotblastn


2504
LYD195
lettuce|gb157.2|DW075466_T1
6160
628
86.12
glotblastn


2505
LYD195
ipomoea_batatas|10v1|BU690759_P1
6161
628
86.1
globlastp


2506
LYD195
ipomoea_nil|10v1|CJ738710_P1
6162
628
86.1
globlastp


2507
LYD195
b_juncea|10v2|E6ANDIZ01A38JW_P1
6163
628
86.1
globlastp


2508
LYD195
ipomoea|gb157.2|BU690759_P1
6164
628
86.1
globlastp


2509
LYD195
lettuce|gb157.2|DW054823_P1
6165
628
86.1
globlastp


2510
LYD195
sunflower|gb162|CF096542_P1
6166
628
86.1
globlastp


2511
LYD195
coffea|10v1|AF534905_P1
6167
628
85.9
globlastp


2512
LYD195
coffea|gb157.2|AF534905_P1
6167
628
85.9
globlastp


2513
LYD195
eucalyptus|gb166|AF168780_P1
6168
628
85.9
globlastp


2514
LYD195
kiwi|gb166|FG421337_P1
6169
628
85.9
globlastp


2515
LYD195
flax|09v1|EU926495_P1
6170
628
85.8
globlastp


2516
LYD195
centaurea|gb166|EH730909_P1
6171
628
85.8
globlastp


2517
LYD195
flax|09v1|DQ090002_P1
6172
628
85.8
globlastp


2518
LYD195
flax|gb157.3|DQ090002_P1
6172
628
85.8
globlastp


2519
LYD195
safflower|gb162|EL382540_P1
6171
628
85.8
globlastp


2520
LYD195
artemisia|gb164|EY055561_P1
6173
628
85.7
globlastp


2521
LYD195
basilicum|gb157.3|DY321549_P1
6174
628
85.7
globlastp


2522
LYD195
lettuce|gb157.2|BQ986770_P1
6175
628
85.7
globlastp


2523
LYD195
lettuce|gb157.2|DW107581_P1
6176
628
85.7
globlastp


2524
LYD195
lettuce|gb157.2|DW110506_P1
6177
628
85.7
globlastp


2525
LYD195
lettuce|gb157.2|DW136638_P1
6176
628
85.7
globlastp


2526
LYD195
zinnia|gb171|ZEU13151_P1
6178
628
85.7
globlastp


2527
LYD195
lettuce|10v1|DW063228_P1
6176
628
85.7
globlastp


2528
LYD195
b_juncea|10v2|E6ANDIZ01A37PS_P1
6179
628
85.6
globlastp


2529
LYD195
b_juncea|gb164|EVGN00576715131914_P1
6180
628
85.5
globlastp


2530
LYD195
triphysaria|10v1|BE574803_P1
6181
628
85.5
globlastp


2531
LYD195
triphysaria|gb164|EX990149_P1
6181
628
85.5
globlastp


2532
LYD195
soybean|gb168|AI974778_P1
6182
628
85.4
globlastp


2533
LYD195
soybean|gb168|AW350997_P1
6183
628
85.4
globlastp


2534
LYD195
ipomoea|gb157.2|EE875282_T1
6184
628
85.31
glotblastn


2535
LYD195
lettuce|gb157.2|DW063228_P1
6185
628
85.3
globlastp


2536
LYD195
melon|10v1|AM722923_P1
6186
628
85.1
globlastp


2537
LYD195
monkeyflower|10v1|DV206851_P1
6187
628
85.1
globlastp


2538
LYD195
orobanche|10v1|SRR023189S0001619_P1
6188
628
85.1
globlastp


2539
LYD195
cowpea|gb166|FF383224_P1
6189
628
85.1
globlastp


2540
LYD195
artemisia|10v1|EY062910_P1
6190
628
85
globlastp


2541
LYD195
dandelion|10v1|DR400849_P1
6191
628
85
globlastp


2542
LYD195
cichorium|gb171|EH681911_P1
6192
628
84.9
globlastp


2543
LYD195
dandelion|10v1|DY822859_P1
6193
628
84.9
globlastp


2544
LYD195
dandelion|gb161|DY822859_P1
6193
628
84.9
globlastp


2545
LYD195
pepper|gb171|BM062476_P1
6194
628
84.9
globlastp


2546
LYD195
pepper|gb171|GD052907_P1
6195
628
84.9
globlastp


2547
LYD195
potato|gb157.2|AB061268_P1
6196
628
84.9
globlastp


2548
LYD195
potato|10v1|CK259364_P1
6197
628
84.9
globlastp


2549
LYD195
potato|gb157.2|CK259364_P1
6197
628
84.9
globlastp


2550
LYD195
safflower|gb162|EL401429_P1
6198
628
84.9
globlastp


2551
LYD195
catharanthus|gb166|FD416177_P1
6199
628
84.7
globlastp


2552
LYD195
peanut|gb171|EG029550_P1
6200
628
84.7
globlastp


2553
LYD195
safflower|gb162|EL401924_T1
6201
628
84.68
glotblastn


2554
LYD195
cacao|gb167|CF972935_P1
6202
628
84.6
globlastp


2555
LYD195
cotton|gb164|BQ409901_P1
6203
628
84.6
globlastp


2556
LYD195
cynara|gb167|GE585761_P1
6204
628
84.6
globlastp


2557
LYD195
artemisia|gb164|EY062910_T1
6205
628
84.55
glotblastn


2558
LYD195
basilicum|10v1|DY321550_P1
6206
628
84.5
globlastp


2559
LYD195
aquilegia|10v1|DR940223_P1
6207
628
84.5
globlastp


2560
LYD195
basilicum|10v1|DY322646_P1
6208
628
84.5
globlastp


2561
LYD195
basilicum|gb157.3|DY322646_P1
6208
628
84.5
globlastp


2562
LYD195
aquilegia|gb157.3|DR940223_T1
6209
628
84.49
glotblastn


2563
LYD195
lettuce|gb157.2|DW046035_T1
6210
628
84.49
glotblastn


2564
LYD195
cucumber|09v1|DQ178939_P1
6211
628
84.3
globlastp


2565
LYD195
bean|gb167|CB539234_P1
6212
628
84.3
globlastp


2566
LYD195
peanut|10v1|EG029550_P1
6213
628
84.3
globlastp


2567
LYD195
walnuts|gb166|EL893897_P1
6214
628
84.3
globlastp


2568
LYD195
cotton|10v1|BQ409901_P1
6215
628
84.2
globlastp


2569
LYD195
sunflower|10v1|DY918862_P1
6216
628
84.2
globlastp


2570
LYD195
sunflower|gb162|DY918862_P1
6216
628
84.2
globlastp


2571
LYD195
eggplant|10v1|FS002731_P1
6217
628
84.1
globlastp


2572
LYD195
lettuce|gb157.2|DW052563_P1
6218
628
84.1
globlastp


2573
LYD195
pepper|gb171|BM065108_P1
6219
628
84.1
globlastp


2574
LYD195
petunia|gb171|CV293837_P1
6220
628
84.1
globlastp


2575
LYD195
tomato|gb164|BG132250_P1
6221
628
84.1
globlastp


2576
LYD195
cynara|gb167|GE588483_T1
6222
628
84.08
glotblastn


2577
LYD195
onion|gb162|BI095707_T1
6223
628
84.08
glotblastn


2578
LYD195
lettuce|10v1|DW079335_P1
6224
628
84
globlastp


2579
LYD195
lettuce|gb157.2|DW079335_P1
6224
628
84
globlastp


2580
LYD195
cyamopsis|10v1|EG985137_P1
6225
628
83.9
globlastp


2581
LYD195
tragopogon|10v1|SRR020205S0054743_P1
6226
628
83.9
globlastp


2582
LYD195
sunflower|10v1|CD849237_P1
6227
628
83.8
globlastp


2583
LYD195
sunflower|gb162|CD849237_P1
6228
628
83.8
globlastp


2584
LYD195
eggplant|10v1|FS074698_P1
6229
628
83.7
globlastp


2585
LYD195
grape|gb160|CF213537_P1
6230
628
83.7
globlastp


2586
LYD195
lettuce|gb157.2|DW108949_P1
6231
628
83.7
globlastp


2587
LYD195
petunia|gb171|CV292827_P1
6232
628
83.7
globlastp


2588
LYD195
solanum_phureja|09v1|SPHAI488060_P1
6233
628
83.7
globlastp


2589
LYD195
lettuce|10v1|DW052563_P1
6231
628
83.7
globlastp


2590
LYD195
sunflower|10v1|DY952631_T1
6234
628
83.67
glotblastn


2591
LYD195
dandelion|gb161|DY818320_T1
6235
628
83.67
glotblastn


2592
LYD195
lettuce|gb157.2|DW167480_T1
6236
628
83.67
glotblastn


2593
LYD195
lovegrass|gb167|DN480953_T1
6237
628
83.67
glotblastn


2593
LYD211
lovegrass|gb167|DN480953_P1
6237
638
89.3
globlastp


2594
LYD195
citrus|gb166|BQ623631_P1
6238
628
83.5
globlastp


2595
LYD195
grape|gb160|CB346952_P1
6239
628
83.4
globlastp


2596
LYD195
medicago|09v1|MSU20736_P1
6240
628
83.4
globlastp


2597
LYD195
avocado|10v1|CV459964_T1
6241
628
83.33
glotblastn


2598
LYD195
avocado|gb164|CV459964_T1
6242
628
83.33
glotblastn


2599
LYD195
basilicum|gb157.3|DY321420_P1
6243
628
83.3
globlastp


2600
LYD195
tobacco|gb162|NTU62734_P1
6244
628
83.3
globlastp


2601
LYD195
safflower|gb162|EL395137_T1
6245
628
83.27
glotblastn


2602
LYD195
wheat|gb164|BG605452_T1
6246
628
83.27
glotblastn


2602
LYD211
wheat|gb164|BG605452_P1
6246
638
86.6
globlastp


2603
LYD195
cotton|10v1|CO083019_P1
6247
628
83.1
globlastp


2604
LYD195
cotton|gb164|CO083019_P1
6247
628
83.1
globlastp


2605
LYD195
dandelion|10v1|DY813534_P1
6248
628
83.1
globlastp


2606
LYD195
eucalyptus|gb166|Y12228_P1
6249
628
83
globlastp


2607
LYD195
lotus|09v1|AW163940_P1
6250
628
83
globlastp


2608
LYD195
cichorium|gb171|EH703864_T1
6251
628
82.93
glotblastn


2609
LYD195
b_rapa|gb162|BG544230_P1
6252
628
82.9
globlastp


2609
LYD211
b_rapa|gb162|BG544230_P1
6252
638
81.2
globlastp


2610
LYD195
dandelion|10v1|DY811080_P1
6253
628
82.9
globlastp


2611
LYD195
dandelion|gb161|DY811080_P1
6253
628
82.9
globlastp


2612
LYD195
ginger|gb164|DY345043_P1
6254
628
82.9
globlastp


2613
LYD195
radish|gb164|EV525011_P1
6255
628
82.9
globlastp


2613
LYD211
radish|gb164|EV525011_P1
6255
638
80.5
globlastp


2614
LYD195
radish|gb164|EV525082_P1
6256
628
82.9
globlastp


2614
LYD211
radish|gb164|EV525082_P1
6256
638
81.2
globlastp


2615
LYD195
tobacco|gb162|NTU38612_P1
6257
628
82.9
globlastp


2616
LYD195
tomato|gb164|EU161983_P1
6258
628
82.9
globlastp


2617
LYD195
pseudoroegneria|gb167|FF344366_T1
6259
628
82.86
glotblastn


2617
LYD211
pseudoroegneria|gb167|FF344366_P1
6259
638
86.6
globlastp


2618
LYD195
wheat|gb164|BE499248_T1
6260
628
82.86
glotblastn


2618
LYD211
wheat|gb164|BE499248_T1
6260
638
85.39
glotblastn


2619
LYD195
cleome_spinosa|10v1|GR934613_T1
6261
628
82.8
glotblastn


2620
LYD195
papaya|gb165|AM903875_P1
6262
628
82.7
globlastp


2621
LYD195
cynodon|10v1|ES293249_T1
6263
628
82.66
glotblastn


2621
LYD211
cynodon|10v1|ES293249_P1
6263
638
90.1
globlastp


2622
LYD195
b_juncea|10v2|E6ANDIZ01B5QRG_P1
6264
628
82.6
globlastp


2622
LYD211
b_juncea|10v2|E6ANDIZ01B5QRG_P1
6264
638
81.6
globlastp


2623
LYD195
monkeyflower|10v1|GO983307_P1
6265
628
82.6
globlastp


2624
LYD195
basilicum|10v1|DY326108_P1
6266
628
82.6
globlastp


2625
LYD195
basilicum|gb157.3|DY326108_P1
6266
628
82.6
globlastp


2626
LYD195
canola|10v1|CD832570_P1
6267
628
82.6
globlastp


2626
LYD211
canola|10v1|CD832570_P1
6267
638
81.2
globlastp


2627
LYD195
canola|gb161|CD832570_P1
6267
628
82.6
globlastp


2627
LYD211
canola|gb161|CD832570_P1
6267
638
81.2
globlastp


2628
LYD195
clover|gb162|BB903730_P1
6268
628
82.6
globlastp


2629
LYD195
radish|gb164|EV535109_P1
6269
628
82.6
globlastp


2629
LYD211
radish|gb164|EV535109_P1
6269
638
80.1
globlastp


2630
LYD195
cichorium|gb171|EH694888_P1
6270
628
82.5
globlastp


2631
LYD195
brachypodium|09v1|GT831168_T1
6271
628
82.45
glotblastn


2631
LYD211
brachypodium|09v1|GT831168_P1
6271
638
87.1
globlastp


2632
LYD195
artemisia|10v1|EY073536_T1
6272
628
82.45
glotblastn


2633
LYD195
barley|10v1|BF623901_T1
6273
628
82.45
glotblastn


2633
LYD211
barley|10v1|BF623901_P1
6273
638
85.3
globlastp


2634
LYD195
barley|gb157SOLEXA|BF623901_T1
6273
628
82.45
glotblastn


2634
LYD211
barley|gb157SOLEXA|BF623901_P1
6273
638
85.3
globlastp


2635
LYD195
brachypodium|gb169|BE406401_T1
6271
628
82.45
glotblastn


2635
LYD211
brachypodium|gb169|BE406401_P1
6271
638
87.1
globlastp


2636
LYD195
ipomoea_nil|10v1|BJ562028_P1
6274
628
82.4
globlastp


2637
LYD195
citrus|gb166|GFXAB035144X1_P1
6275
628
82.4
globlastp


2638
LYD195
cynara|gb167|GE593594_P1
6276
628
82.4
globlastp


2639
LYD195
ipomoea|gb157.2|BJ562028_P1
6274
628
82.4
globlastp


2640
LYD195
lettuce|gb157.2|DW154323_T1
6277
628
82.33
glotblastn


2641
LYD195
dandelion|10v1|DR400478_P1
6278
628
82.3
globlastp


2642
LYD195
dandelion|gb161|DY802286_P1
6278
628
82.3
globlastp


2643
LYD195
oak|10v1|FP034949_P1
6279
628
82.2
globlastp


2644
LYD195
cacao|gb167|CU515299_P1
6280
628
82.2
globlastp


2645
LYD195
canola|10v1|CD813970_P1
6281
628
82.2
globlastp


2645
LYD211
canola|10v1|CD813970_P1
6281
638
80.8
globlastp


2646
LYD195
canola|gb161|CD813970_P1
6281
628
82.2
globlastp


2646
LYD211
canola|gb161|CD813970_P1
6281
638
80.8
globlastp


2647
LYD195
liquorice|gb171|FS288141_P1
6282
628
82.2
globlastp


2648
LYD195
centaurea|gb166|EH783138_T1
6283
628
82.04
glotblastn


2649
LYD195
ipomoea_batatas|10v1|EE875716_P1
6284
628
82
globlastp


2650
LYD195
cichorium|gb171|EH700384_P1
6285
628
82
globlastp


2651
LYD195
cotton|gb164|DT568345_P1
6286
628
82
globlastp


2652
LYD195
ipomoea|gb157.2|EE875716_P1
6284
628
82
globlastp


2653
LYD195
acacia|10v1|EU275979_P1
6287
628
81.9
globlastp


2654
LYD195
radish|gb164|EV539035_P1
6288
628
81.8
globlastp


2654
LYD211
radish|gb164|EV539035_P1
6288
638
80.1
globlastp


2655
LYD195
cassava|09v1|CK644701_P1
6289
628
81.7
globlastp


2656
LYD195
cassava|gb164|CK644701_P1
6289
628
81.7
globlastp


2657
LYD195
lettuce|10v1|DW079459_P1
6290
628
81.7
globlastp


2658
LYD195
lettuce|gb157.2|DW079459_P1
6290
628
81.7
globlastp


2659
LYD195
lettuce|gb157.2|DW114772_P1
6291
628
81.7
globlastp


2660
LYD195
lettuce|10v1|DW046035_P1
6291
628
81.7
globlastp


2661
LYD195
canola|gb161|CD817919_T1
6292
628
81.63
glotblastn


2662
LYD195
gerbera|09v1|AJ761949_T1
6293
628
81.63
glotblastn


2663
LYD195
cotton|10v1|DT568345_P1
6294
628
81.6
globlastp


2664
LYD195
poppy|gb166|FE964281_P1
6295
628
81.6
globlastp


2665
LYD195
wheat|gb164|BE406401_T1
6296
628
81.53
glotblastn


2665
LYD211
wheat|gb164|BE406401_T1
6296
638
86.64
glotblastn


2666
LYD195
b_rapa|gb162|AT000531_P1
6297
628
81.5
globlastp


2666
LYD211
b_rapa|gb162|AT000531_P1
6297
638
80.1
globlastp


2667
LYD195
canola|gb161|CD825507_P1
6297
628
81.5
globlastp


2667
LYD211
canola|gb161|CD825507_P1
6297
638
80.1
globlastp


2668
LYD195
canola|gb161|CN827065_P1
6298
628
81.5
globlastp


2669
LYD195
castorbean|09v1|XM002518693_P1
6299
628
81.5
globlastp


2670
LYD195
iceplant|gb164|AF053553_P1
6300
628
81.5
globlastp


2671
LYD195
canola|10v1|CD817919_P1
6297
628
81.5
globlastp


2671
LYD211
canola|10v1|CD817919_P1
6297
638
80.1
globlastp


2672
LYD195
b_juncea|gb164|EVGN00208909581615_P1
6301
628
81.5
globlastp


2672
LYD211
b_juncea|gb164|EVGN00208909581615_P1
6301
638
80.1
globlastp


2673
LYD195
artemisia|gb164|EY073536_P1
6302
628
81.4
globlastp


2674
LYD195
thellungiella|gb167|DN775757_P1
6303
628
81.4
globlastp


2675
LYD195
jatropha|09v1|GO246755_T1
6304
628
81.38
glotblastn


2676
LYD195
cassava|gb164|DV443819_P1
6305
628
81.3
globlastp


2677
LYD195
cryptomeria|gb166|BP176134_T1
6306
628
81.27
glotblastn


2678
LYD195
pine|gb157.2|AF036095_T1
6307
628
81.22
glotblastn


2679
LYD195
b_oleracea|gb161|AM385464_P1
6308
628
81.2
globlastp


2680
LYD195
liriodendron|gb166|DT595199_P1
6309
628
81.2
globlastp


2681
LYD195
gerbera|09v1|AJ762598_P1
6310
628
81
globlastp


2682
LYD195
cassava|09v1|DV448480_T1
6311
628
80.97
glotblastn


2683
LYD195
cassava|09v1|DV443819_P1
6312
628
80.9
globlastp


2684
LYD195
spruce|gb162|CO226032_T1
6313
628
80.82
glotblastn


2685
LYD195
pine|10v1|AA556630_T1
6314
628
80.82
glotblastn


2686
LYD195
switchgrass|gb167|DN140691_T1
6315
628
80.82
glotblastn


2686
LYD211
switchgrass|gb167|DN140691_P1
6315
638
95.4
globlastp


2687
LYD195
switchgrass|gb167|DN143927_T1
6316
628
80.82
glotblastn


2687
LYD211
switchgrass|gb167|DN143927_P1
6316
638
93.9
globlastp


2688
LYD195
dandelion|gb161|DY813534_P1
6317
628
80.8
globlastp


2689
LYD195
arabidopsis_lyrata|09v1|JGIAL024592_P1
6318
628
80.7
globlastp


2689
LYD211
arabidopsis_lyrata|09v1|JGIAL024592_P1
6318
638
80.2
globlastp


2690
LYD195
arabidopsis|10v1|AT4G34050_P1
6318
628
80.7
globlastp


2690
LYD211
arabidopsis|10v1|AT4G34050_P1
6318
638
80.2
globlastp


2691
LYD195
arabidopsis|gb165|AT4G34050_P1
6318
628
80.7
globlastp


2691
LYD211
arabidopsis|gb165|AT4G34050_P1
6318
638
80.2
globlastp


2692
LYD195
pine|10v1|AI812878_T1
6319
628
80.41
glotblastn


2693
LYD195
pine|gb157.2|AA556630_T1
6320
628
80.41
glotblastn


2694
LYD195
pine|gb157.2|AL750465_T1
6321
628
80.41
glotblastn


2695
LYD195
artemisia|10v1|EY053286_P1
6322
628
80.4
globlastp


2696
LYD195
cassava|gb164|DV448480_T1
6323
628
80.16
glotblastn


2697
LYD195
fescue|gb161|DT707061_T1
6324
628
80.08
glotblastn


2697
LYD211
fescue|gb161|DT707061_P1
6324
638
82.3
globlastp


2698
LYD195
castorbean|09v1|XM002523572_T1
6325
628
80
glotblastn


2699
LYD196
sorghum|09v1|SB01G046160_T1
6326
629
96.47
glotblastn


2700
LYD197
arabidopsis_lyrata|09v1|JGIAL031045_P1
6327
630
92.9
globlastp


2701
LYD200
canola|10v1|EE435493_P1
6328
631
93.3
globlastp


2702
LYD200
canola|gb161|EE435493_P1
6328
631
93.3
globlastp


2703
LYD200
b_rapa|gb162|L35788_P1
6329
631
90
globlastp


2704
LYD201
b_oleracea|gb161|DY023468_P1
632
632
100
globlastp


2705
LYD201
b_rapa|gb162|L33494_P1
632
632
100
globlastp


2706
LYD201
canola|gb161|CD814222_P1
632
632
100
globlastp


2707
LYD201
radish|gb164|EV536280_P1
632
632
100
globlastp


2708
LYD201
radish|gb164|EV543503_P1
632
632
100
globlastp


2709
LYD201
canola|10v1|CN736580_P1
6330
632
99.5
globlastp


2710
LYD201
b_rapa|gb162|CX266259_P1
6330
632
99.5
globlastp


2711
LYD201
canola|10v1|CD814222_P1
6331
632
99.5
globlastp


2712
LYD201
canola|gb161|CD822065_P1
6331
632
99.5
globlastp


2713
LYD201
canola|gb161|CN736580_P1
6330
632
99.5
globlastp


2714
LYD201
canola|10v1|H74733_P1
6330
632
99.5
globlastp


2715
LYD201
canola|gb161|H74733_P1
6330
632
99.5
globlastp


2716
LYD201
radish|gb164|EV535404_P1
6330
632
99.5
globlastp


2717
LYD201
arabidopsis_lyrata|09v1|JGIAL000178_P1
6332
632
97.9
globlastp


2718
LYD201
arabidopsis_lyrata|09v1|JGIAL023653_P1
6333
632
97.9
globlastp


2719
LYD201
arabidopsis|10v1|AT4G02080_P1
6334
632
97.9
globlastp


2720
LYD201
arabidopsis|gb165|AT4G02080_P1
6334
632
97.9
globlastp


2721
LYD201
apple|gb171|CN578516_P1
6335
632
96.9
globlastp


2722
LYD201
citrus|gb166|BE213489_P1
6336
632
96.9
globlastp


2723
LYD201
strawberry|gb164|CO381157_P1
6337
632
96.9
globlastp


2724
LYD201
cassava|09v1|DB923790_P1
6338
632
96.4
globlastp


2725
LYD201
cleome_spinosa|10v1|GR935463_P1
6339
632
96.4
globlastp


2726
LYD201
cucumber|09v1|EB714467_P1
6340
632
96.4
globlastp


2727
LYD201
melon|10v1|EB714467_P1
6341
632
96.4
globlastp


2728
LYD201
nasturtium|10v1|GH166857_P1
6342
632
96.4
globlastp


2729
LYD201
apple|gb171|CN495817_P1
6343
632
96.4
globlastp


2730
LYD201
cassava|09v1|DV456795_P1
6344
632
96.4
globlastp


2731
LYD201
cassava|gb164|DV456795_P1
6344
632
96.4
globlastp


2732
LYD201
castorbean|09v1|EE257238_P1
6345
632
96.4
globlastp


2733
LYD201
grape|gb160|BQ792627_P1
6346
632
96.4
globlastp


2734
LYD201
medicago|09v1|AW329400_P1
6347
632
96.4
globlastp


2735
LYD201
melon|gb165|EB714467_P1
6341
632
96.4
globlastp


2736
LYD201
cucumber|09v1|AM714944_P1
6348
632
95.9
globlastp


2737
LYD201
millet|10v1|EVO454PM015862_P1
6349
632
95.9
globlastp


2738
LYD201
apple|gb171|CN580897_P1
6350
632
95.9
globlastp


2739
LYD201
poplar|10v1|AI164063_P1
6351
632
95.9
globlastp


2740
LYD201
poplar|gb170|AI164063_P1
6351
632
95.9
globlastp


2741
LYD201
poplar|10v1|BU821219_P1
6352
632
95.9
globlastp


2742
LYD201
poplar|gb170|BU821219_P1
6352
632
95.9
globlastp


2743
LYD201
jatropha|09v1|GT228862_T1
6353
632
95.85
glotblastn


2744
LYD201
brachypodium|09v1|DV481100_P1
6354
632
95.3
globlastp


2745
LYD201
cleome_gynandra|10v1|SRR015532S0002941_P1
6355
632
95.3
globlastp


2746
LYD201
heritiera|10v1|SRR005794S0002344_P1
6356
632
95.3
globlastp


2747
LYD201
heritiera|10v1|SRR005795S0007601_P1
6357
632
95.3
globlastp


2748
LYD201
melon|10v1|AM714944_P1
6358
632
95.3
globlastp


2749
LYD201
melon|10v1|DV635115_P1
6359
632
95.3
globlastp


2750
LYD201
millet|10v1|CD725311_P1
6354
632
95.3
globlastp


2751
LYD201
oak|10v1|FP041158_P1
6360
632
95.3
globlastp


2752
LYD201
apple|gb171|CN488933_P1
6361
632
95.3
globlastp


2753
LYD201
apple|gb171|CN495761_P1
6362
632
95.3
globlastp


2754
LYD201
barley|gb157SOLEXA|BE411202_P1
6363
632
95.3
globlastp


2755
LYD201
brachypodium|gb169|BE412821_P1
6354
632
95.3
globlastp


2756
LYD201
cacao|gb167|CF972901_P1
6364
632
95.3
globlastp


2757
LYD201
castorbean|09v1|EE257230_P1
6365
632
95.3
globlastp


2758
LYD201
cenchrus|gb166|EB655029_P1
6354
632
95.3
globlastp


2759
LYD201
chestnut|gb170|SRR006295S0004786_P1
6366
632
95.3
globlastp


2760
LYD201
citrus|gb166|CF418356_P1
6367
632
95.3
globlastp


2761
LYD201
citrus|gb166|CF506461_P1
6368
632
95.3
globlastp


2762
LYD201
cotton|10v1|AI726023_P1
6369
632
95.3
globlastp


2763
LYD201
cotton|gb164|AI726023_P1
6369
632
95.3
globlastp


2764
LYD201
cotton|gb164|DR455589_P1
6370
632
95.3
globlastp


2765
LYD201
eucalyptus|gb166|ES593417_P1
6371
632
95.3
globlastp


2766
LYD201
grape|gb160|BM437739_P1
6372
632
95.3
globlastp


2767
LYD201
lolium|09v1|ES699563_P1
6373
632
95.3
globlastp


2768
LYD201
lolium|10v1|ES699563_P1
6373
632
95.3
globlastp


2769
LYD201
maize|10v1|AW288509_P1
6354
632
95.3
globlastp


2770
LYD201
maize|10v1|T14655_P1
6354
632
95.3
globlastp


2771
LYD201
maize|gb170|T14655_P1
6354
632
95.3
globlastp


2772
LYD201
melon|gb165|DV635115_P1
6359
632
95.3
globlastp


2773
LYD201
oak|gb170|DB998925_P1
6360
632
95.3
globlastp


2774
LYD201
oak|gb170|SRR006307S0000395_P1
6360
632
95.3
globlastp


2775
LYD201
onion|gb162|CF446497_P1
6374
632
95.3
globlastp


2776
LYD201
sorghum|09v1|SB03G013550_P1
6354
632
95.3
globlastp


2777
LYD201
strawberry|gb164|EX661290_P1
6375
632
95.3
globlastp


2778
LYD201
sugarcane|gb157.3|CA071822_P1
6354
632
95.3
globlastp


2779
LYD201
sugarcane|gb157.3|CA119203_P1
6354
632
95.3
globlastp


2780
LYD201
switchgrass|gb167|DN143835_P1
6354
632
95.3
globlastp


2781
LYD201
switchgrass|gb167|DN144781_P1
6354
632
95.3
globlastp


2782
LYD201
wheat|gb164|BE426680_P1
6376
632
95.3
globlastp


2783
LYD201
sugarcane|10v1|CA071822_P1
6354
632
95.3
globlastp


2784
LYD201
oak|10v1|DB998925_T1
6377
632
94.82
glotblastn


2785
LYD201
grape|gb160|CA815541_T1
6378
632
94.82
glotblastn


2786
LYD201
arabidopsis_lyrata|09v1|JGIAL005252_P1
6379
632
94.8
globlastp


2787
LYD201
arabidopsis_lyrata|09v1|JGIAL019603_P1
6380
632
94.8
globlastp


2788
LYD201
cotton|10v1|DR455589_P1
6381
632
94.8
globlastp


2789
LYD201
cucumber|09v1|DV635115_P1
6382
632
94.8
globlastp


2790
LYD201
eggplant|10v1|FS000694_P1
6383
632
94.8
globlastp


2791
LYD201
oat|10v2|AF084005_P1
6384
632
94.8
globlastp


2792
LYD201
prunus|10v1|AF048825_P1
6385
632
94.8
globlastp


2793
LYD201
arabidopsis|10v1|AT1G56330_P1
6386
632
94.8
globlastp


2794
LYD201
barley|10v1|BE412821_P1
6387
632
94.8
globlastp


2795
LYD201
barley|gb157SOLEXA|BE412821_P1
6387
632
94.8
globlastp


2796
LYD201
cotton|10v1|BF277532_P1
6388
632
94.8
globlastp


2797
LYD201
cotton|10v1|BQ416087_P1
6389
632
94.8
globlastp


2798
LYD201
cowpea|gb166|FF386015_P1
6390
632
94.8
globlastp


2799
LYD201
ginger|gb164|DY349578_P1
6391
632
94.8
globlastp


2800
LYD201
pepper|gb171|CO908545_P1
6383
632
94.8
globlastp


2801
LYD201
poppy|gb166|FE964246_P1
6392
632
94.8
globlastp


2802
LYD201
poppy|gb166|FE965260_P1
6393
632
94.8
globlastp


2803
LYD201
potato|10v1|BG350081_P1
6383
632
94.8
globlastp


2804
LYD201
potato|gb157.2|BG350081_P1
6383
632
94.8
globlastp


2805
LYD201
prunus|10v1|BU047217_P1
6394
632
94.8
globlastp


2806
LYD201
prunus|gb167|BU047217_P1
6394
632
94.8
globlastp


2807
LYD201
pseudoroegneria|gb167|FF340041_P1
6395
632
94.8
globlastp


2808
LYD201
rose|10v1|BI977245_P1
6396
632
94.8
globlastp


2809
LYD201
rose|gb157.2|BI977245_P1
6396
632
94.8
globlastp


2810
LYD201
solanum_phureja|09v1|SPHBG123382_P1
6383
632
94.8
globlastp


2811
LYD201
soybean|gb168|CA907801_P1
6390
632
94.8
globlastp


2812
LYD201
strawberry|gb164|EX684999_P1
6397
632
94.8
globlastp


2813
LYD201
switchgrass|gb167|DN143500_P1
6398
632
94.8
globlastp


2814
LYD201
tomato|09v1|BG123382_P1
6399
632
94.8
globlastp


2815
LYD201
tomato|gb164|BG123382_P1
6399
632
94.8
globlastp


2816
LYD201
triphysaria|10v1|EY129553_P1
6400
632
94.8
globlastp


2817
LYD201
wheat|gb164|BE405729_P1
6401
632
94.8
globlastp


2818
LYD201
ipomoea_nil|10v1|BJ556321_P1
6402
632
94.3
globlastp


2819
LYD201
oat|10v2|GO588070_P1
6403
632
94.3
globlastp


2820
LYD201
orobanche|10v1|SRR023189S0020719_P1
6404
632
94.3
globlastp


2821
LYD201
rhizophora|10v1|SRR005792S0001094_P1
6405
632
94.3
globlastp


2822
LYD201
apple|gb171|CN580370_P1
6406
632
94.3
globlastp


2823
LYD201
apple|gb171|CN863209_P1
6407
632
94.3
globlastp


2824
LYD201
arabidopsis|10v1|AT3G62560_P1
6408
632
94.3
globlastp


2825
LYD201
banana|10v1|BBS1216T3_P1
6409
632
94.3
globlastp


2826
LYD201
banana|10v1|FF562066_P1
6410
632
94.3
globlastp


2827
LYD201
cacao|gb167|CU473711_P1
6411
632
94.3
globlastp


2828
LYD201
cacao|gb167|CU504692_P1
6412
632
94.3
globlastp


2829
LYD201
coffea|10v1|DV663797_P1
6413
632
94.3
globlastp


2830
LYD201
coffea|gb157.2|DV663797_P1
6413
632
94.3
globlastp


2831
LYD201
cotton|10v1|AI730854_P1
6414
632
94.3
globlastp


2832
LYD201
cotton|gb164|BF277532_P1
6415
632
94.3
globlastp


2833
LYD201
cotton|gb164|BQ416087_P1
6416
632
94.3
globlastp


2834
LYD201
iceplant|gb164|AW053482_P1
6417
632
94.3
globlastp


2835
LYD201
ipomoea|gb157.2|BJ556321_P1
6402
632
94.3
globlastp


2836
LYD201
kiwi|gb166|FG442511_P1
6418
632
94.3
globlastp


2837
LYD201
monkeyflower|09v1|DV210070_P1
6419
632
94.3
globlastp


2838
LYD201
monkeyflower|10v1|DV210070_P1
6419
632
94.3
globlastp


2839
LYD201
papaya|gb165|EX231956_P1
6420
632
94.3
globlastp


2840
LYD201
pea|09v1|CD860823_P1
6421
632
94.3
globlastp


2841
LYD201
poplar|10v1|BI070125_P1
6422
632
94.3
globlastp


2842
LYD201
poplar|gb170|BI070125_P1
6422
632
94.3
globlastp


2843
LYD201
poplar|10v1|BI126257_P1
6423
632
94.3
globlastp


2844
LYD201
prunus|10v1|BU043075_P1
6424
632
94.3
globlastp


2845
LYD201
prunus|gb167|BU043075_P1
6424
632
94.3
globlastp


2846
LYD201
prunus|10v1|BU047261_P1
6425
632
94.3
globlastp


2847
LYD201
prunus|gb167|BU047261_P1
6425
632
94.3
globlastp


2848
LYD201
rice|gb170|OS01G23620_P1
6426
632
94.3
globlastp


2849
LYD201
thellungiella|gb167|DN775726_P1
6427
632
94.3
globlastp


2850
LYD201
cucumber|09v1|AM736613_P1
6428
632
93.8
globlastp


2851
LYD201
curcuma|10v1|DY383352_P1
6429
632
93.8
globlastp


2852
LYD201
eggplant|10v1|FS011441_P1
6430
632
93.8
globlastp


2853
LYD201
melon|10v1|AM736613_P1
6428
632
93.8
globlastp


2854
LYD201
nasturtium|10v1|SRR032558S0063645_P1
6431
632
93.8
globlastp


2855
LYD201
oak|10v1|FP039659_P1
6432
632
93.8
globlastp


2856
LYD201
pigeonpea|10v1|GW348949_P1
6433
632
93.8
globlastp


2857
LYD201
salvia|10v1|SRR014553S0002915_P1
6434
632
93.8
globlastp


2858
LYD201
tragopogon|10v1|SRR020205S0011036_P1
6435
632
93.8
globlastp


2859
LYD201
amborella|gb166|CD482203_P1
6436
632
93.8
globlastp


2860
LYD201
banana|gb167|FF562066_P1
6437
632
93.8
globlastp


2861
LYD201
basilicum|10v1|DY342472_P1
6438
632
93.8
globlastp


2862
LYD201
cassava|09v1|DV458296_P1
6439
632
93.8
globlastp


2863
LYD201
cassava|gb164|DR085772_P1
6439
632
93.8
globlastp


2864
LYD201
cassava|09v1|DV441309_P1
6440
632
93.8
globlastp


2865
LYD201
cassava|gb164|DV441309_P1
6440
632
93.8
globlastp


2866
LYD201
castorbean|09v1|EV521574_P1
6441
632
93.8
globlastp


2867
LYD201
chestnut|gb170|SRR006295S0016299_P1
6442
632
93.8
globlastp


2868
LYD201
coffea|10v1|CF588658_P1
6443
632
93.8
globlastp


2869
LYD201
coffea|gb157.2|CF588658_P1
6443
632
93.8
globlastp


2870
LYD201
cotton|10v1|AI728302_P1
6444
632
93.8
globlastp


2871
LYD201
cotton|gb164|AI730854_P1
6445
632
93.8
globlastp


2872
LYD201
cowpea|gb166|FC461231_P1
6446
632
93.8
globlastp


2873
LYD201
eucalyptus|gb166|CT980876_P1
6447
632
93.8
globlastp


2874
LYD201
ginger|gb164|DY361206_P1
6429
632
93.8
globlastp


2875
LYD201
medicago|09v1|LLAJ389002_P1
6448
632
93.8
globlastp


2876
LYD201
melon|gb165|AM714944_P1
6449
632
93.8
globlastp


2877
LYD201
nuphar|gb166|CK746937_P1
6450
632
93.8
globlastp


2878
LYD201
oak|gb170|SRR006307S0016171_P1
6451
632
93.8
globlastp


2879
LYD201
peanut|10v1|ES722249_P1
6452
632
93.8
globlastp


2880
LYD201
pepper|gb171|BM059626_P1
6430
632
93.8
globlastp


2881
LYD201
poplar|10v1|BU861778_P1
6453
632
93.8
globlastp


2882
LYD201
poplar|gb170|BU861778_P1
6453
632
93.8
globlastp


2883
LYD201
radish|gb164|EX772918_P1
6454
632
93.8
globlastp


2884
LYD201
solanum_phureja|09v1|SPHAW034613_P1
6455
632
93.8
globlastp


2885
LYD201
sorghum|09v1|SB0111S002010_P1
6456
632
93.8
globlastp


2886
LYD201
soybean|gb168|AW329400_P1
6457
632
93.8
globlastp


2887
LYD201
soybean|gb168|BE239992_P1
6458
632
93.8
globlastp


2888
LYD201
sugarcane|10v1|BQ536213_P1
6456
632
93.8
globlastp


2889
LYD201
sugarcane|gb157.3|BQ536213_P1
6459
632
93.8
globlastp


2890
LYD201
sunflower|10v1|DY925572_P1
6460
632
93.8
globlastp


2891
LYD201
sunflower|gb162|DY925572_P1
6460
632
93.8
globlastp


2892
LYD201
switchgrass|gb167|FL890345_P1
6461
632
93.8
globlastp


2893
LYD201
switchgrass|gb167|FL925071_P1
6462
632
93.8
globlastp


2894
LYD201
tomato|09v1|AW034613_P1
6455
632
93.8
globlastp


2895
LYD201
tomato|gb164|AW034613_P1
6455
632
93.8
globlastp


2896
LYD201
triphysaria|10v1|EX983317_P1
6463
632
93.8
globlastp


2897
LYD201
triphysaria|gb164|EX983317_P1
6463
632
93.8
globlastp


2898
LYD201
triphysaria|10v1|EY126729_P1
6464
632
93.8
globlastp


2899
LYD201
triphysaria|gb164|EY126729_P1
6464
632
93.8
globlastp


2900
LYD201
triphysaria|gb164|EY129553_P1
6465
632
93.8
globlastp


2901
LYD201
canola|10v1|FG554744_P1
6466
632
93.3
globlastp


2902
LYD201
cleome_spinosa|10v1|GR931642_P1
6467
632
93.3
globlastp


2903
LYD201
heritiera|10v1|SRR005794S0007553_P1
6468
632
93.3
globlastp


2904
LYD201
ipomoea_nil|10v1|BJ553656_P1
6469
632
93.3
globlastp


2905
LYD201
lettuce|10v1|DW074507_P1
6470
632
93.3
globlastp


2906
LYD201
salvia|10v1|CV163233_P1
6471
632
93.3
globlastp


2907
LYD201
tea|10v1|GE651401_P1
6472
632
93.3
globlastp


2908
LYD201
tragopogon|10v1|SRR020205S0016454_P1
6473
632
93.3
globlastp


2909
LYD201
antirrhinum|gb166|AJ559518_P1
6474
632
93.3
globlastp


2910
LYD201
apple|gb171|AF048825_P1
6475
632
93.3
globlastp


2911
LYD201
b_rapa|gb162|BCU55036_P1
6466
632
93.3
globlastp


2912
LYD201
canola|10v1|CD812447_P1
6466
632
93.3
globlastp


2913
LYD201
canola|gb161|CD812447_P1
6466
632
93.3
globlastp


2914
LYD201
canola|10v1|DY006847_P1
6466
632
93.3
globlastp


2915
LYD201
canola|gb161|DY006847_P1
6466
632
93.3
globlastp


2916
LYD201
cassava|09v1|DR085772_P1
6476
632
93.3
globlastp


2917
LYD201
cassava|gb164|DR086941_P1
6477
632
93.3
globlastp


2918
LYD201
centaurea|gb166|EH714735_P1
6470
632
93.3
globlastp


2919
LYD201
centaurea|gb166|EH755488_P1
6470
632
93.3
globlastp


2920
LYD201
cichorium|gb171|DT212637_P1
6470
632
93.3
globlastp


2921
LYD201
cichorium|gb171|EH689329_P1
6478
632
93.3
globlastp


2922
LYD201
cotton|gb164|AI728302_P1
6479
632
93.3
globlastp


2923
LYD201
cowpea|gb166|FC457632_P1
6480
632
93.3
globlastp


2924
LYD201
cynara|gb167|GE587803_P1
6470
632
93.3
globlastp


2925
LYD201
dandelion|10v1|DR399381_P1
6470
632
93.3
globlastp


2926
LYD201
dandelion|gb161|DY807874_P1
6470
632
93.3
globlastp


2927
LYD201
ipomoea|gb157.2|BJ553656_P1
6469
632
93.3
globlastp


2928
LYD201
lettuce|gb157.2|DW074507_P1
6470
632
93.3
globlastp


2929
LYD201
lettuce|gb157.2|DW112970_P1
6473
632
93.3
globlastp


2930
LYD201
lettuce|gb157.2|DW145079_P1
6473
632
93.3
globlastp


2931
LYD201
lotus|09v1|LLAI967735_P1
6481
632
93.3
globlastp


2932
LYD201
peanut|10v1|ES718834_P1
6482
632
93.3
globlastp


2933
LYD201
peanut|gb171|EH045041_P1
6482
632
93.3
globlastp


2934
LYD201
peanut|10v1|ES721921_P1
6483
632
93.3
globlastp


2935
LYD201
potato|gb157.2|BF459589_P1
6484
632
93.3
globlastp


2936
LYD201
radish|gb164|EV535849_P1
6466
632
93.3
globlastp


2937
LYD201
rice|gb170|OS01G15010_P1
6485
632
93.3
globlastp


2938
LYD201
rice|gb170|OS12G37360_P1
6486
632
93.3
globlastp


2939
LYD201
safflower|gb162|EL392690_P1
6470
632
93.3
globlastp


2940
LYD201
senecio|gb170|DY659667_P1
6487
632
93.3
globlastp


2941
LYD201
solanum_phureja|09v1|SPHBG130022_P1
6484
632
93.3
globlastp


2942
LYD201
sunflower|gb162|CD852926_P1
6470
632
93.3
globlastp


2943
LYD201
sunflower|10v1|CD852926_P1
6470
632
93.3
globlastp


2944
LYD201
sunflower|gb162|EL441563_P1
6470
632
93.3
globlastp


2945
LYD201
tea|gb171|CV066987_P1
6472
632
93.3
globlastp


2946
LYD201
tomato|09v1|BG130022_P1
6484
632
93.3
globlastp


2947
LYD201
tomato|gb164|BG130022_P1
6484
632
93.3
globlastp


2948
LYD201
lettuce|10v1|DW055345_P1
6473
632
93.3
globlastp


2949
LYD201
potato|10v1|BF459589_P1
6484
632
93.3
globlastp


2950
LYD201
eucalyptus|gb166|CT987357_T1
6488
632
93.26
glotblastn


2951
LYD201
b_juncea|10v2|E6ANDIZ01BLEAU_P1
6489
632
92.8
globlastp


2952
LYD201
b_rapa|gb162|ES932634_P1
6489
632
92.8
globlastp


2953
LYD201
canola|gb161|DY010851_P1
6489
632
92.8
globlastp


2954
LYD201
radish|gb164|EV543721_P1
6489
632
92.8
globlastp


2955
LYD201
radish|gb164|EX770221_P1
6489
632
92.8
globlastp


2956
LYD201
canola|10v1|DY010851_P1
6489
632
92.8
globlastp


2957
LYD201
ipomoea_batatas|10v1|EE882235_T1
6490
632
92.75
glotblastn


2958
LYD201
pigeonpea|10v1|GW359950_T1
6491
632
92.75
glotblastn


2959
LYD201
pigeonpea|10v1|SRR054580S0024079_T1
6492
632
92.75
glotblastn


2960
LYD201
triphysaria|10v1|EX999862_T1
6493
632
92.75
glotblastn


2961
LYD201
melon|gb165|AM736613_T1
6494
632
92.75
glotblastn


2962
LYD201
aquilegia|10v1|DR922692_P1
6495
632
92.7
globlastp


2963
LYD201
ipomoea_nil|10v1|BJ554402_P1
6496
632
92.7
globlastp


2964
LYD201
nasturtium|10v1|SRR032558S0002294_P1
6497
632
92.7
globlastp


2965
LYD201
triphysaria|10v1|DR172714_P1
6498
632
92.7
globlastp


2966
LYD201
antirrhinum|gb166|AJ559528_P1
6499
632
92.7
globlastp


2967
LYD201
avocado|10v1|CO998056_P1
6500
632
92.7
globlastp


2968
LYD201
avocado|gb164|CO998056_P1
6500
632
92.7
globlastp


2969
LYD201
basilicum|gb157.3|DY342472_P1
6501
632
92.7
globlastp


2970
LYD201
bean|gb167|CA898565_P1
6502
632
92.7
globlastp


2971
LYD201
bean|gb167|CA907815_P1
6503
632
92.7
globlastp


2972
LYD201
bean|gb167|CA907901_P1
6504
632
92.7
globlastp


2973
LYD201
beet|gb162|BQ489381_P1
6505
632
92.7
globlastp


2974
LYD201
brachypodium|09v1|DV484252_P1
6506
632
92.7
globlastp


2975
LYD201
brachypodium|gb169|BE405729_P1
6506
632
92.7
globlastp


2976
LYD201
canola|gb161|DY010564_P1
6507
632
92.7
globlastp


2977
LYD201
chickpea|09v2|GR403699_P1
6508
632
92.7
globlastp


2978
LYD201
cotton|10v1|AI726130_P1
6509
632
92.7
globlastp


2979
LYD201
cryptomeria|gb166|BJ940282_P1
6510
632
92.7
globlastp


2980
LYD201
cynara|gb167|GE585770_P1
6511
632
92.7
globlastp


2981
LYD201
ipomoea|gb157.2|BJ554402_P1
6496
632
92.7
globlastp


2982
LYD201
kiwi|gb166|FG431590_P1
6512
632
92.7
globlastp


2983
LYD201
lettuce|gb157.2|DW055345_P1
6513
632
92.7
globlastp


2984
LYD201
liquorice|gb171|FS244269_P1
6514
632
92.7
globlastp


2985
LYD201
lotus|09v1|BP071405_P1
6515
632
92.7
globlastp


2986
LYD201
peanut|10v1|EE124259_P1
6516
632
92.7
globlastp


2987
LYD201
peanut|gb171|EE124259_P1
6516
632
92.7
globlastp


2988
LYD201
pepper|gb171|CA520057_P1
6517
632
92.7
globlastp


2989
LYD201
petunia|gb171|CV293121_P1
6518
632
92.7
globlastp


2990
LYD201
poppy|gb166|FG607099_P1
6519
632
92.7
globlastp


2991
LYD201
potato|gb157.2|BG595658_P1
6520
632
92.7
globlastp


2992
LYD201
safflower|gb162|EL399824_P1
6521
632
92.7
globlastp


2993
LYD201
soybean|gb168|AI967735_P1
6522
632
92.7
globlastp


2994
LYD201
soybean|gb168|AJ389002_P1
6523
632
92.7
globlastp


2995
LYD201
soybean|gb168|AL375445_P1
6524
632
92.7
globlastp


2996
LYD201
soybean|gb168|CF922718_P1
6525
632
92.7
globlastp


2997
LYD201
spurge|gb161|DV112769_P1
6526
632
92.7
globlastp


2998
LYD201
switchgrass|gb167|DN140651_P1
6527
632
92.7
globlastp


2999
LYD201
switchgrass|gb167|DN141173_P1
6527
632
92.7
globlastp


3000
LYD201
tobacco|gb162|BP192482_P1
6528
632
92.7
globlastp


3001
LYD201
tobacco|gb162|D87821_P1
6528
632
92.7
globlastp


3002
LYD201
tobacco|gb162|NTU46928_P1
6529
632
92.7
globlastp


3003
LYD201
walnuts|gb166|CV195326_P1
6530
632
92.7
globlastp


3004
LYD201
radish|gb164|EV528328_P1
6531
632
92.3
globlastp


3005
LYD201
chestnut|gb170|SRR006295S0022297_T1
6532
632
92.23
glotblastn


3006
LYD201
cassava|09v1|FG805794_P1
6533
632
92.2
globlastp


3007
LYD201
curcuma|10v1|DY389286_P1
6534
632
92.2
globlastp


3008
LYD201
millet|10v1|EVO454PM010619_P1
6535
632
92.2
globlastp


3009
LYD201
orobanche|10v1|SRR023189S0005863_P1
6536
632
92.2
globlastp


3010
LYD201
tragopogon|10v1|SRR020205S0008368_P1
6537
632
92.2
globlastp


3011
LYD201
bean|gb167|CA907810_P1
6538
632
92.2
globlastp


3012
LYD201
centaurea|gb166|EH724820_P1
6539
632
92.2
globlastp


3013
LYD201
centaurea|gb166|EH737464_P1
6540
632
92.2
globlastp


3014
LYD201
cowpea|gb166|ES884134_P1
6538
632
92.2
globlastp


3015
LYD201
lettuce|10v1|DW117562_P1
6541
632
92.2
globlastp


3016
LYD201
lettuce|gb157.2|DW117562_P1
6541
632
92.2
globlastp


3017
LYD201
maize|10v1|AI947720_P1
6542
632
92.2
globlastp


3018
LYD201
maize|gb170|AI947720_P1
6542
632
92.2
globlastp


3019
LYD201
papaya|gb165|EX261772_P1
6543
632
92.2
globlastp


3020
LYD201
pine|10v1|BE662420_P1
6544
632
92.2
globlastp


3021
LYD201
pine|gb157.2|BE662420_P1
6544
632
92.2
globlastp


3022
LYD201
radish|gb164|EV527447_P1
6545
632
92.2
globlastp


3023
LYD201
safflower|gb162|EL384996_P1
6539
632
92.2
globlastp


3024
LYD201
sorghum|09v1|SB03G009760_P1
6542
632
92.2
globlastp


3025
LYD201
soybean|gb168|AL370671_P1
6546
632
92.2
globlastp


3026
LYD201
soybean|gb168|BE659271_P1
6547
632
92.2
globlastp


3027
LYD201
spruce|gb162|CO217770_P1
6548
632
92.2
globlastp


3028
LYD201
sunflower|10v1|CD846865_P1
6549
632
92.2
globlastp


3029
LYD201
sunflower|10v1|CD848519_P1
6550
632
92.2
globlastp


3030
LYD201
sunflower|gb162|DY912940_P1
6550
632
92.2
globlastp


3031
LYD201
tea|gb171|GE650564_P1
6551
632
92.2
globlastp


3032
LYD201
tobacco|gb162|CV017890_P1
6552
632
92.2
globlastp


3033
LYD201
tobacco|gb162|X97967_P1
6552
632
92.2
globlastp


3034
LYD201
tea|10v1|CV067078_T1
6553
632
91.71
glotblastn


3035
LYD201
brachypodium|09v1|GT772462_P1
6554
632
91.7
globlastp


3036
LYD201
cotton|10v1|BQ406141_P1
6555
632
91.7
globlastp


3037
LYD201
dandelion|10v1|DR398699_P1
6556
632
91.7
globlastp


3038
LYD201
ipomoea_nil|10v1|BJ562653_P1
6557
632
91.7
globlastp


3039
LYD201
pigeonpea|10v1|SRR054580S0006204_P1
6558
632
91.7
globlastp


3040
LYD201
antirrhinum|gb166|AJ788613_P1
6559
632
91.7
globlastp


3041
LYD201
artemisia|10v1|EY048595_P1
6560
632
91.7
globlastp


3042
LYD201
b_juncea|10v2|E6ANDIZ01BI3CE_P1
6561
632
91.7
globlastp


3043
LYD201
b_juncea|gb164|EVGN00335318190411_P1
6561
632
91.7
globlastp


3044
LYD201
b_rapa|gb162|CA991946_P1
6561
632
91.7
globlastp


3045
LYD201
barley|gb157SOLEXA|BE411848_P1
6562
632
91.7
globlastp


3046
LYD201
canola|10v1|CD820737_P1
6561
632
91.7
globlastp


3047
LYD201
canola|gb161|CD820737_P1
6561
632
91.7
globlastp


3048
LYD201
cotton|gb164|BQ406141_P1
6555
632
91.7
globlastp


3049
LYD201
dandelion|gb161|DY808686_P1
6556
632
91.7
globlastp


3050
LYD201
ipomoea|gb157.2|BJ562653_P1
6563
632
91.7
globlastp


3051
LYD201
kiwi|gb166|FG404500_P1
6564
632
91.7
globlastp


3052
LYD201
lotus|09v1|BW597745_P1
6565
632
91.7
globlastp


3053
LYD201
medicago|09v1|AJ388771_P1
6566
632
91.7
globlastp


3054
LYD201
poplar|gb170|BI126257_P1
6567
632
91.7
globlastp


3055
LYD201
pseudoroegneria|gb167|FF340656_P1
6562
632
91.7
globlastp


3056
LYD201
radish|gb164|EV535478_P1
6561
632
91.7
globlastp


3057
LYD201
radish|gb164|EV565516_P1
6561
632
91.7
globlastp


3058
LYD201
radish|gb164|EW725190_P1
6568
632
91.7
globlastp


3059
LYD201
radish|gb164|EX902413_P1
6569
632
91.7
globlastp


3060
LYD201
rye|gb164|BE494444_P1
6562
632
91.7
globlastp


3061
LYD201
senecio|gb170|DY657889_P1
6570
632
91.7
globlastp


3062
LYD201
senecio|gb170|DY664540_P1
6571
632
91.7
globlastp


3063
LYD201
soybean|gb168|BI970298_P1
6572
632
91.7
globlastp


3064
LYD201
sugarcane|10v1|BQ530239_P1
6573
632
91.7
globlastp


3065
LYD201
sugarcane|gb157.3|BQ530239_P1
6573
632
91.7
globlastp


3066
LYD201
sunflower|gb162|CD846865_P1
6574
632
91.7
globlastp


3067
LYD201
wheat|gb164|BE500854_P1
6562
632
91.7
globlastp


3068
LYD201
wheat|gb164|BQ235923_P1
6562
632
91.7
globlastp


3069
LYD201
arabidopsis_lyrata|09v1|JGIAL000882_P1
6575
632
91.2
globlastp


3070
LYD201
cynodon|10v1|BG322359_P1
6576
632
91.2
globlastp


3071
LYD201
nasturtium|10v1|SRR032558S0000930_P1
6577
632
91.2
globlastp


3072
LYD201
canola|10v1|CD812048_P1
6578
632
91.2
globlastp


3073
LYD201
canola|gb161|CD812048_P1
6578
632
91.2
globlastp


3074
LYD201
canola|10v1|EL593228_P1
6579
632
91.2
globlastp


3075
LYD201
canola|gb161|EL593228_P1
6579
632
91.2
globlastp


3076
LYD201
centaurea|gb166|EH755694_P1
6580
632
91.2
globlastp


3077
LYD201
lettuce|10v1|DW070398_P1
6581
632
91.2
globlastp


3078
LYD201
lettuce|gb157.2|DW070398_P1
6581
632
91.2
globlastp


3079
LYD201
liquorice|gb171|FS247073_P1
6582
632
91.2
globlastp


3080
LYD201
monkeyflower|09v1|DV212911_P1
6583
632
91.2
globlastp


3081
LYD201
monkeyflower|10v1|DV212911_P1
6583
632
91.2
globlastp


3082
LYD201
spurge|gb161|DV113174_P1
6584
632
91.2
globlastp


3083
LYD201
tobacco|gb162|NTU46929_P1
6585
632
91.2
globlastp


3084
LYD201
banana|gb167|FF558115_T1
6586
632
91.19
glotblastn


3085
LYD201
cynara|gb167|GE585844_T1
6587
632
91.19
glotblastn


3086
LYD201
onion|gb162|CF435014_T1
6588
632
91.19
glotblastn


3087
LYD201
oat|10v2|GO582075_P1
6589
632
90.7
globlastp


3088
LYD201
pepper|gb171|CA514007_P1
6590
632
90.7
globlastp


3089
LYD201
oak|10v1|FN640780_P1
6591
632
90.5
globlastp


3090
LYD201
barley|10v1|BE411848_P1
6592
632
90.2
globlastp


3091
LYD201
citrus|gb166|CX076831_P1
6593
632
90.2
globlastp


3092
LYD201
tobacco|gb162|EB683024_P1
6594
632
90.2
globlastp


3093
LYD201
beet|gb162|BI543263_P1
6595
632
89.8
globlastp


3094
LYD201
arabidopsis|10v1|AT1G09180_P1
6596
632
89.6
globlastp


3095
LYD201
arabidopsis|gb165|AT1G09180_P1
6596
632
89.6
globlastp


3096
LYD201
cryptomeria|gb166|AU299041_P1
6597
632
89.6
globlastp


3097
LYD201
cycas|gb166|CB091054_P1
6598
632
89.6
globlastp


3098
LYD201
pine|10v1|AA739841_P1
6599
632
89.6
globlastp


3099
LYD201
pine|gb157.2|AA739841_P1
6599
632
89.6
globlastp


3100
LYD201
spruce|gb162|CO238693_P1
6600
632
89.6
globlastp


3101
LYD201
triphysaria|10v1|EY147779_P1
6601
632
89.6
globlastp


3102
LYD201
triphysaria|gb164|EY147779_P1
6601
632
89.6
globlastp


3103
LYD201
orobanche|10v1|SRR023189S0022597_P1
6602
632
89.1
globlastp


3104
LYD201
physcomitrella|10v1|BJ161116_P1
6603
632
89.1
globlastp


3105
LYD201
physcomitrella|gb157|BJ161116_P1
6603
632
89.1
globlastp


3106
LYD201
radish|gb164|EX771703_P1
6604
632
89.1
globlastp


3107
LYD201
physcomitrella|10v1|BQ827385_P1
6605
632
88.6
globlastp


3108
LYD201
avocado|gb164|FD509067_P1
6606
632
88.6
globlastp


3109
LYD201
ginger|gb164|DY346355_P1
6607
632
88.6
globlastp


3110
LYD201
peanut|gb171|ES722249_P1
6608
632
88.6
globlastp


3111
LYD201
potato|10v1|BG351944_P1
6609
632
88.6
globlastp


3112
LYD201
potato|gb157.2|BG351944_P1
6609
632
88.6
globlastp


3113
LYD201
solanum_phureja|09v1|SPHTOMGTPASE_P1
6609
632
88.6
globlastp


3114
LYD201
b_oleracea|gb161|AM062522_P1
6610
632
88.1
globlastp


3115
LYD201
marchantia|gb166|C95806_P1
6611
632
88.1
globlastp


3116
LYD201
petunia|gb171|CV300582_P1
6612
632
88.1
globlastp


3117
LYD201
tomato|09v1|TOMGTPASE_P1
6613
632
88.1
globlastp


3118
LYD201
tomato|gb164|TOMGTPASE_P1
6613
632
88.1
globlastp


3119
LYD201
cassava|09v1|DB922382_T1

632
87.56
glotblastn


3120
LYD201
gerbera|09v1|AJ754374_P1
6614
632
87.2
globlastp


3121
LYD201
b_juncea|10v2|E6ANDIZ01B5J2W_P1
6615
632
87
globlastp


3122
LYD201
rhizophora|10v1|SRR005792S0006460_P1
6616
632
87
globlastp


3123
LYD201
canola|10v1|EE502143_P1
6617
632
87
globlastp


3124
LYD201
canola|gb161|EE502143_P1
6617
632
87
globlastp


3125
LYD201
cotton|gb164|AI726130_P1
6618
632
87
globlastp


3126
LYD201
ipomoea_batatas|10v1|DV036611_T1
6619
632
86.53
glotblastn


3127
LYD201
acacia|10v1|FS584353_P1
6620
632
86.5
globlastp


3128
LYD201
antirrhinum|gb166|AJ790137_P1
6621
632
86.5
globlastp


3129
LYD201
antirrhinum|gb166|AJ793609_P1
6622
632
86.5
globlastp


3130
LYD201
petunia|gb171|FN000859_P1
6623
632
86.5
globlastp


3131
LYD201
spikemoss|gb165|FE450778_P1
6624
632
86.5
globlastp


3132
LYD201
wheat|gb164|BG606923_P1
6625
632
86.5
globlastp


3133
LYD201
cyamopsis|10v1|EG990518_T1
6626
632
86.01
glotblastn


3134
LYD201
cichorium|gb171|EH690632_P1
6627
632
85.5
globlastp


3135
LYD201
fern|gb171|DK945400_P1
6628
632
85.5
globlastp


3136
LYD201
artemisia|10v1|SRR019254S0321327_T1
6629
632
85.49
glotblastn


3137
LYD201
artemisia|gb164|EY061569_P1
6630
632
85
globlastp


3138
LYD201
kiwi|gb166|FG404662_P1
6631
632
85
globlastp


3139
LYD201
petunia|gb171|FN000129_P1
6632
632
85
globlastp


3140
LYD201
spikemoss|gb165|FE448726_P1
6633
632
84.5
globlastp


3141
LYD201
iceplant|gb164|BE033433_T1
6634
632
84.46
glotblastn


3142
LYD201
chickpea|09v2|GR403467_T1
6635
632
83.94
glotblastn


3143
LYD201
physcomitrella|10v1|AW126671_P1
6636
632
83.9
globlastp


3144
LYD201
physcomitrella|gb157|AW126671_P1
6636
632
83.9
globlastp


3145
LYD201
monkeyflower|10v1|MGJGI004466_P1
6637
632
83.4
globlastp


3146
LYD201
peanut|gb171|ES721921_P1
6638
632
83.4
globlastp


3147
LYD201
dandelion|gb161|DY812100_T1
6639
632
82.99
glotblastn


3148
LYD201
chickpea|09v2|GR402896_P1
6640
632
82.9
globlastp


3149
LYD201
physcomitrella|10v1|BJ174310_P1
6641
632
82.9
globlastp


3150
LYD201
physcomitrella|gb157|BJ174310_P1
6641
632
82.9
globlastp


3151
LYD201
spikemoss|gb165|FE517935_P1
6642
632
82.9
globlastp


3152
LYD201
basilicum|10v1|DY339599_P1
6643
632
82.3
globlastp


3153
LYD201
spikemoss|gb165|DN839042_P1
6644
632
81.9
globlastp


3154
LYD201
lovegrass|gb167|EH189602_T1
6645
632
81.87
glotblastn


3155
LYD201
zinnia|gb171|DV017338_P1
6646
632
81.3
globlastp


3156
LYD201
barley|10v1|BE411202_P1
6647
632
81.2
globlastp


3157
LYD201
eschscholzia|10v1|CK747995_P1
6648
632
80.8
globlastp


3158
LYD201
avocado|gb164|CK752490_P1
6649
632
80.8
globlastp


3159
LYD201
lolium|09v1|AU245847_P1
6650
632
80.8
globlastp


3160
LYD201
lotus|09v1|CB828505_P1
6651
632
80.8
globlastp


3161
LYD201
oil_palm|gb166|EY411937_P1
6652
632
80.8
globlastp


3162
LYD201
pigeonpea|10v1|SRR054580S0000341_T1
6653
632
80.31
glotblastn


3163
LYD201
lolium|10v1|AU245847_T1
6654
632
80.31
glotblastn


3164
LYD201
ostreococcus|gb162|XM001422553_T1
6655
632
80.31
glotblastn


3165
LYD201
ipomoea_batatas|10v1|BU691028_P1
6656
632
80.3
globlastp


3166
LYD201
avocado|10v1|CK752490_P1
6657
632
80.3
globlastp


3167
LYD202
b_oleracea|gb161|AM058040_P1
6658
633
98.8
globlastp


3168
LYD202
canola|gb161|CD843895_P1
6659
633
98.8
globlastp


3169
LYD202
canola|gb161|EE434181_P1
6658
633
98.8
globlastp


3170
LYD202
canola|10v1|CD843895_P1
6658
633
98.8
globlastp


3171
LYD202
cleome_gynandra|10v1|SRR015532S0006952_P1
6660
633
86.7
globlastp


3172
LYD202
avocado|10v1|CO998009_P1
6661
633
82.5
globlastp


3173
LYD202
avocado|gb164|CO998009_P1
6661
633
82.5
globlastp


3174
LYD204
canola|10v1|DW999856_P1
6662
634
98.2
globlastp


3175
LYD204
canola|gb161|EG019813_P1
6663
634
98.1
globlastp


3176
LYD206
canola|10v1|CD827387_P1
6664
635
99.2
globlastp


3177
LYD206
canola|10v1|CD822629_P1
6665
635
97.3
globlastp


3178
LYD206
b_rapa|gb162|BG544285_P1
6666
635
96.2
globlastp


3179
LYD206
canola|gb161|CD827387_P1
6667
635
96.2
globlastp


3180
LYD206
b_oleracea|gb161|AM387196_P1
6668
635
93.8
globlastp


3181
LYD206
canola|gb161|CD822629_P1
6669
635
92.9
globlastp


3182
LYD206
radish|gb164|EV535046_P1
6670
635
88.9
globlastp


3183
LYD206
thellungiella|gb167|BY801344_P1
6671
635
88.3
globlastp


3184
LYD206
arabidopsis_lyrata|09v1|JGIAL025591_P1
6672
635
85.3
globlastp


3185
LYD206
arabidopsis|10v1|AT4G25130_P1
6673
635
84.6
globlastp


3186
LYD206
arabidopsis|gb165|AT4G25130_P1
6673
635
84.6
globlastp


3187
LYD206
canola|10v1|CN825961_P1
6674
635
82
globlastp


3188
LYD206
radish|gb164|EW713423_P1
6675
635
82
globlastp


3189
LYD206
canola|gb161|CN825961_P1
6676
635
80.1
globlastp


3190
LYD208
canola|10v1|CD823590_P1
6677
636
99.4
globlastp


3191
LYD208
b_rapa|gb162|EF110932_P1
6677
636
99.4
globlastp


3192
LYD208
canola|gb161|CD823590_P1
6677
636
99.4
globlastp


3193
LYD208
b_nigra|09v1|GT069367_P1
6678
636
98.2
globlastp


3194
LYD208
b_oleracea|gb161|DY027427_P1
6679
636
97.1
globlastp


3195
LYD208
canola|10v1|CD822474_P1
6679
636
97.1
globlastp


3196
LYD208
canola|gb161|CD822474_P1
6679
636
97.1
globlastp


3197
LYD208
canola|10v1|EE468408_P1
6680
636
86
globlastp


3198
LYD208
canola|gb161|EE468408_P1
6681
636
84.9
globlastp


3199
LYD208
canola|10v1|EE561855_P1
6682
636
83.7
globlastp


3200
LYD208
canola|gb161|EE561855_P1
6682
636
83.7
globlastp


3201
LYD209
b_rapa|gb162|EE520539_P1
637
637
100
globlastp


3202
LYD209
canola|10v1|CD817560_P1
637
637
100
globlastp


3203
LYD209
canola|gb161|CD817560_P1
637
637
100
globlastp


3204
LYD209
canola|10v1|H07613_T1
6683
637
100
glotblastn


3205
LYD209
canola|gb161|H07613_T1
6684
637
100
glotblastn


3206
LYD209
arabidopsis_lyrata|09v1|JGIAL009284_T1
6685
637
98.82
glotblastn


3207
LYD209
arabidopsis_lyrata|09v1|JGIAL009283_P1
6686
637
98.8
globlastp


3208
LYD209
radish|gb164|EV552598_P1
6687
637
98.8
globlastp


3209
LYD209
radish|gb164|EX756792_P1
6687
637
98.8
globlastp


3210
LYD209
arabidopsis|10v1|AT3G08890_P1
6688
637
98.2
globlastp


3211
LYD209
b_oleracea|gb161|DY013753_P1
6689
637
98.2
globlastp


3212
LYD209
thellungiella|gb167|BY808308_P1
6690
637
97.6
globlastp


3213
LYD209
cleome_spinosa|10v1|GR933525_P1
6691
637
91.2
globlastp


3214
LYD209
radish|gb164|EV528123_P1
6692
637
88.2
globlastp


3215
LYD209
nasturtium|10v1|SRR032558S0012424_P1
6693
637
87.6
globlastp


3216
LYD209
cleome_gynandra|10v1|SRR015532S0013802_P1
6694
637
87.1
globlastp


3217
LYD209
arabidopsis|10v1|AT5G37070_P1
6695
637
86.5
globlastp


3218
LYD209
arabidopsis|gb165|AT5G37070_P1
6695
637
86.5
globlastp


3219
LYD209
papaya|gb165|EX268088_P1
6696
637
86.5
globlastp


3220
LYD209
radish|gb164|EW731568_P1
6697
637
85.9
globlastp


3221
LYD209
canola|gb161|EE464762_P1
6698
637
85.3
globlastp


3222
LYD209
canola|10v1|CD833480_P1
6698
637
85.3
globlastp


3223
LYD209
arabidopsis_lyrata|09v1|JGIAL019758_P1
6699
637
84.7
globlastp


3224
LYD209
canola|10v1|ES900549_P1
6700
637
84.7
globlastp


3225
LYD209
canola|gb161|CD833480_P1
6701
637
84.7
globlastp


3226
LYD209
eucalyptus|gb166|CT982262_P1
6702
637
84.7
globlastp


3227
LYD209
radish|gb164|EX888617_P1
6703
637
84.7
globlastp


3228
LYD209
arabidopsis_lyrata|09v1|JGIAL005254_P1
6704
637
84.1
globlastp


3229
LYD209
arabidopsis|10v1|AT5G01610_P1
6705
637
84.1
globlastp


3230
LYD209
b_oleracea|gb161|EH421224_P1
6706
637
84.1
globlastp


3231
LYD209
canola|10v1|CX194506_P1
6707
637
84.1
globlastp


3232
LYD209
cotton|10v1|AI729006_P1
6708
637
84.1
globlastp


3233
LYD209
cotton|gb164|AI729006_P1
6708
637
84.1
globlastp


3234
LYD209
ipomoea_nil|10v1|BJ562434_P1
6709
637
83.5
globlastp


3235
LYD209
cassava|09v1|CK642907_P1
6710
637
83.5
globlastp


3236
LYD209
ipomoea|gb157.2|BJ562434_P1
6709
637
83.5
globlastp


3237
LYD209
orobanche|10v1|SRR023189S0000873_P1
6711
637
82.9
globlastp


3238
LYD209
cacao|gb167|CU484903_P1
6712
637
82.9
globlastp


3239
LYD209
coffea|10v1|DV673843_P1
6713
637
82.9
globlastp


3240
LYD209
coffea|gb157.2|DV673843_P1
6713
637
82.9
globlastp


3241
LYD209
liriodendron|gb166|DT599690_P1
6714
637
82.9
globlastp


3242
LYD209
triphysaria|10v1|EY125780_P1
6715
637
82.9
globlastp


3243
LYD209
cleome_gynandra|10v1|SRR015532S0000548_P1
6716
637
82.5
globlastp


3244
LYD209
flax|09v1|CV478759_P1
6717
637
82.4
globlastp


3245
LYD209
cassava|gb164|CK642907_P1
6718
637
82.4
globlastp


3246
LYD209
grape|gb160|CB343986_P1
6719
637
82.4
globlastp


3247
LYD209
poplar|10v1|AI162985_P1
6720
637
82.4
globlastp


3248
LYD209
poplar|gb170|AI162985_P1
6721
637
82.4
globlastp


3249
LYD209
triphysaria|gb164|EY125780_P1
6722
637
82.4
globlastp


3250
LYD209
salvia|10v1|FE536769_P1
6723
637
81.8
globlastp


3251
LYD209
kiwi|gb166|FG437681_P1
6724
637
81.8
globlastp


3252
LYD209
pepper|gb171|BM064893_P1
6725
637
81.8
globlastp


3253
LYD209
tobacco|gb162|EB428951_P1
6726
637
81.8
globlastp


3254
LYD209
tomato|09v1|BG131101_P1
6727
637
81.8
globlastp


3255
LYD209
tomato|gb164|BG131101_P1
6727
637
81.8
globlastp


3256
LYD209
walnuts|gb166|CV195525_P1
6728
637
81.8
globlastp


3257
LYD209
ipomoea_batatas|10v1|EE875075_T1
6729
637
81.76
glotblastn


3258
LYD209
castorbean|09v1|XM002526627_P1
6730
637
81.2
globlastp


3259
LYD209
chestnut|gb170|SRR006295S0007436_P1
6731
637
81.2
globlastp


3260
LYD209
peanut|10v1|ES720496_P1
6732
637
81.2
globlastp


3261
LYD209
peanut|gb171|DQ099062_P1
6732
637
81.2
globlastp


3262
LYD209
heritiera|10v1|SRR005794S0004663_T1
6733
637
81.18
glotblastn


3263
LYD209
basilicum|10v1|DY332932_P1
6734
637
80.6
globlastp


3264
LYD209
eggplant|10v1|FS000729_P1
6735
637
80.6
globlastp


3265
LYD209
oak|10v1|FN759515_P1
6736
637
80.6
globlastp


3266
LYD209
oak|10v1|FP038685_P1
6736
637
80.6
globlastp


3267
LYD209
rhizophora|10v1|SRR005793S0022511_P1
6737
637
80.6
globlastp


3268
LYD209
oak|gb170|SRR006307S0005811_P1
6736
637
80.6
globlastp


3269
LYD209
poplar|10v1|AI161586_P1
6738
637
80.6
globlastp


3270
LYD209
poplar|gb170|AI161586_P1
6738
637
80.6
globlastp


3271
LYD209
potato|10v1|BG351980_P1
6739
637
80.6
globlastp


3272
LYD209
potato|gb157.2|BG351980_P1
6739
637
80.6
globlastp


3273
LYD209
solanum_phureja|09v1|SPHBG131101_P1
6739
637
80.6
globlastp


3274
LYD209
tea|10v1|CV014110_P1
6740
637
80.6
globlastp


3275
LYD209
tea|gb171|CV014110_P1
6740
637
80.6
globlastp


3276
LYD209
tobacco|gb162|CV020672_P1
6741
637
80.6
globlastp


3277
LYD209
tobacco|gb162|EB440426_P1
6742
637
80.6
globlastp


3278
LYD209
tomato|09v1|BG630491_P1
6743
637
80.6
globlastp


3279
LYD209
tomato|gb164|BG630491_P1
6743
637
80.6
globlastp


3280
LYD209
eggplant|10v1|FS003717_P1
6744
637
80
globlastp


3281
LYD209
avocado|10v1|CO996840_T1
6745
637
80
glotblastn


3282
LYD209
medicago|09v1|BF520968_P1
6746
637
80
globlastp


3283
LYD209
walnuts|gb166|EL902338_P1
6747
637
80
globlastp


3284
LYD211
maize|10v1|W59814_P1
6748
638
95.4
globlastp


3285
LYD211
maize|gb170|W59814_P1
6748
638
95.4
globlastp


3286
LYD211
wheat|gb164|CA617581_T1
6749
638
93.49
glotblastn


3287
LYD211
maize|10v1|AI637136_P1
6750
638
93.2
globlastp


3288
LYD211
maize|gb170|AI637136_P1
6750
638
93.2
globlastp


3289
LYD211
sugarcane|10v1|CA067172_P1
6751
638
92.3
globlastp


3290
LYD211
millet|10v1|OXPMSLX0000399D1T1_T1
6752
638
88.26
glotblastn


3291
LYD211
rice|gb170|OS06G06980_P1
6753
638
87
globlastp


3292
LYD211
sugarcane|10v1|CA080520_P1
6754
638
81.2
globlastp


3293
LYD212
arabidopsis_lyrata|09v1|JGIAL002279_P1
6755
639
83.3
globlastp


3294
LYD213
arabidopsis_lyrata|09v1|JGIAL005546_P1
6756
640
94
globlastp


3295
LYD213
radish|gb164|EV528455_P1
6757
640
91
globlastp


3296
LYD213
radish|gb164|EX896578_P1
6758
640
91
globlastp


3297
LYD213
thellungiella|gb167|BY806901_P1
6759
640
91
globlastp


3298
LYD213
canola|10v1|CD823783_P1
6760
640
90.4
globlastp


3299
LYD213
canola|gb161|CD823783_P1
6760
640
90.4
globlastp


3300
LYD213
canola|10v1|EE565774_P1
6761
640
90.4
globlastp


3301
LYD213
canola|gb161|EE565774_P1
6761
640
90.4
globlastp


3302
LYD213
b_oleracea|gb161|DY027463_P1
6762
640
89.8
globlastp


3303
LYD213
b_rapa|gb162|EX046427_P1
6763
640
83.2
globlastp


3304
LYD213
cleome_spinosa|10v1|GR935047_T1
6764
640
81.44
glotblastn


3305
LYD213
heritiera|10v1|SRR005795S0007448_T1
6765
640
80.24
glotblastn


3306
LYD213
poplar|10v1|BU837910_P1
6766
640
80
globlastp


3307
LYD213
poplar|gb170|BU837910_P1
6766
640
80
globlastp


3308
LYD214
arabidopsis_lyrata|09v1|JGIAL013069_P1
6767
641
85.8
globlastp


3309
LYD215
arabidopsis_lyrata|09v1|JGIAL015680_P1
6768
642
96.6
globlastp


3310
LYD215
thellungiella|gb167|BY825912_P1
6769
642
81.1
globlastp


3311
LYD216
arabidopsis_lyrata|09v1|JGIAL008737_P1
6770
643
97.8
globlastp


3312
LYD216
canola|10v1|CD812868_P1
6771
643
95.8
globlastp


3313
LYD216
canola|gb161|CD812868_P1
6771
643
95.8
globlastp


3314
LYD216
b_rapa|gb162|BG543323_P1
6772
643
95.4
globlastp


3315
LYD216
canola|10v1|CD835674_P1
6773
643
95.4
globlastp


3316
LYD216
canola|gb161|CD835674_P1
6774
643
95.3
globlastp


3317
LYD216
radish|gb164|EV569880_T1
6775
643
94.54
glotblastn


3318
LYD216
arabidopsis_lyrata|09v1|JGIAL021535_P1
6776
643
92
globlastp


3319
LYD216
oak|10v1|CU656818_P1
6777
643
83.8
globlastp


3320
LYD216
peanut|10v1|ES710509_P1
6778
643
83.1
globlastp


3321
LYD216
lotus|09v1|AI967690_P1
6779
643
83.1
globlastp


3322
LYD216
poplar|10v1|AI163627_P1
6780
643
82.9
globlastp


3323
LYD216
poplar|gb170|AI163627_P1
6780
643
82.9
globlastp


3324
LYD216
grape|gb160|CF405689_P1
6781
643
82.7
globlastp


3325
LYD216
cassava|09v1|DB925080_P1
6782
643
82.5
globlastp


3326
LYD216
poplar|10v1|BU834708_P1
6783
643
82.3
globlastp


3327
LYD216
cassava|09v1|DB925255_P1
6784
643
82.1
globlastp


3328
LYD216
cucumber|09v1|CK085497_P1
6785
643
82.1
globlastp


3329
LYD216
pigeonpea|10v1|SRR054580S0001389_P1
6786
643
82.1
globlastp


3330
LYD216
soybean|gb168|AW720031_P1
6787
643
82.1
globlastp


3331
LYD216
cowpea|gb166|FC457814_P1
6788
643
82
globlastp


3332
LYD216
soybean|gb168|AI967690_P1
6789
643
82
globlastp


3333
LYD216
prunus|10v1|BU044770_P1
6790
643
81.8
globlastp


3334
LYD216
triphysaria|10v1|EX988561_P1
6791
643
81.6
globlastp


3335
LYD216
castorbean|09v1|EG663398_P1
6792
643
81.4
globlastp


3336
LYD216
monkeyflower|09v1|DV207330_P1
6793
643
81.4
globlastp


3337
LYD216
monkeyflower|10v1|DV207330_P1
6793
643
81.4
globlastp


3338
LYD216
monkeyflower|10v1|DV206598_P1
6794
643
81.2
globlastp


3339
LYD216
cotton|10v1|AI730956_P1
6795
643
81.2
globlastp


3340
LYD216
cotton|gb164|AI730956_P1
6796
643
81.2
globlastp


3341
LYD216
sorghum|09v1|SB05G022470_P1
6797
643
81.2
globlastp


3342
LYD216
triphysaria|gb164|EX988561_P1
6798
643
81.1
globlastp


3343
LYD216
prunus|gb167|BU044770_P1
6799
643
80.9
globlastp


3344
LYD216
rice|gb170|OS03G59020_P1
6800
643
80.9
globlastp


3345
LYD216
sugarcane|10v1|CA064935_P1
6801
643
80.7
globlastp


3346
LYD216
millet|10v1|EVO454PM003718_P1
6802
643
80.5
globlastp


3347
LYD216
maize|10v1|AI438833_P1
6803
643
80.5
globlastp


3348
LYD216
maize|gb170|AI438833_P1
6803
643
80.5
globlastp


3349
LYD216
switchgrass|gb167|FE635793_P1
6804
643
80.5
globlastp


3350
LYD216
orobanche|10v1|SRR023189S0000892_P1
6805
643
80.3
globlastp


3351
LYD216
sugarcane|gb157.3|CA064935_P1
6806
643
80.3
globlastp


3352
LYD216
tomato|gb164|BG123817_P1
6807
643
80.3
globlastp


3353
LYD216
cacao|gb167|CU508640_P1
6808
643
80.1
globlastp


3354
LYD216
maize|10v1|AI461542_P1
6809
643
80.1
globlastp


3355
LYD216
maize|gb170|AI461542_P1
6809
643
80.1
globlastp


3356
LYD216
sunflower|10v1|CD853040_P1
6810
643
80
globlastp


3357
LYD216
sunflower|gb162|CD853040_P1
6810
643
80
globlastp


3358
LYD216
tobacco|gb162|CV018317_P1
6811
643
80
globlastp


3359
LYD217
arabidopsis_lyrata|09v1|JGIAL008994_P1
6812
644
94
globlastp


3360
LYD217
canola|10v1|CD834062_P1
6813
644
82.2
globlastp


3361
LYD217
b_oleracea|gb161|DY027765_P1
6814
644
82.2
globlastp


3362
LYD217
b_rapa|gb162|L46482_P1
6815
644
82.2
globlastp


3363
LYD217
canola|10v1|CD823487_P1
6816
644
82.2
globlastp


3364
LYD217
canola|gb161|CD823487_P1
6816
644
82.2
globlastp


3365
LYD217
canola|10v1|DY003791_P1
6817
644
82.2
globlastp


3366
LYD217
canola|gb161|CD834062_P1
6817
644
82.2
globlastp


3367
LYD217
b_juncea|10v2|E6ANDIZ01BQQYN1_P1
6818
644
81.2
globlastp


3368
LYD217
radish|gb164|EV525090_P1
6819
644
81.2
globlastp


3369
LYD217
radish|gb164|EV551040_P1
6820
644
81.1
globlastp


3370
LYD219
arabidopsis_lyrata|09v1|JGIAL018329_P1
6821
645
96.1
globlastp


3371
LYD219
canola|gb161|CD824877_T1
6822
645
82.37
glotblastn


3372
LYD219
canola|10v1|CD824877_P1
6823
645
82.2
globlastp


3373
LYD220
arabidopsis_lyrata|09v1|JGIAL026614_P1
6824
646
97.8
globlastp


3374
LYD220
canola|10v1|CX190271_P1
6825
646
92.7
globlastp


3375
LYD220
canola|gb161|CX190271_P1
6825
646
92.7
globlastp


3376
LYD220
radish|gb164|EW716867_P1
6826
646
92.7
globlastp


3377
LYD220
canola|10v1|CD829020_P1
6827
646
91.6
globlastp


3378
LYD220
canola|gb161|CD829020_P1
6827
646
91.6
globlastp


3379
LYD220
b_oleracea|gb161|ES943495_P1
6828
646
91.1
globlastp


3380
LYD220
radish|gb164|EW714155_P1
6829
646
91
globlastp


3381
LYD220
b_rapa|gb162|ES935221_P1
6830
646
82.2
globlastp


3382
LYD220
canola|10v1|CN726066_P1
6831
646
82.2
globlastp


3383
LYD220
canola|gb161|CN726066_P1
6831
646
82.2
globlastp


3384
LYD220
canola|gb161|CN732719_P1
6832
646
81.7
globlastp


3385
LYD220
canola|10v1|CD821217_P1
6832
646
81.7
globlastp


3386
LYD220
canola|gb161|CD821217_T1
6833
646
81.67
glotblastn


3387
LYD220
b_oleracea|gb161|DY013876_P1
6834
646
81.1
globlastp


3388
LYD221
arabidopsis_lyrata|09v1|JGIAL024384_P1
6835
647
97.1
globlastp


3389
LYD221
canola|10v1|CX188183_P1
6836
647
88.3
globlastp


3390
LYD221
canola|gb161|CB686340_P1
6837
647
88.1
globlastp


3391
LYD221
b_rapa|gb162|CX266123_P1
6838
647
87.9
globlastp


3392
LYD221
canola|gb161|CD836701_P1
6839
647
87.9
globlastp


3393
LYD221
canola|10v1|CB686340_P1
6840
647
87.7
globlastp


3394
LYD221
radish|gb164|EV538382_P1
6841
647
87.7
globlastp


3395
LYD222
arabidopsis_lyrata|09v1|JGIAL024369_T1
6842
648
94.64
glotblastn


3396
LYD223
arabidopsis_lyrata|09v1|JGIAL021005_P1
6843
649
88.6
globlastp


3397
LYD223
b_rapa|gb162|BQ791203_P1
6844
649
85.8
globlastp


3398
LYD223
canola|10v1|CN728130_P1
6845
649
85.7
globlastp


3399
LYD223
canola|10v1|CN727598_P1
6846
649
85.5
globlastp


3400
LYD223
canola|gb161|CN727598_P1
6846
649
85.5
globlastp


3401
LYD223
b_oleracea|gb161|AM391646_P1
6847
649
85.1
globlastp


3402
LYD223
radish|gb164|EW717140_P1
6848
649
84.3
globlastp


3403
LYD223
radish|gb164|EW734029_P1
6849
649
83.5
globlastp


3404
LYD224
arabidopsis_lyrata|09v1|JGIAL030393_P1
6850
650
96.2
globlastp


3405
LYD224
canola|10v1|CD816983_T1
6851
650
89.25
glotblastn


3406
LYD224
canola|10v1|CN726221_P1
6852
650
88.2
globlastp


3407
LYD224
canola|gb161|CN726221_P1
6852
650
88.2
globlastp


3408
LYD224
maize|gb170|LLDQ245206_P1
6852
650
88.2
globlastp


3409
LYD224
radish|gb164|FD545244_P1
6853
650
88.2
globlastp


3410
LYD224
radish|gb164|EW717992_P1
6854
650
87.6
globlastp


3411
LYD224
canola|10v1|CD823092_P1
6855
650
87.2
globlastp


3412
LYD224
canola|10v1|EV083752_P1
6856
650
86.6
globlastp


3413
LYD224
b_rapa|gb162|BG544824_P1
6856
650
86.6
globlastp


3414
LYD224
canola|gb161|CD823092_P1
6856
650
86.6
globlastp


3415
LYD224
radish|gb164|EV568231_P1
6857
650
86.1
globlastp


3416
LYD224
radish|gb164|EX772197_P1
6858
650
86.1
globlastp


3417
LYD224
b_juncea|10v2|E6ANDIZ01DINO2_T1
6859
650
86.02
glotblastn


3418
LYD224
b_juncea|10v2|E6ANDIZ01D9PQH_P1
6860
650
85.6
globlastp


3419
LYD224
b_nigra|09v1|GT069734_P1
6861
650
85
globlastp


3420
LYD224
canola|10v1|CD830574_P1
6862
650
85
globlastp


3421
LYD224
b_rapa|gb162|BG543212_P1
6862
650
85
globlastp


3422
LYD224
canola|gb161|CD830574_P1
6862
650
85
globlastp


3423
LYD224
thellungiella|gb167|DN775467_P1
6863
650
85
globlastp


3424
LYD224
radish|gb164|EV528198_P1
6864
650
84.5
globlastp


3425
LYD224
radish|gb164|EV539693_P1
6864
650
84.5
globlastp


3426
LYD224
radish|gb164|EW735492_P1
6864
650
84.5
globlastp


3427
LYD224
b_rapa|gb162|DY008897_P1
6865
650
84.2
globlastp


3428
LYD224
b_juncea|gb164|EVGN00325314303466_P1
6866
650
84
globlastp


3429
LYD224
b_oleracea|gb161|AM058913_P1
6867
650
84
globlastp


3430
LYD224
canola|10v1|CD821086_P1
6867
650
84
globlastp


3431
LYD224
canola|gb161|CD821086_P1
6867
650
84
globlastp


3432
LYD224
b_juncea|10v2|BJ1SLX00014852D1_P1
6868
650
83.9
globlastp


3433
LYD224
radish|gb164|EV568887_P1
6869
650
83.4
globlastp


3434
LYD224
b_oleracea|gb161|ES947178_P1
6870
650
82.8
globlastp


3435
LYD224
radish|gb164|EX755825_T1
6871
650
82.26
glotblastn


3436
LYD224
cleome_spinosa|10v1|GR931469_P1
6872
650
81.7
globlastp


3437
LYD224
b_juncea|10v2|E6ANDIZ01BER52_P1
6873
650
81.2
globlastp


3438
LYD224
radish|gb164|EV551184_T1
6874
650
80.85
glotblastn


3439
LYD224
canola|gb161|CN725816_P1
6875
650
80.6
globlastp


3440
LYD224
orobanche|10v1|SRR023189S0014743_P1
6876
650
80.1
globlastp


3441
LYD225
leymus|gb166|EG378671_T1
6877
651
84.68
glotblastn


3441
LYD228
leymus|gb166|EG378671_T1
6877
653
84.74
glotblastn


3442
LYD225
wheat|gb164|BE430129_P1
6878
651
83.4
globlastp


3442
LYD228
wheat|gb164|BE430129_P1
6878
653
83.7
globlastp


3443
LYD225
wheat|gb164|BE493466_P1
6879
651
82.9
globlastp


3443
LYD228
wheat|gb164|BE493466_P1
6879
653
83.3
globlastp


3444
LYD225
wheat|gb164|BI751513_P1
6879
651
82.9
globlastp


3444
LYD228
wheat|gb164|BI751513_P1
6879
653
83.3
globlastp


3445
LYD225
barley|gb157SOLEXA|BI950425_P1
6880
651
81.5
globlastp


3445
LYD228
barley|gb157SOLEXA|BI950425_P1
6880
653
83.4
globlastp


3446
LYD225
barley|10v1|BI950425_P1
6880
651
81.5
globlastp


3446
LYD228
barley|10v1|BI950425_P1
6880
653
83.4
globlastp


3447
LYD225
brachypodium|09v1|DV473630_T1
6881
651
81.45
glotblastn


3447
LYD228
brachypodium|09v1|DV473630_P1
6881
653
82.1
globlastp


3448
LYD225
brachypodium|gb169|BE430129_T1
6881
651
81.45
glotblastn


3448
LYD228
brachypodium|gb169|BE430129_P1
6881
653
82.1
globlastp


3449
LYD225
oat|10v2|GR322675_P1
6882
651
80.8
globlastp


3449
LYD228
oat|10v2|GR322675_P1
6882
653
82.3
globlastp


3450
LYD227
sugarcane|10v1|BQ533190_P1
6883
652
95.9
globlastp


3451
LYD227
sugarcane|gb157.3|BQ533190_P1
6883
652
95.9
globlastp


3452
LYD227
maize|10v1|AI636982_P1
6884
652
93
globlastp


3453
LYD227
cynodon|10v1|ES293243_P1
6885
652
92.4
globlastp


3454
LYD227
switchgrass|gb167|DN150732_P1
6886
652
92.4
globlastp


3455
LYD227
millet|10v1|EVO454PM058462_T1
6887
652
91.81
glotblastn


3456
LYD227
switchgrass|gb167|FE617809_P1
6888
652
91.8
globlastp


3457
LYD227
oat|10v2|GO596450_T1
6889
652
90.06
glotblastn


3458
LYD227
pseudoroegneria|gb167|FF340032_T1
6890
652
88.3
glotblastn


3459
LYD227
wheat|gb164|BE426355_T1
6891
652
87.72
glotblastn


3460
LYD227
wheat|gb164|BE499789_T1
6892
652
87.72
glotblastn


3461
LYD227
rice|gb170|OS03G24380_P1
6893
652
87.7
globlastp


3462
LYD227
wheat|gb164|BE419519_T1
6894
652
86.55
glotblastn


3463
LYD227
fescue|gb161|DT680055_P1
6895
652
85.5
globlastp


3464
LYD227
brachypodium|09v1|DV472062_T1
6896
652
85.38
glotblastn


3465
LYD227
brachypodium|gb169|BE412952_T1
6896
652
85.38
glotblastn


3466
LYD227
barley|10v1|BE412952_P1
6897
652
85.3
globlastp


3467
LYD227
barley|gb157SOLEXA|BE412952_P1
6897
652
85.3
globlastp


3468
LYD227
leymus|gb166|CN465857_P1
6898
652
85.3
globlastp


3469
LYD227
rye|gb164|BF429400_P1
6899
652
82.5
globlastp


3470
LYD227
oat|10v2|GO584438_P1
6900
652
82.4
globlastp


3471
LYD228
sugarcane|10v1|BQ537170_P1
6901
653
98
globlastp


3472
LYD228
sugarcane|gb157.3|BQ537170_P1
6901
653
98
globlastp


3473
LYD228
maize|10v1|AI691314_P1
6902
653
95.6
globlastp


3474
LYD228
maize|gb170|LLAW506702_P1
6902
653
95.6
globlastp


3475
LYD228
millet|10v1|EVO454PM069124_P1
6903
653
91.2
globlastp


3476
LYD228
rice|gb170|OS07G08070_P1
6904
653
86.7
globlastp


3477
LYD228
cenchrus|gb166|EB666958_P1
6905
653
83.3
globlastp


3478
LYD229
maize|10v1|CD995946_P1
6906
654
97.2
globlastp


3479
LYD229
maize|gb170|CD995946_P1
6906
654
97.2
globlastp


3480
LYD229
maize|10v1|CO448545_P1
6907
654
97.2
globlastp


3481
LYD229
maize|gb170|CO448545_P1
6908
654
96.8
globlastp


3482
LYD229
switchgrass|gb167|FL722481_P1
6909
654
94.8
globlastp


3483
LYD229
barley|10v1|BM368785_P1
6910
654
90.4
globlastp


3484
LYD229
brachypodium|09v1|SRR031795S0033339_P1
6911
654
90.4
globlastp


3485
LYD229
brachypodium|gb169|BE430146_P1
6911
654
90.4
globlastp


3486
LYD229
wheat|gb164|BE430146_P1
6912
654
89.6
globlastp


3487
LYD229
rice|gb170|OS03G53400_P1
6913
654
88.8
globlastp


3488
LYD230
maize|10v1|CF006891_P1
6914
655
86.6
globlastp


3489
LYD230
maize|gb170|CF006891_P1
6914
655
86.6
globlastp


3490
LYD230
switchgrass|gb167|DN141172_P1
6915
655
84.5
globlastp


3491
LYD231
sugarcane|gb157.3|BQ534352_P1
6916
656
97.3
globlastp


3492
LYD231
maize|10v1|AW017610_P1
6917
656
93.2
globlastp


3493
LYD231
maize|gb170|AW017610_P1
6917
656
93.2
globlastp


3494
LYD231
brachypodium|09v1|DV477613_P1
6918
656
81.6
globlastp


3495
LYD231
rice|gb170|OS03G13840_P1
6919
656
81.4
globlastp


3496
LYD232
solanum_phureja|09v1|SPHAI774782_P1
6920
657
96.2
globlastp


3497
LYD232
pepper|gb171|BM066383_P1
6921
657
88
globlastp


3498
LYD232
solanum_phureja|09v1|SPHCRPSP045853_P1
6922
657
83.7
globlastp


3499
LYD233
potato|10v1|BI406530_P1
6923
658
97.7
globlastp


3500
LYD233
potato|gb157.2|BI406530_P1
6923
658
97.7
globlastp


3501
LYD233
solanum_phureja|09v1|SPHAW032486_P1
6924
658
97.5
globlastp


3502
LYD234
potato|gb157.2|BF052303_P1
6925
659
98.2
globlastp


3503
LYD234
solanum_phureja|09v1|SPHBG123219_P1
6926
659
98.2
globlastp


3504
LYD234
potato|10v1|BF052303_P1
6927
659
97.6
globlastp


3505
LYD234
pepper|gb171|BM063045_P1
6928
659
90
globlastp


3506
LYD234
solanum_phureja|09v1|SPHAI489595_P1
6929
659
82.9
globlastp


3507
LYD234
eggplant|10v1|FS038503_P1
6930
659
81.8
globlastp


3508
LYD234
tomato|09v1|AI489595_P1
6931
659
81.8
globlastp


3509
LYD234
potato|10v1|CK860071_P1
6932
659
81.2
globlastp


3510
LYD234
coffea|10v1|DV664407_P1
6933
659
80.6
globlastp


3511
LYD234
coffea|gb157.2|DV664407_P1
6933
659
80.6
globlastp


3512
LYD234
petunia|gb171|CV299482_P1
6934
659
80
globlastp


3513
LYD234
potato|gb157.2|CK860071_T1
6935
659
80
glotblastn


3514
LYD236
potato|gb157.2|BQ512865_P1
6936
661
98.3
globlastp


3515
LYD236
solanum_phureja|09v1|SPHBG629499_P1
6936
661
98.3
globlastp


3516
LYD236
potato|10v1|BQ512865_P1
6937
661
97.9
globlastp


3517
LYD236
eggplant|10v1|FS012987_P1
6938
661
96.7
globlastp


3518
LYD236
tobacco|gb162|EB425766_P1
6939
661
93.4
globlastp


3519
LYD236
pepper|gb171|BM060326_P1
6940
661
92.1
globlastp


3520
LYD236
petunia|gb171|DY396002_P1
6941
661
91.7
globlastp


3521
LYD236
orobanche|10v1|SRR023189S0003702_P1
6942
661
82.6
globlastp


3522
LYD236
nasturtium|10v1|SRR032558S0002662_P1
6943
661
82.2
globlastp


3523
LYD236
ipomoea_nil|10v1|CJ748154_P1
6944
661
81.4
globlastp


3524
LYD236
canola|10v1|CD843095_P1
6945
661
81.4
globlastp


3525
LYD236
canola|gb161|CD843095_P1
6945
661
81.4
globlastp


3526
LYD236
canola|10v1|CN828945_P1
6946
661
81.4
globlastp


3527
LYD236
canola|gb161|CN828945_P1
6946
661
81.4
globlastp


3528
LYD236
ipomoea|gb157.2|CJ748154_P1
6944
661
81.4
globlastp


3529
LYD236
radish|gb164|FD968048_P1
6947
661
81.4
globlastp


3530
LYD236
monkeyflower|10v1|GR139081_P1
6948
661
81.1
globlastp


3531
LYD236
arabidopsis_lyrata|09v1|JGIAL019688_P1
6949
661
81
globlastp


3532
LYD236
coffea|10v1|DV680032_P1
6950
661
81
globlastp


3533
LYD236
solanum_phureja|09v1|SPHAW930877_T1
6951
661
80.99
glotblastn


3534
LYD236
cassava|09v1|JGICASSAVA24594VALIDM1_P1
6952
661
80.6
globlastp


3535
LYD236
arabidopsis|10v1|AT3G63310_P1
6953
661
80.6
globlastp


3536
LYD236
arabidopsis|gb165|AT3G63310_P1
6953
661
80.6
globlastp


3537
LYD236
castorbean|09v1|EG657869_P1
6954
661
80.6
globlastp


3538
LYD236
tomato|gb164|AW930877_T1
6955
661
80.58
glotblastn


3539
LYD236
peanut|10v1|DT044283_P1
6956
661
80.3
globlastp


3540
LYD236
cotton|10v1|AI729700_P1
6957
661
80.2
globlastp


3541
LYD236
citrus|gb166|CF508840_P1
6958
661
80.2
globlastp


3542
LYD236
papaya|gb165|EX252004_P1
6959
661
80.2
globlastp


3543
LYD238
wheat|gb164|BE216948_P1
6960
662
92
globlastp


3544
LYD238
wheat|gb164|BE401874_P1
6961
662
92
globlastp


3545
LYD238
wheat|gb164|BE402639_P1
6962
662
91.5
globlastp


3546
LYD238
wheat|gb164|BE399415_P1
6963
662
91.4
globlastp


3547
LYD238
rye|gb164|BE493975_T1
6964
662
90.23
glotblastn


3548
LYD238
wheat|gb164|CK161460_P1
6965
662
89.5
globlastp


3549
LYD238
barley|gb157SOLEXA|BE412540_P1
6966
662
89.1
globlastp


3550
LYD238
barley|10v1|BE412540_P1
6966
662
89.1
globlastp


3551
LYD238
barley|gb157SOLEXA|BF625618_P1
6967
662
88.7
globlastp


3552
LYD238
oat|10v2|GO583734_P1
6968
662
88.4
globlastp


3553
LYD238
rye|gb164|BE495984_P1
6969
662
87.9
globlastp


3554
LYD238
millet|10v1|EVO454PM015488_P1
6970
662
86.5
globlastp


3555
LYD238
brachypodium|gb169|BE216948_P1
6971
662
86
globlastp


3556
LYD238
lolium|10v1|AU245719_P1
6972
662
84.9
globlastp


3557
LYD238
wheat|gb164|BE516428_P1
6973
662
84.9
globlastp


3558
LYD238
sugarcane|10v1|CA065337_P1
6974
662
84.2
globlastp


3559
LYD238
sugarcane|gb157.3|CA071836_P1
6975
662
83.6
globlastp


3560
LYD238
sorghum|09v1|SB04G000330_P1
6976
662
83
globlastp


3561
LYD238
sugarcane|gb157.3|CA076155_T1
6977
662
82.58
glotblastn


3562
LYD238
cynodon|10v1|ES293159_T1
6978
662
82.02
glotblastn


3563
LYD240
wheat|gb164|BF200876_P1
6979
663
88.4
globlastp


3564
LYD244
arabidopsis_lyrata|09v1|JGIAL007321_P1
6980
664
94.5
globlastp


3565
LYD244
b_juncea|10v2|E6ANDIZ01DG4SQ_P1
6981
664
85.5
globlastp


3566
LYD244
b_oleracea|gb161|EH415612_P1
6981
664
85.5
globlastp


3567
LYD244
canola|10v1|CD830211_P1
6981
664
85.5
globlastp


3568
LYD244
canola|gb161|CD830211_P1
6981
664
85.5
globlastp


3569
LYD244
canola|10v1|CD830816_P1
6981
664
85.5
globlastp


3570
LYD244
canola|gb161|CD830816_P1
6981
664
85.5
globlastp


3571
LYD244
radish|gb164|EV525014_P1
6982
664
83.6
globlastp


3572
LYD244
b_juncea|10v2|E6ANDIZ01EPIVN_P1
6983
664
83
globlastp


3573
LYD244
radish|gb164|EV545064_P1
6984
664
81.8
globlastp


3574
LYD244
b_rapa|gb162|EX024633_P1
6985
664
80.6
globlastp


3575
LYD245
thellungiella|gb167|DN774029_P1
6986
665
87
globlastp


3576
LYD245
radish|gb164|EX750107_T1
6987
665
84.9
glotblastn


3577
LYD245
canola|gb161|EE477076_P1
6988
665
84.5
globlastp


3578
LYD245
arabidopsis_lyrata|09v1|TMPLEV566587T1_T1
6989
665
84.38
glotblastn


3579
LYD245
radish|gb164|EV566587_P1
6990
665
83.9
globlastp


3580
LYD246
arabidopsis|10v1|AT4G08580_P1
6991
666
98.2
globlastp


3581
LYD246
arabidopsis|gb165|AT4G08580_P1
6991
666
98.2
globlastp


3582
LYD246
arabidopsis_lyrata|09v1|JGIAL021498_P1
6992
666
94.5
globlastp


3583
LYD248
b_rapa|gb162|BQ790922_P1
6993
667
98.6
globlastp


3584
LYD248
canola|gb161|CD816144_P1
6994
667
97.6
globlastp


3585
LYD248
canola|10v1|CD816250_P1
6995
667
87.2
globlastp


3586
LYD248
canola|gb161|CD816250_P1
6995
667
87.2
globlastp


3587
LYD248
b_rapa|gb162|CV544898_P1
6996
667
86.6
globlastp


3588
LYD248
canola|gb161|CD813767_P1
6997
667
85.8
globlastp


3589
LYD248
arabidopsis_lyrata|09v1|JGIAL010389_P1
6998
667
85.6
globlastp


3590
LYD248
canola|10v1|CD813767_P1
6999
667
85.4
globlastp


3591
LYD248
arabidopsis|10v1|AT3G18490_P1
7000
667
84.4
globlastp


3592
LYD248
canola|gb161|CD820800_P1
7001
667
83.2
globlastp


3593
LYD248
canola|10v1|CD820800_P1
7002
667
83
globlastp


3594
LYD248
canola|10v1|CD816721_T1
7003
667
82
glotblastn


3595
LYD250
canola|gb161|EV168840_P1
7004
668
93
globlastp


3596
LYD250
radish|gb164|EX755649_P1
7005
668
93
globlastp


3597
LYD250
arabidopsis_lyrata|09v1|JGIAL012240_P1
7006
668
88.4
globlastp


3598
LYD250
arabidopsis|10v1|AT2G17730_P1
7007
668
86.4
globlastp


3599
LYD250
canola|10v1|CD813120_P1
7008
668
84.5
globlastp


3600
LYD250
canola|gb161|CD813120_P1
7008
668
84.5
globlastp


3601
LYD250
canola|10v1|DY023893_P1
7009
668
84.5
globlastp


3602
LYD250
canola|gb161|DY023893_P1
7009
668
84.5
globlastp


3603
LYD250
canola|gb161|CD820111_P1
7010
668
83.8
globlastp


3604
LYD250
arabidopsis_lyrata|09v1|JGIAL024385_P1
7011
668
83.7
globlastp


3605
LYD250
canola|10v1|CD820111_P1
7012
668
83.7
globlastp


3606
LYD250
arabidopsis|10v1|AT4G35840_P1
7013
668
83.3
globlastp


3607
LYD250
radish|gb164|EX763901_P1
7014
668
82.8
globlastp


3608
LYD250
b_rapa|gb162|EE520070_T1
7015
668
81.67
glotblastn


3609
LYD250
radish|gb164|EW724552_P1
7016
668
80.4
globlastp


3610
LYD250
b_rapa|gb162|EX039808_P1
7017
668
80
globlastp


3611
LYD252
b_juncea|10v2|E6ANDIZ01D3YNI_P1
7018
669
98.4
globlastp


3612
LYD252
b_juncea|gb164|EVGN04288230702644_P1
7019
669
98.4
globlastp


3613
LYD252
b_rapa|gb162|CV545283_P1
7018
669
98.4
globlastp


3614
LYD252
canola|10v1|CD811728_P1
7018
669
98.4
globlastp


3615
LYD252
canola|gb161|CD811728_P1
7018
669
98.4
globlastp


3616
LYD252
canola|10v1|CD840433_P1
7018
669
98.4
globlastp


3617
LYD252
canola|gb161|CD818666_P1
7018
669
98.4
globlastp


3618
LYD252
canola|10v1|CD832702_P1
7019
669
98.4
globlastp


3619
LYD252
radish|gb164|EX761962_P1
7019
669
98.4
globlastp


3620
LYD252
radish|gb164|EX904863_P1
7020
669
98.4
globlastp


3621
LYD252
thellungiella|gb167|BY813144_P1
7021
669
98.4
globlastp


3622
LYD252
b_juncea|10v2|E6ANDIZ01EDC4C1_P1
7022
669
97.6
globlastp


3623
LYD252
canola|10v1|DY012004_P1
7023
669
97.6
globlastp


3624
LYD252
b_oleracea|gb161|CO729379_P1
7024
669
97.6
globlastp


3625
LYD252
b_oleracea|gb161|DY027071_P1
7025
669
97.6
globlastp


3626
LYD252
canola|10v1|CD814099_P1
7024
669
97.6
globlastp


3627
LYD252
canola|gb161|CD814099_P1
7024
669
97.6
globlastp


3628
LYD252
canola|gb161|CD832702_P1
7026
669
97.6
globlastp


3629
LYD252
radish|gb164|EV567261_P1
7027
669
97.6
globlastp


3630
LYD252
radish|gb164|EX748940_P1
7028
669
97.6
globlastp


3631
LYD252
b_juncea|10v2|E6ANDIZ01CCOGE_P1
7029
669
96.8
globlastp


3632
LYD252
b_rapa|gb162|CX271124_P1
7030
669
96.8
globlastp


3633
LYD252
canola|10v1|CD817829_P1
7031
669
96.8
globlastp


3634
LYD252
canola|gb161|CD817829_P1
7031
669
96.8
globlastp


3635
LYD252
b_rapa|gb162|CV432392_P1
7032
669
96
globlastp


3636
LYD252
b_rapa|gb162|CV434073_P1
7032
669
96
globlastp


3637
LYD252
arabidopsis_lyrata|09v1|JGIAL028037_P1
7033
669
94.4
globlastp


3638
LYD252
radish|gb164|FD966947_P1
7034
669
93.8
globlastp


3639
LYD252
arabidopsis|10v1|AT5G47570_P1
7035
669
93.6
globlastp


3640
LYD252
arabidopsis|gb165|AT5G47570_P1
7035
669
93.6
globlastp


3641
LYD252
cleome_spinosa|10v1|SRR015531S0006615_P1
7036
669
91.2
globlastp


3642
LYD252
eucalyptus|gb166|CU400330_P1
7037
669
91.2
globlastp


3643
LYD252
papaya|gb165|EX278970_P1
7038
669
90.4
globlastp


3644
LYD252
cleome_spinosa|10v1|GR933959_P1
7039
669
89.6
globlastp


3645
LYD252
sesame|10v1|BU667421_P1
7040
669
89.6
globlastp


3646
LYD252
sesame|gb157.2|BU667421_P1
7040
669
89.6
globlastp


3647
LYD252
lettuce|gb157.2|DW084867_P1
7041
669
88.8
globlastp


3648
LYD252
lettuce|gb157.2|DW162422_P1
7041
669
88.8
globlastp


3649
LYD252
rhizophora|10v1|SRR005793S0012361_P1
7042
669
88
globlastp


3650
LYD252
tragopogon|10v1|SRR020205S0001878_P1
7043
669
88
globlastp


3651
LYD252
citrus|gb166|CB292761_P1
7044
669
88
globlastp


3652
LYD252
lettuce|gb157.2|DW107481_P1
7045
669
88
globlastp


3653
LYD252
liquorice|gb171|FS256375_P1
7046
669
88
globlastp


3654
LYD252
lettuce|10v1|DW052883_P1
7045
669
88
globlastp


3655
LYD252
oak|10v1|FN740810_P1
7047
669
87.2
globlastp


3656
LYD252
salvia|10v1|SRR014553S0000292_P1
7048
669
87.2
globlastp


3657
LYD252
bruguiera|gb166|BP941272_P1
7049
669
87.2
globlastp


3658
LYD252
tea|gb171|GE650523_P1
7050
669
87.2
globlastp


3659
LYD252
cleome_gynandra|10v1|SRR015532S0001846_P1
7051
669
86.4
globlastp


3660
LYD252
tea|10v1|GE650523_P1
7052
669
86.4
globlastp


3661
LYD252
antirrhinum|gb166|AJ786955_P1
7053
669
86.4
globlastp


3662
LYD252
apple|gb171|CN496843_P1
7054
669
86.4
globlastp


3663
LYD252
cassava|09v1|DV452287_P1
7055
669
86.4
globlastp


3664
LYD252
cassava|gb164|DV452287_P1
7055
669
86.4
globlastp


3665
LYD252
centaurea|gb166|EH782240_P1
7056
669
86.4
globlastp


3666
LYD252
grape|gb160|CA816525_P1
7057
669
86.4
globlastp


3667
LYD252
poplar|10v1|AI165259_P1
7058
669
86.4
globlastp


3668
LYD252
poplar|gb170|AI165259_P1
7058
669
86.4
globlastp


3669
LYD252
potato|gb157.2|BF052445_P1
7059
669
86.4
globlastp


3670
LYD252
potato|gb157.2|BQ519344_P1
7059
669
86.4
globlastp


3671
LYD252
solanum_phureja|09v1|SPHBG133401_P1
7059
669
86.4
globlastp


3672
LYD252
tomato|09v1|BG133401_P1
7060
669
86.4
globlastp


3673
LYD252
tomato|gb164|BG133401_P1
7060
669
86.4
globlastp


3674
LYD252
potato|10v1|BF052445_P1
7059
669
86.4
globlastp


3675
LYD252
acacia|10v1|FS584402_P1
7061
669
85.6
globlastp


3676
LYD252
ipomoea_nil|10v1|BJ556249_P1
7062
669
85.6
globlastp


3677
LYD252
beet|gb162|BQ592121_T1
7063
669
85.6
glotblastn


3678
LYD252
chestnut|gb170|SRR006295S0021181_P1
7064
669
85.6
globlastp


3679
LYD252
cotton|10v1|CO070890_P1
7065
669
85.6
globlastp


3680
LYD252
cotton|gb164|AW187773_P1
7065
669
85.6
globlastp


3681
LYD252
ipomoea|gb157.2|BJ556249_P1
7062
669
85.6
globlastp


3682
LYD252
nicotiana_benthamiana|gb162|
7066
669
85.6
globlastp




CN744797_P1


3683
LYD252
prunus|10v1|CB819220_P1
7067
669
85.6
globlastp


3684
LYD252
prunus|gb167|CB819220_P1
7067
669
85.6
globlastp


3685
LYD252
senecio|gb170|SRR006592S0007335_P1
7068
669
85.6
globlastp


3686
LYD252
tobacco|gb162|CV020459_T1
7069
669
85.6
glotblastn


3687
LYD252
walnuts|gb166|CV195294_P1
7070
669
84.9
globlastp


3688
LYD252
dandelion|10v1|DR399370_P1
7071
669
84.8
globlastp


3689
LYD252
sunflower|10v1|CD847361_P1
7072
669
84.8
globlastp


3690
LYD252
cotton|10v1|BF269151_P1
7073
669
84.8
globlastp


3691
LYD252
cynara|gb167|GE586064_P1
7074
669
84.8
globlastp


3692
LYD252
dandelion|10v1|DY817824_P1
7071
669
84.8
globlastp


3693
LYD252
dandelion|gb161|DY817824_P1
7071
669
84.8
globlastp


3694
LYD252
liriodendron|gb166|FD489562_P1
7075
669
84.8
globlastp


3695
LYD252
monkeyflower|09v1|GO963842_P1
7076
669
84.8
globlastp


3696
LYD252
monkeyflower|10v1|GO963842_P1
7076
669
84.8
globlastp


3697
LYD252
pepper|gb171|BM064183_P1
7077
669
84.8
globlastp


3698
LYD252
petunia|gb171|DY395455_P1
7078
669
84.8
globlastp


3699
LYD252
sunflower|gb162|CD847361_P1
7072
669
84.8
globlastp


3700
LYD252
tobacco|gb162|CV020284_P1
7079
669
84.8
globlastp


3701
LYD252
triphysaria|10v1|EX990359_P1
7080
669
84.8
globlastp


3702
LYD252
coffea|10v1|DV673928_P1
7081
669
84
globlastp


3703
LYD252
dandelion|10v1|DY835786_T1
7082
669
84
glotblastn


3704
LYD252
eggplant|10v1|FS000144_P1
7083
669
84
globlastp


3705
LYD252
centaurea|gb166|EH737005_P1
7084
669
84
globlastp


3706
LYD252
cotton|gb164|BF269151_P1
7085
669
84
globlastp


3707
LYD252
cowpea|gb166|FC458079_P1
7086
669
84
globlastp


3708
LYD252
petunia|gb171|CV296748_P1
7087
669
84
globlastp


3709
LYD252
soybean|gb168|BE320813_P1
7086
669
84
globlastp


3710
LYD252
triphysaria|gb164|EX990359_P1
7088
669
84
globlastp


3711
LYD252
kiwi|gb166|FG429909_P1
7089
669
83.7
globlastp


3712
LYD252
artemisia|10v1|EY037110_P1
7090
669
83.2
globlastp


3713
LYD252
ipomoea_batatas|10v1|EE881968_P1
7091
669
83.2
globlastp


3714
LYD252
triphysaria|10v1|EY018432_P1
7092
669
83.2
globlastp


3715
LYD252
artemisia|gb164|EY037110_P1
7090
669
83.2
globlastp


3716
LYD252
bean|gb167|CA912723_P1
7093
669
83.2
globlastp


3717
LYD252
castorbean|09v1|EG667738_T1
7094
669
83.2
glotblastn


3718
LYD252
oil_palm|gb166|EL684852_P1
7095
669
83.2
globlastp


3719
LYD252
peanut|10v1|EE125818_P1
7096
669
83.2
globlastp


3720
LYD252
peanut|gb171|EC365309_P1
7096
669
83.2
globlastp


3721
LYD252
pigeonpea|gb171|GR471435_P1
7097
669
83.2
globlastp


3722
LYD252
soybean|gb168|CA899926_P1
7098
669
83.2
globlastp


3723
LYD252
strawberry|gb164|CX662144_P1
7099
669
83.2
globlastp


3724
LYD252
b_juncea|10v2|E6ANDIZ01BOR0S1_P1
7100
669
82.4
globlastp


3725
LYD252
rose|10v1|BQ105459_P1
7101
669
82.4
globlastp


3726
LYD252
basilicum|gb157.3|DY323437_P1
7102
669
82.4
globlastp


3727
LYD252
bean|gb167|CA899926_P1
7103
669
82.4
globlastp


3728
LYD252
bean|gb167|EH040312_P1
7103
669
82.4
globlastp


3729
LYD252
chickpea|09v2|GR392149_P1
7104
669
82.4
globlastp


3730
LYD252
lettuce|gb157.2|DW052883_T1
7105
669
82.4
glotblastn


3731
LYD252
pigeonpea|10v1|GW346529XX2_T1
7106
669
82.4
glotblastn


3732
LYD252
tamarix|gb166|EH052332_P1
7107
669
82.4
globlastp


3733
LYD252
b_oleracea|gb161|EH421962_P1
7108
669
81.5
globlastp


3734
LYD252
nasturtium|10v1|SRR032558S0000551_P1
7109
669
80.8
globlastp


3735
LYD252
avocado|10v1|CK759662_T1
7110
669
80.8
glotblastn


3736
LYD252
avocado|gb164|CK759662_T1
7111
669
80.8
glotblastn


3737
LYD252
medicago|09v1|BE239635_P1
7112
669
80.8
globlastp


3738
LYD252
oak|gb170|SRR006307S0004113_P1
7113
669
80.8
globlastp


3739
LYD252
cucumber|09v1|AB029112_P1
7114
669
80.3
globlastp


3740
LYD252
melon|10v1|AM714236_P1
7114
669
80.3
globlastp


3741
LYD252
melon|gb165|AM714236_P1
7114
669
80.3
globlastp


3742
LYD252
orobanche|10v1|SRR023189S0009680_P1
7115
669
80
globlastp


3743
LYD252
gerbera|09v1|AJ759705_P1
7116
669
80
globlastp


3744
LYD253
arabidopsis_lyrata|09v1|JGIAL013828_P1
7117
670
97.4
globlastp


3745
LYD253
arabidopsis_lyrata|09v1|JGIAL000784_P1
7118
670
96.1
globlastp


3746
LYD253
cacao|gb167|CU481903_P1
7119
670
91.3
globlastp


3747
LYD253
soybean|gb168|BE352739_P1
7120
670
91
globlastp


3748
LYD253
cotton|10v1|AI725856_P1
7121
670
90.7
globlastp


3749
LYD253
cotton|gb164|AI725856_P1
7121
670
90.7
globlastp


3750
LYD253
bean|gb167|CA900778_P1
7122
670
90.2
globlastp


3751
LYD253
cowpea|gb166|FC459485_P1
7123
670
90
globlastp


3752
LYD253
lotus|09v1|BE122579_P1
7124
670
90
globlastp


3753
LYD253
peanut|10v1|CD038740_P1
7125
670
90
globlastp


3754
LYD253
peanut|gb171|CD038740_P1
7125
670
90
globlastp


3755
LYD253
ipomoea_nil|10v1|BJ553783_P1
7126
670
89.7
globlastp


3756
LYD253
orobanche|10v1|SRR023189S0017090_P1
7127
670
89.7
globlastp


3757
LYD253
apple|gb171|CN897567_P1
7128
670
89.7
globlastp


3758
LYD253
ipomoea|gb157.2|BJ566712_P1
7129
670
89.7
globlastp


3759
LYD253
pepper|gb171|BM064196_P1
7130
670
89.7
globlastp


3760
LYD253
tobacco|gb162|CV016523_P1
7131
670
89.7
globlastp


3761
LYD253
apple|gb171|CN489113_P1
7132
670
89.5
globlastp


3762
LYD253
potato|10v1|BG597511_P1
7133
670
89.5
globlastp


3763
LYD253
potato|gb157.2|BG597511_P1
7133
670
89.5
globlastp


3764
LYD253
solanum_phureja|09v1|SPHBG126888_P1
7134
670
89.5
globlastp


3765
LYD253
tomato|09v1|BG126888_P1
7135
670
89.5
globlastp


3766
LYD253
tomato|gb164|BG126888_P1
7135
670
89.5
globlastp


3767
LYD253
triphysaria|10v1|BM356747_P1
7136
670
89.5
globlastp


3768
LYD253
triphysaria|gb164|BM356747_P1
7136
670
89.5
globlastp


3769
LYD253
prunus|10v1|BU039615_P1
7137
670
89.3
globlastp


3770
LYD253
nasturtium|10v1|SRR032558S0017324_P1
7138
670
89.2
globlastp


3771
LYD253
orobanche|10v1|SRR023189S0044816_P1
7139
670
89.2
globlastp


3772
LYD253
aquilegia|gb157.3|DR917957_P1
7140
670
89.2
globlastp


3773
LYD253
prunus|gb167|BU039615_P1
7141
670
89
globlastp


3774
LYD253
soybean|gb168|AW329346_P1
7142
670
88.9
globlastp


3775
LYD253
melon|10v1|DV635041_P1
7143
670
88.7
globlastp


3776
LYD253
pepper|gb171|BM062796_P1
7144
670
88.7
globlastp


3777
LYD253
sunflower|10v1|CD849269_P1
7145
670
88.7
globlastp


3778
LYD253
sunflower|gb162|CD849269_P1
7145
670
88.7
globlastp


3779
LYD253
cucumber|09v1|DN909683_P1
7146
670
88.5
globlastp


3780
LYD253
sunflower|10v1|CX946716_P1
7147
670
88.4
globlastp


3781
LYD253
bean|gb167|CA901796_P1
7148
670
88.4
globlastp


3782
LYD253
artemisia|gb164|EY074319_P1
7149
670
88.2
globlastp


3783
LYD253
soybean|gb168|BE205188_P1
7150
670
88
globlastp


3784
LYD253
tobacco|gb162|DV160802_T1
7151
670
87.92
glotblastn


3785
LYD253
nasturtium|10v1|SRR032558S0003407_P1
7152
670
87.9
globlastp


3786
LYD253
nicotiana_benthamiana|gb162|
7153
670
87.9
globlastp




AY391715_P1


3787
LYD253
artemisia|10v1|EY062281_P1
7154
670
87.7
globlastp


3788
LYD253
medicago|09v1|LLAW256687_P1
7155
670
87.7
globlastp


3789
LYD253
petunia|gb171|CV300000_P1
7156
670
87.7
globlastp


3790
LYD253
peanut|10v1|EE125037_P1
7157
670
87.3
globlastp


3791
LYD253
clover|gb162|BB902680_P1
7158
670
87.2
globlastp


3792
LYD253
cowpea|gb166|FC459335_P1
7159
670
87.2
globlastp


3793
LYD253
petunia|gb171|CV293199_P1
7160
670
87.2
globlastp


3794
LYD253
senecio|gb170|DY658575_P1
7161
670
86.9
globlastp


3795
LYD253
artemisia|gb164|EY062281_P1
7162
670
86.5
globlastp


3796
LYD253
aquilegia|10v1|DT732268_T1
7163
670
85.5
glotblastn


3796
LYD253
aquilegia|gb157.3|DT732268_T1
7164
670
85.5
glotblastn


3797
LYD253
triphysaria|10v1|EX993275_P1
7165
670
85.1
globlastp


3798
LYD253
cryptomeria|gb166|AU298755_P1
7166
670
84.4
globlastp


3799
LYD253
pine|10v1|AA556316_P1
7167
670
83.6
globlastp


3800
LYD253
pine|gb157.2|AA556316_P1
7167
670
83.6
globlastp


3801
LYD253
spruce|gb162|CO225443_P1
7168
670
83.3
globlastp


3802
LYD253
barley|10v1|BG299537_P1
7169
670
83
globlastp


3803
LYD253
barley|gb157SOLEXA|AL450653_P1
7169
670
83
globlastp


3804
LYD253
switchgrass|gb167|FL691026_P1
7170
670
82.6
globlastp


3805
LYD253
medicago|09v1|CRPMT031758_T1
7171
670
82.52
glotblastn


3806
LYD253
maize|gb170|AI372143_P1
7172
670
81.5
globlastp


3807
LYD253
maize|gb170|LLDR828710_P1
7172
670
81.5
globlastp


3808
LYD253
maize|10v1|AI372143_P1
7172
670
81.5
globlastp


3809
LYD253
brachypodium|09v1|DV478807_P1
7173
670
81.4
globlastp


3810
LYD253
brachypodium|gb169|BE414141_P1
7173
670
81.4
globlastp


3811
LYD253
centaurea|gb166|EH718869_T1
7174
670
81.23
glotblastn


3812
LYD253
sugarcane|gb157.3|CA084163_T1
7175
670
80.98
glotblastn


3813
LYD253
rice|gb170|OS01G73790_P1
7176
670
80.9
globlastp


3814
LYD253
sorghum|09v1|SB03G047200_P1
7177
670
80.4
globlastp


3815
LYD253
millet|10v1|EVO454PM000133_P1
7178
670
80.2
globlastp


3816
LYD253
tobacco|gb162|EB428947_P1
7179
670
80.2
globlastp


3817
LYD253
maize|10v1|AI795749_P1
7180
670
80.1
globlastp


3818
LYD253
maize|gb170|AI795749_P1
7180
670
80.1
globlastp


3819
LYD256
arabidopsis|10v1|AT1G75500_P1
7181
671
95.9
globlastp


3820
LYD256
arabidopsis_lyrata|09v1|JGIAL007823_P1
7182
671
95.7
globlastp


3821
LYD256
b_rapa|gb162|AT002231_P1
7183
671
95.2
globlastp


3822
LYD256
castorbean|09v1|EE256014_P1
7184
671
80.1
globlastp


3823
LYD257
canola|gb161|CD825913_P1
7185
672
90.7
globlastp


3824
LYD257
b_rapa|gb162|EX036030_P1
7186
672
87.5
globlastp


3825
LYD257
radish|gb164|EX773473_P1
7187
672
86.9
globlastp


3826
LYD260
radish|gb164|FD571121_T1
7188
673
86.86
glotblastn


3827
LYD267
canola|10v1|EL588214_P1
7189
677
97.3
globlastp


3828
LYD267
b_rapa|gb162|EX090717_P1
7190
677
94.7
globlastp


3829
LYD267
canola|gb161|EL588214_P1
7191
677
91
globlastp


3830
LYD267
arabidopsis|10v1|AT1G64790_T1
813
677
88.86
glotblastn


3831
LYD267
arabidopsis_lyrata|09v1|JGIAL006242_T1
7192
677
88.14
glotblastn


3831
LYD267_H0
arabidopsis_lyrata|09v1|JGIAL006242_P1
7192
693
96.9
globlastp


3832
LYD267
radish|gb164|EX773772_P1
7193
677
84.3
globlastp


3833
LYD271
b_rapa|gb162|BG543457_P1
7194
679
93.3
globlastp


3833
LYD271_H0
b_rapa|gb162|BG543457_P1
7194
694
91.8
globlastp


3834
LYD271
arabidopsis|10v1|AT2G47240_P1
694
679
90.6
globlastp


3835
LYD271
arabidopsis_lyrata|09v1|TMPLAT2G47240T1_P1
7195
679
90.5
globlastp


3835
LYD271_H0
arabidopsis_lyrata|09v1|TMPLAT2G47240T1_P1
7195
694
99.8
globlastp


3836
LYD271
arabidopsis_lyrata|09v1|JGIAL016147_P1
7196
679
90
globlastp


3836
LYD271_H0
arabidopsis_lyrata|09v1|JGIAL016147_P1
7196
694
97.7
globlastp


3837
LYD271
canola|gb161|BQ704756_P1
7197
679
89.7
globlastp


3837
LYD271_H0
canola|gb161|BQ704756_P1
7197
694
90.6
globlastp


3838
LYD271
canola|10v1|CX189606_P1
7198
679
89.2
globlastp


3838
LYD271_H0
canola|10v1|CX189606_P1
7198
694
90.5
globlastp


3839
LYD275
b_oleracea|gb161|EE535125_T1
7199
681
100
glotblastn


3840
LYD275
b_rapa|gb162|CV432945_T1
7200
681
100
glotblastn


3841
LYD275
canola|10v1|DW997986_P1
7201
681
98.6
globlastp


3842
LYD275
canola|gb161|DW997986_T1
7202
681
98.57
glotblastn


3843
LYD275
canola|gb161|CD811838_T1
7203
681
97.14
glotblastn


3844
LYD275
canola|10v1|CD811838_P1
7204
681
97.1
globlastp


3845
LYD275
b_nigra|09v1|GT069340_P1
7205
681
95.8
globlastp


3846
LYD275
radish|gb164|EW726140_P1
7206
681
95.8
globlastp


3847
LYD275
thellungiella|gb167|BY806064_P1
7207
681
95.7
globlastp


3848
LYD275
b_juncea|10v2|E6ANDIZ01B0QZR_P1
7208
681
94.5
globlastp


3849
LYD275
radish|gb164|EW715126_T1
7209
681
92.96
glotblastn


3850
LYD275
arabidopsis_lyrata|09v1|JGIAL011098_T1
7210
681
87.14
glotblastn


3851
LYD275
bruguiera|gb166|BP941672_P1
7211
681
86.1
globlastp


3852
LYD275
arabidopsis|gb165|AT3G24100_T1
7212
681
85.92
glotblastn


3852
LYD275
arabidopsis|10v1|AT3G24100_P1
7213
681
85.9
globlastp


3853
LYD275
b_juncea|10v2|E6ANDIZ01A1JBJ_P1
7214
681
84.5
globlastp


3854
LYD275
b_juncea|gb164|EVGN00148214090597_P1
7214
681
84.5
globlastp


3855
LYD275
cleome_gynandra|10v1|SRR015532S0021751_P1
7215
681
84.3
globlastp


3856
LYD275
catharanthus|gb166|EG554988_P1
7216
681
84.3
globlastp


3857
LYD275
b_juncea|gb164|EVGN21009617052518_T1
7217
681
84.29
glotblastn


3858
LYD275
b_juncea|10v2|E6ANDIZ01A3AK6_P1
7218
681
83.3
globlastp


3859
LYD275
b_juncea|10v2|E6ANDIZ01A9VK9_P1
7218
681
83.3
globlastp


3860
LYD275
b_juncea|gb164|EVGN00053230610138_P1
7218
681
83.3
globlastp


3861
LYD275
b_oleracea|gb161|AM057498_P1
7218
681
83.3
globlastp


3862
LYD275
b_rapa|gb162|CV433987_P1
7218
681
83.3
globlastp


3863
LYD275
b_rapa|gb162|CX270574_P1
7218
681
83.3
globlastp


3864
LYD275
b_rapa|gb162|L38045_P1
7218
681
83.3
globlastp


3865
LYD275
canola|10v1|CD811804_P1
7219
681
83.3
globlastp


3866
LYD275
canola|gb161|CD811804_P1
7219
681
83.3
globlastp


3867
LYD275
canola|10v1|CD812134_P1
7218
681
83.3
globlastp


3868
LYD275
canola|gb161|CD812134_P1
7218
681
83.3
globlastp


3869
LYD275
radish|gb164|EV534832_P1
7220
681
83.3
globlastp


3870
LYD275
radish|gb164|EV544053_P1
7220
681
83.3
globlastp


3871
LYD275
arabidopsis|10v1|AT4G13615_P1
7221
681
83.1
globlastp


3872
LYD275
arabidopsis|gb165|AT4G13615_P1
7221
681
83.1
globlastp


3873
LYD275
cleome_spinosa|10v1|SRR015531S0030693_P1
7222
681
82.9
globlastp


3874
LYD275
orobanche|10v1|SRR023189S0002896_P1
7223
681
82.9
globlastp


3875
LYD275
jatropha|09v1|GH295750_P1
7224
681
82.9
globlastp


3876
LYD275
lettuce|10v1|DW044456_P1
7225
681
82.9
globlastp


3877
LYD275
radish|gb164|EW723920_P1
7226
681
82.9
globlastp


3878
LYD275
safflower|gb162|EL405248_P1
7227
681
82.9
globlastp


3879
LYD275
tea|gb171|GH623887_P1
7228
681
82.9
globlastp


3880
LYD275
citrus|gb166|BQ622948_T1
7229
681
82.86
glotblastn


3881
LYD275
cassava|09v1|CK650049_P1
7230
681
81.9
globlastp


3882
LYD275
thellungiella|gb167|EC599068_P1
7231
681
81.7
globlastp


3883
LYD275
basilicum|10v1|DY322319_P1
7232
681
81.4
globlastp


3884
LYD275
centaurea|gb166|EH719505_P1
7233
681
81.4
globlastp


3885
LYD275
lettuce|10v1|DW103133_P1
7234
681
81.4
globlastp


3886
LYD275
kiwi|gb166|FG441257_P1
7235
681
81.4
globlastp


3887
LYD275
lettuce|10v1|DW122916_P1
7236
681
81.4
globlastp


3888
LYD275
lettuce|gb157.2|DW122916_P1
7236
681
81.4
globlastp


3889
LYD275
poplar|10v1|BI123668_P1
7237
681
81.4
globlastp


3890
LYD275
poplar|gb170|BI123668_P1
7237
681
81.4
globlastp


3891
LYD275
poplar|10v1|CN521361_P1
7238
681
80.3
globlastp


3892
LYD275
poplar|gb170|CN521361_P1
7238
681
80.3
globlastp


3893
LYD275
cassava|gb164|CK650049_T1
7239
681
80.28
glotblastn


3894
LYD275
cleome_gynandra|10v1|SRR015532S0006496_P1
7240
681
80
globlastp


3895
LYD275
cleome_spinosa|10v1|SRR015531S0002266_P1
7241
681
80
globlastp


3896
LYD275
melon|10v1|EB715280_P1
7242
681
80
globlastp


3897
LYD275
antirrhinum|gb166|AJ788137_P1
7243
681
80
globlastp


3898
LYD275
gerbera|09v1|AJ751325_P1
7244
681
80
globlastp


3899
LYD275
melon|gb165|EB715280_P1
7242
681
80
globlastp


3900
LYD278
canola|10v1|CN830844_P1
7245
683
95.9
globlastp


3901
LYD278
canola|gb161|CN830844_P1
7245
683
95.9
globlastp


3902
LYD278
arabidopsis|10v1|AT4G28480_P1
7246
683
83.7
globlastp


3903
LYD278
citrus|gb166|BQ624949_P1
7247
683
81.3
globlastp


3904
LYD278
spurge|gb161|BE231328_P1
7248
683
81.2
globlastp


3905
LYD278
cassava|09v1|DR084651_P1
7249
683
80.2
globlastp


3906
LYD278
cowpea|gb166|FC461152_P1
7250
683
80.2
globlastp


3907
LYD279
arabidopsis|gb165|AT3G10740_P1
7251
684
90.6
globlastp


3907
LYD279
arabidopsis|10v1|AT3G10740_P1
7253
684
90.3
globlastp


3908
LYD279
arabidopsis_lyrata|09v1|JGIAL009496_P1
7252
684
90.5
globlastp


3909
LYD282
arabidopsis_lyrata|09v1|JGIAL003543_P1
7254
685
83
globlastp


3910
LYD283
b_rapa|gb162|CA991797_P1
7255
686
99.6
globlastp


3911
LYD283
canola|10v1|CN727072_P1
7256
686
99.3
globlastp


3912
LYD283
radish|gb164|EV535929_P1
7257
686
97
globlastp


3913
LYD283
arabidopsis_lyrata|09v1|JGIAL016001_P1
7258
686
94.1
globlastp


3914
LYD283
canola|10v1|CD814370_P1
7259
686
93.7
globlastp


3915
LYD283
arabidopsis|10v1|AT2G45990_P1
7260
686
92.6
globlastp


3916
LYD283
cleome_spinosa|10v1|SRR015531S0008712_P1
7261
686
88.1
globlastp


3917
LYD283
thellungiella|gb167|BY806738_P1
7262
686
83.6
globlastp


3918
LYD283
castorbean|09v1|XM002511832_P1
7263
686
81.4
globlastp


3919
LYD283
citrus|gb166|CV885783_P1
7264
686
81.4
globlastp


3920
LYD283
prunus|10v1|CN862535_P1
7265
686
81.4
globlastp


3921
LYD283
prunus|gb167|CV047726_P1
7266
686
80.7
globlastp


3922
LYD283
nasturtium|10v1|SRR032558S0041419_P1
7267
686
80.1
globlastp


3923
LYD285
canola|10v1|CD811710_P1
7268
687
99.6
globlastp


3924
LYD285
canola|gb161|CD811710_P1
7268
687
99.6
globlastp


3925
LYD285
maize|gb170|LLDQ245309_P1
7268
687
99.6
globlastp


3926
LYD285
b_rapa|gb162|BG543481_P1
7269
687
98.2
globlastp


3927
LYD285
thellungiella|gb167|BY810002_P1
7270
687
90.6
globlastp


3928
LYD285
arabidopsis_lyrata|09v1|JGIAL017442_P1
7271
687
85
globlastp


3929
LYD285
arabidopsis|10v1|AT3G44260_P1
7272
687
84.3
globlastp


3930
LYD285
arabidopsis_lyrata|09v1|JGIAL021902_P1
7273
687
81.2
globlastp


3931
LYD285
canola|gb161|EV120613_T1
7274
687
81.09
glotblastn


3932
LYD285
canola|10v1|EV120613_P1
7275
687
80.7
globlastp


3933
LYD285
canola|10v1|EV132851_P1
7276
687
80.4
globlastp


3934
LYD286
b_juncea|10v2|E6ANDIZ02GYJJE_T1
7277
688
81.74
glotblastn


3935
LYD287
arabidopsis_lyrata|09v1|JGIAL020774_P1
7278
689
92.8
globlastp


3936
LYD287
thellungiella|gb167|BY808494_P1
7279
689
87.6
globlastp


3937
LYD287
radish|gb164|EX896249_P1
7280
689
82.5
globlastp


3938
LYD287
radish|gb164|EY904290_P1
7281
689
82.5
globlastp


3939
LYD287
radish|gb164|EV567071_P1
7282
689
81.7
globlastp


3940
LYD287
canola|10v1|CD824727_P1
7283
689
81.6
globlastp


3941
LYD287
canola|gb161|CD824727_P1
7283
689
81.6
globlastp


3942
LYD287
b_rapa|gb162|EX086492_T1
7284
689
80
glotblastn


3943
LYD288
b_juncea|gb164|EVGN00074614260895_P1
7285
690
93.1
globlastp


3944
LYD288
canola|10v1|DY000958_P1
7286
690
92.7
globlastp


3945
LYD288
canola|gb161|DY000958_P1
7286
690
92.7
globlastp


3946
LYD288
canola|10v1|DY002813_P1
7287
690
92.3
globlastp


3947
LYD288
b_oleracea|gb161|AM385538_P1
7288
690
92.3
globlastp


3948
LYD288
b_rapa|gb162|BQ791265_P1
7289
690
92.3
globlastp


3949
LYD288
radish|gb164|EV525658_P1
7290
690
91.1
globlastp


3950
LYD288
radish|gb164|EY926221_P1
7291
690
89.4
globlastp


3951
LYD288
canola|10v1|CD819767_P1
7292
690
89
globlastp


3952
LYD288
canola|gb161|CD819767_P1
7293
690
89
globlastp


3953
LYD288
arabidopsis_lyrata|09v1|JGIAL027537_P1
7294
690
85.4
globlastp


3954
LYD288
b_juncea|10v2|E6ANDIZ01AIU14_P1
7295
690
84.6
globlastp


3955
LYD288
thellungiella|gb167|BY826525_P1
7296
690
84.1
globlastp


3956
LYD288
arabidopsis|10v1|AT5G41210_P1
7297
690
83.7
globlastp


3957
LYD288
arabidopsis|10v1|AT5G41240_T1
7298
690
80.89
glotblastn


3958
LYD124_H7
canola|10v1|EE444087_P1
7299
691
98.4
globlastp


3958
LYD124
canola|10v1|EE444087_T1
7299
724
89.29
glotblastn


3959
LYD124_H7
b_juncea|10v2|E6ANDIZ01BWQ1T_P1
7300
691
93.7
globlastp


3959
LYD124
b_juncea|10v2|E6ANDIZ01BWQ1T_P1
7300
724
83.9
globlastp


3960
LYD124_H7
b_juncea|10v2|SEQ3090_P1
7301
691
88.9
globlastp


3960
LYD124
b_juncea|10v2|SEQ3090_P1
7301
724
82.3
globlastp


3961
LYD124_H7
b_juncea|gb164|EVGN23155006653935_P1
7302
691
88.9
globlastp


3961
LYD124
b_juncea|gb164|EVGN23155006653935_T1
7302
724
89.09
glotblastn


3962
LYD124_H7
b_juncea|10v2|SEQ3040_P1
7303
691
87.3
globlastp


3962
LYD124
b_juncea|10v2|SEQ3040_P1
7303
724
83.9
globlastp


3963
LYD124_H7
canola|10v1|EE503725_P1
7303
691
87.3
globlastp


3963
LYD124
canola|10v1|EE503725_P1
7303
724
83.9
globlastp


3964
LYD124_H7
arabidopsis|gb165|AT4G27654_T1
7304
691
85.71
glotblastn


3964
LYD124
arabidopsis|gb165|AT4G27654_T1
7304
724
90.91
glotblastn


3965
LYD124_H7
arabidopsis|10v1|AT4G27654_P1
7305
691
85.7
globlastp


3965
LYD124
arabidopsis|10v1|AT4G27654_P1
7305
724
80.6
globlastp


3966
LYD124_H7
b_juncea|10v2|BJ1SLX00015037D1_P1
7306
691
84.1
globlastp


3966
LYD124
b_juncea|10v2|BJ1SLX00015037D1_T1
7306
724
83.64
glotblastn


3967
LYD124_H7
b_juncea|10v2|BJ1SLX00075379D1_P1
7307
691
84.1
globlastp


3967
LYD124
b_juncea|10v2|BJ1SLX00075379D1_T1
7307
724
83.64
glotblastn


3968
LYD124_H7
b_juncea|10v2|E6ANDIZ02HWTS1_P1
7308
691
84.1
globlastp


3968
LYD124
b_juncea|10v2|E6ANDIZ02HWTS1_T1
7308
724
83.64
glotblastn


3969
LYD124_H7
canola|10v1|EE413458_P1
7308
691
84.1
globlastp


3969
LYD124
canola|10v1|EE413458_T1
7308
724
83.64
glotblastn


3970
LYD124_H7
canola|gb161|EE413458_P1
7308
691
84.1
globlastp


3970
LYD124
canola|gb161|EE413458_T1
7308
724
83.64
glotblastn


3971
LYD124_H7
arabidopsis_lyrata|09v1|JGIAL025317_P1
7309
691
82.5
globlastp


3971
LYD124
arabidopsis_lyrata|09v1|JGIAL025317_T1
7309
724
85.45
glotblastn


3972
LYD124_H7
arabidopsis_lyrata|09v1|JGIAL029923_P1
7310
691
82.5
globlastp


3973
LYD124_H7
b_juncea|10v2|BJ1SLX00015379D1_P1
7311
691
82.5
globlastp


3973
LYD124
b_juncea|10v2|BJ1SLX00015379D1_T1
7311
724
81.82
glotblastn


3974
LYD124_H7
b_juncea|10v2|BJ1SLX00044885D1_P1
7311
691
82.5
globlastp


3974
LYD124
b_juncea|10v2|BJ1SLX00044885D1_T1
7311
724
81.82
glotblastn


3975
LYD124_H7
canola|10v1|DY000500_P1
7312
691
82.5
globlastp


3975
LYD124
canola|10v1|DY000500_T1
7312
724
81.82
glotblastn


3976
LYD124_H7
canola|gb161|DY000500_P1
7312
691
82.5
globlastp


3976
LYD124
canola|gb161|DY000500_T1
7312
724
81.82
glotblastn


3977
LYD124_H7
arabidopsis|10v1|AT4G27657_P1
7313
691
81
globlastp


3977
LYD124
arabidopsis|10v1|AT4G27657_T1
7313
724
87.27
glotblastn


3978
LYD124_H7
arabidopsis|gb165|AT4G27657_P1
7313
691
81
globlastp


3978
LYD124
arabidopsis|gb165|AT4G27657_T1
7313
724
87.27
glotblastn


3979
LYD89_H0
arabidopsis_lyrata|09v1|JGIAL006995_P1
7314
695
95.4
globlastp


3980
LYD89_H0
soybean|gb168|AW684990_P1
7315
695
81.5
globlastp


3981
LYD89_H0
cucumber|09v1|BGI454H0057707_P1
7316
695
80.9
globlastp


3982
LYD89_H0
cotton|10v1|CO073167_P1
7317
695
80.8
globlastp


3983
LYD89_H0
cassava|09v1|CK643245_P1
7318
695
80.3
globlastp


3984
LYD89_H0
soybean|gb168|AW719229_P1
7319
695
80.3
globlastp


3985
LYM104
rice|gb170|OS11G03070_P1
7320
696
96.5
globlastp


3986
LYM275
rye|gb164|BE586411_P1
7321
697
88.7
globlastp


3987
LYM275
wheat|gb164|CA597846_P1
7322
697
86.7
globlastp


3988
LYM275
rice|gb170|OS07G47750_P1
7323
697
82.1
globlastp


3989
LYD29
pigeonpea|10v1|SRR054580S0018176_T1
7324
699
83.11
glotblastn


3990
LYD29
cowpea|gb166|FF383388_T1
7325
699
83.11
glotblastn


3991
LYD45
solanum_phureja|09v1|SPHAW618293_P1
7326
703
87.5
globlastp


3992
LYD45
solanum_phureja|09v1|SPHBQ515895_T1
7327
703
80.53
glotblastn


3993
LYD49
potato|gb157.2|BF052426_P1
7328
705
97
globlastp


3994
LYD49
solanum_phureja|09v1|SPHBG123989_P1
7329
705
96.7
globlastp


3995
LYD49
eggplant|10v1|FS000181_P1
7330
705
84.5
globlastp


3996
LYD50
basilicum|10v1|DY337033_P1
7331
706
94.9
globlastp


3997
LYD50
coffea|10v1|CF588621_T1
7332
706
80
glotblastn


3998
LYD52
solanum_phureja|09v1|SPHAW928860_T1
7333
707
91.6
glotblastn


3999
LYD52
tomato|09v1|AW928860_T1
7334
707
90.11
glotblastn


4000
LYD52
potato|gb157.2|CK276712_T1
7335
707
83.02
glotblastn


4001
LYD59
tobacco|gb162|EB441545_P1
7336
709
87.2
globlastp


4002
LYD59
potato|10v1|BG599376_T1
7337
709
84.02
glotblastn


4003
LYD59
solanum_phureja|09v1|SPHBG131905_T1
7338
709
83.56
glotblastn


4004
LYD61
petunia|gb171|CV299685_T1
7339
710
94.17
glotblastn


4005
LYD61
monkeyflower|10v1|SRR037227S0029500_T1
7340
710
85.44
glotblastn


4006
LYD61
pepper|gb171|GD092607_P1
7341
710
84.9
globlastp


4007
LYD61
citrus|gb166|CK665309_T1
7342
710
83.81
glotblastn


4008
LYD61
tobacco|gb162|DV162428_T1
7343
710
83.5
glotblastn


4009
LYD61
citrus|gb166|DN134814_T1
7344
710
82.86
glotblastn


4010
LYD61
arabidopsis_lyrata|09v1|JGIAL026462_T1
7345
710
82.52
glotblastn


4011
LYD61
rhizophora|10v1|SRR005792S0003855_T1
7346
710
81.55
glotblastn


4012
LYD61
arabidopsis|10v1|AT4G17360_T1
7347
710
81.55
glotblastn


4013
LYD61
arabidopsis|gb165|AT4G17360_T1
7347
710
81.55
glotblastn


4014
LYD61
papaya|gb165|EX266095_T1
7348
710
81.55
glotblastn


4015
LYD61
thellungiella|gb167|DN778520_T1
7349
710
81.55
glotblastn


4016
LYD61
arabidopsis_lyrata|09v1|JGIAL028054_T1
7350
710
80.58
glotblastn


4017
LYD61
canola|10v1|CD816661_T1
7351
710
80.58
glotblastn


4018
LYD61
tomato|09v1|SRR027939S0270689_T1
7352
710
80.58
glotblastn


4019
LYD61
canola|gb161|CD816661_T1
7351
710
80.58
glotblastn


4020
LYD61
kiwi|gb166|FG526349_T1
7353
710
80.58
glotblastn


4021
LYD61
poplar|10v1|BU832393_T1
7354
710
80.58
glotblastn


4022
LYD61
poplar|gb170|BU832393_T1
7354
710
80.58
glotblastn


4023
LYD61
radish|gb164|EX887273_T1
7355
710
80.58
glotblastn


4024
LYD65
solanum_phureja|09v1|SPHCV491883_T1
7356
712
88.24
glotblastn


4025
LYD65
pepper|gb171|CA516488_T1
7357
712
85.71
glotblastn


4026
LYD65
tobacco|gb162|EB679001_T1
7358
712
81.82
glotblastn


4027
LYD74
petunia|gb171|CV296742_T1
7359
714
89.72
glotblastn


4028
LYD74
ipomoea|gb157.2|BM878729_T1
7360
714
86.11
glotblastn


4029
LYD74
ipomoea|gb157.2|BJ554139_T1
7361
714
85.71
glotblastn


4030
LYD74
cotton|gb164|AI727586_T1
7362
714
85.45
glotblastn


4031
LYD74
rose|10v1|EC586509_T1
7363
714
85.05
glotblastn


4032
LYD74
salvia|10v1|SRR014553S0001681_T1
7364
714
84.65
glotblastn


4033
LYD74
banana|gb167|DN238032_T1
7365
714
84.04
glotblastn


4034
LYD74
bruguiera|gb166|BP939059_T1
7366
714
83.1
glotblastn


4035
LYD74
cleome_gynandra|10v1|SRR015532S0000664_T1
7367
714
83.03
glotblastn


4036
LYD74
banana|10v1|DN238553_P1
7368
714
81.7
globlastp


4037
LYD74
chickpea|09v2|DY475430_T1
7369
714
80.37
glotblastn


4038
LYD74
onion|gb162|CF436119_P1
7370
714
80.1
globlastp


4039
LYD74
curcuma|10v1|DY385612_T1
7371
714
80.09
glotblastn


4040
LYD74
ginger|gb164|DY346269_T1
7371
714
80.09
glotblastn


4041
LYD106
arabidopsis_lyrata|09v1|JGIAL028447_T1
7372
718
86.61
glotblastn


4042
LYD118
canola|10v1|CX280679_T1
7373
720
93.94
glotblastn


4043
LYD118
b_oleracea|gb161|AM057891_P1
7374
720
92.1
globlastp


4044
LYD119
canola|10v1|ES266621_T1
7375
721
98.07
glotblastn


4045
LYD119
canola|gb161|CD824955_T1
7376
721
98.07
glotblastn


4046
LYD119
radish|gb164|EV548773_T1
7377
721
98.07
glotblastn


4047
LYD119
canola|10v1|CD824955_T1
7378
721
98.07
glotblastn


4048
LYD119
thellungiella|gb167|DN773015_T1
7379
721
96.62
glotblastn


4049
LYD119
canola|gb161|EE490115_P1
7380
721
91.4
globlastp


4050
LYD119
b_rapa|gb162|DN966501_P1
7381
721
90.8
globlastp


4051
LYD119
cleome_spinosa|10v1|SRR015531S0005496_T1
7382
721
88.1
glotblastn


4052
LYD119
cucumber|09v1|AM722352_T1
7383
721
86.96
glotblastn


4053
LYD119
nasturtium|10v1|SRR032558S0086509_T1
7384
721
86.96
glotblastn


4054
LYD119
iceplant|gb164|AA962851_T1
7385
721
86.96
glotblastn


4055
LYD119
pine|10v1|AA556728_T1
7386
721
85.99
glotblastn


4056
LYD119
orobanche|10v1|SRR023189S0019360_T1
7387
721
85.71
glotblastn


4057
LYD119
bean|gb167|CB542468_T1
7388
721
85.71
glotblastn


4058
LYD119
soybean|gb168|BU090151_T1
7389
721
85.71
glotblastn


4059
LYD119
spruce|gb162|CO215773_T1
7390
721
85.51
glotblastn


4060
LYD119
spruce|gb162|CO217277_T1
7391
721
85.51
glotblastn


4061
LYD119
tragopogon|10v1|SRR020205S0067472_T1
7392
721
85.24
glotblastn


4062
LYD119
soybean|gb168|BI968126_T1
7393
721
85.24
glotblastn


4063
LYD119
oak|10v1|SRR039735S0121091_P1
7394
721
85.2
globlastp


4064
LYD119
tea|10v1|GO254991_P1
7395
721
85.2
globlastp


4065
LYD119
tea|gb171|GO254991_P1
7395
721
85.2
globlastp


4066
LYD119
brachypodium|09v1|GT763470_T1
7396
721
85.02
glotblastn


4067
LYD119
peanut|10v1|ES709558_T1
7397
721
84.76
glotblastn


4068
LYD119
cichorium|gb171|EH675630_T1
7398
721
84.76
glotblastn


4069
LYD119
cowpea|gb166|FF547244_T1
7399
721
84.76
glotblastn


4070
LYD119
sunflower|10v1|BQ914563_T1
7400
721
84.76
glotblastn


4071
LYD119
triphysaria|10v1|DR174364_T1
7401
721
84.76
glotblastn


4072
LYD119
prunus|gb167|AJ823038_T1
7402
721
84.29
glotblastn


4073
LYD119
sunflower|gb162|BQ914563_T1
7403
721
84.29
glotblastn


4074
LYD119
triphysaria|gb164|DR174364_T1
7404
721
84.29
glotblastn


4075
LYD119
tomato|09v1|BG124992_T1
7405
721
84.21
glotblastn


4076
LYD119
switchgrass|gb167|DW177336_T1
7406
721
84.06
glotblastn


4077
LYD119
pigeonpea|10v1|SRR054580S0026667_T1
7407
721
83.81
glotblastn


4078
LYD119
sunflower|gb162|DY908134_T1
7408
721
83.81
glotblastn


4079
LYD119
triphysaria|10v1|EX984488_T1
7409
721
83.81
glotblastn


4080
LYD119
triphysaria|gb164|EX984488_T1
7410
721
83.81
glotblastn


4081
LYD119
monkeyflower|09v1|GO981562_T1
7411
721
83.73
glotblastn


4082
LYD119
monkeyflower|10v1|GO946042_T1
7412
721
83.73
glotblastn


4083
LYD119
acacia|10v1|FS585672_T1
7413
721
83.57
glotblastn


4084
LYD119
potato|10v1|BF154054_T1
7414
721
83.33
glotblastn


4085
LYD119
potato|gb157.2|BF154054_T1
7415
721
83.33
glotblastn


4086
LYD119
tomato|gb164|BG631453_P1
7416
721
83.3
globlastp


4087
LYD119
senecio|gb170|DY664721_P1
7417
721
83.1
globlastp


4088
LYD119
rice|gb170|OS12G33080_T1
7418
721
83.09
glotblastn


4089
LYD119
pine|10v1|BX251835_T1
7419
721
82.86
glotblastn


4090
LYD119
artemisia|gb164|EY036735_T1
7420
721
82.86
glotblastn


4091
LYD119
basilicum|gb157.3|DY331424_T1
7421
721
82.86
glotblastn


4092
LYD119
pea|09v1|EF488072_T1
7422
721
82.86
glotblastn


4093
LYD119
solanum_phureja|09v1|SPHBG124992_T1
7423
721
82.86
glotblastn


4094
LYD119
heritiera|10v1|SRR005794S0000721_T1
7424
721
82.63
glotblastn


4095
LYD119
fern|gb171|DK949251_T1
7425
721
82.61
glotblastn


4096
LYD119
strawberry|gb164|EX661600_P1
7426
721
82.6
globlastp


4097
LYD119
peanut|10v1|GO261368_T1
7427
721
82.38
glotblastn


4098
LYD119
peanut|gb171|GO261368_T1
7428
721
82.38
glotblastn


4099
LYD119
oat|10v2|GO586892_T1
7429
721
81.9
glotblastn


4100
LYD119
millet|10v1|EVO454PM004600_T1
7430
721
81.64
glotblastn


4101
LYD119
brachypodium|gb169|BE402785_T1
7431
721
81.64
glotblastn


4102
LYD119
ipomoea_nil|10v1|CJ765444_P1
7432
721
81.6
globlastp


4102
LYD119
ipomoea|gb157.2|CJ765444_P1
7432
721
81.6
globlastp


4103
LYD119
pepper|gb171|BM067160_P1
7433
721
81.6
globlastp


4104
LYD119
barley|10v1|BE437611_T1
7434
721
81.43
glotblastn


4105
LYD119
barley|gb157SOLEXA|BE437611_T1
7435
721
81.43
glotblastn


4106
LYD119
wheat|gb164|BE402785_T1
7436
721
81.43
glotblastn


4107
LYD119
spikemoss|gb165|FE432753_T1
7437
721
80.95
glotblastn


4108
LYD119
wheat|gb164|CA676597_T1
7438
721
80.95
glotblastn


4109
LYD119
physcomitrella|10v1|BJ157018_T1
7439
721
80.48
glotblastn


4110
LYD119
cynara|gb167|GE593403_P1
7440
721
80.4
globlastp


4111
LYD119
ipomoea_nil|10v1|BJ567558_P1
7441
721
80.3
globlastp


4111
LYD119
ipomoea|gb157.2|BJ567558_P1
7441
721
80.3
globlastp


4112
LYD119
maize|10v1|AW066569_T1
7442
721
80
glotblastn


4113
LYD119
maize|gb170|AW066569_T1
7442
721
80
glotblastn


4114
LYD119
sorghum|09v1|SB08G016630_T1
7443
721
80
glotblastn


4115
LYD120
radish|gb164|EV543892_T1
7444
722
94.35
glotblastn


4116
LYD120
b_juncea|10v2|E6ANDIZ01DKBDZ_P1
7445
722
84.1
globlastp


4117
LYD120
arabidopsis_lyrata|09v1|JGIAL029406_T1
7446
722
83.06
glotblastn


4118
LYD120
arabidopsis|10v1|AT5G50100_T1
7447
722
83.06
glotblastn


4119
LYD120
arabidopsis|gb165|AT5G50100_T1
7448
722
83.06
glotblastn


4120
LYD123
canola|gb161|EE461239_T1
7449
723
94.33
glotblastn


4121
LYD123
radish|gb164|FD539059_T1
7450
723
86.11
glotblastn


4122
LYD124
arabidopsis_lyrata|09v1|JGIAL025319_T1
7451
724
83.64
glotblastn


4123
LYD124
canola|gb161|EE503725_T1
7452
724
81.82
glotblastn


4124
LYD124
radish|gb164|EY911939_T1
7453
724
80
glotblastn


4125
LYD124
thellungiella|gb167|BY833371_T1
7454
724
80
glotblastn


4126
LYD127
soybean|gb168|FD780693_T1
7455
725
96.84
glotblastn


4127
LYD127
bean|gb167|CB540262_T1
7456
725
95.57
glotblastn


4128
LYD127
pigeonpea|10v1|SRR054580S0015649_T1
7457
725
93.67
glotblastn


4129
LYD127
sunflower|10v1|CF081741_T1
7458
725
89.87
glotblastn


4130
LYD127
sunflower|gb162|CF081741_T1
7459
725
89.87
glotblastn


4131
LYD127
sunflower|10v1|EE608363_T1
7460
725
89.87
glotblastn


4132
LYD127
artemisia|10v1|EY101060_T1
7461
725
89.24
glotblastn


4133
LYD127
tea|gb171|EF218618_T1
7462
725
89.24
glotblastn


4134
LYD127
poplar|gb170|BI123464_T1
7463
725
88.61
glotblastn


4135
LYD127
cassava|09v1|DB951700_T1
7464
725
87.97
glotblastn


4136
LYD127
cassava|09v1|JGICASSAVA6286VALIDM1_T1
7465
725
87.97
glotblastn


4137
LYD127
cleome_gynandra|10v1|SRR015532S0009046_T1
7466
725
87.97
glotblastn


4138
LYD127
nasturtium|10v1|SRR032558S0021243_T1
7467
725
87.97
glotblastn


4139
LYD127
prunus|10v1|CB822008_T1
7468
725
87.97
glotblastn


4140
LYD127
poplar|10v1|BI123464_T1
7469
725
87.97
glotblastn


4141
LYD127
poplar|10v1|CV268483_T1
7470
725
87.97
glotblastn


4142
LYD127
poplar|gb170|CV268483_T1
7470
725
87.97
glotblastn


4143
LYD127
sunflower|gb162|EL415366_T1
7471
725
87.97
glotblastn


4144
LYD127
tragopogon|10v1|SRR020205S0045666_T1
7472
725
87.65
glotblastn


4145
LYD127
cleome_spinosa|10v1|GR932411_T1
7473
725
86.71
glotblastn


4146
LYD127
antirrhinum|gb166|AJ787831_T1
7474
725
86.71
glotblastn


4147
LYD127
apple|gb171|CN864453_T1
7475
725
86.71
glotblastn


4148
LYD127
castorbean|09v1|XM002510467_T1
7476
725
86.71
glotblastn


4149
LYD127
oak|10v1|FP038114_T1
7477
725
86.08
glotblastn


4150
LYD127
lettuce|gb157.2|DW089878_T1
7478
725
85.8
glotblastn


4151
LYD127
cucumber|09v1|AM725987_T1
7479
725
85.44
glotblastn


4152
LYD127
spurge|gb161|DV123737_T1
7480
725
85.44
glotblastn


4153
LYD127
lettuce|10v1|DW089878_T1
7481
725
85.19
glotblastn


4154
LYD127
arabidopsis_lyrata|09v1|JGIAL002097_T1
7482
725
84.81
glotblastn


4155
LYD127
aquilegia|10v1|DR925552_T1
7483
725
84.81
glotblastn


4156
LYD127
aquilegia|gb157.3|DR925552_T1
7484
725
84.81
glotblastn


4157
LYD127
arabidopsis|10v1|AT1G19920_T1
7485
725
84.81
glotblastn


4158
LYD127
arabidopsis|gb165|AT1G19920_T1
7485
725
84.81
glotblastn


4159
LYD127
canola|10v1|DY022321_T1
7486
725
84.18
glotblastn


4160
LYD127
canola|gb161|EV195140_T1
7487
725
84.18
glotblastn


4161
LYD127
monkeyflower|09v1|DV212228_T1
7488
725
84.18
glotblastn


4162
LYD127
b_oleracea|gb161|AF195511_T1
7489
725
83.54
glotblastn


4163
LYD127
b_rapa|gb162|ES929820_T1
7490
725
83.54
glotblastn


4164
LYD127
monkeyflower|10v1|DV212228_T1
7491
725
83.54
glotblastn


4165
LYD127
centaurea|gb166|EL933253_T1
7492
725
83.44
glotblastn


4166
LYD127
dandelion|10v1|DQ160054_T1
7493
725
83.33
glotblastn


4167
LYD127
canola|10v1|CD825050_T1
7494
725
82.91
glotblastn


4168
LYD127
coffea|10v1|DV671705_T1
7495
725
81.65
glotblastn


4169
LYD127
canola|gb161|CD812541_T1
7496
725
81.65
glotblastn


4170
LYD127
switchgrass|gb167|FL718428_T1
7497
725
81.65
glotblastn


4171
LYD127
rice|gb170|OS04G02050_T1
7498
725
80.5
glotblastn


4172
LYD127
brachypodium|09v1|GT773509_T1
7499
725
80.38
glotblastn


4173
LYD127
maize|10v1|AW927833_T1
7500
725
80.38
glotblastn


4174
LYD127
brachypodium|gb169|BE411414_T1
7501
725
80.38
glotblastn


4175
LYD127
radish|gb164|EV525366_T1
7502
725
80.38
glotblastn


4176
LYD127
spruce|gb162|CO219290_T1
7503
725
80.38
glotblastn


4177
LYD142
eggplant|10v1|FS049767_T1
7504
726
80.34
glotblastn


4178
LYD185
b_juncea|gb164|EVGN00210423251166_P1
7505
730
84.5
globlastp


4179
LYD185
b_juncea|gb164|EVGN03295430561543_P1
7506
730
84.2
globlastp


4180
LYD185
radish|gb164|EW713565_T1
7507
730
83.59
glotblastn


4181
LYD185
b_juncea|gb164|EVGN01104525990565_T1
7508
730
82.56
glotblastn


4182
LYD185
canola|gb161|CX196125_T1
7509
730
82.05
glotblastn


4183
LYD185
b_juncea|10v2|E6ANDIZ01C91Z3_P1
7510
730
80.3
globlastp


4184
LYD212
arabidopsis_lyrata|09v1|JGIAL028662_P1
7511
733
99.7
globlastp


4185
LYD231
sugarcane|10v1|CA081528_T1
7512
734
93.13
glotblastn


4186
LYD231
switchgrass|gb167|DN145042_P1
7513
734
86.7
globlastp


4187
LYD232
nicotiana_benthamiana|gb162|
7514
735
85.82
glotblastn




CK286359_T1


4188
LYD235
potato|10v1|AJ487407_P1
7515
736
98.2
globlastp


4189
LYD235
potato|gb157.2|AJ487407_P1
7515
736
98.2
globlastp


4190
LYD235
potato|gb157.2|BG589356_P1
7515
736
98.2
globlastp


4191
LYD235
solanum_phureja|09v1|SPHBG132066_P1
7515
736
98.2
globlastp


4192
LYD235
eggplant|10v1|FS034595_P1
7516
736
97
globlastp


4193
LYD235
pepper|gb171|BM062225_P1
7517
736
95.9
globlastp


4194
LYD235
tobacco|gb162|AB041518_P1
7518
736
92.9
globlastp


4195
LYD235
cotton|10v1|AF037051_P1
7519
736
91.8
globlastp


4196
LYD235
petunia|gb171|CV295395_P1
7520
736
90.5
globlastp


4197
LYD235
petunia|gb171|FN000529_P1
7521
736
87.1
globlastp


4198
LYD235
petunia|gb171|DY395977_P1
7522
736
85.2
globlastp


4199
LYD235
flax|09v1|CV478944_P1
7523
736
82.8
globlastp


4200
LYD235
rhizophora|10v1|SRR005792S0007720_P1
7524
736
81.7
globlastp


4201
LYD235
cassava|gb164|DV444983_P1
7525
736
81.7
globlastp


4202
LYD235
coffea|10v1|DQ123923_P1
7526
736
81.7
globlastp


4203
LYD235
spurge|gb161|DV112714_P1
7527
736
81.7
globlastp


4204
LYD235
prunus|10v1|BU039316_P1
7528
736
81.2
globlastp


4205
LYD235
prunus|gb167|BU039316_P1
7528
736
81.2
globlastp


4206
LYD235
coffea|gb157.2|DQ123923_P1
7529
736
81.1
globlastp


4207
LYD235
kiwi|gb166|FG428858_P1
7530
736
81.1
globlastp


4208
LYD235
cotton|10v1|AI055041_P1
7531
736
80.5
globlastp


4209
LYD235
foxtail_millet|09v1|AY541694_P1
7532
736
80.5
globlastp


4210
LYD235
cassava|gb164|CK641649_P1
7533
736
80.5
globlastp


4211
LYD235
castorbean|09v1|T15094_P1
7534
736
80.5
globlastp


4212
LYD235
cenchrus|gb166|EB654968_P1
7535
736
80.5
globlastp


4213
LYD235
grape|gb160|BM436942_P1
7536
736
80.5
globlastp


4214
LYD235
monkeyflower|09v1|GR014468_P1
7537
736
80.5
globlastp


4215
LYD235
monkeyflower|10v1|GR014468_P1
7537
736
80.5
globlastp


4216
LYD235
poplar|10v1|BI072985_P1
7538
736
80.5
globlastp


4217
LYD235
poplar|gb170|BI072985_P1
7538
736
80.5
globlastp


4218
LYD235
poplar|10v1|BI125787_P1
7539
736
80.5
globlastp


4219
LYD235
poplar|gb170|BI125787_P1
7539
736
80.5
globlastp


4220
LYD235
pseudoroegneria|gb167|FF340959_P1
7540
736
80.5
globlastp


4221
LYD235
sorghum|09v1|SB06G024920_P1
7535
736
80.5
globlastp


4222
LYD235
sugarcane|gb157.3|BQ533812_P1
7535
736
80.5
globlastp


4223
LYD235
sugarcane|gb157.3|BQ535903_P1
7535
736
80.5
globlastp


4224
LYD235
switchgrass|gb167|DN143025_P1
7541
736
80.5
globlastp


4225
LYD235
switchgrass|gb167|DN145059_P1
7542
736
80.5
globlastp


4226
LYD235
sugarcane|10v1|BQ533812_P1
7535
736
80.5
globlastp


4227
LYD235
ginseng|10v1|CN845955_T1
7543
736
80.47
glotblastn


4228
LYD248
b_juncea|10v2|E6ANDIZ01AWPC7_P1
7544
737
97.2
globlastp


4229
LYD248
canola|10v1|CX190543_T1
7545
737
96.73
glotblastn


4230
LYD248
b_oleracea|gb161|DY014208_T1
7546
737
96.73
glotblastn


4231
LYD248
b_oleracea|gb161|AM061136_P1
7547
737
88.3
globlastp


4232
LYD248
b_rapa|gb162|EX046027_T1
7548
737
85.12
glotblastn


4233
LYD248
cleome_gynandra|10v1|SRR015532S0001842_T1
7549
737
80.84
glotblastn


4234
LYD250
canola|10v1|EV168840_T1
7550
738
98.81
glotblastn


4235
LYD250
pigeonpea|10v1|SRR054580S0022117_T1
7551
738
82.14
glotblastn


4236
LYD250
cowpea|gb166|FF385901_T1
7552
738
82.14
glotblastn


4237
LYD250
b_juncea|10v2|BJ1SLX00187033D1_T1
7553
738
80.95
glotblastn


4238
LYD250
cassava|09v1|CK646994_T1
7554
738
80.95
glotblastn


4239
LYD250
heritiera|10v1|SRR005794S0006421_T1
7555
738
80.95
glotblastn


4240
LYD250
prunus|10v1|CN489066_T1
7556
738
80.95
glotblastn


4241
LYD250
bean|gb167|CA910825_T1
7557
738
80.95
glotblastn


4242
LYD250
chestnut|gb170|SRR006295S0000380_T1
7558
738
80.95
glotblastn


4243
LYD250
grape|gb160|CB973883_T1
7559
738
80.95
glotblastn


4244
LYD260
arabidopsis|10v1|AT5G64000_T1
7560
739
80.13
glotblastn


4245
LYD260
arabidopsis|gb165|AT5G64000_T1
7560
739
80.13
glotblastn


4246
LYD261
b_oleracea|gb161|EH415860_T1
7561
740
97.2
glotblastn


4247
LYD261
canola|10v1|EE431858_T1
7562
740
94.08
glotblastn


4248
LYD261
canola|gb161|DY023542_T1
7563
740
93.77
glotblastn


4249
LYD261
canola|10v1|EE551454_P1
7564
740
90.5
globlastp


4250
LYD261
radish|gb164|EV567697_P1
7565
740
88.5
globlastp


4251
LYD261
b_rapa|gb162|EX040521_T1
7566
740
88.47
glotblastn


4252
LYD261
arabidopsis_lyrata|09v1|JGIAL004392_T1
7567
740
87.85
glotblastn


4253
LYD261
cleome_gynandra|10v1|SRR015532S0011521_T1
7568
740
81.62
glotblastn


4254
LYD268
canola|10v1|EV039640_T1
7569
742
92.68
glotblastn


4255
LYD268
b_juncea|10v2|SEQ2714_T1
7570
742
84.15
glotblastn


4256
LYD268
thellungiella|gb167|DN775435_T1
7571
742
81.71
glotblastn


4257
LYD268
arabidopsis|10v1|AT4G01610_T1
7572
742
80.49
glotblastn


4258
LYD268
arabidopsis|gb165|AT4G01610_T1
7572
742
80.49
glotblastn


4259
LYD268
b_oleracea|gb161|AM395871_T1
7573
742
80.49
glotblastn


4260
LYD268
b_rapa|gb162|CV523184_T1
7574
742
80.49
glotblastn


4261
LYD268
canola|10v1|CD811685_T1
7575
742
80.49
glotblastn


4262
LYD268
canola|gb161|CD811685_T1
7575
742
80.49
glotblastn


4263
LYD268
canola|10v1|CD814272_T1
7576
742
80.49
glotblastn


4264
LYD268
canola|gb161|CD814272_T1
7576
742
80.49
glotblastn


4265
LYD271
canola|10v1|CX193148_T1
7577
743
95.45
glotblastn


4266
LYD271
canola|gb161|CX193148_T1
7578
743
95.45
glotblastn


4267
LYD271
canola|10v1|BQ704756_T1
7579
743
93.18
glotblastn


4268
LYD271
radish|gb164|EX763829_T1
7580
743
92.05
glotblastn


4269
LYD271
thellungiella|gb167|BY815188_T1
7581
743
90.91
glotblastn


4270
LYD271
b_juncea|10v2|E6ANDIZ01D350E_T1
7582
743
85.23
glotblastn


4271
LYD271
canola|10v1|ES981471_T1
7583
743
82.95
glotblastn


4272
LYD271
b_rapa|gb162|EX040706_T1
7584
743
82.95
glotblastn


4273
LYD271
radish|gb164|EV537391_T1
7585
743
82.95
glotblastn


4274
LYD271
b_oleracea|gb161|EH419147_T1
7586
743
80.68
glotblastn


4275
LYD273
canola|gb161|ES950584_T1
7587
744
100
glotblastn


4276
LYD273
radish|gb164|EV536786_T1
7588
744
100
glotblastn


4277
LYD273
thellungiella|gb167|BY806071_T1
7589
744
100
glotblastn


4278
LYD273
cleome_spinosa|10v1|SRR015531S0023838_T1
7590
744
97.96
glotblastn


4279
LYD273
canola|10v1|ES950584_T1
7591
744
95.92
glotblastn


4280
LYD273
b_rapa|gb162|CV432099_T1
7592
744
93.88
glotblastn


4281
LYD273
pigeonpea|10v1|SRR054580S0008538_T1
7593
744
87.76
glotblastn


4282
LYD273
cacao|gb167|CU473348_T1
7594
744
87.76
glotblastn


4283
LYD273
citrus|gb166|CX674860_T1
7595
744
87.76
glotblastn


4284
LYD273
cowpea|gb166|FF395622_T1
7596
744
87.76
glotblastn


4285
LYD273
peanut|10v1|EE127736_T1
7597
744
87.76
glotblastn


4286
LYD273
poplar|gb170|CA925799_T1
7598
744
87.76
glotblastn


4287
LYD273
soybean|gb168|AL369908_T1
7599
744
87.76
glotblastn


4288
LYD273
soybean|gb168|BG645822_T1
7600
744
87.76
glotblastn


4289
LYD273
soybean|gb168|FF548852_T1
7601
744
86
glotblastn


4290
LYD273
nasturtium|10v1|SRR032558S0000459_T1
7602
744
85.71
glotblastn


4291
LYD273
oak|10v1|FP036741_T1
7603
744
85.71
glotblastn


4292
LYD273
cassava|09v1|DB941340_T1
7604
744
85.71
glotblastn


4293
LYD273
cassava|gb164|DB941340_T1
7605
744
85.71
glotblastn


4294
LYD273
castorbean|09v1|XM002517856_T1
7606
744
85.71
glotblastn


4295
LYD273
cotton|10v1|BQ406810_T1
7607
744
85.71
glotblastn


4296
LYD273
cotton|gb164|BQ406810_T1
7608
744
85.71
glotblastn


4297
LYD273
oak|gb170|SRR006314S0070548_T1
7609
744
85.71
glotblastn


4298
LYD273
poplar|10v1|CA925799_T1
7610
744
85.71
glotblastn


4299
LYD273
apple|gb171|CN868818_T1
7611
744
83.67
glotblastn


4300
LYD273
medicago|09v1|AW329296_T1
7612
744
83.67
glotblastn


4301
LYD273
pea|09v1|FG531832_T1
7613
744
83.67
glotblastn


4302
LYD273
prunus|10v1|CB818351_T1
7614
744
83.67
glotblastn


4303
LYD273
prunus|gb167|DY636109_T1
7615
744
83.67
glotblastn


4304
LYD273
peanut|gb171|EE127736_T1
7616
744
81.63
glotblastn


4305
LYD276
radish|gb164|EW725283_T1
7617
745
97.78
glotblastn


4306
LYD276
b_rapa|gb162|EX068631_T1
7618
745
88.89
glotblastn


4307
LYD276
b_oleracea|gb161|EH422761_T1
7619
745
88.33
glotblastn


4308
LYD276
canola|10v1|H07563_T1
7620
745
88.33
glotblastn


4309
LYD276
canola|gb161|H07563_T1
7621
745
88.33
glotblastn


4310
LYD276
canola|10v1|EV146718_P1
7622
745
81.2
globlastp


4311
LYD276
canola|gb161|EV146718_P1
7623
745
81.2
globlastp


4312
LYD278
b_juncea|10v2|E6ANDIZ01B10PC_T1
7624
746
90.16
glotblastn


4313
LYD278
b_juncea|10v2|E6ANDIZ01A4KLN_T1
7625
746
90.16
glotblastn


4314
LYD278
b_juncea|gb164|EVGN02746728071494_T1
7626
746
90.16
glotblastn


4315
LYD278
canola|gb161|CD824599_T1
7627
746
90.16
glotblastn


4316
LYD278
canola|gb161|EE559671_T1
7628
746
90.16
glotblastn


4317
LYD278
radish|gb164|EW721862_T1
7629
746
90.16
glotblastn


4318
LYD278
radish|gb164|FD561058_T1
7630
746
89.34
glotblastn


4319
LYD278
canola|10v1|CD824599_T1
7631
746
89.34
glotblastn


4320
LYD278
canola|10v1|EE474997_T1
7632
746
88.52
glotblastn


4321
LYD278
b_rapa|gb162|BQ790727_T1
7633
746
87.7
glotblastn


4322
LYD278
arabidopsis|10v1|AT2G20550_T1
7634
746
86.07
glotblastn


4323
LYD278
arabidopsis|gb165|AT2G20550_T1
7635
746
86.07
glotblastn


4324
LYD278
chestnut|gb170|SRR006296S0031590_T1
7636
746
84.43
glotblastn


4325
LYD278
oak|gb170|SRR006307S0037850_T1
7637
746
83.61
glotblastn


4326
LYD278
radish|gb164|FD959782_P1
7638
746
83.3
globlastp


4327
LYD278
arabidopsis_lyrata|09v1|JGIAL012528_T1
7639
746
81.97
glotblastn


4328
LYD278
heritiera|10v1|SRR005794S0001968_T1
7640
746
81.97
glotblastn


4329
LYD278
melon|10v1|AM715991_T1
7641
746
81.97
glotblastn


4330
LYD278
oak|10v1|FP034091_T1
7642
746
81.97
glotblastn


4331
LYD278
pigeonpea|10v1|SRR054580S0010860_T1
7643
746
81.97
glotblastn


4332
LYD278
pigeonpea|10v1|SRR054580S0381041_T1
7644
746
81.97
glotblastn


4333
LYD278
bean|gb167|CV537680_T1
7645
746
81.97
glotblastn


4334
LYD278
cassava|09v1|CK652695_T1
7646
746
81.97
glotblastn


4335
LYD278
cassava|gb164|CK652695_T1
7647
746
81.97
glotblastn


4336
LYD278
medicago|09v1|BG646294_T1
7648
746
81.97
glotblastn


4337
LYD278
poplar|gb170|BI073075_T1
7649
746
81.97
glotblastn


4338
LYD278
poplar|10v1|CV240011_T1
7650
746
81.97
glotblastn


4339
LYD278
poplar|gb170|CV240011_T1
7650
746
81.97
glotblastn


4340
LYD278
soybean|gb168|CD416793_T1
7651
746
81.97
glotblastn


4341
LYD278
artemisia|10v1|EY078479_T1
7652
746
81.15
glotblastn


4342
LYD278
cleome_spinosa|10v1|SRR015531S0013173_T1
7653
746
81.15
glotblastn


4343
LYD278
cucumber|09v1|AM715991_T1
7654
746
81.15
glotblastn


4344
LYD278
cacao|gb167|CU476709_T1
7655
746
81.15
glotblastn


4345
LYD278
castorbean|09v1|XM002517807_T1
7656
746
81.15
glotblastn


4346
LYD278
cotton|10v1|AI727783_T1
7657
746
81.15
glotblastn


4347
LYD278
cotton|gb164|AI727783_T1
7658
746
81.15
glotblastn


4348
LYD278
grape|gb160|CB001614_T1
7659
746
81.15
glotblastn


4349
LYD278
peanut|gb171|EH044472_T1
7660
746
81.15
glotblastn


4350
LYD278
poplar|10v1|BU879952_T1
7661
746
81.15
glotblastn


4351
LYD278
poplar|gb170|BU879952_T1
7661
746
81.15
glotblastn


4352
LYD278
soybean|gb168|BG646294_T1
7662
746
81.15
glotblastn


4353
LYD278
oak|10v1|FP073293_T1
7663
746
80.33
glotblastn


4354
LYD278
cotton|gb164|AI728181_T1
7664
746
80.33
glotblastn


4355
LYD278
poplar|10v1|BI073075_T1
7665
746
80.33
glotblastn


4356
LYD283
canola|10v1|H74785_P1
7666
747
98.9
globlastp


4357
LYD283
canola|gb161|H74785_P1
7666
747
98.9
globlastp


4358
LYD283
b_oleracea|gb161|AM390066_P1
7667
747
98.5
globlastp


4359
LYD283
canola|gb161|CD814370_P1
7668
747
91.4
globlastp


4360
LYD283
melon|10v1|AM717128_P1
7669
747
83.6
globlastp


4361
LYD283
melon|gb165|AM717128_P1
7670
747
83.3
globlastp


4362
LYD283
cassava|09v1|FF380914_P1
7671
747
82.5
globlastp


4363
LYD283
monkeyflower|10v1|GR073701_P1
7672
747
81.8
globlastp


4364
LYD283
monkeyflower|09v1|GO970219_P1
7672
747
81.8
globlastp


4365
LYD283
cotton|10v1|BF275217_P1
7673
747
81.4
globlastp


4366
LYD283
cotton|gb164|BF275217_P1
7674
747
81.4
globlastp


4367
LYD283
poplar|gb170|AI166581_P1
7675
747
81.4
globlastp


4368
LYD283
solanum_phureja|09v1|SPHBG133074_P1
7676
747
81.4
globlastp


4369
LYD283
eggplant|10v1|FS013361_P1
7677
747
81
globlastp


4370
LYD283
tomato|09v1|BG133074_P1
7678
747
81
globlastp


4371
LYD283
lotus|09v1|LLBP051762_P1
7679
747
81
globlastp


4372
LYD283
poplar|10v1|AI166581_P1
7680
747
81
globlastp


4373
LYD283
monkeyflower|10v1|GR143009_P1
7681
747
80.7
globlastp


4374
LYD283
tragopogon|10v1|SRR020205S0053760_P1
7682
747
80.7
globlastp


4375
LYD283
grape|gb160|CA814991_P1
7683
747
80.3
globlastp


4376
LYD283
cucumber|09v1|AM717128_P1
7684
747
80.1
globlastp


4377
LYD286
b_oleracea|gb161|AM062626_P1
7685
748
86.2
globlastp


4378
LYD47
potato|gb157.2|BM111944_P1
7686
758
95.7
globlastp


4379
LYD63
solanum_phureja|09v1|SPHCN641308_P1
7687
760
87.9
globlastp


4380
LYD72
lotus|09v1|BW625831_P1
7688
763
88.8
globlastp


4381
LYD72
soybean|gb168|AW696637_P1
7689
763
88.3
globlastp


4382
LYD72
soybean|gb168|BE821269_P1
7690
763
86.8
globlastp


4383
LYD72
bean|gb167|CA901109_T1
7691
763
86.5
glotblastn


4384
LYD72
peanut|10v1|ES724530_P1
7692
763
86
globlastp


4385
LYD72
prunus|10v1|CB822898_P1
7693
763
81.3
globlastp


4386
LYD72
aquilegia|10v1|DR917620_P1
7694
763
81.2
globlastp


4387
LYD72
aquilegia|gb157.3|DR917620_P1
7694
763
81.2
globlastp


4388
LYD72
solanum_phureja|09v1|SPHAW031813_P1
7695
763
81.2
globlastp


4389
LYD72
tomato|09v1|AW031813_P1
7696
763
81
globlastp


4390
LYD72
pepper|gb171|BM063495_T1
7697
763
80.94
glotblastn


4391
LYD72
cotton|10v1|AI055312_P1
7698
763
80.8
globlastp


4392
LYD72
cotton|gb164|AI055312_P1
7699
763
80.7
globlastp


4393
LYD72
sunflower|gb162|CD848269_P1
7700
763
80.7
globlastp


4394
LYD72
monkeyflower|10v1|GR032871_P1
7701
763
80.5
globlastp


4395
LYD72
monkeyflower|09v1|GR032871_P1
7702
763
80.47
glotblastn


4396
LYD72
tomato|gb164|AW031813_P1
7703
763
80.3
globlastp


4397
LYD72
oak|10v1|DB997046_P1
7704
763
80.2
globlastp


4398
LYD72
apple|gb171|CN579925_P1
7705
763
80.2
globlastp


4399
LYD72
arabidopsis|10v1|AT5G54810_P1
7706
763
80.1
globlastp


4400
LYD72
nicotiana_benthamiana|gb162|
7707
763
80.1
globlastp




CN655267_P1


4401
LYD72
arabidopsis_lyrata|09v1|JGIAL025383_P1
7708
763
80
globlastp


4402
LYD72
tragopogon|10v1|SRR020205S0029634_P1
7709
763
80
globlastp


4403
LYD72
triphysaria|10v1|DR176521_P1
7710
763
80
globlastp


4404
LYD72
potato|10v1|BQ513736_P1
7711
763
80
globlastp


4405
LYD72
potato|gb157.2|BQ513736_P1
7711
763
80
globlastp


4406
LYD81
oak|10v1|SRR006307S0031382_P1
7712
764
83.6
globlastp


4407
LYD81
pigeonpea|10v1|SRR054580S0016035_P1
7713
764
82.3
globlastp


4408
LYD81
soybean|gb168|BU926188_P1
7714
764
80.8
globlastp


4409
LYD88
arabidopsis|10v1|AT1G26130_T1
7715
765
82.94
glotblastn


4410
LYD105
canola|10v1|CN727032_P1
7716
766
83.2
globlastp


4411
LYD105
canola|gb161|CN727032_P1
7717
766
83.2
globlastp


4412
LYD105
arabidopsis_lyrata|09v1|JGIAL016910_P1
7718
766
83
globlastp


4413
LYD105
arabidopsis|10v1|AT3G27560_P1
7719
766
82.9
globlastp


4414
LYD105
b_oleracea|gb161|AM386429_P1
7720
766
82.6
globlastp


4415
LYD105
radish|gb164|EY910860_T1
7721
766
81.18
glotblastn


4416
LYD105
cassava|09v1|CK647124_T1
7722
766
80.45
glotblastn


4417
LYD105
tomato|09v1|AA824727_T1
7723
766
80.23
glotblastn


4418
LYD109
radish|gb164|EV524714_P1
7724
767
95.8
globlastp


4419
LYD109
arabidopsis|10v1|AT4G14210_P1
7725
767
92.8
globlastp


4420
LYD109
arabidopsis_lyrata|09v1|GFXEF502451X1_P1
7726
767
91.8
globlastp


4421
LYD109
oak|10v1|FP069374_P1
7727
767
80.4
globlastp


4422
LYD109
castorbean|09v1|EE260095_T1
7728
767
80.14
glotblastn


4423
LYD110
canola|gb161|ES911570_P1
7729
768
98.1
globlastp


4424
LYD110
radish|gb164|EV568257_T1
7730
768
91.88
glotblastn


4425
LYD110
radish|gb164|EV543952_P1
7731
768
84.2
globlastp


4426
LYD110
arabidopsis_lyrata|09v1|JGIAL030152_P1
7732
768
84
globlastp


4427
LYD110
arabidopsis|10v1|AT5G56080_P1
7733
768
84
globlastp


4428
LYD110
canola|10v1|CD813574_P1
7734
769
98.1
globlastp


4429
LYD113
canola|gb161|H07501_P1
7734
769
98.1
globlastp


4430
LYD113
b_oleracea|gb161|AY187682_P1
7735
769
97
globlastp


4431
LYD113
radish|gb164|EV526673_P1
7736
769
95.3
globlastp


4432
LYD113
thellungiella|gb167|DN776190_P1
7737
769
84.7
globlastp


4433
LYD114
b_rapa|gb162|DN192298_P1
770
770
100
globlastp


4434
LYD114
canola|10v1|CX281513_P1
770
770
100
globlastp


4435
LYD114
canola|gb161|CX193733_P1
770
770
100
globlastp


4436
LYD114
radish|gb164|EV552277_P1
7738
770
98.5
globlastp


4437
LYD114
radish|gb164|EW738039_P1
7739
770
98.5
globlastp


4438
LYD114
b_oleracea|gb161|AM385630_P1
7740
770
97
globlastp


4439
LYD114
canola|10v1|CD817455_P1
7740
770
97
globlastp


4440
LYD114
canola|gb161|CD817455_P1
7740
770
97
globlastp


4441
LYD114
radish|gb164|EV547219_T1
7741
770
94.78
glotblastn


4442
LYD114
thellungiella|gb167|DN775588_T1
7742
770
91.79
glotblastn


4443
LYD114
b_oleracea|gb161|AM059553_P1
7743
770
89.7
globlastp


4444
LYD114
radish|gb164|EV539470_P1
7744
770
88.1
globlastp


4445
LYD114
radish|gb164|EX756944_T1
7745
770
87.41
glotblastn


4446
LYD114
canola|10v1|CD825920_T1
7746
770
87.31
glotblastn


4447
LYD114
canola|gb161|CD825920_T1
7746
770
87.31
glotblastn


4448
LYD114
canola|10v1|H07623_T1
7747
770
87.31
glotblastn


4449
LYD114
canola|gb161|H07623_T1
7747
770
87.31
glotblastn


4450
LYD114
radish|gb164|EV546635_T1
7748
770
85.93
glotblastn


4451
LYD114
b_oleracea|gb161|AM394291_P1
7749
770
85.8
globlastp


4452
LYD114
b_rapa|gb162|CA991446_T1
7750
770
85.07
glotblastn


4453
LYD114
radish|gb164|EX754112_T1
7751
770
84.33
glotblastn


4454
LYD114
canola|10v1|EV051345_P1
7752
770
84.3
globlastp


4455
LYD114
b_rapa|gb162|L38034_T1
7753
770
82.84
glotblastn


4456
LYD114
canola|10v1|CD819652_T1
7753
770
82.84
glotblastn


4457
LYD114
cleome_spinosa|10v1|SRR015531S0011868_T1
7754
770
82.84
glotblastn


4458
LYD114
arabidopsis|10v1|AT1G56220_T1
7755
770
82.73
glotblastn


4459
LYD114
arabidopsis|gb165|AT1G56220_T1
7755
770
82.73
glotblastn


4460
LYD114
canola|10v1|CX192491_P1
7756
770
82.1
globlastp


4461
LYD114
canola|10v1|EV064263_P1
7757
770
82.1
globlastp


4462
LYD114
cleome_gynandra|10v1|SRR015532S0009953_T1
7758
770
82.09
glotblastn


4463
LYD114
arabidopsis_lyrata|09v1|BQ834263_T1
7759
770
81.38
glotblastn


4464
LYD114
canola|10v1|EE564838_P1
7760
770
81.3
globlastp


4465
LYD118
b_juncea|10v2|OXBJ1SLX00007355D1T1_P1
7761
771
96.4
globlastp


4466
LYD118
radish|gb164|EW716528_P1
7762
771
89.8
globlastp


4467
LYD118
radish|gb164|EV569575_P1
7763
771
88.6
globlastp


4468
LYD118
radish|gb164|EW732708_P1
7764
771
88.6
globlastp


4469
LYD118
radish|gb164|EW717887_P1
7765
771
88
globlastp


4470
LYD118
b_juncea|gb164|EVGN00850231400957_T1
7766
771
85.54
glotblastn


4471
LYD119
arabidopsis|10v1|AT5G12860_P1
7767
772
93.2
globlastp


4472
LYD119
arabidopsis|gb165|AT5G12860_P1
7767
772
93.2
globlastp


4473
LYD119
arabidopsis_lyrata|09v1|JGIAL020962_P1
7768
772
92.7
globlastp


4474
LYD119
cleome_gynandra|10v1|SRR015532S0002836_P1
7769
772
86.8
globlastp


4475
LYD119
cleome_gynandra|10v1|SRR015532S0035815_P1
7770
772
85.5
globlastp


4476
LYD119
poplar|10v1|CA928609_P1
7771
772
83.5
globlastp


4477
LYD119
poplar|gb170|CA928609_P1
7771
772
83.5
globlastp


4478
LYD119
poplar|10v1|BI070860_P1
7772
772
82.7
globlastp


4479
LYD119
poplar|gb170|BI070860_P1
7772
772
82.7
globlastp


4480
LYD119
castorbean|09v1|EE260186_P1
7773
772
82.2
globlastp


4481
LYD119
prunus|10v1|CN929365_P1
7774
772
81.7
globlastp


4482
LYD119
artemisia|10v1|EY036735_P1
7775
772
81.6
globlastp


4483
LYD119
sunflower|10v1|DY908134_P1
7776
772
81.2
globlastp


4484
LYD119
grape|gb160|CB344649_P1
7777
772
80.9
globlastp


4485
LYD119
cotton|10v1|BF269907_P1
7778
772
80.8
globlastp


4486
LYD119
cotton|gb164|BF269907_P1
7778
772
80.8
globlastp


4487
LYD119
cassava|09v1|JGICASSAVA30675VALIDM1_P1
7779
772
80.7
globlastp


4488
LYD119
aquilegia|10v1|DR914808_P1
7780
772
80.6
globlastp


4489
LYD119
cassava|09v1|DV445590_P1
7781
772
80.2
globlastp


4490
LYD119
antirrhinum|gb166|AJ787659_P1
7782
772
80.2
globlastp


4491
LYD119
monkeyflower|09v1|GO948454_P1
7783
772
80.2
globlastp


4492
LYD119
monkeyflower|10v1|GO948455_P1
7783
772
80.2
globlastp


4493
LYD119
citrus|gb166|CF419050_P1
7784
772
80
globlastp


4494
LYD123
canola|10v1|CN728688_P1
7785
773
96.6
globlastp


4495
LYD123
radish|gb164|EV524917_P1
7786
773
92.9
globlastp


4496
LYD123
arabidopsis_lyrata|09v1|CRPALE016296_P1
7787
773
88.4
globlastp


4497
LYD123
arabidopsis|10v1|AT2G37340_P1
7788
773
88.4
globlastp


4498
LYD123
arabidopsis|gb165|AT2G37340_P1
7788
773
88.4
globlastp


4499
LYD123
b_oleracea|gb161|EH426839_P1
7789
773
82.6
globlastp


4500
LYD123
b_juncea|10v2|E6ANDIZ01BH2HE_P1
7790
773
81.7
globlastp


4501
LYD125
pigeonpea|10v1|SRR054580S0012872_T1
7791
774
89.01
glotblastn


4502
LYD125
bean|gb167|CV544024_P1
7792
774
88.8
globlastp


4503
LYD125
soybean|gb168|AW719401_P1
7793
774
88.4
globlastp


4504
LYD125
soybean|gb168|BE352657_P1
7794
774
87.6
globlastp


4505
LYD125
lotus|09v1|AW428919_P1
7795
774
86.9
globlastp


4506
LYD125
medicago|09v1|AW257307_P1
7796
774
83.9
globlastp


4507
LYD125
pigeonpea|10v1|SRR054580S0004318_T1
7797
774
81.94
glotblastn


4508
LYD125
soybean|gb168|AW171770_P1
7798
774
81.7
globlastp


4509
LYD125
soybean|gb168|AW776461_P1
7799
774
81.4
globlastp


4510
LYD127
cowpea|gb166|FF538530_P1
7800
776
87.2
globlastp


4511
LYD127
peanut|10v1|GO342156_P1
7801
776
82.3
globlastp


4512
LYD127
medicago|09v1|BF632820_P1
7802
776
81.9
globlastp


4513
LYD127
cotton|10v1|AI726687_P1
7803
776
81.6
globlastp


4514
LYD127
cotton|gb164|AI726687_P1
7804
776
80.8
globlastp


4515
LYD127
citrus|gb166|DY266151_P1
7805
776
80
globlastp


4516
LYD144
solanum_phureja|09v1|SPHBG135622_P1
7806
777
90.7
globlastp


4517
LYD149
radish|gb164|EX747638_T1
7807
778
94.9
glotblastn


4518
LYD149
canola|gb161|CD814305_P1
7808
778
94
globlastp


4519
LYD149
canola|10v1|CD812024_P1
7809
778
93.8
globlastp


4520
LYD149
canola|10v1|CD814305_T1
7810
778
93.04
glotblastn


4521
LYD149
papaya|gb165|EX248891_P1
7811
778
80.6
globlastp


4522
LYD149
castorbean|09v1|EG659975_P1
7812
778
80.4
globlastp


4523
LYD159
radish|gb164|EV528645_P1
7813
780
98.8
globlastp


4524
LYD159
radish|gb164|EW733261_T1
7814
780
98.77
glotblastn


4525
LYD159
radish|gb164|EW713860_P1
7815
780
98.1
globlastp


4526
LYD159
b_oleracea|gb161|AF458411_T1
7816
780
97.53
glotblastn


4527
LYD159
canola|gb161|CD834630_T1
7817
780
97.53
glotblastn


4528
LYD159
canola|10v1|CD834630_P1
7818
780
97.5
globlastp


4529
LYD159
canola|10v1|DY005750_P1
7819
780
97.5
globlastp


4530
LYD159
radish|gb164|EV538481_P1
7820
780
97.5
globlastp


4531
LYD159
radish|gb164|EX894636_P1
7821
780
97.5
globlastp


4532
LYD159
b_rapa|gb162|CV546164_P1
7822
780
96.9
globlastp


4533
LYD159
thellungiella|gb167|DN775724_P1
7823
780
93.8
globlastp


4534
LYD159
canola|gb161|EV166721_T1
7824
780
93.33
glotblastn


4535
LYD159
radish|gb164|EW733038_T1
7825
780
87.04
glotblastn


4536
LYD159
b_oleracea|gb161|EH420689_P1
7826
780
87
globlastp


4537
LYD159
canola|10v1|H07449_P1
7827
780
85.8
globlastp


4538
LYD159
canola|gb161|CX192832_P1
7827
780
85.8
globlastp


4539
LYD159
b_rapa|gb162|CV544755_P1
7828
780
85.2
globlastp


4540
LYD166
b_rapa|gb162|L46543_P1
7829
781
99.7
globlastp


4541
LYD166
canola|10v1|CD833070_P1
7829
781
99.7
globlastp


4542
LYD166
canola|gb161|CD833070_P1
7829
781
99.7
globlastp


4543
LYD172
canola|10v1|CN726866_P1
7830
782
98.2
globlastp


4544
LYD172
canola|gb161|CN726866_P1
7830
782
98.2
globlastp


4545
LYD172
radish|gb164|EX902387_P1
7831
782
88.6
globlastp


4546
LYD172
canola|10v1|ES979818_P1
7832
782
85.3
globlastp


4547
LYD172
canola|gb161|ES979818_P1
7832
782
85.3
globlastp


4548
LYD172
b_juncea|10v2|E6ANDIZ02H19R1_P1
7833
782
84.7
globlastp


4549
LYD172
radish|gb164|EY894739_P1
7834
782
84.4
globlastp


4550
LYD176
arabidopsis_lyrata|09v1|JGIAL019524_P1
7835
782
81.8
globlastp


4551
LYD176
arabidopsis|10v1|AT3G61890_P1
7836
782
81.3
globlastp


4552
LYD176
radish|gb164|AF051129_P1
7837
783
97.4
globlastp


4553
LYD176
radish|gb164|EV538606_P1
7838
783
97.4
globlastp


4554
LYD176
radish|gb164|EW722794_P1
7839
783
97.4
globlastp


4555
LYD176
radish|gb164|EX763616_P1
7840
783
96.9
globlastp


4556
LYD176
radish|gb164|EX902662_P1
7841
783
96.9
globlastp


4557
LYD176
radish|gb164|EW734604_P1
7842
783
96.4
globlastp


4558
LYD186
canola|10v1|DY005919_P1
7843
784
99.5
globlastp


4559
LYD186
canola|10v1|EG021056_P1
7844
784
99.5
globlastp


4560
LYD186
canola|gb161|DY005919_P1
7844
784
99.5
globlastp


4561
LYD186
b_rapa|gb162|L37642_P1
7845
784
98.6
globlastp


4562
LYD186
radish|gb164|EV529343_P1
7846
784
97.3
globlastp


4563
LYD186
radish|gb164|EW715711_P1
7847
784
95.9
globlastp


4564
LYD188
canola|10v1|DY005761_P1
785
785
100
globlastp


4565
LYD188
canola|gb161|DY005761_P1
785
785
100
globlastp


4566
LYD188
b_rapa|gb162|EE516969_P1
7848
785
99.3
globlastp


4567
LYD188
canola|10v1|CD813443_P1
7849
785
96.5
globlastp


4567
LYD188
canola|gb161|CD813443_P1
7850
785
82.1
globlastp


4568
LYD190
b_rapa|gb162|BG543253_P1
786
786
100
globlastp


4569
LYD190
canola|gb161|CD835187_P1
7851
786
99.6
globlastp


4570
LYD190
canola|gb161|CX195771_P1
7852
786
97.3
globlastp


4571
LYD190
radish|gb164|EV524986_P1
7853
786
96.9
globlastp


4572
LYD190
radish|gb164|EV535594_P1
7854
786
96.4
globlastp


4573
LYD190
canola|10v1|CD835187_P1
7855
786
96
globlastp


4574
LYD190
b_oleracea|gb161|DY027954_P1
7856
786
96
globlastp


4575
LYD190
b_rapa|gb162|DN191759_P1
7857
786
95.1
globlastp


4576
LYD190
canola|gb161|EE460907_P1
7858
786
94.2
globlastp


4577
LYD190
canola|10v1|CX195771_P1
7859
786
93.8
globlastp


4578
LYD190
radish|gb164|EV525191_P1
7860
786
93.4
globlastp


4579
LYD190
radish|gb164|EW716790_P1
7861
786
92.9
globlastp


4580
LYD190
canola|10v1|DY018174_P1
7862
786
91.1
globlastp


4581
LYD190
canola|10v1|EE460907_P1
7863
786
90.2
globlastp


4582
LYD190
radish|gb164|EV535846_P1
7864
786
88.9
globlastp


4583
LYD190
canola|10v1|EE450783_P1
7865
786
81.8
globlastp


4584
LYD193
canola|10v1|CX189856_P1
7866
787
96.8
globlastp


4585
LYD193
b_rapa|gb162|BG544260_P1
7867
787
96.4
globlastp


4586
LYD193
radish|gb164|EV528689_P1
7868
787
93.6
globlastp


4587
LYD193
radish|gb164|EV525108_P1
7869
787
92.9
globlastp


4588
LYD193
thellungiella|gb167|DN775498_P1
7870
787
86.9
globlastp


4589
LYD193
b_rapa|gb162|EX026337_P1
7871
787
83.3
globlastp


4590
LYD196
sugarcane|10v1|CA074696_P1
7872
788
96.8
globlastp


4591
LYD196
sugarcane|gb157.3|CA080645_P1
7872
788
96.8
globlastp


4592
LYD196
maize|gb170|AI665932_T1
7873
788
93.97
glotblastn


4593
LYD196
millet|10v1|EVO454PM033804_P1
7874
788
93.1
globlastp


4594
LYD196
rice|gb170|OS03G06940_P1
7875
788
89.1
globlastp


4595
LYD196
maize|10v1|AI665932_P1
7876
788
88.9
globlastp


4596
LYD196
brachypodium|09v1|GT790565_P1
7877
788
86.6
globlastp


4597
LYD196
brachypodium|gb169|BE400891_P1
7878
788
86.4
globlastp


4598
LYD196
fescue|gb161|DT686342_P1
7879
788
84.8
globlastp


4599
LYD196
wheat|gb164|BE400891_P1
7880
788
80.8
globlastp


4600
LYD200
radish|gb164|EL738642_P1
7881
789
94.4
globlastp


4601
LYD200
radish|gb164|EW713777_P1
7882
789
93.6
globlastp


4602
LYD200
arabidopsis_lyrata|09v1|JGIAL004190_T1
7883
789
80.95
glotblastn


4603
LYD200
b_juncea|10v2|E6ANDIZ01EIESA_T1
7884
789
80.49
glotblastn


4604
LYD200
thellungiella|gb167|DN773999_T1
7885
789
80.16
glotblastn


4605
LYD200
arabidopsis|10v1|AT1G48300_T1
7886
789
80
glotblastn


4606
LYD202
b_rapa|gb162|L47957_P1
790
790
100
globlastp


4607
LYD202
radish|gb164|EV525903_P1
7887
790
98.8
globlastp


4608
LYD202
b_juncea|gb164|EVGN00431513913410_P1
7888
790
98.2
globlastp


4609
LYD202
b_juncea|10v2|E7FJ1I304DZD87_P1
7889
790
97.6
globlastp


4610
LYD202
thellungiella|gb167|DN774524_P1
7890
790
96.4
globlastp


4611
LYD202
b_juncea|gb164|EVGN00297712102885_P1
7891
790
95.8
globlastp


4612
LYD202
canola|gb161|CD821415_P1
7892
790
95.8
globlastp


4613
LYD202
b_juncea|gb164|EVGN00431908921497_P1
7893
790
95.2
globlastp


4614
LYD202
b_oleracea|gb161|AM057048_P1
7894
790
95.2
globlastp


4615
LYD202
canola|10v1|CD821415_P1
7893
790
95.2
globlastp


4616
LYD202
maize|gb170|LLDQ244973_P1
7893
790
95.2
globlastp


4617
LYD202
arabidopsis|10v1|AT1G32470_P1
7895
790
94.6
globlastp


4618
LYD202
arabidopsis|gb165|AT1G32470_P1
7895
790
94.6
globlastp


4619
LYD202
b_oleracea|gb161|AM394813_P1
7896
790
94.6
globlastp


4620
LYD202
b_rapa|gb162|BG543984_P1
7897
790
94.6
globlastp


4621
LYD202
b_rapa|gb162|EX031236_P1
7898
790
94.6
globlastp


4622
LYD202
canola|10v1|CD819721_P1
7899
790
94.6
globlastp


4623
LYD202
canola|gb161|CD819721_P1
7899
790
94.6
globlastp


4624
LYD202
canola|10v1|CX189579_P1
7897
790
94.6
globlastp


4625
LYD202
canola|gb161|CX190884_P1
7897
790
94.6
globlastp


4626
LYD202
radish|gb164|EV524455_P1
7900
790
94.6
globlastp


4627
LYD202
radish|gb164|EV527420_P1
7901
790
94.6
globlastp


4628
LYD202
radish|gb164|EV538447_P1
7901
790
94.6
globlastp


4629
LYD202
radish|gb164|EX755703_P1
7900
790
94.6
globlastp


4630
LYD202
arabidopsis_lyrata|09v1|JGIAL003380_P1
7902
790
94
globlastp


4631
LYD202
radish|gb164|EV535156_P1
7903
790
94
globlastp


4632
LYD202
radish|gb164|EX754318_P1
7904
790
93.4
globlastp


4633
LYD202
b_juncea|10v2|E6ANDIZ01A4HQK1_P1
7905
790
90.4
globlastp


4634
LYD202
canola|10v1|ES913100_P1
7906
790
90.4
globlastp


4635
LYD202
canola|gb161|ES913100_P1
7906
790
90.4
globlastp


4636
LYD202
b_juncea|10v2|E6ANDIZ01A0ZNS_P1
7907
790
89.8
globlastp


4637
LYD202
arabidopsis_lyrata|09v1|JGIAL014677_P1
7908
790
89.2
globlastp


4638
LYD202
b_juncea|10v2|E6ANDIZ01A24DX_P1
7909
790
89.2
globlastp


4639
LYD202
arabidopsis|10v1|AT2G35370_P1
7910
790
89.2
globlastp


4640
LYD202
thellungiella|gb167|BY824972_P1
7911
790
89.2
globlastp


4641
LYD202
canola|gb161|EV100595_T1
7912
790
86.14
glotblastn


4642
LYD202
cleome_spinosa|10v1|GR932738_P1
7913
790
86.1
globlastp


4643
LYD202
cleome_spinosa|10v1|GR934792_P1
7914
790
86.1
globlastp


4644
LYD202
radish|gb164|EY902757_P1
7915
790
83.8
globlastp


4645
LYD202
oak|10v1|CU657264_P1
7916
790
83.7
globlastp


4646
LYD202
oak|gb170|CU657264_P1
7916
790
83.7
globlastp


4647
LYD202
prunus|10v1|CN494213_P1
7917
790
83.7
globlastp


4648
LYD202
antirrhinum|gb166|AJ559224_P1
7918
790
83.2
globlastp


4649
LYD202
grape|gb160|BM437053_P1
7919
790
83.1
globlastp


4650
LYD202
pea|09v1|X53656_P1
7920
790
83.1
globlastp


4651
LYD202
radish|gb164|EV535424_P1
7921
790
83.1
globlastp


4652
LYD202
triphysaria|10v1|EY127211_P1
7922
790
82.5
globlastp


4653
LYD202
monkeyflower|09v1|GO982522_P1
7923
790
82.5
globlastp


4654
LYD202
cucumber|09v1|AM724523_P1
7924
790
81.9
globlastp


4655
LYD202
apple|gb171|CN494213_P1
7925
790
81.9
globlastp


4656
LYD202
bean|gb167|CB280501_P1
7926
790
81.9
globlastp


4657
LYD202
chestnut|gb170|SRR006296S0063923_P1
7927
790
81.9
globlastp


4658
LYD202
clover|gb162|BB909867_P1
7928
790
81.9
globlastp


4659
LYD202
lotus|09v1|BW599691_P1
7929
790
81.9
globlastp


4660
LYD202
medicago|09v1|BE249702_P1
7930
790
81.9
globlastp


4661
LYD202
monkeyflower|09v1|DV205865_P1
7931
790
81.9
globlastp


4662
LYD202
monkeyflower|09v1|GO946263_P1
7932
790
81.9
globlastp


4663
LYD202
monkeyflower|10v1|DV205865_P1
7931
790
81.9
globlastp


4664
LYD202
prunus|gb167|DN554204_T1

790
81.33
glotblastn


4665
LYD202
melon|10v1|AM724523_P1
7933
790
81.3
globlastp


4666
LYD202
triphysaria|gb164|EY127211_P1
7934
790
81.3
globlastp


4667
LYD202
triphysaria|10v1|SRR023500S0007248_P1
7935
790
80.7
globlastp


4668
LYD202
apple|gb171|CN861717_P1
7936
790
80.7
globlastp


4669
LYD202
melon|gb165|AM724523_P1
7937
790
80.7
globlastp


4670
LYD202
soybean|gb168|AW776659_P1
7938
790
80.7
globlastp


4671
LYD202
walnuts|gb166|EL891328_P1
7939
790
80.7
globlastp


4672
LYD202
catharanthus|gb166|EG554374_P1
7940
790
80.2
globlastp


4673
LYD202
papaya|gb165|EX260182_P1
7941
790
80.2
globlastp


4674
LYD202
b_juncea|10v2|E6ANDIZ01A19IR_P1
7942
790
80.1
globlastp


4675
LYD202
castorbean|09v1|EE253855_P1
7943
790
80.1
globlastp


4676
LYD202
eucalyptus|gb166|CU394339_P1
7944
790
80.1
globlastp


4677
LYD202
pigeonpea|10v1|GW347341_P1
7945
790
80.1
globlastp


4678
LYD202
salvia|10v1|SRR014553S0000470_P1
7946
790
80.1
globlastp


4679
LYD202
strawberry|gb164|DY676038_P1
7947
790
80.1
globlastp


4680
LYD202
walnuts|gb166|EL892979_P1
7948
790
80.1
globlastp


4681
LYD202
cotton|10v1|CO075367_P1
7949
790
80.1
globlastp


4682
LYD202
cotton|gb164|CO075367_P1
7949
790
80.1
globlastp


4683
LYD204
b_juncea|gb164|EVGN00239816741209_P1
7950
791
96.3
globlastp


4684
LYD204
arabidopsis|10v1|AT1G02205_P1
7951
791
89.5
globlastp


4685
LYD204
arabidopsis|gb165|AT1G02205_P1
7951
791
89.5
globlastp


4686
LYD204
b_rapa|gb162|DN964044_P1
7952
791
84.3
globlastp


4687
LYD208
radish|gb164|EV545099_P1
7953
792
98.8
globlastp


4688
LYD208
radish|gb164|EX748567_P1
7954
792
84.9
globlastp


4689
LYD208
arabidopsis|10v1|AT5G15350_P1
7955
792
84.3
globlastp


4690
LYD208
arabidopsis_lyrata|09v1|JGIAL021233_P1
7956
792
83.7
globlastp


4691
LYD225
barley|10v1|BM373769_P1
7957
795
89
globlastp


4692
LYD225
wheat|gb164|CA728493_T1
7958
795
84.27
glotblastn


4693
LYD225
wheat|gb164|BG605058_T1
7959
795
82.52
glotblastn


4694
LYD225
wheat|gb164|CA497779_P1
7960
795
82
globlastp


4695
LYD238
oat|10v2|CN815277_P1
7961
796
85.5
globlastp


4696
LYD238
sugarcane|gb157.3|CA065337_T1
7962
796
83.91
glotblastn


4697
LYD238
cenchrus|gb166|EB661947_P1
7963
796
83.5
globlastp


4698
LYD238
rice|gb170|OS11G26910_P1
7964
796
83.5
globlastp


4699
LYD238
maize|10v1|AI372340_P1
7965
796
82.1
globlastp


4700
LYD238
maize|gb170|AI372340_P1
7965
796
82.1
globlastp


4701
LYD238
sorghum|09v1|SB05G012740_P1
7966
796
82.1
globlastp


4702
LYD238
sugarcane|gb157.3|BQ531360_P1
7966
796
82.1
globlastp


4703
LYD238
sugarcane|10v1|BQ531360_P1
7966
796
82.1
globlastp


4704
LYD238
brachypodium|09v1|DV473097_P1
7967
796
80.7
globlastp


4705
LYD245
arabidopsis_lyrata|09v1|JGIAL014790_P1
7968
797
97.4
globlastp


4706
LYD245
b_rapa|gb162|BQ790805_P1
7969
797
85.9
globlastp


4707
LYD245
canola|10v1|EE477076_P1
7970
797
85.4
globlastp


4708
LYD245
b_rapa|gb162|BG544887_P1
7971
797
84.6
globlastp


4709
LYD245
b_oleracea|gb161|AM386372_P1
7972
797
83.1
globlastp


4710
LYD252
b_juncea|10v2|E6ANDIZ01AUIRT_P1
7973
798
99.2
globlastp


4711
LYD252
b_juncea|10v2|E6ANDIZ02H583V_P1
7974
798
99.2
globlastp


4712
LYD252
cacao|gb167|CU473087_P1
7975
798
86.4
globlastp


4713
LYD252
catharanthus|gb166|EG554394_P1
7976
798
80.8
globlastp


4714
LYD253
canola|10v1|CX192470_P1
7977
799
99.7
globlastp


4715
LYD253
radish|gb164|EW722602_P1
7978
799
98.5
globlastp


4716
LYD253
canola|gb161|CD825725_P1
7979
799
96.7
globlastp


4717
LYD253
arabidopsis|10v1|AT2G27860_P1
7980
799
96.4
globlastp


4718
LYD253
arabidopsis|gb165|AT2G27860_P1
7980
799
96.4
globlastp


4719
LYD253
canola|10v1|CD813026_P1
7981
799
96.4
globlastp


4720
LYD253
canola|gb161|CD812999_P1
7982
799
96.4
globlastp


4721
LYD253
canola|10v1|EE456512_P1
7983
799
96.2
globlastp


4722
LYD253
b_rapa|gb162|BG544186_P1
7984
799
96.2
globlastp


4723
LYD253
canola|10v1|CD812999_P1
7984
799
96.2
globlastp


4724
LYD253
b_rapa|gb162|L38125_P1
7985
799
96.1
globlastp


4725
LYD253
radish|gb164|EX753989_P1
7986
799
96.1
globlastp


4726
LYD253
b_juncea|10v2|E6ANDIZ01AN10H_P1
7987
799
95.9
globlastp


4727
LYD253
b_oleracea|gb161|DY026282_P1
7988
799
95.9
globlastp


4728
LYD253
canola|gb161|CD813089_P1
7989
799
95.9
globlastp


4729
LYD253
canola|10v1|CD825725_P1
7990
799
95.9
globlastp


4730
LYD253
radish|gb164|EV570226_P1
7991
799
95.9
globlastp


4731
LYD253
canola|10v1|CD817550_P1
7992
799
95.6
globlastp


4732
LYD253
arabidopsis|10v1|AT1G08200_P1
7993
799
95.6
globlastp


4733
LYD253
arabidopsis|gb165|AT1G08200_P1
7993
799
95.6
globlastp


4734
LYD253
radish|gb164|EV527383_P1
7994
799
95.6
globlastp


4735
LYD253
canola|10v1|CN827904_P1
7995
799
95.4
globlastp


4736
LYD253
canola|gb161|CD827902_P1
7995
799
95.4
globlastp


4737
LYD253
b_rapa|gb162|CV544710_P1
7996
799
94.9
globlastp


4738
LYD253
cleome_gynandra|10v1|SRR015532S0002773_P1
7997
799
92.8
globlastp


4739
LYD253
cotton|gb164|AI726495_P1
7998
799
91.3
globlastp


4740
LYD253
monkeyflower|09v1|DV211316_P1
7999
799
91.3
globlastp


4741
LYD253
monkeyflower|10v1|DV211316_P1
7999
799
91.3
globlastp


4742
LYD253
cotton|10v1|AI725749_P1
7998
799
91.3
globlastp


4743
LYD253
cotton|gb164|AI725749_P1
8000
799
91
globlastp


4744
LYD253
tomato|09v1|BG125028_P1
8001
799
91
globlastp


4745
LYD253
tomato|gb164|AI485740_P1
8001
799
91
globlastp


4746
LYD253
potato|10v1|BG592065_P1
8002
799
90.7
globlastp


4747
LYD253
potato|gb157.2|BG592065_P1
8002
799
90.7
globlastp


4748
LYD253
solanum_phureja|09v1|SPHBG125028_P1
8003
799
90.5
globlastp


4749
LYD253
citrus|gb166|CB292463_P1
8004
799
90.3
globlastp


4750
LYD253
cotton|10v1|BF272340_P1
8005
799
90
globlastp


4751
LYD253
pigeonpea|10v1|SRR054580S0001142_P1
8006
799
89.7
globlastp


4752
LYD253
kiwi|gb166|FG461367_P1
8007
799
89.7
globlastp


4753
LYD253
grape|gb160|BQ792561_P1
8008
799
89.5
globlastp


4754
LYD253
lotus|09v1|LLAW720540_P1
8009
799
89.5
globlastp


4755
LYD253
grape|gb160|BQ794638_P1
8010
799
89.2
globlastp


4756
LYD253
poplar|10v1|AI166408_P1
8011
799
89.2
globlastp


4757
LYD253
poplar|gb170|AI166408_P1
8011
799
89.2
globlastp


4758
LYD253
sunflower|10v1|CD850731_P1
8012
799
89.2
globlastp


4759
LYD253
sunflower|gb162|CD850731_P1
8012
799
89.2
globlastp


4760
LYD253
kiwi|gb166|FG459805_P1
8013
799
89
globlastp


4761
LYD253
pigeonpea|10v1|GR464281_T1
8014
799
88.95
glotblastn


4762
LYD253
cotton|10v1|BE055021_P1
8015
799
88.9
globlastp


4763
LYD253
cassava|09v1|BM259762_P1
8016
799
88.7
globlastp


4764
LYD253
cichorium|gb171|DT212570_P1
8017
799
88.7
globlastp


4765
LYD253
poplar|10v1|BI127760_P1
8018
799
88.7
globlastp


4766
LYD253
poplar|gb170|BI127760_P1
8018
799
88.7
globlastp


4767
LYD253
cassava|09v1|CK644296_P1
8019
799
88.5
globlastp


4768
LYD253
coffea|10v1|DV663820_P1
8020
799
88.4
globlastp


4769
LYD253
monkeyflower|10v1|GR192346_P1
8021
799
88.2
globlastp


4770
LYD253
artemisia|10v1|EY074319_P1
8022
799
88.2
globlastp


4771
LYD253
coffea|gb157.2|DV663820_P1
8023
799
88.2
globlastp


4772
LYD253
cotton|gb164|BE055021_P1
8024
799
88.2
globlastp


4773
LYD253
lettuce|10v1|DW045608_P1
8025
799
88.2
globlastp


4774
LYD253
lettuce|gb157.2|DW047530_P1
8025
799
88.2
globlastp


4775
LYD253
tragopogon|10v1|SRR020205S0003248_P1
8026
799
87.9
globlastp


4776
LYD253
tragopogon|10v1|SRR020205S0000323_P1
8027
799
87.7
globlastp


4777
LYD253
cichorium|gb171|EH675611_P1
8028
799
87.7
globlastp


4778
LYD253
lettuce|10v1|CV700237_P1
8029
799
87.7
globlastp


4779
LYD253
lettuce|gb157.2|CV700063_P1
8029
799
87.7
globlastp


4780
LYD253
sunflower|10v1|CD850541_P1
8030
799
87.7
globlastp


4781
LYD253
sunflower|gb162|CD850541_P1
8030
799
87.7
globlastp


4782
LYD253
solanum_phureja|09v1|SPHBG133066_P1
8031
799
87.4
globlastp


4783
LYD253
potato|10v1|BF153387_P1
8031
799
87.4
globlastp


4784
LYD253
b_juncea|gb164|EVGN00836916260185_P1
8032
799
87.1
globlastp


4785
LYD253
potato|gb157.2|BF153387_P1
8033
799
87.1
globlastp


4786
LYD253
chestnut|gb170|SRR006295S0010680_P1
8034
799
86.9
globlastp


4787
LYD253
oak|gb170|DB996885_P1
8035
799
86.9
globlastp


4788
LYD253
oak|10v1|DB996885_P1
8036
799
86.7
globlastp


4789
LYD253
oak|10v1|FP027803_P1
8036
799
86.7
globlastp


4790
LYD253
tomato|09v1|BG133066_P1
8037
799
86.6
globlastp


4791
LYD253
potato|gb157.2|BF460135_P1
8038
799
86.6
globlastp


4792
LYD253
tomato|gb164|BG133066_P1
8037
799
86.6
globlastp


4793
LYD253
liriodendron|gb166|CK760215_P1
8039
799
85.8
globlastp


4794
LYD253
castorbean|09v1|EE255427_P1
8040
799
85.3
globlastp


4795
LYD253
ginger|gb164|DY352282_T1
8041
799
84.91
glotblastn


4796
LYD253
cynara|gb167|GE604483_P1
8042
799
84.9
globlastp


4797
LYD253
ginger|gb164|DY345055_T1
8043
799
84.89
glotblastn


4798
LYD253
ginger|gb164|DY345770_P1
8044
799
84.6
globlastp


4799
LYD253
cycas|gb166|CB088377_P1
8045
799
82.6
globlastp


4800
LYD253
spurge|gb161|BI946376_P1
8046
799
82.5
globlastp


4801
LYD253
zamia|gb166|CB095392_P1
8047
799
82.3
globlastp


4802
LYD253
dandelion|10v1|DR402520_T1
8048
799
82.26
glotblastn


4803
LYD253
papaya|gb165|EX229544_P1
8049
799
80.7
globlastp


4804
LYD256
canola|10v1|ES909931_P1
8050
800
99.5
globlastp


4805
LYD256
canola|gb161|ES909931_P1
8050
800
99.5
globlastp


4806
LYD256
radish|gb164|EW717326_T1
8051
800
95.66
glotblastn


4807
LYD256
canola|10v1|H74771_P1
8052
800
94.9
globlastp


4808
LYD256
canola|gb161|H74771_P1
8052
800
94.9
globlastp


4809
LYD256
b_rapa|gb162|EX018862_P1
8053
800
94.6
globlastp


4810
LYD256
radish|gb164|EX754811_T1
8054
800
93.11
glotblastn


4811
LYD257
canola|gb161|EG020033_P1
8055
801
98.2
globlastp


4812
LYD257
canola|10v1|EG020033_P1
8056
801
88.9
globlastp


4813
LYD257
arabidopsis_lyrata|09v1|JGIAL005370_P1
8057
801
81.4
globlastp


4814
LYD260
b_oleracea|gb161|EH413919_P1
8058
802
96.3
globlastp


4815
LYD260
b_rapa|gb162|EX030883_P1
8059
802
96.3
globlastp


4816
LYD260
canola|10v1|CX193902_P1
8060
802
94.8
globlastp


4817
LYD260
canola|gb161|CX193902_P1
8061
802
91.4
globlastp


4818
LYD260
canola|10v1|EE404267_T1
8062
802
81.43
glotblastn


4819
LYD260
canola|gb161|EV102306_T1
8062
802
81.43
glotblastn


4820
LYD260
arabidopsis_lyrata|09v1|JGIAL031069_P1
8063
802
80.2
globlastp


4821
LYD261
arabidopsis_lyrata|09v1|JGIAL010456_P1
8064
803
92.1
globlastp


4822
LYD261
arabidopsis|10v1|AT3G19170_P1
8065
803
91.7
globlastp


4823
LYD261
arabidopsis|10v1|AT1G49630_P1
8066
803
85.9
globlastp


4824
LYD266
radish|gb164|EV548537_T1
8067
805
87.8
glotblastn


4825
LYD268
b_rapa|gb162|BG543031_P1
8068
806
99.4
globlastp


4826
LYD268
canola|10v1|CD813357_P1
8069
806
98.6
globlastp


4827
LYD268
canola|gb161|CD813357_P1
8069
806
98.6
globlastp


4828
LYD268
radish|gb164|EV525074_P1
8070
806
91.8
globlastp


4829
LYD268
arabidopsis_lyrata|09v1|JGIAL000148_T1
8071
806
87.91
glotblastn


4830
LYD268
arabidopsis|10v1|AT1G02305_P1
8072
806
87.9
globlastp


4831
LYD268
thellungiella|gb167|DN778418_T1
8073
806
87.36
glotblastn


4832
LYD268
radish|gb164|EV540094_P1
8074
806
86.6
globlastp


4833
LYD273
arabidopsis_lyrata|09v1|JGIAL022080_P1
8075
807
93.9
globlastp


4834
LYD273
arabidopsis|10v1|AT5G23880_P1
8076
807
93.2
globlastp


4835
LYD276
arabidopsis_lyrata|09v1|JGIAL028325_T1
8077
808
92.77
glotblastn


4836
LYD276
arabidopsis|10v1|AT5G45380_P1
8078
808
90.9
globlastp


4837
LYD276
arabidopsis|gb165|AT5G45380_P1
8078
808
90.9
globlastp


4838
LYD278
b_rapa|gb162|AT000673_P1
8079
809
96.2
globlastp


4839
LYD278
canola|10v1|CD834587_P1
8080
809
96.2
globlastp


4840
LYD278
radish|gb164|EW716277_P1
8081
809
95.3
globlastp


4841
LYD278
arabidopsis|10v1|AT2G20560_P1
8082
809
94.4
globlastp


4842
LYD278
arabidopsis_lyrata|09v1|JGIAL012530_P1
8083
809
93.8
globlastp


4843
LYD278
arabidopsis_lyrata|09v1|JGIAL025225_P1
8084
809
84.9
globlastp


4844
LYD278
peanut|10v1|GO324054_P1
8085
809
80.5
globlastp


4845
LYD279
radish|gb164|EW723965_T1
8086
810
92.79
glotblastn


4846
LYD282
canola|10v1|CD837360_P1
8087
811
98.7
globlastp


4847
LYD282
canola|gb161|CD837360_P1
8088
811
98.5
globlastp


4848
LYD282
arabidopsis|10v1|AT1G34060_P1
8089
811
81.5
globlastp


4849
LYD288
canola|10v1|CD824838_P1
8090
812
99.2
globlastp


4850
LYD288
canola|gb161|H74985_P1
8090
812
99.2
globlastp


4851
LYD288
b_rapa|gb162|AT001818_P1
8091
812
97.6
globlastp





Table 28: Provided are polynucleotides (Polynuc.) and polypeptides (Polypep.) which are homologous to the identified polynucleotides or polypeptides of Table 27.


Homol. = homologue;


Algor. = Algorithm;






Example 12
Gene Cloning and Generation of Binary Vectors for Plant Expression

To validate their role in improving oil content, plant yield, seed yield, oil to content, biomass, growth rate, fiber yield, fiber quality, ABST, NUE and/or vigor, selected genes are over-expressed in plants, as follows.


Cloning Strategy


Selected genes from those listed in Examples 10 and 11 hereinabove were cloned into binary vectors for the generation of transgenic plants. For cloning, the full-length open reading frame (ORF) was first identified. In case of ORF-EST clusters and in some cases already published mRNA sequences were analyzed to identify the entire open reading frame by comparing the results of several translation algorithms to known proteins from other plant species. To clone the full-length cDNAs, reverse transcription (RT) followed by polymerase chain reaction (PCR; RT-PCR) was performed on total RNA extracted from leaves, flowers, siliques or other plant tissues, growing under normal conditions. Total RNA was extracted as described in “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS” above. Production of cDNA and PCR amplification is performed using standard protocols described elsewhere (Sambrook J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. A to Laboratory Manual., 2nd Ed. Cold Spring Harbor Laboratory Press, New York.) which are well known to those skilled in the art. PCR products are purified using PCR purification kit (Qiagen). In case where the entire coding sequence was not found, RACE kit from Invitrogen (RACE=R apid A ccess to cDNA E nds) was used to access the full cDNA transcript of the gene from the RNA samples described above. RACE products were cloned into high copy vector followed by sequencing or directly sequenced.


The information from the RACE procedure was used for cloning of the full length ORF of the corresponding genes.


In case genomic DNA was cloned, the genes were amplified by direct PCR on genomic DNA extracted from leaf tissue using the DNAeasy kit (Qiagen Cat. No. 69104).


Usually, 2 sets of primers are synthesized for the amplification of each gene from a cDNA or a genomic sequence; an external set of primers and an internal set (nested PCR primers). When needed (e.g., when the first PCR reaction does not result in a satisfactory product for sequencing), an additional primer (or two) of the nested PCR primers were used.


To facilitate cloning of the cDNAs/genomic sequences, a 8-12 bp extension was added to the 5′ of each primer. The primer extension includes an endonuclease restriction site. The restriction sites were selected using two parameters: (a). The site does not exist in the cDNA sequence; and (b). The restriction sites in the forward and reverse primers were designed such that the digested cDNA was inserted in the sense formation into the binary vector utilized for transformation.


Each digested PCR product was inserted into a high copy vector pBlue-script KS plasmid vector [pBlue-script KS plasmid vector, Hypertext Transfer Protocol://World Wide Web (dot) stratagene (dot) com/manuals/212205 (dot) pdf] or pUC19 (New England BioLabs Inc], or into plasmids originating from these vectors. In some cases the undigested PCR product was inserted into pCR-Blunt II-TOPO (Invitrogen). In case of the high copy vector originated from pBlue-script KS plasmid vector (pGXN), the PCR product was inserted in the high copy plasmid upstream to the NOS terminator (SEQ ID NO:8092) originated from pBI 101.3 binary vector (GenBank Accession No. U12640, nucleotides 4356 to 4693) and downstream to the 35S promoter.


Sequencing of the amplified PCR products was performed, using ABI 377 sequencer (Amersham Biosciences Inc). In some cases, after confirming the sequences of the cloned genes, the cloned cDNA accompanied/or not with the NOS terminator was introduced into a modified pGI binary vector containing the At6669 promoter or 35S promoter (SEQ ID NO:8094) via digestion with appropriate restriction endonucleases. In any case the insert was followed by single copy of the NOS terminator (SEQ ID NO:8092). The digested products and the linearized plasmid vector are ligated using T4 DNA ligase enzyme (Roche, Switzerland).


High copy plasmids containing the cloned genes were digested with the restriction endonucleases (New England BioLabs Inc) according to the sites designed in the primers and cloned into binary vectors as shown in Table 29, below.


Several DNA sequences of the selected genes were synthesized by a commercial supplier GeneArt [Hypertext Transfer Protocol://World Wide Web (dot) geneart (dot) com/]. Synthetic DNA was designed in silico. Suitable restriction enzymes sites were added to the cloned sequences at the 5′ end and at the 3′ end to enable later cloning into the pQFNc (FIG. 2) binary vector downstream of the At6669 promoter (SEQ ID NOs: 8093 and 8096).


Binary vectors used for cloning: The plasmid pPI is constructed by inserting a synthetic poly-(A) signal sequence, originating from pGL3 basic plasmid vector (Promega, Acc No U47295; by 4658-4811) into the HindIII restriction site of the binary vector pBI101.3 (Clontech, Acc. No. U12640). pGI (pBXYN) is similar to pPI, but the original gene in the backbone, the GUS gene, is replaced by the GUS-Intron gene followed by the NOS terminator (SEQ ID NO:8092) (Vancanneyt. G, et al MGG 220, 245-50, 1990). pGI was used in the past to clone the polynucleotide sequences, initially under the control of 35S promoter [Odell, J T, et al. Nature 313, 810-812 (28 Feb. 1985); SEQ ID NO:8094].


The modified pGI vector (pQXNc in FIG. 12; or pQFN and pQFNc in FIG. 2; or pQYN6669 in FIG. 1) are modified versions of the pGI vector in which the cassette is inverted between the left and right borders so the gene and its corresponding promoter are close to the right border and the NPTII gene is close to the left border.


At6669, the Arabidopsis thaliana promoter sequence (SEQ ID NO:8096) is inserted in the modified pGI binary vector, upstream to the cloned genes, followed by DNA ligation and binary plasmid extraction from positive E. coli colonies, as described above.


Colonies are analyzed by PCR using the primers covering the insert which are designed to span the introduced promoter and gene. Positive plasmids are identified, isolated and sequenced.


Genes were cloned by the present inventors are provided in Table 29 below.









TABLE 29







Genes cloned in High copy number plasmids















Primers
Polynuc.



Gene
High copy

used SEQ
SEQ ID
Polypep. SEQ


name
plasmid
Organism
ID Nos:
NO:
ID NO:















LYD1
pUC19c
ARABIDOPSIS
8100, 8100,
285
488





Arabidopsis

8390, 8534





thaliana





Columbia wt


LYD10
Topo B
ARABIDOPSIS
8101, 8245,
293
496





Arabidopsis

8391, 8535





thaliana





Columbia wt


LYD101
pUC19c
ARABIDOPSIS
8102, 8246,
362
568





Arabidopsis

8392, 8536





thaliana





Columbia wt


LYD102
pUC19c
ARABIDOPSIS
8103, 8247,
363
569





Arabidopsis

8393, 8537





thaliana





Columbia wt


LYD103
Topo B
ARABIDOPSIS
8104, 8248,
364
570





Arabidopsis

8394, 8538





thaliana





Columbia wt


LYD104
pUC19c
ARABIDOPSIS
8105, 8249,
365
571





Arabidopsis

8395, 8395





thaliana





Columbia wt


LYD105
pUC19c
ARABIDOPSIS
8106, 8250,
366
766





Arabidopsis

8396, 8539





thaliana





Columbia wt


LYD106
pUC19c
ARABIDOPSIS
8107, 8107,
367
573





Arabidopsis

8397, 8540





thaliana





Columbia wt


LYD107
Topo B
ARABIDOPSIS
8108, 8251,
368
574





Arabidopsis

8398, 8541





thaliana





Columbia wt


LYD108
Topo B
CANOLA
8109,, 8399
369
575





Brassica napus





ND


LYD109
Topo B
MUSTARD
8252, 8542
370
767





Brassica juncea





ND


LYD11
pUC19c
ARABIDOPSIS
8110, 8253,
294
497





Arabidopsis

8400, 8543





thaliana





Columbia wt


LYD110
pUC19c
MUSTARD
8254, 8544
371
768





Brassica juncea





ND


LYD112
Topo B
MUSTARD
8255, 8545
486






Brassica juncea





ND


LYD113
pUC19c
MUSTARD
8111, 8256,
372
769





Brassica juncea

8401, 8546




ND


LYD114
Topo B
MUSTARD
8257, 8402
373
770





Brassica juncea





ND


LYD115



212



LYD117
pUC19c
MUSTARD
8258, 8547
374
580





Brassica juncea





ND


LYD118
pUC19c
MUSTARD
8112, 8112,
375
771





Brassica juncea

8403, 8548




ND


LYD119
Topo B
MUSTARD
8113, 8259,
376
772





Brassica juncea

8404, 8549




ND


LYD12
Topo B
ARABIDOPSIS
8114, 8260,
295
498





Arabidopsis

8405, 8550





thaliana





Columbia wt


LYD120
Topo B
MUSTARD
8115, 8115,
377
583





Brassica juncea

8406, 8551




ND


LYD122
Topo B
MUSTARD
8261, 8552
378
584





Brassica juncea





ND


LYD123
pUC19c
MUSTARD
8262, 8553
379
773





Brassica juncea





ND


LYD124_H7



479
691


LYD125
pUC19c
MEDICAGO
8116, 8263,
380
774





Medicago

8407, 8554





truncatula ND



LYD126
Topo B
MEDICAGO
8117, 8408
381
775





Medicago






truncatula ND



LYD127
pUC19c
SOYBEAN
8118, 8264,
382
776





Glycine max 40-

8409, 8555




219


LYD128_H1



480
692


LYD129
Topo B
SOYBEAN
8119, 8265,
383
591





Glycine max 40-

8119, 8556




219


LYD13
Topo B
ARABIDOPSIS
8120, 8266,
296
499





Arabidopsis

8410, 8410





thaliana





Columbia wt


LYD132
pUC19c
SOYBEAN
8121, 8267,
384
592





Glycine max

8411, 8557




ND


LYD133
Topo B
SOYBEAN
8268, 8558
385
593





Glycine max 40-





219


LYD134
pUC19c
SOYBEAN
8269, 8559
386
594





Glycine max 40-





219


LYD136
pUC19c
SOYBEAN
8122, 8270,
387
595





Glycine max 40-

8412, 8560




219


LYD139
Topo B
SOYBEAN
8123, 8123,
388
596





Glycine max 40-

8413, 8561




219


LYD14
Topo B
ARABIDOPSIS
8124, 8271,
297
500





Arabidopsis

8414, 8562





thaliana





Columbia wt


LYD140
pUC19c
SOYBEAN
8125, 8272,
389
597





Glycine max 40-

8415, 8415




219


LYD142
pUC19c
TOMATO
8126, 8126,
390
598





Lycopersicum

8416, 8416





esculentum M82



LYD144
Topo B
TOMATO
8127, 8273,
391
777





Lycopersicum

8417, 8417





esculentum M82



LYD146
pUC19c
TOMATO
8128, 8274,
392
600





Lycopersicum

8418, 8563





esculentum M82



LYD148
pUC19c
SORGHUM
8129, 8419
393
601





Sorghum bicolor





ND


LYD149
Topo B
ARABIDOPSIS
8130, 8275,
394
778





Arabidopsis

8420, 8564





thaliana





Columbia wt


LYD150
Topo B
ARABIDOPSIS
8131, 8276,
395
603





Arabidopsis

8131, 8565





thaliana





Columbia wt


LYD152



396
604


LYD153
pUC19c
ARABIDOPSIS
8132, 8277,
397
779





Arabidopsis

8421, 8566





thaliana





Columbia wt


LYD156
Topo B
TOMATO
8133, 8278,
398
606





Lycopersicum

8422, 8567





esculentum M82



LYD157
pUC19c
TOMATO
8279, 8568
399
607





Lycopersicum






esculentum M82



LYD158
pUC19c
TOMATO
8134, 8280,
400
608





Lycopersicum

8423, 8569





esculentum M82



LYD159
pUC19c
MUSTARD
8135, 8135,
401
780





Brassica juncea

8424, 8570




ND


LYD176
pUC19c
MUSTARD
8136,, 8425
407
783





Brassica juncea





ND


LYD177
pUC19c
MUSTARD
8281, 8571
408
616





Brassica juncea





ND


LYD178
pUC19c
MUSTARD
8282, 8572
409
617





Brassica juncea





ND


LYD18
pUC19c
ARABIDOPSIS
8137, 8283,
299
751





Arabidopsis

8426, 8573





thaliana





Columbia wt


LYD180
Topo B
MUSTARD
8284, 8574
410
618





Brassica juncea





ND


LYD184
Topo B
MUSTARD
8138, 8285,
411
619





Brassica juncea

8427, 8575




ND


LYD185



412
620


LYD186
Topo B
MUSTARD
8139, 8286,
413
784





Brassica juncea

8428, 8576




ND


LYD187



414
622


LYD188
Topo B
MUSTARD
8140, 8429
415
785





Brassica juncea





ND


LYD190
pUC19c
MUSTARD
8287, 8577
416
786





Brassica juncea





ND


LYD192



138
625


LYD193
Topo B
MUSTARD
8288, 8578
417
787





Brassica juncea





ND


LYD194
pUC19c
MUSTARD
8141, 8289,
418
627





Brassica juncea

8430, 8430




ND


LYD195
Topo B
TOMATO
8142, 8142,
419
628





Lycopersicum

8431, 8579





esculentum M82



LYD196
Topo B
MAIZE Zea
8290, 8580
420
788





mays L. Pioneer





30G54


LYD197
Topo B
ARABIDOPSIS
8291, 8581
421
630





Arabidopsis






thaliana





Columbia wt


LYD2
pUC19c
ARABIDOPSIS
8143, 8292,
286
489





Arabidopsis

8432, 8582





thaliana





Columbia wt


LYD20
pUC19c
ARABIDOPSIS
8144, 8293,
300
503





Arabidopsis

8433, 8433





thaliana





Columbia wt


LYD200
Topo B
MUSTARD
8145, 8294,
422
789





Brassica juncea

8434, 8583




ND


LYD201
pUC19c
MUSTARD
8146, 8295,
423
632





Brassica juncea

8435, 8584




ND


LYD202
pUC19c
MUSTARD
8147, 8147,
424
790





Brassica juncea

8436, 8436




ND


LYD204
pUC19c
MUSTARD
8296, 8585
425
791





Brassica juncea





ND


LYD206
Topo B
MUSTARD
8148, 8148,
426
635





Brassica juncea

8437, 8586




ND


LYD208
pUC19c
MUSTARD
8149, 8149,
427
792





Brassica juncea

8438, 8587




ND


LYD209
Topo B
MUSTARD
8150, 8150,
428
637





Brassica juncea

8439, 8588




ND


LYD21
Topo B
ARABIDOPSIS
8151, 8297,
301
504





Arabidopsis

8440, 8589





thaliana





Columbia wt


LYD211
Topo B
SORGHUM
8152,, 8441
429
638





Sorghum bicolor





ND


LYD212
Topo B
ARABIDOPSIS
8153, 8298,
430
639





Arabidopsis

8442, 8590





thaliana





Columbia wt


LYD213
pUC19c
ARABIDOPSIS
8154, 8299,
431
640





Arabidopsis

8443, 8591





thaliana





Columbia wt


LYD214
Topo B
ARABIDOPSIS
8155, 8155,
432
641





Arabidopsis

8444, 8592





thaliana





Columbia wt


LYD215
pUC19c
ARABIDOPSIS
8156, 8300,
433
642





Arabidopsis

8445, 8593





thaliana





Columbia wt


LYD216
Topo B
ARABIDOPSIS
8301, 8594
434
793





Arabidopsis






thaliana





Columbia wt


LYD217
pUC19c
ARABIDOPSIS
8157, 8302,
435
644





Arabidopsis

8446, 8446





thaliana





Columbia wt


LYD219
Topo B
ARABIDOPSIS
8303, 8595
436
794





Arabidopsis






thaliana





Columbia wt


LYD22
pUC19c
ARABIDOPSIS
8158, 8158,
302
505





Arabidopsis

8447, 8596





thaliana





Columbia wt


LYD220
Topo B
ARABIDOPSIS
8159, 8159,
437
646





Arabidopsis

8448, 8597





thaliana





Columbia wt


LYD221
pUC19c
ARABIDOPSIS
8304, 8598
438
647





Arabidopsis






thaliana





Columbia wt


LYD222
Topo B
ARABIDOPSIS
8160, 8449
439
648





Arabidopsis






thaliana





Columbia wt


LYD223
pUC19c
ARABIDOPSIS
8161, 8305,
440
649





Arabidopsis

8450, 8599





thaliana





Columbia wt


LYD224
pUC19c
ARABIDOPSIS
8162, 8162,
441
650





Arabidopsis

8451, 8600





thaliana





Columbia wt


LYD225
pUC19c
BARLEY
8306, 8601
442
795





Hordeum






vulgare L. Manit



LYD227
Topo B
SORGHUM
8163, 8163,
443
652





Sorghum bicolor

8452, 8602




ND


LYD228
pUC19c
SORGHUM
8164, 8453
444
653





Sorghum bicolor





ND


LYD229
Topo B
SORGHUM
8165, 8454
445
654





Sorghum bicolor





ND


LYD23
Topo B
ARABIDOPSIS
8166, 8307,
303
506





Arabidopsis

8455, 8603





thaliana





Columbia wt


LYD230
Topo B
SORGHUM
8167, 8456
446
655





Sorghum bicolor





ND


LYD231
pUC19c
SORGHUM
8168, 8457
447
656





Sorghum bicolor





ND


LYD232
pUC19c
TOMATO
8169, 8308,
448
657





Lycopersicum

8458, 8604





esculentum M82



LYD233
Topo B
TOMATO
8170, 8309,
449
658





Lycopersicum

8459, 8605





esculentum M82



LYD234
pUC19c
TOMATO
8171, 8310,
450
659





Lycopersicum

8460, 8606





esculentum M82



LYD235
Topo B
TOMATO
8172, 8172,
451
660





Lycopersicum

8461, 8607





esculentum M82



LYD236
pUC19c
TOMATO
8173, 8311,
452
661





Lycopersicum

8462, 8608





esculentum M82



LYD238
pUC19c
BARLEY
8174,, 8463
453
796





Hordeum






vulgare L. Manit



LYD240
pUC19c
BARLEY
8175,, 8464
454
663





Hordeum






vulgare L. ND



LYD244
pUC19c
TOMATO
8176, 8312,
455
664





Lycopersicum

8465, 8609




ND ND


LYD245
pUC19c
ARABIDOPSIS
8177, 8313,
456
797





Arabidopsis

8466, 8610





thaliana





Columbia wt


LYD246
Topo B
ARABIDOPSIS
8314, 8611
457
666





Arabidopsis






thaliana





Columbia wt


LYD248
Topo B
MEDICAGO
8178, 8467
264
737





Medicago






truncatula ND



LYD25
pUC19c
CANOLA
8179, 8315,
304
752





Brassica napus

8468, 8612




ND


LYD250
pUC19c
MUSTARD
8316, 8613
458
668





Brassica juncea





ND


LYD252
pUC19c
MUSTARD
8180, 8317,
459
798





Brassica juncea

8469, 8614




ND


LYD253
Topo B
MUSTARD
8181, 8470
460
799





Brassica juncea





ND


LYD256
Topo B
MUSTARD
8318, 8615
461
800





Brassica juncea





ND


LYD257
Topo B
MUSTARD
8319, 8616
462
801





Brassica juncea





ND


LYD259



213



LYD26
pUC19c
MEDICAGO
8182, 8320,
305
753





Medicago

8471, 8617





truncatula ND



LYD260
Topo B
MUSTARD
8183, 8321,
463
802





Brassica juncea

8472, 8618




ND


LYD261
Topo B
MUSTARD
8322, 8619
464
803





Brassica juncea





ND


LYD262



214



LYD264
Topo B
MUSTARD
8323, 8620
465
804





Brassica juncea





ND


LYD265



215



LYD266
Topo B
MUSTARD
8184, 8324,
466
805





Brassica juncea

8473, 8621




ND


LYD267_H0
Topo B
ARABIDOPSIS
8185, 8325,
481
813





Arabidopsis

8474, 8622





thaliana





Columbia wt


LYD268
Topo B
MUSTARD
8326, 8623
467
806





Brassica juncea





ND


LYD269



216



LYD27
pUC19c
MEDICAGO
8186, 8327,
306
754





Medicago

8475, 8475





truncatula ND



LYD270
Topo B
MUSTARD
8328, 8624
487






Brassica juncea





ND


LYD271_H0



482
694


LYD273
pUC19c
MUSTARD
8187, 8329,
468
807





Brassica juncea

8476, 8476




ND


LYD275
pUC19c
MUSTARD
8188, 8330,
469
681





Brassica juncea

8477, 8625




ND


LYD276
pUC19c
MUSTARD
8189, 8478
470
808





Brassica juncea





ND


LYD278
pUC19c
MUSTARD
8190, 8331,
471
809





Brassica juncea

8479, 8626




ND


LYD279
pUC19c
MUSTARD
8191, 8191,
472
810





Brassica juncea

8480, 8627




ND


LYD28
pUC19c
MEDICAGO
8192, 8332,
307
755





Medicago

8481, 8628





truncatula ND



LYD282
Topo B
MUSTARD
8193, 8333,
473
811





Brassica juncea

8482, 8629




ND


LYD283



474
686


LYD285
pUC19c
MUSTARD
8194, 8334,
475
687





Brassica juncea

8483, 8483




ND


LYD286



476
688


LYD287
pUC19c
ARABIDOPSIS
8195, 8335,
477
689





Arabidopsis

8484, 8630





thaliana





Columbia wt


LYD288
pUC19c
MUSTARD
8336, 8631
478
812





Brassica juncea





ND


LYD29



230
707


LYD3
Topo B
ARABIDOPSIS
8196, 8196,
287
490





Arabidopsis

8485, 8632





thaliana





Columbia wt


LYD33
pUC19c
TOMATO
8197, 8337,
308
512





Lycopersicum

8486, 8633





esculentum M82



LYD34
Topo B
TOMATO
8198, 8338,
309
513





Lycopersicum

8487, 8634





esculentum M82



LYD35
pUC19c
TOMATO
8339, 8635
310
756





Lycopersicum






esculentum M82



LYD36
Topo B
TOMATO
8199, 8340,
311
515





Lycopersicum

8488, 8636





esculentum M82



LYD37
pUC19c
TOMATO
8200, 8341,
312
516





Lycopersicum

8489, 8489





esculentum M82



LYD38
pUC19c
TOMATO
8201, 8342,
313
517





Lycopersicum

8490, 8637





esculentum M82



LYD4
pUC19c
ARABIDOPSIS
8202, 8343,
288
491





Arabidopsis

8491, 8638





thaliana





Columbia wt


LYD40
pUC19c
TOMATO
8203, 8344,
314
757





Lycopersicum

8492, 8639





esculentum M82



LYD41
pUC19c
TOMATO
8345, 8640
315
519





Lycopersicum






esculentum M82



LYD42
pUC19c
TOMATO
8204, 8204,
316
520





Lycopersicum

8493, 8641





esculentum M82



LYD43
pUC19c
TOMATO
8346, 8642
317
521





Lycopersicum






esculentum M82



LYD44
Topo B
TOMATO
8205, 8347,
318
522





Lycopersicum

8494, 8643





esculentum M82



LYD45
pUC19c
TOMATO
8206, 8348,
319
523





Lycopersicum

8495, 8644





esculentum M82



LYD47
Topo B
TOMATO
8349, 8645
320
758





Lycopersicum






esculentum M82



LYD48
Topo B
TOMATO
8207, 8350,
321
759





Lycopersicum

8496, 8646





esculentum M82



LYD49
pUC19c
TOMATO
8208, 8351,
322
526





Lycopersicum

8497, 8647





esculentum M82



LYD5
Topo B
ARABIDOPSIS
8352, 8648
289
492





Arabidopsis






thaliana





Columbia wt


LYD50
pUC19c
TOMATO
8353, 8649
323
527





Lycopersicum






esculentum M82



LYD51
Topo B
TOMATO
8209, 8354,
324
528





Lycopersicum

8498, 8650





esculentum M82



LYD52



42
529


LYD53
Topo B
TOMATO
8210, 8355,
325
530





Lycopersicum

8499, 8651





esculentum M82



LYD55
pUC19c
TOMATO
8356, 8652
326
531





Lycopersicum






esculentum M82



LYD57
pUC19c
TOMATO
8357, 8653
327
532





Lycopersicum






esculentum M82



LYD58
Topo B
TOMATO
8358, 8654
328
533





Lycopersicum






esculentum M82



LYD58_GA



#N/A
#N/A


LYD59
pUC19c
TOMATO
8211, 8359,
329
534





Lycopersicum

8500, 8655





esculentum M82



LYD6
pUC19c
ARABIDOPSIS
8212, 8360,
290
493





Arabidopsis

8501, 8656





thaliana





Columbia wt


LYD61
pUC19c
TOMATO
8213, 8213,
330
535





Lycopersicum

8502, 8657





esculentum M82



LYD62
pUC19c
TOMATO
8214, 8214,
331
536





Lycopersicum

8503, 8658





esculentum M82



LYD63
Topo B
TOMATO
8361, 8659
332
760





Lycopersicum






esculentum M82



LYD65
Topo B
TOMATO
8215, 8215,
333
761





Lycopersicum

8504, 8660





esculentum M82



LYD66
pUC19c
TOMATO
8216, 8362,
334
539





Lycopersicum

8505, 8661





esculentum M82



LYD67
Topo B
TOMATO
8217, 8363,
335
540





Lycopersicum

8506, 8662





esculentum M82



LYD69
pUC19c
ARABIDOPSIS
8364, 8663
336
541





Arabidopsis






thaliana





Columbia wt


LYD7
pUC19c
ARABIDOPSIS
8365, 8664
291
494





Arabidopsis






thaliana





Columbia wt


LYD70
Topo B
CANOLA
8218, 8507
337
542





Brassica napus





ND


LYD71
pUC19c
CANOLA
8366, 8665
338
762





Brassica napus





Westar


LYD72
Topo B
MEDICAGO
8219, 8508
339
763





Medicago






truncatula ND



LYD73
Topo B
TOMATO
8220, 8220,
340
545





Lycopersicum

8509, 8666





esculentum M82



LYD74
pUC19c
TOMATO
8367, 8667
341
546





Lycopersicum






esculentum M82



LYD75
pUC19c
TOMATO
8221, 8368,
342
547





Lycopersicum

8510, 8668





esculentum M82



LYD76
pUC19c
TOMATO
8222, 8222,
343
548





Lycopersicum

8511, 8669





esculentum M82



LYD78
pUC19d
SOYBEAN
8223, 8369,
344
549





Glycine max 40-

8512, 8670




219


LYD79
pUC19c
SOYBEAN
8370, 8671
345
550





Glycine max 40-





219


LYD80
Topo B
ARABIDOPSIS
8371, 8672
346
551





Arabidopsis






thaliana





Columbia wt


LYD81
pUC19c
MEDICAGO
8224, 8372,
347
764





Medicago

8513, 8673





truncatula ND



LYD82
Topo B
TOMATO
8225, 8514
348
553





Lycopersicum






esculentum M82



LYD84
not available
ARABIDOPSIS
8226, 8373,
349
554





Arabidopsis

8515, 8674





thaliana



LYD85
pUC19c
ARABIDOPSIS
8374, 8675
350
555





Arabidopsis






thaliana





Columbia wt


LYD86
pUC19c
ARABIDOPSIS
8227, 8516
351
556





Arabidopsis






thaliana





Columbia wt


LYD87
pUC19c
TOMATO
8228, 8375,
352
557





Lycopersicum

8517, 8676





esculentum M82



LYD88
Topo B
ARABIDOPSIS
8229, 8376,
353
765





Arabidopsis

8518, 8677





thaliana





Columbia wt


LYD89



72
559


LYD9
Topo B
ARABIDOPSIS
8230, 8377,
292
495





Arabidopsis

8519, 8678





thaliana





Columbia wt


LYD90
Topo B
ARABIDOPSIS
8231, 8378,
354
560





Arabidopsis

8520, 8520





thaliana





Columbia wt


LYD91
pUC19c
TOMATO
8379, 8679
355
561





Lycopersicum






esculentum M82



LYD92
pUC19c
ARABIDOPSIS
8232, 8380,
356
562





Arabidopsis

8521, 8680





thaliana





Columbia wt


LYD94
pUC19c
ARABIDOPSIS
8233, 8381,
357
563





Arabidopsis

8522, 8681





thaliana





Columbia wt


LYD95
pUC19c
ARABIDOPSIS
8234, 8234,
358
564





Arabidopsis

8523, 8682





thaliana





Columbia wt


LYD96
pUC19c
ARABIDOPSIS
8235, 8382,
359
565





Arabidopsis

8524, 8683





thaliana





Columbia wt


LYD97
pUC19c
ARABIDOPSIS
8236, 8383,
360
566





Arabidopsis

8525, 8525





thaliana





Columbia wt


LYD99
Topo B
ARABIDOPSIS
8237, 8384,
361
567





Arabidopsis

8526, 8684





thaliana





Columbia wt


LYM104
pKS(Pks_J)
RICE Oryza
8238, 8385,
484
696





sativa L. ND

8527, 8685


LYM275
pGXN
BARLEY
8239, 8528
210
697



(pKG + Nos +

Hordeum




35S)

vulgare L. Manit



LYD16
Topo B
ARABIDOPSIS
8240, 8386,
298
501





Arabidopsis

8529, 8686





thaliana





Columbia wt


LYD166
Topo B
MUSTARD
8241, 8387,
402
781





Brassica juncea

8530, 8687




ND


LYD167
Topo B
MUSTARD
8242, 8242,
403
611





Brassica juncea

8531, 8688




ND


LYD172
pUC19c
MUSTARD
8243, 8388,
404
782





Brassica juncea

8532, 8532




ND


LYD173
pUC19c
MUSTARD
8244, 8244,
405
613





Brassica juncea

8533, 8689




ND


LYD174
pUC19c
MUSTARD
8389, 8389
406
614





Brassica juncea





ND





Table 29.






Example 13
Production of Transgenic Arabidopsis Plants Expressing the Identified Polynucleotides of Some Embodiments of the Invention

Experimental Methods


Production of agrobacterium tumefaciens cells harbouring the binary vectors according to some embodiments of the invention—Each of the binary vectors described in Example 12 above were used to transform Agrobacterium cells. Two additional binary constructs, having only the At6669 or the 35S promoter or no additional promoter were used as negative controls.


The binary vectors were introduced to Agrobacterium tumefaciens GV301, or LB4404 competent cells (about 109 cells/mL) by electroporation. The electroporation was performed using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). The treated cells were cultured in LB liquid medium at 28° C. for 3 hours, then plated over LB agar supplemented with gentamycin (50 mg/L; for Agrobacterium strains GV301) or streptomycin (300 mg/L; for Agrobacterium strain LB4404) and kanamycin (50 mg/L) at 28° C. for 48 hours. Abrobacterium colonies, which were developed on the selective media, were further analyzed by PCR using the primers designed to span the inserted sequence in the pPI plasmid. The resulting PCR products were isolated and sequenced to verify that the correct polynucleotide sequences of the invention were properly introduced to the Agrobacterium cells.


Preparation of Arabidopsis plants for transformation—Arabidopsis thaliana var Columbia (T0 plants) were transformed according to the Floral Dip procedure [Clough S J, Bent A F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16(6): 735-43; and Desfeux C, Clough S J, Bent A F. (2000) Female reproductive tissues are the primary targets of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123(3): 895-904] with minor modifications. Briefly, Arabidopsis thaliana Columbia (Col0) T0 plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hours light/dark cycles. The T0 plants were ready for transformation six days before anthesis.


Preparation of the agrobacterium carrying the binary vectors to transformation into Arabidopsis plants—Single colonies of Agrobacterium carrying the binary vectors harboring the genes of some embodiments of the invention were cultured in LB medium supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28° C. for 48 hours under vigorous shaking and centrifuged at 4000 rpm for 5 minutes. The pellets comprising Agrobacterium cells were resuspended in a transformation medium which contains half-strength (2.15 g/L) Murashige-Skoog (Duchefa); 0.044 04 benzylamino purine (Sigma); 112 μg/L B5 Gambourg vitamins (Sigma); 5% sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at pH of 5.7.


Transformation of Arabidopsis plants with the agrobacterium—Transformation of T0 plants was performed by inverting each plant into an Agrobacterium suspension such that the above ground plant tissue is submerged for 3-5 seconds. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and is kept in the dark at room temperature for 18 hours to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques were brown and dry, then seeds were harvested from plants and kept at room temperature until sowing.


Generation of T1 and T2 transgenic plants—For generating T1 and T2 transgenic plants harboring the genes, seeds collected from transgenic T0 plants were surface-sterilized by soaking in 70% ethanol for 1 minute, followed by soaking in 5% sodium hypochlorite and 0.05% triton for 5 minutes. The surface-sterilized seeds were thoroughly washed in sterile distilled water then placed on culture plates containing half-strength Murashig-Skoog (Duchefa); 2% sucrose; 0.8% plant agar; 50 mM kanamycin; and 200 mM carbenicylin (Duchefa). The culture plates were incubated at 4° C. for 48 hours then transferred to a growth room at 25° C. for an additional week of incubation. Vital T1 Arabidopsis plants were transferred to a fresh culture plates for another week of incubation. Following incubation the T1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants were allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.


Example 14
Evaluating Transgenic Arabidopsis NUE Under Low or Normal Nitrogen Conditions Using In Vitro Assays (Tissue Culture, T2 and T1 plants)

Assay 1: Plant Growth Under Low and Favorable Nitrogen Concentration Levels


Surface sterilized seeds were sown in basal media [50% Murashige-Skoog medium (MS) supplemented with 0.8% plant agar as solidifying agent] in the presence of Kanamycin (used as a selecting agent). After sowing, plates were transferred for 2-3 days for stratification at 4° C. and then grown at 25° C. under 12-hour light 12-hour dark daily cycles for 7 to 10 days. At this time point, seedlings randomly chosen were carefully transferred to plates containing ½ MS media (15 mM N) for the normal nitrogen concentration treatment and 0.75 mM nitrogen for the low nitrogen concentration treatments. For experiments performed in T2 lines, each plate contained 5 seedlings of the same transgenic event, and 3-4 different plates (replicates) for each event. For each polynucleotide of the invention at least four-five independent transformation events were analyzed from each construct. For experiments performed in T1 lines, each plate contained 5 seedlings of 5 independent transgenic events and 3-4 different plates (replicates) were planted. In total, for T1 lines, 20 independent events were evaluated. Plants expressing the polynucleotides of the invention were compared to the average measurement of the control plants (empty vector or GUS reporter gene under the same promoter) used in the same experiment.


Digital imaging—A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4×150 Watts light bulb) and located in a darkroom, was used for capturing images of plantlets sawn in agar plates.


The image capturing process was repeated every 3-4 days starting at day 1 till day 10 (see for example the images in FIGS. 3A-F). An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).


Seedling analysis—Using the digital analysis seedling data was calculated, including leaf area, root coverage and root length.


The relative growth rate for the various seedling parameters was calculated according to the following formulas XIV, V (described above) and XV.





Relative growth rate of leaf area=Regression coefficient of leaf area along time course.  Formula XIV





Relative growth rate of root length=Regression coefficient of root length along time course.  Formula XV


At the end of the experiment, plantlets were removed from the media and weighed for the determination of plant fresh weight. Plantlets were then dried for 24 hours at 60° C., and weighed again to measure plant dry weight for later statistical to analysis. The fresh and dry weights are provided for each Arabidopsis plant. Growth rate was determined by comparing the leaf area coverage, root coverage and root length, between each couple of sequential photographs, and results are used to resolve the effect of the gene introduced on plant vigor under optimal conditions. Similarly, the effect of the gene introduced on biomass accumulation, under optimal conditions, was determined by comparing the plants' fresh and dry weight to that of control plants (containing an empty vector or the GUS reporter gene under the same promoter). From every construct created, 3-5 independent transformation events are examined in replicates.


Statistical analyses—To identify genes conferring significantly improved plant vigor or enlarged root architecture, the results obtained from the transgenic plants were compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. To evaluate the effect of a gene event over a control the data was analyzed by Student's t-test and the p value was calculated. Results were considered significant if p≦0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).


Experimental Results:


The genes presented in Table 30 showed a significant improvement in plant NUE since they produced larger plant biomass (plant fresh and dry weight) in T2 generation when grown under limiting nitrogen growth conditions, compared to control plants. The genes were cloned under the regulation of a constitutive promoter (At6669, SEQ ID NO:8096) or Ca35S (SEQ ID NO:8094). The evaluation of each gene was carried out by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. The results obtained in these second experiments were significantly positive as well.









TABLE 30







Genes showing improved plant performance at Low Nitrogen growth


conditions under regulation of 6669 promoter












Dry Weight [mg]
Fresh Weight [mg]














Gene



%


%


Name
Event #
Ave.
P-Val.
Incr.
Ave.
P-Val.
Incr.

















LYD78
60360.4
8.1
0.19
44





LYD73
60367.2
7.3
0.13
31
154.2
0.19
24


LYD47
60301.1
7.3
0.30
31





LYD37
60165.1



163.5
0.23
31


LYD229
60338.4
6.9
0.08
23
157.1
0.10
26


LYD221
60350.2



146.8
0.27
18


LYD156
60278.2
7.7
0.16
37





LYD156
60280.1
7.9
0.25
40





LYD132
60356.2
8.3
0.28
47
178.5
0.18
43


LYD132
60357.2
8.4
0.04
49
172.4
0.07
39


LYD132
60357.3
6.7
0.24
19





LYD132
60357.4
10.0
0.03
77
190.2
0.06
53


LYD107
60342.3
9.4
0.09
66
171.1
0.16
37


LYD107
60342.4
8.9
0.19
59
161.5
0.28
30


LYD107
60343.3
11.7
L
108
216.3
0.03
74


CONT.

5.6


124.4




LYD85
60014.4
12.0
0.21
36
213.0
0.10
26


LYD55
60174.1
10.4
0.12
19





LYD55
60177.2
11.8
0.02
33
233.0
L
37


LYD33
60159.3
11.4
0.11
29
215.1
0.21
27


LYD33
60160.2
14.0
0.04
58
251.0
L
48


LYD20
60066.2
10.3
0.19
17
203.2
0.03
20


LYD20
60069.4
9.5
0.14
8





LYD102
60960.1
10.1
0.28
15





CONT.

8.8


169.7




LYD200
60481.2
10.1
L
107
190.9
0.03
107


LYD200
60482.1
9.1
0.02
86
182.0
L
97


LYD200
60485.2
7.8
L
59
169.1
0.02
83


LYD158
60581.4
9.2
0.07
87
206.3
0.03
124


LYD153
60697.3
9.5
L
95
212.7
L
131


LYD153
60698.3
10.0
L
105
182.3
L
98


LYD153
60698.6
7.0
0.08
43
134.2
0.03
46


LYD153
60698.7



103.7
0.17
13


LYD153
60700.3
8.3
0.15
69
160.0
0.07
74


LYD148
60431.3



122.5
0.18
33


LYD148
60432.4
7.0
0.10
44
131.5
0.19
43


LYD148
60434.3
5.7
0.20
17
133.0
L
44


LYD144
60864.2
7.8
L
60
167.7
L
82


LYD144
60866.1



137.2
0.14
49


LYD144
60866.4
7.6
0.01
55
160.8
0.02
74


LYD129
60792.1
7.2
0.04
46
128.2
0.07
39


LYD129
60793.2
6.0
L
22
156.8
L
70


LYD127
60681.1
8.9
L
82
189.1
L
105


LYD127
60682.3
9.6
L
97
183.5
L
99


LYD127
60683.4



106.4
0.27
15


LYD101
60072.4
9.3
0.02
90
178.9
L
94


LYD101
60072.8
8.5
0.04
73
169.8
0.03
84


LYD101
60075.3
10.3
0.03
110
204.3
0.05
122


LYD101
60076.4
11.1
L
126
199.6
0.03
117


CONT.

4.9


92.2







Table 30.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value, L-p < 0.01.


Values are provided per plant.






The genes presented in Tables 31 and 32 showed a significant improvement in plant NUE since they produced a larger leaf biomass (leaf area) and root biomass (root length and root coverage) (Table 31) and a higher relative growth rate of leaf area, root coverage and root length (Table 32) when grown under limiting nitrogen growth conditions, compared to control plants. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil. Plants producing larger leaf to biomass have better ability to produce assimilates). The genes were cloned under the regulation of a constitutive promoter (At6669) or root preferred promoter (RootP). The evaluation of each gene was performed by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. This second experiment confirmed the significant increment in leaf and root performance. Event with p-value <0.1 was considered statistically significant









TABLE 31







Genes showing improved plant performance at Low Nitrogen


growth conditions under regulation of 6669 promoter











Gene

Leaf Area [cm2]
Roots Coverage [cm2]
Roots Length [cm]

















Name
Event #
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.




















LYD78
60360.4
0.8
0.12
48








LYD73
60367.2
0.8
0.07
36
13.6
0.21
19
7.6
0.28
5


LYD66
60117.3
0.6
0.18
16








LYD47
60301.1
0.6
0.25
16
15.0
L
32
8.0
0.07
10


LYD37
60163.1
0.7
0.14
25








LYD37
60165.1
0.7
0.16
21



7.7
0.12
7


LYD3
60374.3



13.5
0.08
18
7.9
0.05
10


LYD3
60375.3



12.7
0.29
11





LYD236
60187.6
0.7
0.11
26








LYD229
60337.2
0.7
0.24
28
14.5
0.24
27
8.1
0.03
13


LYD229
60338.4
0.7
0.02
35
13.9
0.04
21





LYD221
60350.2
0.7
0.23
25








LYD156
60278.2
0.7
0.29
18
14.4
0.16
26
7.8
0.16
8


LYD156
60280.1
1.0
0.03
74
16.6
0.13
45
8.3
0.02
15


LYD156
60280.2
0.7
0.14
25
15.7
0.14
39
8.0
0.05
11


LYD132
60356.2
0.9
L
59
15.8
0.12
39





LYD132
60357.2
0.8
0.11
52
17.9
L
57
8.6
L
20


LYD132
60357.3
0.7
0.02
25



7.7
0.24
7


LYD132
60357.4
0.8
0.07
50








LYD107
60341.2
0.6
0.29
16
13.2
0.28
16
7.7
0.15
7


LYD107
60342.3
0.9
0.15
60
15.7
0.23
38
7.8
0.10
8


LYD107
60342.4
0.8
0.12
45








LYD107
60343.3
1.1
L
92
19.1
L
68
8.2
L
14


CONT.

0.6


11.4


7.2




LYD85
60014.2



14.8
0.15
29
7.7
0.16
10


LYD85
60014.4



18.6
0.04
61
8.3
L
18


LYD79
60018.2



12.9
0.19
12
7.6
0.12
9


LYD79
60018.3






7.6
0.08
8


LYD79
60020.4



16.5
L
43
8.1
L
16


LYD55
60174.1



13.9
0.04
21
7.6
0.02
8


LYD55
60175.4
0.8
0.04
26
13.5
0.27
17
7.8
0.02
12


LYD55
60177.2
0.9
0.08
36
18.9
L
64
8.4
L
19


LYD43
60610.4
0.8
0.08
19
15.0
0.02
31
8.0
0.01
14


LYD33
60159.3
0.7
0.26
14
17.3
0.01
50
7.9
0.07
13


LYD33
60159.5






7.8
L
12


LYD33
60160.2



15.2
0.19
32
7.9
0.02
13


LYD235
60929.3






7.7
0.12
9


LYD235
60930.2






7.4
0.18
5


LYD235
60930.3






7.8
0.04
12


LYD204
60704.1



12.6
0.27
9
8.0
0.01
14


LYD20
60066.2
0.8
0.12
26
13.7
0.29
19
8.1
L
16


LYD20
60069.4
0.8
0.09
26
16.7
0.04
45
8.1
L
16


LYD102
60960.1






7.4
0.11
6


LYD102
60961.2






7.6
0.07
9


CONT.

0.6


11.5


7.0




LYD200
60481.2
0.5
L
45
12.2
0.06
40





LYD200
60482.1
0.7
L
96
15.2
L
75
7.9
L
13


LYD200
60485.2
0.6
L
78
14.3
L
64
7.4
0.20
6


LYD158
60581.4
0.6
L
72
14.2
L
63
7.8
L
12


LYD158
60582.1



9.8
0.22
12
7.4
0.10
7


LYD158
60582.2






7.6
0.27
9


LYD153
60697.3
0.6
0.03
68
13.3
0.02
53
7.6
0.02
9


LYD153
60698.3
0.7
0.03
90
15.1
0.02
73
7.6
0.09
9


LYD153
60698.6
0.6
0.01
79
14.2
0.01
63
8.2
L
17


LYD153
60700.3
0.6
0.18
60
12.3
0.23
41
7.7
0.12
10


LYD148
60431.3



11.1
0.21
27





LYD148
60432.1



10.4
0.21
19
7.7
0.03
11


LYD148
60432.4
0.4
0.05
25
11.8
0.07
35
7.5
0.13
8


LYD148
60434.3
0.5
0.02
45
11.9
0.02
37
7.5
0.10
8


LYD144
60864.2
0.7
L
99
12.6
L
45
7.7
L
11


LYD144
60866.4
0.7
L
82
11.8
0.10
35
7.7
0.05
11


LYD144
60866.5






7.2
0.16
4


LYD144
60868.4
0.4
0.09
26








LYD129
60792.1
0.6
0.05
69
11.4
0.13
31





LYD129
60793.2
0.6
0.10
55
11.0
0.19
27
7.6
L
10


LYD127
60681.1
0.5
0.12
50
16.7
L
92
7.9
L
14


LYD127
60682.2






7.3
0.22
4


LYD127
60682.3
0.6
0.07
55
12.8
L
47
7.6
L
9


LYD127
60683.1



10.4
0.28
20





LYD127
60683.4



10.6
0.19
22





LYD101
60072.4
0.6
0.04
77
13.2
0.10
51





LYD101
60072.8
0.6
0.01
71








LYD101
60075.3
0.6
L
80
13.0
L
49
7.9
L
14


LYD101
60075.4
0.4
0.25
40
9.8
0.09
13
7.4
0.09
6


LYD101
60076.4
0.5
0.09
41
12.6
0.10
45





CONT.

0.4


8.7


6.9







Table 31.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value, L-p < 0.01.


Values are provided per plant.













TABLE 32







Genes showing improved plant performance at Low Nitrogen


growth conditions under regulation of 6669 promoter











Gene

RGR Of Leaf Area
RGR Of Root Coverage
RGR Of Roots Length

















Name
Event #
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.




















LYD78
60359.1
0.1
0.20
21








LYD78
60360.4
0.1
0.02
59








LYD73
60367.2
0.1
L
58
1.6
0.24
17





LYD66
60117.3
0.1
0.26
20








LYD47
60300.1
0.1
0.17
25








LYD47
60301.1
0.1
0.09
32
1.8
0.03
29





LYD37
60162.1
0.1
0.13
25








LYD37
60163.1
0.1
0.10
30








LYD37
60165.1
0.1
0.07
31








LYD3
60374.3



1.6
0.21
18





LYD3
60375.3
0.1
0.05
34








LYD236
60187.6
0.1
0.02
48








LYD229
60337.2
0.1
0.03
52
1.8
0.11
28
0.8
0.23
11


LYD229
60338.1
0.1
0.29
22








LYD229
60338.4
0.1
L
55
1.6
0.18
17





LYD221
60349.3
0.1
0.10
35








LYD221
60350.2
0.1
0.07
40








LYD156
60278.2
0.1
0.03
45
1.7
0.17
24





LYD156
60280.1
0.1
L
90
2.0
0.02
44





LYD156
60280.2
0.1
0.05
36
1.9
0.05
36





LYD132
60353.3
0.1
0.21
20








LYD132
60356.2
0.1
L
76
1.9
0.03
39





LYD132
60357.2
0.1
0.01
69
2.2
L
56





LYD132
60357.3
0.1
0.03
36








LYD132
60357.4
0.1
L
63








LYD107
60341.2
0.1
0.06
36








LYD107
60342.3
0.1
L
85
1.9
0.03
37





LYD107
60342.4
0.1
0.03
54








LYD107
60343.3
0.1
L
115
2.2
L
63





CONT.

0.0


1.4


0.7




LYD85
60014.2



1.8
0.02
30





LYD85
60014.4



2.3
L
63
0.8
0.05
18


LYD79
60018.2



1.5
0.29
11
0.7
0.28
9


LYD79
60018.3






0.8
0.11
14


LYD79
60020.4



2.0
L
44
0.8
0.08
15


LYD55
60174.1



1.7
0.04
23
0.8
0.01
22


LYD55
60175.4
0.1
0.07
37
1.6
0.13
18
0.7
0.20
11


LYD55
60177.2
0.1
0.06
42
2.2
L
62
0.7
0.29
9


LYD43
60610.4
0.1
0.20
26
1.8
L
32
0.8
0.03
19


LYD33
60159.3



2.1
L
52
0.7
0.20
12


LYD33
60159.5






0.8
0.04
17


LYD33
60160.2
0.1
0.09
45
1.8
0.01
33
0.8
0.06
16


LYD204
60703.1






0.8
0.02
19


LYD204
60704.1






0.8
0.03
18


LYD20
60066.2
0.1
0.07
39
1.6
0.18
16





LYD20
60069.3






0.8
0.09
16


LYD20
60069.4
0.1
0.06
40
2.0
L
44
0.7
0.20
12


LYD102
60960.1



1.6
0.25
15





CONT.

0.1


1.4


0.7




LYD200
60481.2
0.0
0.05
30
1.5
L
43





LYD200
60482.1
0.1
L
97
1.9
L
75





LYD200
60485.2
0.1
L
94
1.8
L
67
0.8
0.02
19


LYD158
60581.4
0.1
L
68
1.8
L
63





LYD158
60582.1



1.2
0.27
14
0.7
0.19
9


LYD158
60582.2






0.7
0.28
8


LYD153
60697.3
0.1
L
62
1.7
L
53





LYD153
60698.3
0.1
L
96
1.9
L
76
0.7
0.17
10


LYD153
60698.6
0.1
L
77
1.8
L
63
0.8
L
21


LYD153
60700.3
0.1
0.01
57
1.5
0.01
40





LYD148
60431.3



1.4
0.05
27





LYD148
60432.1



1.3
0.15
18
0.7
0.13
12


LYD148
60432.4



1.5
L
36





LYD148
60434.3
0.1
L
54
1.5
L
37





LYD144
60864.2
0.1
L
82
1.6
L
45





LYD144
60866.4
0.1
L
76
1.5
L
36
0.7
0.21
9


LYD144
60868.4
0.0
0.05
32








LYD129
60792.1
0.1
L
63
1.4
0.02
32





LYD129
60793.2
0.1
L
55
1.4
0.04
29
0.7
0.03
16


LYD127
60681.1
0.1
0.06
36
2.1
L
93





LYD127
60682.3
0.1
0.02
47
1.6
L
48
0.7
0.06
14


LYD127
60683.1



1.3
0.13
20





LYD127
60683.4
0.0
0.14
29
1.3
0.07
24
0.7
0.26
8


LYD101
60072.4
0.1
L
86
1.7
L
55
0.7
0.06
15


LYD101
60072.8
0.1
L
66








LYD101
60075.3
0.1
L
85
1.6
L
50
0.7
0.05
14


LYD101
60075.4
0.0
0.20
19
1.2
0.27
13
0.7
0.13
11


LYD101
60076.4
0.0
0.07
33
1.6
L
47
0.7
0.29
8


CONT.

0.0


1.1


0.6







Table 32.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value, L-p < 0.01.


Values are provided per plant.






The genes presented in Table 33 showed a significant improvement in plant performance since they produced larger plant biomass (plant fresh and dry weight) in T2 generation when grown under normal nitrogen growth conditions, compared to control plants. The genes were cloned under the regulation of a constitutive promoter (At6669, SEQ ID NO:8096) or 35S (SEQ ID NO:8094). The evaluation of each gene was carried out by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. The results obtained in these second experiments were significantly positive as well.









TABLE 33







Genes showing improved plant performance at Normal growth conditions under


regulation of 6669 promoter










Gene

Dry Weight [mg]
Fresh Weight [mg]














Name
Event #
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.

















LYD58
61306.2
6.0
0.16
67
98.8
0.09
65


LYD58
61307.3
5.7
0.17
58
92.8
0.13
55


LYD58
61308.2
6.4
0.08
79
103.8
0.04
73


LYD283
61317.4
4.6
0.08
30
77.7
0.03
30


LYD283
61319.3
6.0
L
66
95.3
L
59


LYD283
61320.1
5.5
L
53
86.5
0.01
44


LYD283
61320.2
3.8
0.28
6





LYD283
61320.4
5.9
0.04
64
88.2
0.03
47


LYD270
61370.4
6.2
L
72
108.2
L
80


LYD260
61364.4
6.9
0.02
92
105.5
0.03
76


LYD260
61365.3
6.6
L
83
109.8
L
83


LYD260
61365.4
6.9
L
93
111.2
L
85


LYD260
61365.6
4.6
0.11
28
80.1
0.03
34


LYD260
61368.1



67.4
0.26
12


LYD259
61301.2
4.1
0.29
14
73.6
0.03
23


LYD259
61302.3
5.2
0.08
45
85.5
0.04
43


LYD259
61302.6
5.0
0.07
41
80.1
0.01
34


LYD230
61333.4



69.2
L
15


LYD230
61334.5
6.5
L
82
93.9
0.02
57


LYD230
61335.2



73.4
0.04
22


LYD222
61327.3
5.0
0.04
39
82.7
L
38


LYD222
61327.4
4.4
0.17
22





LYD222
61329.2
5.0
0.17
38
79.8
0.10
33


LYD222
61329.3
5.0
0.11
39
85.6
0.06
43


LYD21
61358.1
5.9
L
64
106.3
L
77


LYD21
61360.1
7.3
L
103
110.2
L
84


LYD21
61362.1
9.0
0.02
151
136.8
0.09
128


LYD21
61362.3
6.1
L
70
104.2
L
74


LYD21
61362.4
4.6
0.15
28
90.0
L
50


LYD187
61313.2
4.6
0.25
29
81.3
0.03
36


LYD187
61314.2
4.5
0.13
26
78.9
0.07
32


LYD152
61352.1
4.0
0.22
13
72.7
0.07
21


LYD152
61352.4
6.4
L
79
92.7
L
55


LYD152
61352.5
4.5
0.21
27
71.8
0.03
20


LYD152
61352.7
4.6
0.04
28
72.3
0.09
21


LYD152
61355.3
7.2
0.02
102
115.2
L
92


LYD150
61323.2
5.2
0.16
44
95.6
L
59


LYD150
61324.1



72.3
0.05
21


LYD150
61324.2
6.5
L
80
111.8
0.01
86


LYD150
61325.4



67.2
0.02
12


LYD150
61326.1
4.8
0.09
33
88.5
L
48


LYD126
61376.1
5.8
0.08
61
98.3
0.01
64


LYD126
61377.3
5.2
0.04
44
82.2
0.04
37


LYD126
61380.2



77.2
0.23
29


LYD115
61346.2
6.4
0.04
79
104.6
0.02
74


LYD115
61348.2



67.0
L
12


LYD115
61349.1
4.2
0.09
18
66.8
L
11


LYD115
61349.2
5.7
L
58
91.3
L
52


LYD115
61350.3
4.9
L
36
81.4
0.02
36


LYD114
61383.3
4.3
0.22
21
71.1
0.06
19


LYD114
61383.6
5.0
0.02
39
79.6
0.15
33


LYD108
61294.1
4.9
0.08
37
85.7
0.11
43


LYD108
61294.4
8.8
L
144
136.2
L
127


LYD108
61295.1
7.6
0.01
110
112.6
0.02
88


LYD108
61296.1
6.8
0.01
88
110.4
0.11
84


LYD108
61297.2
5.1
0.28
41
90.5
0.20
51


CONT.

3.6


60.0




LYD95
61199.1
5.8
0.07
44





LYD95
61199.2
7.0
0.24
73
160.9
0.19
47


LYD95
61201.3
6.0
L
50
156.2
0.27
43


LYD95
61202.2
7.5
L
87
158.3
0.02
45


LYD61
61659.4
6.0
0.03
49





LYD61
61660.1
7.2
L
78
172.9
0.07
58


LYD61
61660.3
5.6
0.18
39
129.4
0.17
18


LYD61
61661.1
10.4
0.02
160
200.2
0.04
83


LYD286
61703.2
5.9
0.06
46





LYD286
61703.3
4.9
0.26
21





LYD282
61664.2
5.0
0.10
24





LYD282
61664.3
7.2
L
80
178.4
0.10
63


LYD282
61665.3
7.5
0.11
86
149.2
0.20
36


LYD282
61665.4
10.2
0.06
155
190.6
0.07
74


LYD282
61666.1
8.3
0.02
107
167.0
0.05
53


LYD271_H0
61876.4
5.9
0.03
45
124.8
0.28
14


LYD271_H0
61876.5
7.1
0.03
76
126.5
0.21
16


LYD271_H0
61877.1
6.0
0.27
50





LYD271_H0
61878.2
4.6
0.26
14





LYD271_H0
61879.3
7.2
0.03
80
147.2
0.07
35


LYD270
61373.1
5.4
0.24
34





LYD270
61374.2
8.1
0.06
101
157.0
0.17
44


LYD261
61521.2
7.5
0.05
86
156.8
0.20
43


LYD261
61521.4
4.7
0.07
16
133.6
0.15
22


LYD261
61524.2
5.0
0.22
24





LYD260
61365.3
8.2
0.10
104
203.2
0.08
86


LYD260
61368.1
7.9
0.04
97
189.9
L
74


LYD231
60717.2
6.6
0.06
63





LYD231
60718.1
9.4
0.01
133
215.6
0.02
97


LYD231
60719.1
8.0
0.02
99
154.3
0.02
41


LYD223
61194.2
7.0
0.09
75
133.6
0.20
22


LYD223
61195.3
6.9
0.16
71
163.9
L
50


LYD223
61196.3
8.8
L
117
180.4
L
65


LYD21
61358.1
5.3
0.15
32





LYD21
61362.1
7.0
0.22
73





LYD126
61376.1
8.4
L
110
167.1
L
53


LYD126
61380.1
5.1
0.26
26





LYD126
61380.2
7.3
L
83
145.7
0.09
33


LYD124_H7
61871.2
8.0
0.08
99
160.1
0.07
46


LYD124_H7
61871.4
4.9
0.28
22





LYD114
61383.1
10.3
0.10
157
203.1
0.13
86


LYD114
61383.3
6.8
0.02
70
131.6
0.22
20


LYD114
61383.6
7.8
L
93
151.2
0.01
38


LYD114
61384.2
6.6
0.03
63
165.1
0.05
51


LYD114
61385.2
7.6
0.15
88





CONT.

4.0


109.4




LYD92
60583.3
4.9
0.25
19
97.2
0.16
14


LYD92
60586.4
5.0
0.05
20
100.5
0.12
18


LYD92
60587.3
5.2
0.29
25
105.4
0.23
23


LYD66
60114.1
5.9
0.10
41
104.6
0.18
23


LYD57
61655.2
5.3
0.15
28





LYD266
60616.2



104.0
0.30
22


LYD25
60589.4
5.9
0.01
42
107.9
0.01
26


CONT.

4.2


85.4




LYM104
12912.17
6.2
0.06
55
111.1
0.03
64


LYM104
12913.21
6.7
L
69
126.2
0.01
87


LYM104
12914.1
10.6
L
165
186.7
L
176


LYM104
12914.14
8.6
L
114
156.0
0.01
131


LYD88
61706.3
5.7
L
42
94.8
L
40


LYD88
61707.3



77.3
0.07
14


LYD88
61709.1
5.5
0.03
39
110.4
L
63


LYD88
61709.2



82.7
0.04
22


LYD84
61133.4
6.7
0.02
67
116.8
0.01
73


LYD84
61134.1
7.5
0.09
88
128.8
0.08
90


LYD84
61134.3
9.1
L
127
170.7
L
152


LYD84
61134.4
9.2
0.05
131
181.3
0.05
168


LYD84
61135.2
6.8
L
70
120.0
L
77


LYD72
61163.3
7.4
0.06
86
135.3
0.04
100


LYD72
61164.1
6.6
0.07
64
102.3
L
51


LYD72
61164.3
5.4
0.13
36
99.0
0.10
46


LYD72
61165.4
7.8
0.10
95
112.3
0.07
66


LYD72
61166.4



85.0
0.16
26


LYD63
61228.2
5.5
0.05
37
108.0
0.05
60


LYD63
61229.4



77.0
0.17
14


LYD63
61229.8
5.7
0.17
42





LYD63
61231.1
6.5
L
64
106.8
0.01
58


LYD286
61700.2
5.5
0.08
37
96.3
0.01
42


LYD286
61701.2



90.1
0.04
33


LYD286
61701.4
5.3
0.01
34
102.9
0.02
52


LYD286
61703.2
6.6
0.13
65
118.2
0.11
75


LYD28
61712.1
5.3
0.21
32
88.8
0.10
31


LYD28
61713.2
5.3
0.07
33
93.0
0.10
37


LYD28
61714.6



87.5
0.22
29


LYD28
61716.2
7.0
0.02
76
115.3
0.05
71


LYD268
61152.3
6.6
0.05
64
117.5
0.04
74


LYD268
61153.3
6.5
0.04
64
117.7
0.05
74


LYD268
61153.6
6.3
L
59
100.4
L
48


LYD268
61154.2
4.7
0.12
18
90.7
L
34


LYD26
61168.1
5.9
L
48
98.4
0.04
45


LYD26
61169.3
5.5
0.08
37
108.7
L
61


LYD26
61171.1



80.9
0.03
20


LYD157
61156.1
4.6
0.27
16
84.3
0.04
25


LYD157
61156.3
4.9
0.16
24
84.0
0.16
24


LYD157
61158.1
5.8
0.08
46
105.6
0.05
56


LYD157
61158.5
7.3
0.07
83
137.8
L
104


LYD157
61159.3



80.4
0.02
19


LYD115
61348.2
5.6
0.16
42
101.1
0.04
49


LYD115
61349.1
4.9
0.05
22
88.7
0.07
31


LYD115
61350.3
8.0
0.10
99
144.8
0.08
114


LYD112
61144.1
6.3
L
59
106.8
0.01
58


LYD112
61146.5
5.8
L
46
103.4
0.03
53


LYD112
61148.1



85.4
0.07
26


LYD109
61175.3
5.9
0.10
48
102.1
0.07
51


LYD109
61177.4
5.6
L
41
102.0
0.01
51


LYD109
61178.2
5.3
0.02
34
95.7
0.01
41


LYD106
61140.2
5.7
L
42
96.0
L
42


LYD106
61140.4
6.9
0.01
72
128.3
L
90


LYD106
61141.1
5.6
0.15
40
93.9
0.08
39


LYD106
61141.3



77.3
0.08
14


CONT.

4.0


67.6




LYD96
60283.4
7.7
0.11
100
169.5
0.04
86


LYD96
60285.1
8.3
0.03
116
153.7
0.05
69


LYD96
60286.2
6.2
L
61
122.4
0.14
35


LYD96
60286.3
9.1
0.02
136
184.9
0.02
103


LYD91
60685.6
11.4
L
197
205.5
0.02
126


LYD91
60689.4
9.2
0.15
138
176.1
0.17
94


LYD91
60690.1
6.0
0.05
57
109.4
0.28
20


LYD71
60637.3
5.8
0.11
49
137.5
0.02
51


LYD71
60638.1
10.0
L
160
189.4
L
108


LYD71
60641.3
6.1
0.03
59
125.0
0.03
38


LYD65
60625.3
5.3
0.12
38
122.1
0.08
34


LYD65
60625.4
6.9
L
78
140.9
0.08
55


LYD65
60626.2
7.6
0.03
99
146.2
0.09
61


LYD65
60629.1
7.4
0.04
92
135.0
0.05
48


LYD65
60629.2
8.3
0.03
116
154.5
L
70


LYD287
60145.1
10.0
0.08
158
175.7
0.10
93


LYD287
60145.2
7.5
0.01
95
165.9
0.04
83


LYD287
60145.3
7.6
L
97
135.8
L
49


LYD287
60146.1
6.9
0.01
81
140.3
0.03
54


LYD287
60148.1
8.0
0.01
106
173.1
L
90


LYD232
61640.2
9.0
L
134
183.7
L
102


LYD232
61640.3
6.3
0.02
63
113.2
0.12
24


LYD232
61641.1
10.3
0.06
168
204.1
0.02
124


LYD232
61642.4
8.0
0.01
107
156.9
L
73


LYD232
61643.4
7.3
L
91
209.9
0.02
131


LYD227
60547.3
5.5
0.04
42
119.1
0.04
31


LYD227
60548.3
6.0
0.02
55
116.8
0.10
28


LYD227
60549.3
7.2
0.02
86
159.6
0.03
76


LYD227
60551.1
6.9
0.07
78
142.1
0.05
56


LYD227
60551.4
6.1
L
58
112.5
0.04
24


LYD193
60506.1
4.9
L
27





LYD193
60506.4
5.2
0.10
35





LYD178
61689.2
4.9
0.08
27





LYD178
61690.3
5.5
L
43
104.0
0.29
14


LYD178
61691.2



105.3
0.25
16


LYD178
61691.4
5.0
0.06
30





LYD156
60277.4
6.6
0.07
72
127.5
0.19
40


LYD156
60280.4
4.8
0.26
25
105.0
0.23
16


LYD140
60383.3
5.0
0.25
29
128.5
0.11
41


LYD136
60441.3
4.8
0.12
23





LYD136
60444.1
4.9
0.11
27
104.2
0.16
15


LYD136
60444.3
4.3
0.30
12





LYD136
60445.1
4.8
0.09
25
110.0
0.12
21


LYD110
60391.3
6.2
L
60
118.3
0.01
30


LYD110
60391.4
7.6
L
96
162.6
L
79


LYD110
60392.1
8.2
L
112
165.7
L
82


LYD110
60394.4
5.4
0.04
40
107.3
0.19
18


LYD103
60258.2



105.8
0.20
16


LYD103
60261.6



120.9
0.03
33


CONT.

3.9


90.9




LYD78
60359.1
7.2
0.10
36
143.9
0.13
26


LYD73
60368.4
7.2
0.16
36





LYD66
60117.3
6.9
0.29
30





LYD47
60301.1
6.3
0.27
19





LYD236
60187.6
7.1
0.15
34





LYD229
60338.4
6.8
0.21
28
136.5
0.29
19


LYD156
60280.1
11.3
0.04
113
250.4
0.01
119


LYD132
60356.2
10.3
0.01
94
212.8
0.08
86


LYD132
60357.3
7.0
0.22
32
148.4
0.23
30


LYD132
60357.4
8.4
0.12
59
166.0
0.09
45


LYD107
60341.2
6.9
0.15
30





LYD107
60342.3
8.2
0.04
55
172.8
0.05
51


LYD107
60343.3
7.3
0.02
37
151.8
0.04
33


CONT.

5.3


114.4




LYD7
60670.2
6.2
0.02
20





LYD228
60403.4
8.4
0.08
64
158.2
0.06
55


LYD174
60816.3
6.2
0.05
20





LYD174
60816.4
11.2
0.04
118
230.2
L
126


LYD174
60817.3
6.9
L
35
130.3
0.13
28


LYD174
60818.3
8.4
L
63
136.2
L
33


LYD16
60313.2



142.7
0.06
40


LYD16
60314.1



142.3
0.14
39


LYD16
60315.3
6.0
0.05
18





LYD159
60662.3
7.3
L
42
167.2
0.13
64


LYD159
60665.1
8.0
0.05
55
129.3
0.11
27


LYD159
60665.5
5.7
0.17
11





LYD125
60826.2
6.3
0.03
23
128.6
0.16
26


CONT.

5.1


102.1




LYD96
60285.2
9.3
0.08
69
173.5
0.19
52


LYD96
60285.3
8.8
0.13
58





LYD96
60286.2
9.2
L
67
165.8
0.02
45


LYD96
60286.3
11.3
0.12
105
216.7
0.09
89


LYD91
60685.6
13.8
0.06
150
236.1
0.05
106


LYD91
60689.3
6.6
0.08
20





LYD91
60690.2
6.3
0.27
14





LYD71
60641.2
11.8
0.09
114
208.3
0.05
82


LYD71
60641.3
13.4
L
142
218.6
L
91


LYD65
60625.4
10.3
0.03
87
191.9
0.16
68


LYD65
60626.2
9.9
0.08
79
178.2
0.07
56


LYD287
60145.1
10.8
0.08
95
207.5
0.08
81


LYD287
60145.3
9.5
0.05
71
173.5
0.06
52


LYD287
60146.1
8.3
L
50
172.8
L
51


LYD287
60146.3
7.4
0.10
34
141.8
0.11
24


LYD232
61640.2
6.5
0.29
17





LYD232
61641.4
8.4
0.26
52





LYD232
61642.4
7.2
0.01
31
157.2
0.07
37


LYD232
61643.4
10.2
0.08
85
164.6
0.14
44


LYD227
60548.3
10.1
0.07
82
170.8
0.10
49


LYD227
60549.3
7.0
0.16
27
139.1
0.19
22


LYD227
60551.1
9.0
L
62
192.3
0.06
68


LYD227
60551.4
7.0
0.08
26
138.9
0.12
21


LYD214
60127.5
11.1
L
101
225.2
0.01
97


LYD214
60129.1
7.9
0.11
42
162.8
0.05
42


LYD214
60130.3
7.9
L
42
156.7
L
37


LYD193
60504.2
8.7
0.09
57
174.9
0.17
53


LYD193
60505.3
7.8
0.23
41





LYD193
60506.1
7.5
L
36
150.2
L
31


LYD178
61689.2
8.4
0.23
51
176.1
0.09
54


LYD178
61690.1
8.0
0.11
44
144.7
0.22
26


LYD178
61690.3
11.4
0.02
105
205.9
0.03
80


LYD178
61691.2
10.2
0.13
84
170.2
0.21
49


LYD148
60431.3
7.2
0.23
31





LYD148
60433.2
7.8
0.03
41
162.6
L
42


LYD148
60434.3
8.5
L
53
162.8
0.05
42


LYD148
60434.4



127.1
0.21
11


LYD140
60382.3
9.3
0.12
68
175.0
0.06
53


LYD140
60383.3
12.9
0.04
133
272.4
0.05
138


LYD140
60384.2
10.2
0.10
84
206.3
0.11
80


LYD136
60441.3
7.2
0.27
29
167.1
0.07
46


LYD136
60443.1
8.2
0.30
49





LYD136
60444.1
9.5
0.13
72
179.4
0.07
57


LYD110
60391.2
11.7
0.05
111
228.2
0.02
100


LYD110
60392.1
12.4
0.08
124
219.5
0.15
92


LYD110
60393.3
7.8
0.09
41
165.1
0.02
44


LYD110
60393.4
12.6
0.04
127
231.5
0.01
102


CONT.

5.5


114.4




LYD99
60328.5
7.4
0.06
37
123.6
0.11
40


LYD88
61707.4
6.3
0.22
17
103.8
0.14
17


LYD88
61709.1
8.1
L
50
139.5
L
58


LYD88
61709.2
5.9
0.25
9





LYD58
61307.3
7.0
0.16
29
121.1
0.16
37


LYD58
61308.2
8.1
L
49
139.5
L
58


LYD283
61319.3
8.2
0.01
51
133.3
L
51


LYD28
61712.1
6.4
0.16
18
107.1
0.07
21


LYD28
61714.3
6.5
0.02
20
115.7
0.02
31


LYD28
61716.2
6.7
0.14
23
115.2
0.14
30


LYD269
61462.2
6.9
L
28
108.9
0.03
23


LYD262
61340.1
7.4
L
37
152.9
L
73


LYD262
61341.2
6.3
0.12
17
104.0
0.24
18


LYD262
61342.2
7.6
0.01
39
117.7
0.01
33


LYD259
61301.1
6.9
0.03
26
114.8
0.03
30


LYD259
61302.3
6.3
0.12
16





LYD259
61302.6
7.8
0.27
45
139.7
0.19
58


LYD230
61332.1



102.8
0.22
16


LYD230
61332.3



95.5
0.27
8


LYD230
61333.4



111.3
0.12
26


LYD222
61327.3



106.3
0.17
20


LYD222
61329.3
6.0
0.18
10





LYD187
61312.4
6.7
0.02
23





LYD152
61352.4
6.6
L
22
113.2
L
28


LYD152
61355.3
6.8
L
26
126.9
0.03
44


LYD150
61324.1



105.6
0.24
19


LYD150
61324.2



108.9
0.13
23


LYD150
61326.1
6.5
0.10
20
108.8
0.02
23


LYD108
61294.1
9.7
L
79
151.6
L
71


LYD108
61294.4
9.3
L
71
159.0
0.01
80


LYD108
61297.2
10.8
L
99
169.8
L
92


LYD108
61297.4
9.7
0.03
79
153.7
L
74


CONT.

5.4


88.4




LYD99
60328.6
5.3
0.07
27
95.1
0.06
17


LYD78
60359.4



91.2
0.16
12


LYD78
60362.4
8.4
0.05
103
150.0
0.04
85


LYD73
60368.4
5.3
0.06
27
100.4
0.18
24


LYD47
60301.4
10.3
0.14
148
195.4
0.12
141


LYD3
60372.4
8.3
0.03
102
137.7
0.04
70


LYD3
60375.1



102.2
0.03
26


LYD264
61526.1
10.2
L
147
194.2
L
139


LYD264
61526.3
8.7
L
109
167.6
0.03
106


LYD264
61527.4
8.5
L
105
145.9
L
80


LYD264
61529.3
4.8
0.07
16
95.8
0.02
18


LYD264
61530.4
5.4
0.30
30
108.3
0.18
33


LYD262
61340.1
5.2
0.24
26
108.7
0.01
34


LYD262
61341.2
6.6
0.11
58
142.3
L
75


LYD262
61342.1
7.3
0.07
77
159.0
0.06
96


LYD262
61342.2
6.3
0.05
53
126.5
0.10
56


LYD262
61342.3
4.9
0.27
17
97.4
L
20


LYD261
61521.4
9.1
0.17
120
174.4
0.12
115


LYD261
61522.2
6.9
0.02
67
137.9
L
70


LYD261
61522.3
6.5
0.03
57
118.4
0.03
46


LYD261
61524.2
5.3
0.08
27
111.0
0.04
37


LYD252
61052.4
5.2
0.09
25
102.9
L
27


LYD252
61052.5



106.7
0.01
31


LYD252
61054.1



103.2
0.03
27


LYD252
61055.2
6.7
0.16
61
150.7
0.14
85


LYD229
60336.3
7.6
0.09
84
156.2
0.06
92


LYD229
60337.1
8.0
0.01
92
172.9
L
113


LYD229
60337.2
8.9
0.06
115
179.2
0.06
121


LYD229
60338.4
13.9
0.03
236
249.0
0.03
207


LYD229
60339.4
8.0
0.08
94
154.0
0.02
90


LYD132
60353.3
11.4
L
174
207.2
L
155


LYD132
60356.2
6.8
0.18
65
125.1
0.08
54


LYD132
60357.2
7.8
0.08
89
154.7
L
90


LYD132
60357.3
6.3
L
53
117.6
L
45


LYD132
60357.4
7.8
0.02
89
143.3
0.03
76


LYD107
60341.2
9.0
0.02
117
160.4
0.02
97


LYD107
60342.2
8.3
0.05
100
171.9
0.04
112


LYD107
60342.3
6.6
0.30
60
141.9
0.22
75


LYD107
60342.4
8.3
0.03
102
157.0
L
93


LYD107
60343.3
9.4
0.05
127
174.1
0.06
114


CONT.

4.1


81.2




LYD85
60014.4
13.5
0.08
99
245.0
0.04
90


LYD79
60020.4
11.1
0.03
63
202.1
0.07
57


LYD55
60174.1
12.2
0.10
80
216.6
0.08
68


LYD55
60175.4
9.8
0.10
43
162.5
0.23
26


LYD55
60177.2
11.1
0.08
63
218.6
0.03
70


LYD43
60610.4



171.2
0.29
33


LYD33
60159.3
8.1
0.08
19
154.1
0.28
20


LYD33
60160.2
9.5
0.05
39
170.3
0.04
32


LYD235
60930.2



158.7
0.24
23


LYD235
60930.3



157.7
0.04
22


LYD204
60703.1
10.1
0.05
48
202.7
0.03
57


LYD204
60704.4



178.8
0.11
39


LYD20
60066.2
10.6
L
55
195.0
0.02
51


LYD20
60069.4
10.8
L
58
228.4
0.05
77


LYD102
60960.1
9.1
0.19
34
196.1
0.10
52


CONT.

6.8


128.9




LYD238
60453.2
4.9
0.21
20
97.1
0.27
15


LYD216
60331.4
8.3
0.01
102
171.2
L
102


LYD216
60333.3
8.6
0.13
111
180.8
0.07
113


LYD212
60522.3
5.3
0.06
30
102.2
0.03
21


LYD211
60308.2
5.1
0.16
24
103.8
0.28
23


LYD211
60308.3
7.6
0.01
86
142.7
0.07
68


LYD211
60309.6
5.0
0.13
22
108.9
0.14
29


LYD209
60294.4
6.1
0.21
49
141.5
0.03
67


LYD209
60295.4
5.8
0.06
41





LYD209
60297.3
5.2
0.18
28
118.1
0.08
39


LYD209
60297.4
10.1
0.21
147
198.9
0.17
135


LYD206
60491.5
4.8
0.05
18
116.3
0.06
37


LYD206
60492.1
5.5
0.01
35
112.6
0.16
33


LYD206
60492.3



98.4
0.12
16


LYD201
60168.2
6.8
0.15
65
148.3
0.11
75


LYD201
60168.4
6.9
L
68
131.0
0.11
55


LYD196
60569.3
4.9
0.21
19
100.2
0.05
18


LYD177
60573.2
5.1
0.13
24
105.9
0.03
25


LYD177
60574.3
6.1
0.22
50
128.4
0.10
52


LYD167
60472.1
5.3
0.28
30





LYD167
60473.3
4.7
0.14
15
99.3
0.23
17


LYD149
60513.3
5.1
0.13
24





LYD120
60882.1



112.2
0.06
32


LYD120
60882.3
5.2
0.08
28
104.6
0.06
24


LYD120
60883.2
5.6
0.05
38
112.8
0.07
33


LYD120
60884.1
4.9
0.07
20





LYD1
61685.1



126.4
0.10
49


LYD1
61686.3
5.5
0.15
36
115.5
0.06
36


CONT.

4.1


84.7




LYD200
60481.2
9.6
0.03
86
169.9
0.05
68


LYD200
60482.1
8.6
0.03
65
180.2
0.02
78


LYD200
60485.2
6.4
L
23
117.7
0.02
17


LYD158
60581.4
10.1
0.03
95
194.2
0.04
92


LYD153
60697.3
10.2
0.10
98
221.1
0.13
119


LYD153
60698.3
10.5
0.04
103
191.5
0.08
90


LYD153
60700.3
7.4
0.19
43
150.3
0.09
49


LYD148
60432.4
10.2
0.07
98
210.8
0.02
109


LYD144
60864.2
7.2
0.09
39
163.5
0.13
62


LYD144
60866.1
5.7
0.28
10





LYD144
60866.4
6.6
0.06
27
135.0
L
34


LYD129
60792.1
6.9
0.02
33
117.5
0.11
16


LYD127
60681.1
7.6
0.05
48
158.5
0.02
57


LYD127
60682.3
8.2
0.02
58
148.4
0.06
47


LYD127
60683.1
6.2
0.06
20





LYD101
60072.4
9.3
0.15
80
170.7
0.13
69


LYD101
60072.8
9.2
0.14
78
158.3
0.15
57


LYD101
60076.4
8.9
0.04
73
153.4
0.01
52


CONT.

5.2


101.0




LYM275
13192.1
0.01
0.07
1.06
0.11
L
0.67


LYM275
13192.11
0.01
0.15
0.73
0.12
0.05
0.81


LYM275
13193.1



0.09
0.05
0.26


LYM275
13193.15
0.01
0.06
0.70
0.12
0.02
0.81


LYM275
13193.17
0.00
0.04
0.24
0.09
0.04
0.26





Table 33.


“CONT.”—Control;


“Ave”—Average


“% Incr.” = % increment;


“p-val.”—p-value,


L—p < 0.01.


Values are provided per plant.






The genes presented in Tables 34 and 35 showed a significant improvement in plant performance since they produced a larger leaf biomass (leaf area) and root biomass (root length and root coverage) (Table 34) and a higher relative growth rate of leaf area, root coverage and root length (Table 35) when grown under normal nitrogen growth conditions, compared to control plants. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil. Plants producing larger leaf biomass have better ability to produce assimilates). The genes were cloned under the regulation of a constitutive promoter (At6669) or root preferred promoter (RootP). The evaluation of each gene was performed by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. This second experiment confirmed the significant increment in leaf and root performance. Event with p-value <0.1 was considered statistically significant









TABLE 34







Genes showing improved plant performance at Normal growth conditions under regulation


of 6669 promoter











Leaf Area
Roots Coverage
Roots Length



[cm2]
[cm2]
[cm]

















Gene


P-
%

P-
%

P-
%


Name
Event #
Ave.
Val.
Incr.
Ave.
Val.
Incr.
Ave.
Val.
Incr.




















LYD58
61306.2
0.6
0.11
43
8.5
L
72
7.2
L
21


LYD58
61306.6
0.5
0.12
21








LYD58
61307.3
0.6
L
52
7.0
L
42
7.0
0.08
17


LYD58
61308.2
0.7
L
72
7.9
0.07
60
6.9
L
15


LYD283
61317.4
0.6
0.03
50
6.2
0.04
26
6.5
0.12
 9


LYD283
61319.3
0.6
0.03
49
6.8
0.04
38
6.8
0.11
14


LYD283
61320.1
0.6
0.03
44








LYD283
61320.2
0.5
0.16
10



6.3
0.27
 5


LYD283
61320.4



7.5
0.07
51





LYD270
61370.1






6.4
0.20
 7


LYD270
61370.4
0.7
L
69
6.7
0.04
35





LYD270
61373.1
0.4
0.29
 7








LYD260
61364.4
0.6
0.08
46
7.6
0.02
53
7.0
0.02
17


LYD260
61365.3
0.7
L
68
9.4
0.02
90
6.8
0.15
14


LYD260
61365.4
0.6
L
49
8.2
L
67
6.6
0.03
11


LYD260
61365.6
0.5
0.29
26
6.8
0.06
37
6.8
0.14
13


LYD260
61368.1
0.5
0.02
21
5.5
0.29
12
6.8
0.04
13


LYD259
61301.2



6.3
0.12
27





LYD259
61302.3



6.1
0.18
25





LYD259
61302.6
0.6
L
42
5.4
0.27
10





LYD230
61333.4
0.6
L
38
6.1
0.01
24
6.3
0.16
 6


LYD230
61334.5
0.5
0.17
29
6.7
0.21
35





LYD230
61335.2
0.5
L
28








LYD222
61327.3



6.0
0.29
22





LYD222
61327.4
0.5
0.05
27








LYD222
61329.2
0.6
0.07
48








LYD222
61329.3
0.6
0.03
53
7.6
L
53
6.8
0.01
13


LYD21
61358.1
0.6
0.02
49
9.2
L
85
7.2
L
20


LYD21
61360.1
0.7
L
81
6.7
L
35
6.3
0.27
 5


LYD21
61362.1
0.7
0.03
77
10.0
0.02
103 
7.1
L
18


LYD21
61362.3
0.7
L
64
6.8
0.06
39





LYD21
61362.4
0.5
0.05
29
6.5
L
31
6.7
0.03
11


LYD187
61312.4
0.5
0.06
22








LYD187
61313.2
0.5
0.23
14
7.3
0.02
47
6.5
0.20
 8


LYD187
61314.2
0.5
0.05
24
6.4
L
30





LYD187
61314.4






6.5
0.26
 8


LYD152
61352.1
0.5
0.10
23








LYD152
61352.4
0.6
L
54
8.0
L
62
6.7
0.05
13


LYD152
61352.5



6.2
0.16
26
6.6
0.07
10


LYD152
61352.7






6.4
0.29
 6


LYD152
61355.3
0.7
0.07
64
7.8
0.01
57
6.4
0.15
 6


LYD150
61323.2
0.6
L
39
7.4
0.06
49
6.6
0.06
11


LYD150
61324.1



5.8
0.27
18





LYD150
61324.2
0.7
L
72
8.8
L
79
6.8
0.03
14


LYD150
61325.4






6.5
0.18
 9


LYD150
61326.1
0.7
L
59
7.4
0.02
51
7.3
L
22


LYD126
61376.1
0.6
0.03
35
8.6
L
73
6.9
L
16


LYD126
61377.3
0.6
L
33
6.5
L
32
6.5
0.09
 8


LYD126
61380.2
0.5
0.18
19








LYD115
61346.2
0.6
0.11
49
6.7
0.09
36
6.9
L
16


LYD115
61349.1
0.5
0.12
22
5.8
0.24
17





LYD115
61349.2
0.5
0.18
18
7.1
L
43
6.7
0.05
12


LYD115
61350.3
0.5
0.25
20
5.5
0.24
11





LYD114
61383.6



6.9
L
39
6.8
0.03
14


LYD108
61294.1
0.6
L
43








LYD108
61294.4
0.7
L
72








LYD108
61295.1
0.7
0.04
68








LYD108
61296.1
0.7
L
80
6.1
0.07
23





LYD108
61297.2
0.7
0.04
68








CONT.

0.4


4.9


6.0




LYD95
61199.1
0.6
L
31
10.5
0.01
57
7.1
L
22


LYD95
61199.2



9.7
0.08
46
6.7
L
16


LYD95
61201.3
0.5
0.09
21








LYD95
61202.2
0.5
0.25
22
8.6
0.12
29
6.3
0.06
10


LYD95
61202.3






7.2
0.01
25


LYD61
61659.4



9.2
L
38
6.6
0.02
15


LYD61
61660.1
0.6
0.01
42



6.5
0.12
12


LYD61
61660.3



10.3
L
55
7.3
L
26


LYD61
61660.4



7.6
0.27
14
6.6
0.01
14


LYD61
61661.1
0.7
0.08
65
14.2
L
113 
7.4
L
27


LYD286
61700.2



8.7
L
31
6.9
L
20


LYD286
61701.2






6.0
0.24
 4


LYD286
61701.4






6.4
0.03
11


LYD286
61703.3



8.5
L
27
6.4
0.02
11


LYD282
61664.2



9.2
L
38
6.3
0.12
 9


LYD282
61664.3
0.6
0.02
35
8.7
0.02
31
6.4
0.02
11


LYD282
61665.3
0.6
0.02
41
11.2
0.02
68
7.1
0.01
22


LYD282
61665.4
0.7
L
63
11.8
0.02
77
6.7
0.05
16


LYD282
61666.1
0.7
0.09
51








LYD271_H0
61876.4
0.5
0.23
19
11.8
L
77
7.3
L
26


LYD271_H0
61876.5



9.1
0.03
37
6.1
0.22
 6


LYD271_H0
61877.1
0.5
0.16
20
8.2
0.11
24





LYD271_H0
61878.2



9.6
0.06
44
7.1
0.02
23


LYD271_H0
61879.3
0.5
0.15
20
9.4
0.05
40
6.4
0.09
11


LYD270
61370.1



9.1
0.07
37
6.6
0.19
15


LYD270
61373.1



8.1
0.02
21





LYD270
61374.2
0.6
0.23
29
10.9
0.02
64
6.9
0.01
19


LYD261
61521.2
0.5
0.04
22
8.5
0.10
27





LYD261
61521.4
0.6
0.02
35
7.6
0.24
14
6.5
0.08
12


LYD261
61522.2



7.6
0.01
14
6.3
0.03
10


LYD261
61523.2



9.2
0.11
38
6.6
0.10
14


LYD260
61364.4






6.3
0.18
 9


LYD260
61365.3
0.8
0.09
73
12.0
0.04
80
7.1
0.05
23


LYD260
61365.4



7.6
0.15
15
6.5
0.02
13


LYD260
61365.6
0.5
0.26
10
10.5
L
57
7.6
L
32


LYD260
61368.1
0.6
0.22
30
10.5
0.03
58
6.8
0.04
17


LYD231
60715.1



7.6
0.15
13





LYD231
60717.2



9.2
0.08
38
6.6
L
15


LYD231
60718.1
0.8
0.02
75
10.2
0.08
52





LYD231
60719.1
0.7
L
56
10.1
L
51
6.8
L
17


LYD223
61193.3
0.6
L
25
10.0
0.07
49
7.0
L
21


LYD223
61194.2
0.7
0.02
46
8.2
L
23
6.3
0.12
 9


LYD223
61194.4



8.1
0.17
22
6.8
L
17


LYD223
61195.3
0.6
0.24
26
10.1
0.01
52
6.2
0.28
 7


LYD223
61196.3
0.7
L
67
11.5
0.02
72
7.2
L
24


LYD21
61358.1
0.6
0.04
25
11.2
0.02
68
7.1
L
24


LYD21
61362.1
0.6
0.05
44
10.1
0.06
52
6.6
0.01
14


LYD21
61362.3



8.5
0.05
27
7.1
L
23


LYD21
61362.4






6.6
0.05
14


LYD126
61376.1
0.7
0.02
49
10.2
0.01
53
6.9
L
19


LYD126
61377.3






6.3
0.05
 9


LYD126
61380.1
0.6
L
43








LYD126
61380.2
0.6
0.04
30
9.0
0.02
35





LYD124_H7
61871.2



10.1
0.05
51
7.0
L
21


LYD124_H7
61871.4



10.4
L
56
7.1
L
22


LYD124_H7
61874.1



10.7
L
61
7.3
L
27


LYD114
61383.1
0.7
0.02
54
11.3
0.05
69
6.8
0.06
17


LYD114
61383.3
0.7
0.03
46
11.1
0.02
67
6.9
0.04
19


LYD114
61383.6
0.6
0.03
28
10.8
0.02
61
7.1
L
23


LYD114
61384.2
0.6
0.11
32
8.6
0.03
28





LYD114
61385.2
0.6
0.20
25
10.9
0.04
64
7.4
L
28


CONT.

0.4


6.7


5.8




LYD92
60583.3



10.3
0.06
28
7.1
L
12


LYD92
60585.1



9.6
0.01
19
6.8
0.05
 7


LYD92
60586.2



9.6
0.06
19
7.2
L
14


LYD92
60586.4



9.8
0.04
22
6.8
0.21
 7


LYD92
60587.3
0.6
0.11
17
12.1
L
51
8.0
L
27


LYD66
60114.1



10.5
L
30
7.4
0.01
17


LYD66
60114.3



9.9
0.14
23
6.9
0.07
10


LYD66
60117.1



10.5
0.16
31
7.0
0.08
11


LYD66
60117.2



9.1
0.21
13
7.0
L
11


LYD66
60118.1






6.9
0.16
 9


LYD57
61652.2



10.1
0.07
26
7.4
L
17


LYD57
61653.2






6.8
0.22
 9


LYD57
61654.3



9.2
0.01
14
7.3
L
15


LYD57
61655.2



11.3
L
40
7.1
L
13


LYD57
61655.3



10.3
0.14
28
7.5
0.02
18


LYD50
60601.1
0.6
0.17
25
10.5
0.22
30
7.1
L
12


LYD50
60603.3






7.1
L
12


LYD50
60604.2



10.4
L
30
7.1
L
13


LYD50
60604.3



10.2
0.11
27
6.8
0.06
 8


LYD271_H0
61878.2



10.8
0.02
34
7.2
L
15


LYD271_H0
61879.3



8.6
0.29
 7
7.0
0.04
10


LYD266
60615.3



9.3
0.11
16
7.4
L
18


LYD266
60616.2



9.4
0.21
17





LYD266
60617.2



8.9
0.29
10





LYD25
60589.4
0.6
0.17
28
11.8
0.03
46
7.9
L
25


LYD25
60591.2



9.2
0.21
14





LYD25
60592.4






6.8
0.18
 8


LYD124_H7
61870.2



8.7
0.07
 8
7.1
0.04
12


LYD124_H7
61871.2



9.4
0.05
16
7.1
0.03
13


LYD124_H7
61874.2



9.5
0.13
18
6.8
0.16
 8


CONT.

0.5


8.1


6.3




LYM104
12914.1
0.8
L
81
9.1
0.11
35





LYM104
 12914.14
0.8
0.01
63








LYD88
61706.3
0.6
0.08
20
10.0
0.05
48
7.3
0.01
22


LYD88
61707.3



8.6
0.18
27
7.2
0.01
20


LYD88
61707.4






6.4
0.28
 7


LYD88
61709.1
0.6
0.02
34
9.3
0.04
38
6.5
0.08
10


LYD84
61133.4
0.6
0.10
32
9.5
0.18
40
6.8
0.18
14


LYD84
61134.1
0.7
0.15
50
10.0
0.12
48
7.3
L
21


LYD84
61134.3
0.9
0.02
88
11.1
0.10
65
7.0
0.03
18


LYD84
61134.4
0.7
0.28
48



6.6
0.26
10


LYD84
61135.2
0.6
0.05
32
9.2
0.15
37
7.0
0.03
17


LYD72
61163.3






6.8
0.09
13


LYD72
61164.1
0.6
0.21
34



6.6
0.12
11


LYD72
61164.3
0.7
0.01
48



6.4
0.29
 7


LYD72
61165.4
0.5
0.10
15



6.8
0.05
13


LYD72
61166.4
0.6
0.26
23



6.4
0.23
 7


LYD63
61228.2
0.6
0.05
29
8.4
0.24
24
7.2
L
21


LYD63
61229.8
0.6
0.27
24








LYD63
61231.1
0.7
0.14
43



6.4
0.21
 7


LYD286
61700.2
0.5
0.23
18
10.2
L
51
6.9
0.01
15


LYD286
61701.2



8.8
0.27
31
6.7
0.20
12


LYD286
61701.4
0.6
0.14
25
7.9
0.29
16
6.6
0.10
10


LYD286
61703.2
0.6
0.19
31
10.2
0.02
52
6.6
0.09
11


LYD286
61703.3






6.3
0.25
 6


LYD28
61713.2
0.5
0.14
16
9.0
0.18
34
6.8
0.02
15


LYD28
61716.2
0.7
0.13
41
10.1
0.06
49
7.4
L
25


LYD268
61151.4



8.3
0.21
23
6.8
0.06
14


LYD268
61152.3
0.6
0.28
29
10.3
0.10
53
7.5
L
25


LYD268
61153.3
0.6
0.02
26
8.4
0.19
24
7.3
L
23


LYD268
61153.6
0.6
0.04
28
8.1
0.20
20
6.7
0.04
13


LYD26
61168.1
0.6
0.02
22
9.0
0.16
33
6.7
0.12
13


LYD26
61169.3
0.6
L
37



6.8
0.13
15


LYD26
61171.1
0.5
0.03
17








LYD157
61156.1






6.6
0.09
11


LYD157
61156.3
0.5
0.22
16
8.8
0.15
31
6.9
0.01
15


LYD157
61158.1
0.6
L
32
9.9
L
47
7.2
L
21


LYD157
61158.5
0.7
0.05
50
8.7
0.14
29
7.2
0.01
20


LYD157
61159.3






6.6
0.07
10


LYD115
61348.2
0.6
0.09
24
9.4
0.19
39
6.7
0.15
12


LYD115
61349.1
0.6
L
32



6.6
0.05
11


LYD115
61349.2






6.8
0.06
14


LYD115
61350.3
0.7
0.04
42








LYD112
61144.1
0.6
0.05
29








LYD112
61146.5
0.6
0.23
23








LYD109
61175.3
0.6
0.18
23
10.0
0.20
48
7.1
L
20


LYD109
61177.4






6.5
0.18
 9


LYD109
61178.2



8.7
0.19
29
7.1
0.07
18


LYD106
61140.2
0.6
0.19
19
10.3
0.13
52
7.1
0.02
19


LYD106
61140.4
0.7
0.05
53
10.6
0.09
57
7.3
0.01
22


LYD106
61141.1
0.6
0.05
32



6.8
0.15
13


CONT.

0.5


6.7


6.0




LYD96
60283.4
0.7
0.08
81
7.2
0.18
71
6.6
0.15
18


LYD96
60285.1
0.6
0.04
57
6.8
L
63
6.3
0.06
13


LYD96
60285.2






6.2
0.01
11


LYD96
60286.2
0.6
0.03
52
6.7
L
59





LYD96
60286.3
0.8
0.16
91
8.8
0.04
109 
7.0
0.05
24


LYD91
60685.6
0.7
L
81
8.6
L
104 
6.4
0.02
13


LYD91
60689.4
0.6
0.30
56








LYD91
60690.1
0.6
0.08
44
5.8
0.12
37





LYD71
60637.1
0.4
0.13
10








LYD71
60637.3
0.5
0.01
33








LYD71
60638.1
0.8
L
103 
8.7
0.05
108 
7.1
L
27


LYD71
60641.3
0.6
0.01
52
6.6
L
57
6.3
0.17
12


LYD65
60625.3
0.5
0.24
28
7.3
0.03
74
7.0
L
24


LYD65
60625.4
0.5
0.10
33
6.5
0.04
54
6.2
0.07
11


LYD65
60626.2
0.5
0.04
29
7.1
0.02
69
6.3
0.07
12


LYD65
60629.1
0.6
0.19
40
6.2
0.29
47





LYD65
60629.2
0.6
0.02
50
6.5
0.06
54





LYD287
60145.1
0.7
0.19
66
7.7
0.09
84
6.8
L
21


LYD287
60145.2
0.7
0.15
72
6.6
0.11
57
6.1
0.08
 9


LYD287
60145.3
0.6
0.02
46
7.4
0.04
76
7.1
L
27


LYD287
60146.1
0.6
0.03
59
7.4
0.02
77
6.9
L
23


LYD287
60148.1
0.7
L
80
8.3
0.01
99
6.7
0.02
19


LYD232
61640.2
0.8
0.07
96
6.7
0.10
59





LYD232
61640.3
0.5
L
20








LYD232
61641.1
0.8
L
91
7.7
L
84
6.3
0.13
11


LYD232
61642.4
0.6
0.04
38








LYD232
61643.4
0.8
0.03
89
7.7
0.10
84
6.1
0.22
 8


LYD227
60547.3
0.5
0.05
25



6.7
0.04
20


LYD227
60548.3
0.5
0.03
35
7.2
L
71
6.8
0.02
21


LYD227
60549.3
0.6
0.11
40
6.9
L
65
6.6
0.05
18


LYD227
60551.1
0.6
0.05
52
7.0
0.04
67
6.4
0.02
13


LYD227
60551.4
0.6
L
55
6.8
L
62
6.4
0.07
14


LYD193
60504.2



5.0
0.08
19





LYD193
60505.3



5.4
L
29





LYD193
60506.1
0.4
0.07
12








LYD193
60506.4



5.5
0.23
31





LYD178
61689.2
0.5
0.06
16
5.3
L
27





LYD178
61690.3
0.6
0.16
38
5.5
0.07
32
6.5
0.09
15


LYD178
61691.2
0.5
0.23
22
4.9
0.13
16





LYD178
61691.4






6.3
L
12


LYD156
60277.4
0.6
0.10
45
6.3
0.11
51
6.8
L
20


LYD156
60280.1



4.9
0.23
16





LYD156
60280.4



5.7
0.26
36
6.2
0.14
11


LYD140
60383.3



6.6
0.03
57
6.8
0.02
20


LYD136
60441.3






6.0
0.27
 7


LYD136
60443.1
0.5
0.13
19
5.1
0.11
22
6.4
0.07
13


LYD136
60444.1



5.6
0.09
34
6.3
0.16
12


LYD136
60445.1
0.5
0.23
35








LYD110
60391.3
0.5
0.08
29
5.3
0.17
27





LYD110
60391.4
0.6
L
53
5.2
0.21
23





LYD110
60392.1
0.8
L
89
6.7
L
61
6.1
0.03
 8


LYD110
60394.4
0.6
0.05
51
5.4
0.03
29
6.8
0.04
21


LYD103
60258.2
0.5
L
33
6.7
L
59
6.6
L
18


LYD103
60261.6
0.5
0.08
34
6.1
0.07
45
6.9
0.01
22


LYD103
60261.7
0.5
0.26
14
4.9
0.05
16
6.4
0.02
14


CONT.

0.4


4.2


5.6




LYD78
60359.1



9.5
0.12
28





LYD78
60362.4






6.8
0.23
 9


LYD73
60367.1






7.2
0.09
15


LYD73
60367.2






6.9
0.21
10


LYD73
60368.4



12.0
0.09
62
7.6
0.02
21


LYD66
60114.3






6.8
0.10
 8


LYD47
60301.1



10.6
0.07
43
7.6
L
21


LYD47
60301.4






6.7
0.09
 7


LYD37
60165.1



8.6
0.28
17
7.1
0.12
14


LYD3
60374.3






6.7
0.19
 6


LYD3
60375.3



10.5
0.09
42
7.7
0.01
22


LYD236
60187.6
0.8
0.10
38








LYD229
60338.4
0.7
0.09
25
11.3
L
53
6.8
0.07
 8


LYD221
60351.3



9.5
0.28
28
7.5
L
19


LYD156
60277.4






6.9
0.17
11


LYD156
60278.2






7.4
0.02
18


LYD156
60280.1
0.9
0.03
60
11.0
0.02
48
7.7
L
23


LYD132
60353.3
0.7
0.29
16
9.9
L
34
7.6
L
21


LYD132
60356.2
0.8
0.18
35
9.8
0.23
32





LYD132
60357.2






7.2
0.06
16


LYD132
60357.3
0.7
0.28
22
11.2
0.01
51
7.0
0.03
12


LYD132
60357.4
0.8
0.26
32
10.0
0.01
35
7.0
L
12


LYD107
60341.2



10.7
0.07
45





LYD107
60342.3
0.8
0.07
43
11.8
0.02
60
7.3
L
16


LYD107
60342.4






6.8
0.19
 9


LYD107
60343.3
0.7
0.22
15
10.7
0.07
44
7.2
0.03
14


CONT.

0.6


7.4


6.3




LYD90
60831.5



6.8
0.20
20
6.7
0.22
12


LYD70
60856.2



8.2
0.02
46
7.5
0.05
26


LYD70
60856.4



9.4
0.14
66
7.5
0.05
26


LYD228
60403.4
0.5
0.28
24








LYD202
60421.2



7.3
0.11
29





LYD174
60816.4
0.8
0.14
79
9.0
0.24
60





LYD174
60818.3
0.7
0.02
69








LYD16
60314.1



7.4
0.06
32
6.8
0.19
13


LYD16
60314.2
0.6
0.24
30
7.5
0.09
34
7.2
0.09
20


LYD16
60315.1






7.2
0.07
20


LYD159
60662.3
0.7
0.06
51
10.7
0.23
89
7.8
0.02
31


LYD159
60665.1



7.9
0.29
41





LYD159
60666.2



10.8
L
91
7.2
0.06
21


CONT.

0.4


5.6


6.0




LYD96
60285.1



6.6
0.10
33
6.6
L
20


LYD96
60285.2
0.7
0.09
55



6.3
0.10
15


LYD96
60285.3



9.1
L
82
7.1
L
29


LYD96
60286.2



5.7
0.06
14





LYD96
60286.3
0.9
0.02
96
8.0
0.03
60
6.3
L
14


LYD91
60685.6
0.9
0.03
92
8.8
0.02
75
6.7
0.01
21


LYD91
60689.4
0.5
0.21
10
5.9
0.26
17





LYD91
60690.2
0.5
0.06
14
6.0
0.01
20
5.9
0.25
 7


LYD71
60637.3






6.0
0.27
 9


LYD71
60641.2
0.8
0.01
79
7.4
0.02
47
5.9
0.24
 7


LYD71
60641.3
0.9
L
82
7.3
0.02
45
6.1
0.04
10


LYD65
60625.2



7.0
0.10
39
6.0
0.08
 9


LYD65
60625.3



6.8
L
36
6.3
0.01
14


LYD65
60625.4
0.7
0.06
50
7.5
0.05
49





LYD65
60626.2
0.7
0.01
55
8.3
L
65
6.7
L
21


LYD287
60145.1
0.9
0.02
84
8.3
0.02
66
6.5
0.06
17


LYD287
60145.3
0.5
0.23
15
7.2
0.03
43
6.3
L
15


LYD287
60146.1



7.0
0.14
40





LYD287
60146.3
0.6
0.01
22
7.4
L
47
6.6
L
21


LYD287
60148.1



5.8
0.23
16
6.3
L
14


LYD232
61640.2
0.5
0.29
 7








LYD232
61641.1



6.8
0.18
36
6.3
0.24
15


LYD232
61641.4
0.7
0.11
55
6.7
0.21
34





LYD232
61642.4
0.5
0.22
13








LYD232
61643.4
0.6
0.19
32



5.8
0.15
 6


LYD227
60547.3



7.5
L
50
7.2
L
31


LYD227
60548.3
0.7
0.03
54
7.4
L
47
6.4
0.04
16


LYD227
60549.3
0.6
0.04
28
8.0
0.01
59
6.7
L
21


LYD227
60551.1
0.6
L
33
6.9
L
37
6.0
0.03
 9


LYD227
60551.4



6.2
0.02
23
6.0
L
 9


LYD214
60127.5
0.7
0.07
49
8.3
0.02
65
6.5
L
17


LYD214
60129.1
0.7
0.02
41
5.9
0.10
17
6.2
0.02
12


LYD214
60130.3
0.7
L
50
7.3
0.04
45
6.5
L
17


LYD193
60504.2



5.9
0.25
18
6.1
L
12


LYD193
60505.2






6.3
0.03
15


LYD193
60505.3
0.6
0.08
33
5.8
0.11
15
6.1
0.07
10


LYD193
60506.1
0.6
0.10
24
6.6
0.04
32
6.6
L
20


LYD193
60506.4
0.5
0.26
16
6.3
0.10
26
6.0
0.23
 8


LYD178
61689.2
0.6
0.05
39
7.5
L
50
6.7
L
21


LYD178
61690.1



6.5
0.13
30
6.4
0.04
16


LYD178
61690.3
0.8
L
63
6.9
0.02
37





LYD178
61691.2
0.7
0.05
51
8.1
L
62
6.6
L
21


LYD178
61691.4
0.5
0.16
 7
7.5
0.07
49
6.8
0.02
23


LYD148
60431.3



8.1
0.15
61
6.6
0.19
20


LYD148
60432.1



8.0
0.06
59
7.0
L
27


LYD148
60433.2



5.9
0.19
17





LYD148
60434.3
0.7
L
58
7.5
L
50
6.5
0.02
18


LYD148
60434.4



9.0
0.03
80
7.4
L
35


LYD140
60381.4



8.1
L
62
7.0
L
28


LYD140
60382.3
0.7
0.21
40
7.8
0.11
55
6.6
0.03
20


LYD140
60383.2
0.6
0.01
30
7.5
0.05
51
7.2
L
31


LYD140
60383.3
0.8
0.05
66
8.3
0.02
65
7.0
L
26


LYD140
60384.2
0.7
0.18
45
6.1
0.20
23
6.2
L
12


LYD136
60441.3
0.6
0.02
35
7.5
0.12
50
6.4
0.11
16


LYD136
60443.1
0.7
0.10
48
6.9
0.18
38
6.2
0.10
13


LYD136
60444.1



6.5
0.21
30
6.3
L
14


LYD136
60444.3



7.6
0.10
51
6.7
L
23


LYD110
60391.2
0.7
0.25
56








LYD110
60392.1
0.8
0.10
61
7.8
0.22
55
6.4
0.06
16


LYD110
60393.3
0.6
0.08
29
9.1
0.01
82
7.0
L
27


LYD110
60393.4
0.9
L
103 
8.7
0.01
73
6.4
0.06
17


LYD110
60394.4
0.6
0.02
19
7.8
L
56
7.3
L
32


CONT.

0.5


5.0


5.5




LYD99
60325.5



6.1
0.05
26
6.6
0.01
15


LYD99
60327.5



7.2
0.05
49
6.8
L
17


LYD99
60327.7



5.6
0.04
16
6.3
0.04
 9


LYD99
60328.6



5.6
0.15
16
6.0
0.29
 4


LYD88
61706.3



5.5
0.07
13
6.7
L
16


LYD88
61707.3
0.4
0.30
11
6.7
0.05
39
6.7
0.08
17


LYD88
61707.4






6.9
0.02
19


LYD88
61709.1



9.1
0.01
88
6.8
L
18


LYD88
61709.2
0.4
0.27
10
5.6
0.25
16





LYD58
61306.2



5.2
0.25
 7
6.4
0.02
11


LYD58
61307.3



6.9
L
43
6.4
L
10


LYD58
61308.2



7.7
L
59
6.8
0.01
17


LYD283
61317.4
0.5
0.01
27
6.3
0.03
30
6.9
L
19


LYD283
61319.3
0.6
L
53
8.7
L
79
7.1
0.03
23


LYD283
61320.1






6.1
0.20
 6


LYD283
61320.2



5.4
0.15
12
6.3
0.15
 9


LYD28
61714.6



5.8
L
20





LYD28
61716.2



6.9
0.03
42
6.3
0.02
10


LYD269
61461.4






6.2
0.23
 8


LYD269
61462.1






6.6
L
15


LYD269
61462.2



7.3
L
51
6.8
L
18


LYD262
61340.1



7.4
0.07
54
6.6
0.02
14


LYD262
61341.2
0.5
0.09
16








LYD262
61342.3
0.5
0.08
20








LYD259
61301.1
0.5
L
36
5.9
0.12
22
6.1
0.12
 5


LYD259
61301.2






6.3
0.15
 9


LYD259
61302.3
0.5
0.16
20
6.6
0.18
36





LYD259
61302.6
0.5
0.05
25
8.8
L
83
7.0
L
21


LYD222
61328.1






6.2
0.07
 8


LYD222
61329.3
0.5
0.13
19



6.2
0.17
 7


LYD187
61312.4
0.4
0.29
 9
5.6
0.20
15





LYD187
61313.2



6.2
0.13
27
6.9
0.03
19


LYD187
61314.2



5.2
0.07
 8
6.1
0.21
 5


LYD152
61352.4



6.1
0.04
26
6.5
0.05
12


LYD152
61355.3



7.6
0.16
57
6.8
0.13
17


LYD150
61323.2






6.6
0.06
15


LYD150
61324.2
0.4
0.13
12
5.9
L
22
6.1
0.21
 6


LYD150
61325.4






6.5
0.08
12


LYD150
61326.1
0.5
0.16
19
6.9
0.05
42
6.7
0.08
16


LYD108
61294.1
0.7
0.01
64
6.5
L
34
6.6
0.04
14


LYD108
61294.4
0.6
0.22
47



6.2
0.08
 7


LYD108
61297.2
0.6
0.02
57
7.2
L
48
6.8
L
18


LYD108
61297.4
0.7
L
70
6.1
0.03
26
6.1
0.26
 5


CONT.

0.4


4.8


5.8




LYD99
60325.5






6.8
0.19
 9


LYD99
60328.6
0.6
0.15
10
9.0
0.30
19
6.9
0.11
10


LYD78
60359.1






6.6
0.08
 7


LYD78
60359.4
0.6
0.25
 9








LYD78
60361.3






6.8
0.03
 9


LYD78
60362.4
0.9
0.04
57
11.7
0.05
54
7.2
L
16


LYD73
60367.2






6.9
L
11


LYD73
60368.4



9.7
0.01
28
7.2
L
16


LYD47
60300.4






7.0
L
13


LYD47
60301.4
1.0
0.13
72
11.1
0.26
46
7.0
0.21
12


LYD3
60372.4
0.8
0.04
46
10.3
0.26
35





LYD3
60373.2






6.4
0.29
 3


LYD3
60375.1
0.7
0.21
16
9.4
0.20
23
6.9
0.09
11


LYD3
60375.3






7.1
L
14


LYD269
61461.4






6.8
0.24
 9


LYD269
61462.1



9.3
0.08
22
6.8
0.07
 9


LYD269
61462.2






6.9
L
11


LYD264
61526.1
1.1
L
93
12.4
L
63
7.4
0.02
18


LYD264
61526.3
1.0
0.03
77
11.6
0.06
53





LYD264
61527.4
0.9
L
63
10.1
L
33
6.6
0.23
 6


LYD264
61529.3
0.6
0.23
 5
8.3
0.25
 9
7.4
L
18


LYD264
61530.4






6.9
0.13
12


LYD262
61340.1






7.2
L
15


LYD262
61341.2
0.8
L
42








LYD262
61342.1
0.9
0.09
50








LYD262
61342.2
0.8
0.08
40








LYD262
61342.3
0.7
0.15
14



6.9
0.04
10


LYD261
61521.4
1.0
0.06
75
12.7
0.07
67
7.5
L
21


LYD261
61522.2
0.8
0.04
35
10.5
0.11
37
7.4
0.02
18


LYD261
61522.3
0.7
0.02
21
11.5
0.04
51
7.3
L
18


LYD261
61523.2






6.4
0.28
 3


LYD261
61524.2
0.7
0.02
17
9.3
L
23
6.5
0.27
 4


LYD252
61052.4
0.7
0.06
15
9.3
0.06
22
7.7
L
24


LYD252
61052.5



8.9
0.17
17
7.1
L
14


LYD252
61054.1






6.8
0.05
10


LYD252
61054.3






7.2
0.04
15


LYD252
61055.2
0.8
0.26
33



7.4
0.02
18


LYD229
60336.3
0.9
0.09
60








LYD229
60337.1
0.9
0.01
62
9.7
L
28
6.6
0.19
 6


LYD229
60337.2
1.0
0.04
74
10.3
0.12
36
6.7
0.12
 7


LYD229
60338.4
1.0
0.02
71
14.7
0.01
93





LYD229
60339.4
0.8
0.03
44
10.3
0.11
36
6.9
0.18
10


LYD132
60353.3
1.2
L
99
13.0
L
71
7.7
L
23


LYD132
60356.2
0.8
0.10
31
10.1
0.16
33





LYD132
60357.2
0.8
0.03
42
11.3
0.03
49
7.3
L
18


LYD132
60357.3
0.7
0.01
26
9.3
0.15
22
6.9
L
11


LYD132
60357.4
0.8
L
47
11.6
0.01
53
7.5
L
21


LYD107
60341.2
0.9
L
52
11.8
0.06
54
6.8
0.25
10


LYD107
60342.2
0.9
0.01
61
13.2
0.02
73
7.5
L
20


LYD107
60342.3
0.8
0.14
43
9.7
0.06
28
7.2
L
15


LYD107
60342.4
0.8
L
46
9.1
0.28
19





LYD107
60343.3
1.0
0.07
68
11.4
L
50
7.2
L
15


CONT.

0.6


7.6


6.2




LYD85
60014.2



7.6
0.26
24
6.5
0.12
 7


LYD85
60014.4



14.3
L
133 
7.8
L
28


LYD85
60016.4



7.6
0.02
24





LYD79
60018.2



9.5
0.04
56
7.2
L
18


LYD79
60020.4



10.3
L
69
7.2
L
18


LYD79
60021.4






6.8
0.08
12


LYD55
60174.1
0.8
0.18
37
9.0
0.10
47





LYD55
60175.4
0.8
0.28
31
8.3
0.12
35
6.9
L
13


LYD55
60177.2
0.9
L
57
10.4
0.04
70
7.1
0.03
17


LYD43
60610.4
0.7
0.04
20
7.9
0.30
29





LYD33
60159.3



8.9
0.03
45
6.6
0.18
 8


LYD33
60159.5



8.0
0.09
31
6.8
0.12
11


LYD33
60160.2
0.7
0.29
25
11.2
L
83
7.7
L
27


LYD235
60929.3



7.3
0.14
19
6.9
0.03
14


LYD235
60930.2



7.1
0.28
16





LYD235
60930.6
0.8
0.02
31
7.6
0.03
24
7.0
L
15


LYD235
60931.2






7.0
L
16


LYD204
60703.1
0.8
L
41
8.0
L
30





LYD204
60704.4
0.7
0.02
30
8.0
0.01
30
6.6
0.10
 8


LYD20
60066.2
0.8
0.03
37
8.0
0.13
31
6.6
0.13
 8


LYD20
60069.4
0.8
0.22
34
11.0
0.02
79
7.5
0.03
23


LYD102
60959.1
0.8
0.07
31








LYD102
60960.1
0.9
0.03
50
9.6
0.02
57
7.3
L
20


CONT.

0.6


6.1


6.1




LYD238
60452.3
0.6
0.08
28








LYD238
60453.2
0.6
0.07
31
9.3
0.08
25
6.7
0.03
13


LYD238
60453.3






6.7
L
14


LYD238
60455.2






6.2
0.26
 4


LYD216
60330.4
0.6
0.26
25








LYD216
60331.4
0.8
L
75
12.5
0.02
68
7.2
0.02
21


LYD216
60333.1






6.3
0.28
 6


LYD216
60333.3
0.8
0.20
71
13.2
0.01
77
7.7
L
30


LYD216
60333.4
0.6
0.18
35



6.5
L
 9


LYD215
60412.2



9.6
0.14
30
6.9
0.10
17


LYD215
60412.4



9.1
0.12
22
7.0
0.03
19


LYD215
60414.1



9.6
0.09
30
7.0
L
18


LYD215
60415.1



14.1
L
90
7.7
L
30


LYD215
60415.4



10.5
0.07
41
7.2
L
22


LYD212
60521.3
0.5
0.05
18
10.9
L
47
7.4
L
26


LYD212
60522.2






6.9
L
17


LYD212
60522.3



11.4
L
54
7.3
L
24


LYD212
60524.3



9.2
0.05
24
7.5
L
27


LYD212
60525.2
0.5
0.20
16
9.0
0.14
22
7.1
0.01
21


LYD211
60308.2
0.6
0.10
25
9.8
0.08
32
6.8
0.01
15


LYD211
60308.3
0.7
0.05
63
12.7
L
70
7.6
L
28


LYD209
60294.3






6.7
0.12
14


LYD209
60294.4
0.6
0.26
28
10.3
0.07
38
6.9
0.05
16


LYD209
60295.4



9.8
0.03
32





LYD209
60297.3



9.4
0.03
26
6.4
0.14
 9


LYD209
60297.4
1.0
0.05
116 
12.7
0.04
71
7.5
L
27


LYD206
60491.5



11.9
0.02
61
7.6
L
29


LYD206
60492.1
0.7
0.01
55
13.2
L
78
7.4
L
25


LYD206
60492.3
0.5
0.26
20
10.3
L
38
6.8
0.12
14


LYD206
60493.2
0.5
0.20
23
10.8
0.06
46
7.4
0.02
25


LYD206
60494.1



10.9
0.03
46
7.7
L
30


LYD201
60168.2
0.6
0.10
42
9.9
0.14
33





LYD201
60168.4
0.7
0.04
52
9.7
0.09
31





LYD201
60170.1
0.5
0.19
23



7.0
0.03
19


LYD201
60172.1



9.9
0.16
33
7.4
L
25


LYD201
60173.2






6.8
0.07
15


LYD196
60567.1



8.7
0.11
17
7.1
L
21


LYD196
60568.1






6.9
L
17


LYD196
60568.4






6.3
0.16
 6


LYD196
60569.1



9.9
0.01
33
7.2
L
22


LYD196
60569.3
0.6
0.03
39
10.9
0.02
47
7.7
L
30


LYD177
60571.1
0.5
0.22
23
10.8
0.02
46
7.2
L
21


LYD177
60571.4
0.6
0.01
27
10.9
L
47
7.4
L
25


LYD177
60572.1



11.6
0.01
56
7.5
L
27


LYD177
60573.2
0.5
0.29
17
9.0
0.22
21





LYD177
60574.3
0.6
0.22
40
12.1
L
63
7.5
L
28


LYD167
60472.1



13.3
0.02
79
7.3
0.01
23


LYD167
60473.1



9.0
0.18
21
7.2
L
21


LYD167
60473.2



8.9
0.24
20
6.9
L
18


LYD167
60473.3
0.5
0.24
14
9.2
0.07
24
7.0
0.02
19


LYD149
60511.3



10.0
0.02
35
6.8
0.01
15


LYD149
60513.2






6.5
0.28
 9


LYD149
60513.3
0.6
L
35
11.9
L
61
7.9
L
34


LYD149
60513.4
0.5
0.04
23
10.5
L
42
7.7
L
30


LYD149
60515.2
0.6
0.05
34
9.8
0.06
32
7.2
0.03
21


LYD120
60882.1
0.6
0.01
26
8.3
0.30
12
6.6
0.10
11


LYD120
60882.3
0.5
L
22
8.9
0.07
20
6.9
L
17


LYD120
60883.2
0.5
0.19
 9
9.5
0.15
28





LYD120
60884.1
0.5
0.01
22
8.9
0.25
19
6.8
0.14
15


LYD120
60884.3
0.7
0.02
49
10.6
0.04
43
7.4
L
25


LYD1
61682.3



9.7
0.02
31
7.0
L
18


LYD1
61685.1
0.6
0.16
25
11.2
L
51
7.2
L
21


LYD1
61685.3



10.3
L
38
7.1
L
21


LYD1
61685.4



10.5
L
41
7.2
L
22


LYD1
61686.3
0.6
0.03
41
12.9
L
74
7.6
L
29


CONT.

0.4


7.4


5.9




LYD200
60481.1






7.3
0.05
12


LYD200
60481.2
0.6
0.22
35








LYD200
60482.1
0.5
0.16
24
10.0
L
38
7.2
0.02
11


LYD200
60485.2
0.5
0.17
13








LYD158
60581.4
0.6
0.20
40
11.2
0.10
55





LYD158
60582.1






7.1
0.12
 9


LYD158
60582.2






7.1
0.03
 8


LYD153
60698.3
0.7
0.02
66
11.0
0.08
52
7.2
0.13
11


LYD153
60698.6
0.6
L
29



7.2
L
11


LYD153
60700.3
0.5
0.15
25
8.4
0.04
16
6.9
0.19
 6


LYD148
60431.3



7.9
0.28
10
6.9
0.14
 6


LYD148
60432.1



9.8
0.20
35
7.2
0.07
10


LYD148
60432.4
0.6
0.22
42
11.6
0.04
61
7.4
0.02
12


LYD148
60434.3



9.2
0.05
27
7.2
L
11


LYD144
60864.2
0.6
0.10
45
10.1
L
40
7.5
L
15


LYD144
60866.1
0.5
0.23
20








LYD144
60866.4
0.5
0.29
17
8.7
0.24
20





LYD129
60792.1
0.6
L
41








LYD127
60681.1
0.6
0.15
42
11.4
0.04
58
7.7
0.03
17


LYD127
60682.2






7.0
0.09
 6


LYD127
60682.3
0.5
0.07
23








LYD127
60683.1



9.3
0.08
29
7.0
0.21
 8


LYD101
60072.8
0.5
0.28
21








LYD101
60075.3
0.6
L
39



6.9
0.16
 6


CONT.

0.4


7.2


6.5







Table 34.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value,


L—p < 0.01.


Values are provided per plant.













TABLE 35







Genes showing improved plant performance at Normal


growth conditions under regulation of 6669 promoter










Gene
RGR Of Leaf Area
RGR Of Root Coverage
RGR Of Roots Length

















Name
Event #
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.





LYD58
61306.2
0.1
0.01
48
1.0
L
73





LYD58
61306.6
0.0
0.15
18








LYD58
61307.3
0.1
L
56
0.8
L
45
0.6
0.08
20


LYD58
61308.2
0.1
L
76
0.9
L
63
0.6
0.13
17


LYD283
61317.4
0.1
L
52
0.7
0.05
26
0.6
0.27
12


LYD283
61319.3
0.1
L
40
0.8
0.01
36





LYD283
61320.1
0.1
L
40








LYD283
61320.4
0.1
0.07
33
0.9
L
58
0.6
0.26
14


LYD270
61370.4
0.1
L
71
0.8
0.01
37





LYD260
61364.4
0.1
L
51
0.9
L
57
0.6
0.19
15


LYD260
61365.3
0.1
L
70
1.1
L
94





LYD260
61365.4
0.1
L
48
1.0
L
68





LYD260
61365.6



0.8
0.03
33





LYD260
61368.1
0.0
0.10
19








LYD259
61301.2



0.8
0.05
32





LYD259
61302.3
0.0
0.23
19
0.7
0.08
27





LYD259
61302.6
0.1
L
32
0.6
0.27
13
0.6
0.17
14


LYD230
61333.4
0.1
L
35
0.7
0.03
28
0.6
0.21
13


LYD230
61334.5
0.1
0.06
30
0.8
0.04
37





LYD230
61335.2
0.1
0.03
24








LYD222
61327.3



0.7
0.16
23





LYD222
61327.4
0.1
0.02
31








LYD222
61329.2
0.1
L
46








LYD222
61329.3
0.1
L
59
0.9
L
53





LYD21
61358.1
0.1
L
49
1.0
L
84





LYD21
61360.1
0.1
L
78
0.8
L
38





LYD21
61362.1
0.1
L
76
1.2
L
102 





LYD21
61362.3
0.1
L
61
0.8
0.01
40





LYD21
61362.4
0.1
0.13
20
0.8
0.01
33
0.6
0.22
13


LYD187
61312.4
0.0
0.23
15








LYD187
61313.2



0.9
L
50





LYD187
61314.2
0.0
0.21
16
0.7
0.02
29





LYD187
61314.4






0.6
0.30
12


LYD152
61352.1
0.0
0.16
19








LYD152
61352.4
0.1
L
57
1.0
L
68
0.6
0.14
17


LYD152
61352.5



0.7
0.07
27
0.6
0.26
12


LYD152
61352.7
0.0
0.30
14



0.6
0.14
17


LYD152
61355.3
0.1
0.01
56
0.9
L
52





LYD150
61323.2
0.1
L
45
0.9
L
51





LYD150
61324.1
0.0
0.23
17
0.7
0.15
21
0.6
0.22
13


LYD150
61324.2
0.1
L
77
1.1
L
86





LYD150
61325.4



0.7
0.24
16
0.6
0.08
20


LYD150
61326.1
0.1
L
58
0.9
L
53
0.6
0.01
29


LYD126
61376.1
0.1
L
36
1.0
L
75





LYD126
61377.3
0.1
L
43
0.8
L
35
0.6
0.08
19


LYD126
61380.2
0.1
0.08
24








LYD115
61346.2
0.1
0.03
47
0.8
0.04
34





LYD115
61349.1
0.1
0.12
21
0.7
0.17
19





LYD115
61349.2



0.8
L
41





LYD115
61350.3



0.6
0.30
12





LYD114
61383.6



0.8
L
42
0.6
0.05
23


LYD108
61294.1
0.1
L
52








LYD108
61294.4
0.1
L
66








LYD108
61295.1
0.1
L
72








LYD108
61296.1
0.1
L
79
0.7
0.09
24





LYD108
61297.2
0.1
L
79
0.7
0.29
19





CONT.

0.0


0.6


0.5




LYD95
61199.1
0.1
L
39
1.2
L
55
0.6
0.05
16


LYD95
61199.2



1.1
0.01
48
0.6
0.02
17


LYD95
61201.3
0.1
0.10
24








LYD95
61202.2
0.1
0.23
21
1.0
0.10
27





LYD95
61202.3






0.6
0.05
16


LYD61
61659.4



1.1
0.01
38
0.6
0.13
11


LYD61
61660.1
0.1
L
48
0.9
0.17
22
0.6
0.12
13


LYD61
61660.3
0.1
0.28
18
1.2
L
55
0.7
L
23


LYD61
61661.1
0.1
L
71
1.7
L
119 
0.7
L
25


LYD286
61700.2



1.0
0.05
29
0.6
0.07
12


LYD286
61701.2






0.6
0.27
 7


LYD286
61703.3



1.0
0.08
26





LYD282
61664.2



1.1
0.02
38





LYD282
61664.3
0.1
0.02
39
1.0
0.03
32
0.6
0.15
10


LYD282
61665.3
0.1
L
49
1.3
L
70
0.6
0.03
17


LYD282
61665.4
0.1
L
72
1.4
L
79





LYD282
61666.1
0.1
0.01
52








LYD271_H0
61876.4
0.1
0.14
23
1.4
L
80
0.7
L
23


LYD271_H0
61876.5



1.1
0.02
39





LYD271_H0
61877.1
0.1
0.04
31
0.9
0.19
21





LYD271_H0
61878.2



1.1
0.01
45
0.6
L
22


LYD271_H0
61879.3
0.1
0.15
22
1.1
0.02
38





LYD270
61370.1



1.0
0.05
35
0.6
0.29
10


LYD270
61373.1



0.9
0.13
23





LYD270
61374.2
0.1
0.17
26
1.3
L
65
0.6
0.10
15


LYD261
61521.2
0.1
0.04
29
1.0
0.05
33





LYD261
61521.4
0.1
0.01
37








LYD261
61523.2



1.1
0.03
40
0.6
0.16
12


LYD260
61364.4



1.0
0.21
27





LYD260
61365.3
0.1
0.02
63
1.4
L
76





LYD260
61365.6



1.2
L
55
0.7
L
23


LYD260
61368.1
0.1
0.21
24
1.2
L
57





LYD231
60717.2



1.1
0.03
40
0.6
0.01
19


LYD231
60718.1
0.1
L
87
1.2
L
57
0.6
0.29
10


LYD231
60719.1
0.1
L
64
1.2
L
53
0.6
0.02
17


LYD223
61193.3
0.1
0.02
31
1.1
L
49
0.6
0.02
17


LYD223
61194.2
0.1
L
45
1.0
0.07
26





LYD223
61194.4



0.9
0.30
17
0.6
0.05
14


LYD223
61195.3
0.1
0.11
29
1.2
L
57
0.6
0.22
11


LYD223
61196.3
0.1
L
63
1.3
L
74
0.6
0.06
16


LYD21
61358.1
0.1
0.07
26
1.3
L
67
0.6
0.06
12


LYD21
61362.1
0.1
0.06
35
1.2
L
52





LYD21
61362.3



0.9
0.14
22
0.6
0.13
12


LYD126
61376.1
0.1
0.01
40
1.2
L
53
0.6
0.18
10


LYD126
61377.3






0.6
0.07
12


LYD126
61380.1
0.1
L
41








LYD126
61380.2
0.1
0.10
25
1.0
0.02
36





LYD124_H7
61871.2
0.1
0.17
28
1.2
L
50
0.6
0.17
11


LYD124_H7
61871.4



1.2
L
53
0.6
0.13
11


LYD124_H7
61874.1



1.3
L
63
0.7
L
26


LYD114
61383.1
0.1
L
53
1.3
L
74
0.6
0.03
19


LYD114
61383.3
0.1
L
51
1.3
L
69
0.6
0.04
19


LYD114
61383.6
0.1
0.02
32
1.2
L
56





LYD114
61384.2



1.0
0.09
24





LYD114
61385.2
0.1
0.21
22
1.3
L
63
0.6
0.01
19


CONT.

0.0


0.8


0.5




LYD92
60583.3



1.2
0.09
29
0.7
0.04
12


LYD92
60585.1



1.1
0.29
15





LYD92
60586.4



1.1
0.16
21





LYD92
60587.3
0.1
0.13
23
1.4
L
52
0.7
L
28


LYD66
60114.1



1.2
0.08
26





LYD66
60114.3



1.1
0.29
18





LYD66
60117.1



1.2
0.11
31
0.6
0.21
 9


LYD66
60117.2






0.6
0.05
10


LYD57
61652.2



1.1
0.20
21





LYD57
61654.3
0.1
0.28
16








LYD57
61655.2



1.3
0.02
36





LYD57
61655.3



1.2
0.15
26
0.7
0.04
16


LYD50
60601.1
0.1
0.16
24
1.2
0.19
25





LYD50
60604.2



1.2
0.09
28





LYD50
60604.3



1.2
0.13
25





LYD271_H0
61878.2



1.2
0.08
30





LYD271_H0
61879.3






0.6
0.14
 8


LYD266
60615.3






0.6
0.16
 8


LYD25
60589.4
0.1
0.11
31
1.3
0.02
40





LYD124_H7
61874.2



1.1
0.25
18
0.6
0.20
 8


CONT.

0.0


0.9


0.6




LYM104
 12913.21
0.1
0.06
45
1.1
0.12
34





LYM104
12914.1
0.1
L
79
1.1
0.08
33





LYM104
 12914.14
0.1
L
54








LYD88
61706.3
0.1
0.10
24
1.2
0.02
45





LYD88
61707.3



1.0
0.14
27
0.6
0.11
17


LYD88
61709.1
0.1
0.02
34
1.1
0.04
37





LYD84
61133.4
0.1
0.03
37
1.1
0.08
37





LYD84
61134.1
0.1
0.06
44
1.2
0.05
43





LYD84
61134.3
0.1
L
79
1.3
0.01
61





LYD84
61134.4
0.1
0.27
37








LYD84
61135.2
0.1
0.04
30
1.1
0.09
34





LYD72
61163.3



1.0
0.24
24





LYD72
61164.1
0.1
0.21
26



0.6
0.25
12


LYD72
61164.3
0.1
0.01
43








LYD72
61166.4
0.1
0.14
27








LYD63
61228.2
0.1
0.20
20
1.0
0.27
20





LYD63
61229.8



1.0
0.18
28





LYD63
61231.1
0.1
0.06
41








LYD286
61700.2
0.1
0.05
30
1.2
L
52
0.6
0.07
18


LYD286
61701.2



1.0
0.16
29





LYD286
61701.4
0.1
0.06
31








LYD286
61703.2
0.1
0.04
40
1.2
L
52
0.6
0.13
15


LYD28
61713.2
0.1
0.17
19
1.1
0.11
31





LYD28
61716.2
0.1
0.02
48
1.2
0.02
47
0.6
0.12
17


LYD268
61151.4



1.0
0.27
20





LYD268
61152.3



1.2
0.03
49





LYD268
61153.3



1.0
0.23
22





LYD268
61153.6
0.1
0.06
29
1.0
0.24
21





LYD26
61168.1
0.1
0.04
29
1.1
0.10
32





LYD26
61169.3
0.1
L
36
1.0
0.24
26





LYD26
61171.1
0.1
0.09
24








LYD157
61156.3
0.1
0.21
18
1.0
0.13
28





LYD157
61158.1
0.1
L
37
1.2
0.01
45





LYD157
61158.5
0.1
L
50
1.0
0.17
25





LYD115
61348.2
0.1
0.08
28
1.1
0.07
39





LYD115
61349.1
0.1
L
39








LYD115
61350.3
0.1
0.08
33
1.0
0.30
21





LYD112
61144.1
0.1
0.09
25








LYD109
61175.3
0.1
0.03
34
1.2
0.04
48
0.6
0.07
19


LYD109
61178.2



1.0
0.16
27





LYD106
61140.2
0.1
0.14
22
1.2
0.02
49
0.6
0.23
14


LYD106
61140.4
0.1
0.01
49
1.3
0.01
54
0.6
0.14
15


LYD106
61141.1
0.1
0.04
35








CONT.

0.0


0.8


0.5




LYD96
60283.4
0.1
L
67
0.8
L
72
0.6
0.12
17


LYD96
60285.1
0.1
L
49
0.8
L
68
0.6
0.16
15


LYD96
60285.2






0.5
0.26
11


LYD96
60286.2
0.1
L
56
0.8
L
64





LYD96
60286.3
0.1
L
88
1.0
L
116 
0.6
L
34


LYD91
60685.6
0.1
L
78
1.0
L
113 
0.6
0.13
15


LYD91
60689.4
0.1
0.05
48
0.7
0.02
49





LYD91
60690.1
0.1
0.01
36
0.7
L
42





LYD71
60637.3
0.1
L
36



0.5
0.18
13


LYD71
60638.1
0.1
L
108 
1.0
L
116 
0.6
L
35


LYD71
60641.3
0.1
L
52
0.8
L
62
0.5
0.21
13


LYD65
60625.3
0.1
0.07
26
0.9
L
80
0.6
L
33


LYD65
60625.4
0.1
0.07
27
0.8
L
59
0.5
0.21
12


LYD65
60626.2
0.1
0.08
24
0.8
L
73





LYD65
60629.1
0.1
0.07
32
0.7
L
52





LYD65
60629.2
0.1
L
45
0.8
L
62





LYD287
60145.1
0.1
L
67
0.9
L
88
0.6
0.05
20


LYD287
60145.2
0.1
L
69
0.8
L
59
0.5
0.27
11


LYD287
60145.3
0.1
0.01
35
0.9
L
82
0.6
L
27


LYD287
60146.1
0.1
L
63
0.9
L
82
0.6
L
29


LYD287
60148.1
0.1
L
79
1.0
L
108 
0.6
0.02
26


LYD232
61640.2
0.1
L
91
0.8
L
63





LYD232
61640.3
0.0
0.28
13








LYD232
61641.1
0.1
L
79
0.9
L
91
0.6
0.08
18


LYD232
61642.4
0.1
0.02
34
0.6
0.09
25





LYD232
61643.4
0.1
L
79
0.9
L
92





LYD227
60547.3
0.0
0.28
15
0.6
0.02
36
0.6
0.02
25


LYD227
60548.3
0.1
0.01
34
0.8
L
74
0.6
0.03
24


LYD227
60549.3
0.1
0.04
32
0.8
L
70
0.6
0.05
21


LYD227
60551.1
0.1
L
54
0.8
L
73
0.5
0.19
13


LYD227
60551.4
0.1
L
47
0.8
L
67





LYD193
60504.2



0.6
0.08
22





LYD193
60505.3



0.6
L
32





LYD193
60506.4



0.6
0.03
30





LYD178
61689.2



0.6
0.03
27





LYD178
61690.3
0.1
0.03
34
0.7
L
36
0.6
0.03
22


LYD178
61691.2



0.6
0.19
17





LYD178
61691.4






0.6
0.17
16


LYD156
60277.4
0.1
L
43
0.7
L
54
0.6
0.02
23


LYD156
60280.1



0.6
0.12
19





LYD156
60280.4



0.7
L
39
0.5
0.20
14


LYD140
60383.3



0.8
L
61
0.6
L
29


LYD140
60384.3



0.6
0.13
22
0.6
0.23
15


LYD136
60441.3



0.6
0.11
21
0.6
0.13
16


LYD136
60443.1
0.1
0.08
24
0.6
0.05
25
0.6
0.03
23


LYD136
60444.1



0.7
L
36
0.6
0.10
18


LYD136
60445.1
0.1
0.07
29
0.6
0.22
18





LYD110
60391.3
0.1
0.05
27
0.6
0.02
31





LYD110
60391.4
0.1
L
51
0.6
0.06
25





LYD110
60392.1
0.1
L
75
0.8
L
61





LYD110
60393.3



0.6
0.04
31
0.5
0.27
12


LYD110
60394.4
0.1
L
42
0.6
0.02
31
0.6
0.01
27


LYD103
60258.2
0.1
L
40
0.8
L
66
0.6
L
26


LYD103
60261.6
0.1
0.03
31
0.7
L
49
0.6
0.01
27


LYD103
60261.7



0.6
0.08
20
0.6
0.05
19


CONT.

0.0


0.5


0.5




LYD78
60359.1
0.1
0.25
24
1.1
0.08
28





LYD73
60368.4



1.4
0.01
55





LYD47
60301.1



1.2
0.02
39
0.7
0.14
 9


LYD3
60375.3



1.3
0.01
41
0.7
0.03
17


LYD236
60187.6
0.1
0.03
42








LYD229
60338.4
0.1
0.06
32
1.3
L
48





LYD221
60351.3



1.1
0.17
25





LYD156
60280.1
0.1
L
58
1.3
L
41
0.7
0.30
 7


LYD132
60353.3
0.1
0.08
30
1.1
0.03
28





LYD132
60356.2
0.1
0.08
37
1.2
0.09
30





LYD132
60357.2



1.1
0.25
18





LYD132
60357.3
0.1
0.22
23
1.3
L
49
0.7
0.16
 9


LYD132
60357.4
0.1
0.23
26
1.2
0.02
30





LYD107
60341.2



1.2
0.02
37





LYD107
60342.3
0.1
0.02
51
1.4
L
58





LYD107
60343.3



1.2
0.01
40





CONT.

0.1


0.9


0.6




LYD90
60828.2



0.7
0.28
23
0.7
0.15
23


LYD90
60831.4






0.7
0.23
25


LYD70
60852.3



1.0
0.01
75





LYD70
60856.2



0.9
L
57
0.7
0.07
24


LYD70
60856.4



1.0
L
71
0.7
0.20
17


LYD7
60671.3



0.7
0.21
24





LYD62
60810.2



0.9
0.12
45
0.7
0.23
25


LYD240
60968.4



0.8
0.24
33
0.7
0.15
30


LYD228
60402.1






0.7
0.15
31


LYD228
60403.4



0.8
0.09
34





LYD228
60405.1
0.1
0.29
31
1.0
L
62
0.7
0.14
23


LYD219
60674.4






0.7
0.17
28


LYD202
60421.2



0.8
0.07
33





LYD202
60422.2



0.9
0.10
48





LYD174
60816.4
0.1
L
96
1.1
L
83





LYD174
60817.3
0.1
0.07
54








LYD174
60818.3
0.1
L
89








LYD16
60313.2



0.9
0.03
47
0.7
0.26
18


LYD16
60314.1
0.1
0.23
35
0.8
0.05
35





LYD16
60314.2
0.1
0.30
26
0.8
0.08
33





LYD16
60315.1



0.8
0.10
31
0.7
0.25
16


LYD16
60315.3
0.1
0.29
30
0.8
0.09
38
0.7
0.17
21


LYD159
60662.3
0.1
0.03
59
1.2
L
102 
0.7
0.09
23


LYD159
60662.6



0.8
0.20
37
0.8
0.09
35


LYD159
60665.1



0.9
0.03
44





LYD159
60666.2



1.2
L
103 
0.7
0.20
17


LYD125
60823.1



0.9
0.09
54
0.7
0.20
27


LYD125
60823.3



0.9
0.03
50





LYD125
60826.2
0.1
0.11
47








LYD123
60786.3
0.1
0.16
41
1.1
L
84
0.7
0.16
22


LYD123
60789.2



0.9
0.01
54





CONT.

0.0


0.6


0.6




LYD96
60285.1



0.8
L
32
0.6
L
25


LYD96
60285.2
0.1
L
52
0.7
0.07
25





LYD96
60285.3



1.1
L
87
0.7
L
36


LYD96
60286.2
0.1
0.30
20
0.7
0.22
12





LYD96
60286.3
0.1
L
104 
0.9
L
59
0.5
0.25
 9


LYD91
60685.6
0.1
L
97
1.1
L
79
0.6
L
26


LYD91
60689.3



0.7
0.10
21





LYD91
60689.4



0.7
0.10
18





LYD91
60690.2



0.7
0.06
19





LYD71
60637.3



0.7
0.06
23
0.6
0.10
14


LYD71
60641.2
0.1
L
93
0.9
L
51
0.5
0.20
11


LYD71
60641.3
0.1
L
87
0.9
L
46
0.5
0.18
11


LYD65
60625.2



0.8
L
40
0.5
0.15
12


LYD65
60625.3



0.8
L
38
0.6
0.03
18


LYD65
60625.4
0.1
L
51
0.9
L
52





LYD65
60626.2
0.1
L
55
1.0
L
67
0.6
L
25


LYD287
60145.1
0.1
L
86
1.0
L
67
0.6
0.13
13


LYD287
60145.3



0.8
L
42





LYD287
60146.1



0.8
L
33





LYD287
60146.3
0.1
0.12
26
0.9
L
49
0.6
0.09
14


LYD232
61641.1



0.8
L
37
0.6
0.06
18


LYD232
61641.4
0.1
L
55
0.8
L
35





LYD232
61643.4
0.1
0.08
30
0.7
0.15
18





LYD227
60547.3



0.9
L
49
0.6
L
27


LYD227
60548.3
0.1
L
58
0.9
L
49
0.6
0.10
14


LYD227
60549.3
0.1
0.04
33
0.9
L
59
0.6
0.03
17


LYD227
60551.1
0.1
0.05
32
0.8
L
35





LYD227
60551.4



0.7
0.02
24





LYD214
60127.5
0.1
0.02
43
1.0
L
62
0.6
0.04
17


LYD214
60129.1
0.1
0.03
36
0.7
0.10
17





LYD214
60130.1






0.5
0.19
11


LYD214
60130.3
0.1
0.01
46
0.8
L
43
0.6
0.05
17


LYD193
60504.2



0.7
0.06
21
0.5
0.25
 9


LYD193
60505.2






0.5
0.25
10


LYD193
60505.3
0.1
0.08
28
0.7
0.15
15





LYD193
60506.1



0.8
L
31
0.6
0.04
17


LYD193
60506.4



0.8
0.01
28
0.6
0.08
15


LYD178
61689.2
0.1
0.04
36
0.9
L
53
0.6
L
25


LYD178
61690.1



0.8
L
31
0.6
0.11
14


LYD178
61690.3
0.1
L
67
0.8
L
39





LYD178
61691.2
0.1
L
47
1.0
L
63
0.6
0.02
19


LYD178
61691.4



0.9
L
47
0.6
0.02
21


LYD148
60431.3
0.1
0.23
23
1.0
L
63
0.6
L
26


LYD148
60432.1



0.9
L
61
0.6
L
27


LYD148
60433.2



0.7
0.20
14





LYD148
60434.3
0.1
L
56
0.9
L
50
0.6
0.10
15


LYD148
60434.4



1.1
L
80
0.6
L
31


LYD140
60381.4



1.0
L
66
0.6
L
31


LYD140
60382.3
0.1
0.12
30
0.9
L
57
0.6
L
24


LYD140
60383.2
0.1
0.12
25
0.9
L
52
0.6
L
27


LYD140
60383.3
0.1
L
66
1.0
L
61
0.6
0.04
18


LYD140
60384.2
0.1
0.02
43
0.7
0.05
22





LYD136
60441.3
0.1
0.05
33
0.9
L
51
0.6
0.12
14


LYD136
60443.1
0.1
0.01
48
0.8
L
39
0.5
0.23
10


LYD136
60444.1



0.8
L
31
0.5
0.18
11


LYD136
60444.3



0.9
L
53
0.6
L
27


LYD110
60391.2
0.1
0.03
50
0.7
0.21
15





LYD110
60392.1
0.1
L
53
0.9
L
54
0.6
0.02
21


LYD110
60393.3
0.1
0.01
42
1.1
L
87
0.7
L
35


LYD110
60393.4
0.1
L
96
1.0
L
71





LYD110
60394.4



0.9
L
54
0.6
0.01
21


CONT.

0.0


0.6


0.5




LYD99
60325.5



0.7
L
33
0.6
L
28


LYD99
60327.5



0.9
L
59
0.7
L
37


LYD99
60327.7



0.7
L
23
0.6
L
24


LYD99
60328.5



0.7
0.07
24





LYD99
60328.6



0.6
0.06
18





LYD88
61706.3



0.6
0.06
16
0.6
L
26


LYD88
61707.3



0.8
L
43
0.6
0.01
26


LYD88
61707.4



0.7
0.02
36
0.6
L
35


LYD88
61709.1



1.1
L
97





LYD88
61709.2



0.6
0.10
17
0.5
0.22
11


LYD58
61306.2



0.6
0.15
12
0.6
0.01
20


LYD58
61307.3



0.8
L
49
0.5
0.08
14


LYD58
61308.2



0.9
L
66
0.6
0.04
19


LYD283
61317.4
0.0
0.13
18
0.7
L
36
0.6
L
28


LYD283
61319.3
0.1
L
48
1.0
L
86
0.6
0.02
27


LYD283
61320.1



0.6
0.22
12
0.5
0.06
14


LYD283
61320.2



0.6
0.14
14
0.5
0.26
10


LYD28
61712.1



0.6
0.17
16
0.5
0.07
14


LYD28
61714.6



0.7
0.05
20
0.6
0.04
21


LYD28
61716.2



0.8
L
51
0.6
0.04
16


LYD269
61460.2



0.6
0.21
14
0.6
0.04
20


LYD269
61461.4



0.6
0.22
12
0.6
0.06
16


LYD269
61462.1



0.6
0.30
12
0.6
0.02
23


LYD269
61462.2



0.9
L
58
0.6
0.01
22


LYD264
61526.1






0.6
0.03
21


LYD264
61529.3



0.7
0.12
20





LYD262
61340.1



0.9
L
61
0.5
0.12
13


LYD262
61344.1






0.6
0.05
20


LYD259
61301.1
0.1
0.02
32
0.7
L
28
0.5
0.15
10


LYD259
61301.2



0.6
0.12
13
0.6
L
28


LYD259
61302.3
0.0
0.30
15
0.8
0.02
41
0.5
0.30
11


LYD259
61302.6
0.1
0.03
31
1.1
L
95
0.7
L
38


LYD230
61332.3






0.5
0.13
13


LYD230
61334.5



0.6
0.26
15





LYD222
61327.3






0.5
0.07
14


LYD222
61328.1






0.6
0.02
19


LYD222
61329.3
0.0
0.23
16
0.6
0.29
13
0.5
0.18
11


LYD187
61312.4



0.7
0.06
22





LYD187
61313.2



0.7
L
30
0.6
L
25


LYD187
61314.2



0.6
0.18
10





LYD152
61352.1






0.5
0.22
 9


LYD152
61352.4



0.7
L
32
0.6
0.05
18


LYD152
61352.5



0.6
0.16
17





LYD152
61355.3



0.9
L
62
0.6
0.04
23


LYD150
61323.2



0.6
0.29
11
0.6
0.01
26


LYD150
61324.1



0.7
0.13
24





LYD150
61324.2
0.0
0.21
15
0.7
L
28
0.5
0.14
12


LYD150
61325.4



0.6
0.22
12
0.6
0.03
21


LYD150
61326.1



0.8
L
47
0.6
0.05
18


LYD108
61294.1
0.1
L
56
0.8
L
39
0.6
0.02
21


LYD108
61294.4
0.1
0.16
36
0.6
0.19
11
0.6
0.04
16


LYD108
61297.2
0.1
L
47
0.8
L
54
0.6
L
27


LYD108
61297.4
0.1
L
58
0.7
L
26





CONT.

0.0


0.5


0.5




LYD99
60325.5



1.0
0.27
14





LYD99
60328.6



1.1
0.11
20





LYD78
60362.4
0.1
L
55
1.4
L
55
0.6
0.19
11


LYD73
60367.2






0.6
0.13
12


LYD73
60368.4



1.2
0.01
28
0.6
0.16
11


LYD47
60300.4






0.7
0.07
14


LYD47
60301.4
0.1
L
71
1.3
0.02
43





LYD3
60372.4
0.1
L
45
1.2
0.05
32





LYD3
60375.1
0.1
0.28
14
1.1
0.07
22
0.6
0.28
 9


LYD3
60375.3






0.6
0.10
13


LYD269
61461.4



1.1
0.21
17





LYD269
61462.1



1.1
0.08
21





LYD264
61526.1
0.1
L
93
1.5
L
62
0.6
0.14
13


LYD264
61526.3
0.1
L
76
1.4
L
54
0.6
0.16
12


LYD264
61527.4
0.1
L
58
1.2
L
33





LYD264
61530.4
0.1
0.21
17
1.2
0.07
29





LYD262
61340.1



1.0
0.23
15





LYD262
61341.2
0.1
0.01
29








LYD262
61342.1
0.1
L
47








LYD262
61342.2
0.1
0.02
34








LYD262
61342.3



1.0
0.28
12





LYD261
61521.4
0.1
L
77
1.5
L
66
0.6
0.28
10


LYD261
61522.2
0.1
L
36
1.3
L
38





LYD261
61522.3
0.1
0.16
16
1.4
L
51





LYD261
61524.2
0.1
0.26
12
1.1
0.04
22





LYD252
61052.4
0.1
0.24
14
1.1
0.06
21
0.7
0.04
17


LYD252
61052.5



1.1
0.14
17





LYD252
61054.3



1.0
0.26
14
0.6
0.08
14


LYD252
61055.2
0.1
0.08
29
1.1
0.14
21
0.6
0.20
11


LYD229
60336.3
0.1
L
62








LYD229
60337.1
0.1
L
57
1.2
L
29





LYD229
60337.2
0.1
L
77
1.2
L
36





LYD229
60338.4
0.1
L
71
1.8
L
94





LYD229
60339.4
0.1
L
42
1.2
0.01
35





LYD132
60353.3
0.1
L
101 
1.5
L
69
0.7
0.06
16


LYD132
60356.2
0.1
0.02
32
1.2
0.01
34





LYD132
60357.2
0.1
L
42
1.3
L
48





LYD132
60357.3
0.1
0.05
23
1.1
0.09
20





LYD132
60357.4
0.1
L
48
1.4
L
53
0.7
0.08
15


LYD107
60341.2
0.1
L
56
1.4
L
52





LYD107
60342.2
0.1
L
67
1.6
L
73
0.6
0.13
14


LYD107
60342.3
0.1
L
46
1.2
0.03
27
0.6
0.29
 9


LYD107
60342.4
0.1
L
35
1.1
0.11
20





LYD107
60343.3
0.1
L
70
1.4
L
52
0.7
0.09
14


CONT.

0.1


0.9


0.6




LYD85
60014.2



0.9
0.11
21





LYD85
60014.4
0.1
0.06
41
1.7
L
138 
0.7
0.01
28


LYD85
60016.4



0.9
0.02
25





LYD79
60018.2



1.1
L
57
0.6
0.19
15


LYD79
60020.4
0.1
0.22
26
1.2
L
71
0.6
0.15
15


LYD55
60174.1
0.1
0.02
48
1.1
L
53
0.6
0.18
15


LYD55
60175.4
0.1
0.04
42
1.0
L
34
0.6
0.29
11


LYD55
60177.2
0.1
L
77
1.2
L
72





LYD43
60610.4
0.1
0.05
32
0.9
0.03
31





LYD43
60611.2



0.8
0.27
13





LYD33
60159.3



1.0
L
46





LYD33
60159.5



1.0
L
34
0.7
0.13
17


LYD33
60160.2
0.1
0.07
35
1.3
L
86
0.7
0.01
29


LYD33
60160.4






0.6
0.25
14


LYD235
60929.3



0.9
0.10
19
0.6
0.29
12


LYD235
60930.2



0.8
0.17
16





LYD235
60930.6
0.1
0.01
42
0.9
0.03
26
0.7
0.06
20


LYD235
60931.2






0.6
0.23
13


LYD204
60703.1
0.1
L
62
1.0
L
36





LYD204
60704.4
0.1
0.01
42
0.9
L
29





LYD20
60066.2
0.1
L
57
0.9
0.01
32





LYD20
60069.4
0.1
0.03
44
1.3
L
77
0.7
0.13
18


LYD102
60959.1
0.1
0.02
43








LYD102
60960.1
0.1
L
60
1.1
L
59
0.7
0.06
21


LYD102
60961.3



0.9
0.12
20





CONT.

0.1


0.7


0.6




LYD238
60452.3
0.1
0.23
22








LYD238
60453.2
0.1
0.06
32
1.1
0.08
29
0.6
0.11
14


LYD216
60330.4
0.1
0.15
30








LYD216
60331.4
0.1
L
86
1.4
L
66
0.6
0.29
10


LYD216
60333.3
0.1
0.06
72
1.5
L
77
0.6
0.04
20


LYD216
60333.4
0.1
0.12
35








LYD215
60412.2



1.0
0.16
26





LYD215
60412.4
0.0
0.28
15
1.0
0.15
24
0.6
0.04
21


LYD215
60414.1



1.1
0.08
31
0.6
0.16
15


LYD215
60415.1



1.6
L
93





LYD215
60415.4



1.2
0.02
47
0.6
0.03
22


LYD212
60521.3
0.1
0.08
27
1.2
L
48
0.6
0.05
17


LYD212
60522.3
0.1
0.21
27
1.3
L
54
0.6
0.11
14


LYD212
60524.3
0.1
0.21
20
1.0
0.15
23
0.6
0.01
20


LYD212
60525.2



1.0
0.18
23
0.6
0.16
13


LYD211
60308.2
0.1
0.18
22
1.1
0.10
30





LYD211
60308.3
0.1
L
70
1.4
L
70
0.6
0.02
19


LYD209
60294.4
0.1
0.10
40
1.2
0.02
41
0.6
0.09
15


LYD209
60295.4



1.1
0.07
32





LYD209
60297.3



1.0
0.12
26





LYD209
60297.4
0.1
L
126 
1.4
L
72
0.6
0.02
18


LYD206
60491.5
0.1
0.13
30
1.4
L
64
0.7
L
25


LYD206
60492.1
0.1
L
69
1.5
L
80
0.6
0.22
13


LYD206
60492.3



1.1
0.02
38





LYD206
60493.2
0.1
0.08
30
1.2
0.01
48
0.6
0.06
17


LYD206
60494.1



1.2
0.03
43
0.6
0.12
14


LYD201
60168.2
0.1
0.11
35
1.1
0.07
35





LYD201
60168.4
0.1
L
62
1.0
0.15
25





LYD201
60170.1
0.1
0.19
23



0.6
0.04
18


LYD201
60172.1



1.1
0.08
35
0.6
L
23


LYD196
60567.1



1.0
0.28
17
0.6
0.06
15


LYD196
60569.1



1.1
0.05
32
0.6
0.24
10


LYD196
60569.3
0.1
0.02
40
1.2
L
47
0.6
0.01
22


LYD177
60571.1
0.1
0.11
29
1.2
L
46
0.6
0.05
16


LYD177
60571.4
0.1
0.11
25
1.2
L
45
0.6
0.15
13


LYD177
60572.1



1.3
L
58
0.6
0.11
16


LYD177
60573.2
0.1
0.12
28
1.1
0.10
29
0.6
0.29
10


LYD177
60574.3
0.1
0.05
50
1.4
L
64
0.6
0.04
17


LYD167
60472.1
0.1
0.29
20
1.5
L
83
0.6
0.23
12


LYD167
60473.1
0.1
0.17
29
1.0
0.17
23
0.6
0.02
21


LYD167
60473.3



1.0
0.13
24





LYD149
60511.3



1.1
0.05
33





LYD149
60513.3
0.1
L
43
1.3
L
59
0.6
0.09
16


LYD149
60513.4
0.1
0.05
30
1.2
0.02
40
0.6
0.05
16


LYD149
60515.2
0.1
0.04
36
1.1
0.09
29





LYD120
60882.1
0.1
0.15
24



0.6
0.16
12


LYD120
60882.3
0.1
0.15
22








LYD120
60883.2



1.1
0.11
29





LYD120
60884.1
0.1
0.03
33
1.0
0.24
20
0.6
0.22
12


LYD120
60884.3
0.1
L
58
1.2
0.02
43
0.6
0.05
17


LYD1
61682.3



1.1
0.05
32
0.6
0.08
15


LYD1
61685.1
0.1
0.10
33
1.3
L
56
0.6
L
24


LYD1
61685.3



1.1
0.03
36
0.6
0.27
 9


LYD1
61685.4



1.2
L
45
0.6
0.01
23


LYD1
61686.3
0.1
L
51
1.5
L
75
0.6
0.03
20


CONT.

0.0


0.8


0.5




LYD200
60481.2
0.1
0.12
26
1.2
0.08
28





LYD200
60482.1



1.2
L
36





LYD200
60485.2
0.1
0.21
17








LYD158
60581.4
0.1
0.08
31
1.4
L
54





LYD153
60697.3



1.0
0.25
16





LYD153
60698.3
0.1
L
67
1.4
L
54
0.7
0.17
12


LYD153
60698.6
0.1
0.13
20








LYD153
60700.3
0.1
0.17
20
1.0
0.26
15





LYD148
60432.1



1.2
0.03
35





LYD148
60432.4
0.1
0.03
39
1.5
L
61





LYD148
60434.3



1.1
0.05
26





LYD144
60864.2
0.1
0.19
20
1.2
L
38





LYD144
60866.1
0.1
0.20
18








LYD144
60866.4



1.1
0.15
20





LYD129
60792.1
0.1
0.05
27








LYD127
60681.1
0.1
0.08
30
1.4
L
59
0.7
0.10
15


LYD127
60682.3
0.1
0.26
15
1.0
0.29
14





LYD127
60683.1



1.2
0.04
28





LYD101
60075.3
0.1
0.03
30








CONT.

0.0


0.9


0.6







Table 35. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01. Values are provided per plant.






Results from T1 Plants


The genes presented in Tables 36-39 showed a significant improvement in plant biomass and root development since they produced a larger leaf and root biomass (root length and root coverage) (Table 36), a larger leaf and root biomass (leaf area, root length and root coverage; Table 37), a higher relative growth rate of leaf area, root coverage and root length (Table 38), and a higher fresh and dry weight (Table 39) when to grown under standard or low nitrogen growth conditions, compared to control plants. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil. Plants producing larger leaf biomass have better ability to produce assimilates). The genes were cloned under the regulation of a constitutive promoter (At6669; SEQ ID NO:8096) or root preferred promoter (RootP). The evaluation of each gene was performed by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. This second experiment confirmed the significant increment in leaf and root performance. Event with p-value <0.1 was considered statistically significant









TABLE 36







Genes showing improved plant performance at Low Nitrogen growth


conditions under regulation of promoter










Gene
Leaf Area [cm2]
Roots Coverage [cm2]
Roots Length [cm]
















Name
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.





LYD185*



1.27
0.04
18
2.12
0.1
7





Table 36.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value,


L—p < 0.01.


*measured at day 9 from planting













TABLE 37







Genes showing improved plant performance at standard growth conditions


(T1 generation) under the regulation of the At6669 promoter












Roots Coverage




Leaf Area [cm2]
[cm2]
Roots Length [cm]
















Gene


%


%


%


Name
Ave.
P-Val.
Incr.
Ave.
P-Val.
Incr.
Ave.
P-Val.
Incr.



















LYD267_H0
0.5
0.13
17
4.1
0.19
12





LYD188*



0.07
0.23
79
0.4
0.3
29


CONT.
0.5


3.7










Table 37.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value.


*measured at day 5 from planting.













TABLE 38







Genes showing improved growth rate at standard growth conditions


(T1 generation) under the regulation of the At6669 promoter












RGR Of




RGR Of Leaf Area
Roots Coverage
RGR Of Roots Length
















Gene Name
Ave.
p-val.
% Incr.
Ave.
p-val.
% Incr.
Ave.
p-val.
% Incr.





LYD267_H0
0.1
0.24
18
0.5
0.27
13





LYD265



0.6
0.17
33





LYD248



0.5
0.25
15





CONT.
0.0


0.5










Table 38.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value.













TABLE 39







Genes showing improved plant performance at Low Nitrogen growth


conditions under regulation of 6669 promoter









Gene
Dry Weight [mg]
Fresh Weight [mg]













Name
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.





LYD248
7.1
0.03
59





LYD128_H1



132.7
0.16
18


CONT.
4.5


112.3







Table 39.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value.






Example 15
Evaluation of Transgenic Arabidopsis NUE, Yield and Plant Growth Rate Under Low or Normal Nitrogen Fertilization in Greenhouse Assay

Assay 1: Nitrogen Use efficiency: Seed yield plant biomass and plant growth rate at limited and optimal nitrogen concentration under greenhouse conditions—This assay follows seed yield production, the biomass formation and the rosette area growth of plants grown in the greenhouse at limiting and non-limiting nitrogen growth conditions. Transgenic Arabidopsis seeds were sown in agar media supplemented with to ½ MS medium and a selection agent (Kanamycin). The T2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 1 mM KH2PO4, 1 mM MgSO4, 3.6 mM KCl, 2 mM CaCl2 and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3 with 1 mM KH2PO4, 1 mM MgSO4, 2 mM CaCl2 and microelements. All plants were grown in the greenhouse until mature seeds. Seeds were harvested, extracted and weight. The remaining plant biomass (the above ground tissue) was also harvested, and weighted immediately or following drying in oven at 50° C. for 24 hours.


Each construct was validated at its T2 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the 35S promoter and the selectable marker was used as control.


The plants were analyzed for their overall size, growth rate, flowering, seed yield, 1,000-seed weight, dry matter and harvest index (HI—seed yield/dry matter). Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.


The experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.


Digital imaging—A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4×150 Watts light bulb) was used for capturing images of plant samples.


The image capturing process was repeated every 2 days starting from day 1 after transplanting till day 15. Same camera, placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The tubs are square shape include 1.7 liter trays. During the capture process, the tubs are placed beneath the iron mount, while avoiding direct sun light and casting of shadows.


An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Images are captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).


Leaf analysis—Using the digital analysis leaves data was calculated, including leaf number, rosette area, rosette diameter, leaf blade area.


Vegetative growth rate: the relative growth rate (RGR) of leaf number [formula XI (described above)], rosette area (formula XVI), plot coverage (formula XVII) and harvest index (formula IV) was calculated with the indicated formulas.





Relative growth rate of rosette area=Regression coefficient of rosette area along time course.  Formula XVI





Relative growth rate of plot coverage=Regression coefficient of plot coverage along time course.  Formula XVII


Seeds average weight—At the end of the experiment all seeds are collected. The seeds are scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.


Dry weight and seed yield—On about day 80 from sowing, the plants are harvested and left to dry at 30° C. in a drying chamber. The biomass and seed weight of each plot are measured and divided by the number of plants in each plot. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C. in a drying chamber; Seed yield per plant=total seed weight per plant (gr). 1000 seed weight (the weight of 1000 seeds) (gr.).


The harvest index (HI) was calculated using Formula IV as described above.


Oil percentage in seeds—At the end of the experiment all seeds from each plot are collected. Seeds from 3 plots are mixed grounded and then mounted onto the extraction chamber. 210 ml of n-Hexane (Cat No. 080951 Biolab Ltd.) are used as the solvent. The extraction was performed for 30 hours at medium heat 50° C. Once the extraction has ended the n-Hexane was evaporated using the evaporator at 35° C. and vacuum conditions. The process was repeated twice. The information gained from the Soxhlet extractor (Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes, Polytechnisches J. (Dingier's) 1879, 232, 461) was used to create a calibration curve for the Low Resonance NMR. The content of oil of all seed samples was determined using the Low Resonance NMR (MARAN Ultra—Oxford Instrument) and its MultiQuant software package


Silique length analysis—On day 50 from sowing, 30 siliques from different plants in each plot are sampled in block A. The chosen siliques are green-yellow in color and are collected from the bottom parts of a grown plant's stem. A digital photograph was taken to determine silique's length.


Statistical analyses—To identify genes conferring significantly improved tolerance to abiotic stresses, the results obtained from the transgenic plants are compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested are analyzed separately. Data was analyzed using Student's t-test and results are considered significant if the p value was less than 0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).









TABLE 40







Genes showing improved plant performance at Normal growth


conditions under regulation of 6669 promoter













Inflorescence



Dry Weight [mg]
Flowering (days)
Emergence (days)

















Gene


P-
%

P-
%

P-
%


Name
Event #
Ave.
Val.
Incr.
Ave.
Val.
Incr.
Ave.
Val.
Incr.





LYD97
60078.1



18.8
0.01
−4





LYD97
60078.4



16.2
0.21
−17 
11.2
0.20
−15 


LYD97
60080.1



18.3
0.27
−6
12.8
0.14
−2


LYD97
60082.1






12.6
0.03
−4


LYD87
60150.2



19.1
0.28
−2





LYD87
60150.3



16.8
0.17
−14 
11.0
L
−16 


LYD87
60152.1



19.2
0.21
−1
12.9
0.22
−2


LYD87
60153.1
1138.1
0.24
18
17.8
0.03
−9
11.9
L
−9


LYD85
60014.2



18.1
L
−7





LYD85
60015.1



17.3
L
−11 
12.2
L
−7


LYD79
60018.2



17.4
L
−11 
12.3
0.08
−6


LYD79
60018.3



17.6
0.27
−10 





LYD79
60018.4



19.2
0.21
−1





LYD79
60021.1






12.9
0.29
−2


LYD79
60021.4



17.4
L
−11 
12.2
0.16
−7


LYD76
60288.3



19.0
0.05
−3
12.7
0.03
−3


LYD76
60288.4



18.1
0.11
−7
12.7
0.03
−3


LYD76
60289.3



17.2
0.02
−12 





LYD76
60290.1



18.2
0.04
−7
12.4
L
−5


LYD76
60291.3



18.9
0.14
−3
12.9
0.22
−2


LYD6
60090.2






12.7
0.03
−3


LYD6
60093.4



17.8
L
−9
12.2
L
−7


LYD6
60094.1



19.1
0.28
−2
12.5
0.12
−5


LYD6
60094.3



17.1
0.01
−12 
12.3
L
−6


LYD55
60174.1



17.9
0.19
−8
12.8
0.14
−2


LYD55
60175.1






12.9
0.22
−2


LYD55
60175.2



19.2
0.21
−1
12.9
0.22
−2


LYD55
60175.4



17.9
0.05
−8
12.4
L
−5


LYD55
60177.2



17.8
0.02
−9





LYD53
60206.2






12.7
0.03
−3


LYD44
60248.2



17.4
L
−11 
12.5
0.12
−5


LYD44
60249.1






12.8
0.14
−2


LYD4
60096.2



18.2
0.30
−7
12.7
0.03
−3


LYD4
60096.3



19.1
0.28
−2
12.8
0.14
−2


LYD4
60096.6






12.8
0.14
−2


LYD4
60098.1



18.7
0.08
−4
12.8
0.14
−2


LYD4
60098.2






12.7
0.03
−3


LYD33
60159.5






12.8
0.14
−2


LYD33
60160.2



19.1
0.28
−2





LYD33
60160.4






12.7
0.19
−3


LYD275
60000.3



19.1
0.28
−2





LYD275
60002.3



17.8
0.01
−9
12.2
L
−7


LYD275
60003.5



16.9
L
−13 
12.0
L
−9


LYD275
60003.8



18.0
0.03
−8
12.3
0.08
−6


LYD246
60213.2



18.7
0.08
−4
12.7
0.23
−3


LYD246
60214.2



18.4
0.07
−6
12.8
0.16
−3


LYD246
60214.3






12.8
0.14
−2


LYD234
60180.3






12.8
0.14
−2


LYD234
60181.3



17.7
0.13
−9





LYD234
60181.4



17.9
0.18
−8
12.6
0.03
−4


LYD234
60182.3



18.8
0.22
−4





LYD23
60216.1



17.1
0.22
−12 





LYD23
60216.2



18.9
0.15
−3





LYD23
60217.2



18.7
0.07
−4





LYD23
60217.3



19.0
0.05
−3
12.7
0.23
−3


LYD23
60218.3






12.9
0.22
−2


LYD224
60038.1



18.2
L
−7
12.3
0.27
−6


LYD224
60038.2



18.5
0.19
−5
12.5
0.12
−5


LYD224
60038.5






12.7
0.23
−3


LYD224
60040.1



17.6
0.10
−10 
11.9
L
−9


LYD224
60040.8






12.3
0.08
−6


LYD220
60222.2



18.5
0.19
−5
12.1
0.05
−8


LYD220
60223.1



18.8
0.23
−4
12.4
L
−5


LYD220
60223.2



18.0
0.01
−8
12.2
0.16
−7


LYD220
60224.1



17.7
L
−9
12.0
L
−9


LYD220
60224.2



17.9
L
−8
12.3
0.08
−6


LYD22
60043.1



18.3
0.26
−6
12.3
L
−7


LYD22
60043.4



17.2
0.04
−12 
12.1
0.05
−8


LYD22
60044.1



17.4
0.06
−11 
12.1
0.01
−8


LYD22
60044.3



17.9
0.05
−8





LYD217
60048.4






12.9
0.19
−2


LYD217
60050.2



17.7
0.13
−9
12.3
0.08
−6


LYD217
60051.2






12.2
0.16
−7


LYD217
60052.3



18.1
L
−7
12.5
0.12
−5


LYD217
60052.4



19.0
0.05
−3





LYD213
60054.1



18.4
0.22
−5
12.7
0.23
−3


LYD213
60054.4



17.9
L
−8
12.6
0.03
−4


LYD213
60055.4



17.1
0.01
−12 
12.3
0.08
−6


LYD213
60056.3



17.3
0.17
−11 





LYD213
60058.3



16.7
0.11
−14 
11.1
L
−16 


LYD208
60062.3



17.2
0.02
−12 
12.2
L
−7


LYD208
60064.1



17.2
0.02
−12 
12.1
0.05
−8


LYD208
60064.2



18.0
0.01
−8
12.2
L
−7


LYD208
60064.6



18.1
0.23
−7
12.8
0.05
−3


LYD208
60064.8



17.5
0.13
−10 
12.4
L
−5


LYD20
60066.2



17.3
L
−11 
12.2
L
−7


LYD20
60067.1



17.2
0.02
−12 
11.6
0.17
−12 


LYD20
60070.1



18.7
0.08
−4
12.5
0.12
−5


LYD20
60070.2



17.7
0.06
−9
12.3
0.08
−6


LYD2
60103.4



18.5
0.19
−5
12.8
0.14
−2


LYD194
60084.3






12.6
0.03
−4


LYD194
60084.4



17.6
0.10
−10 





LYD194
60085.2



17.2
0.04
−12 
12.0
L
−9


LYD194
60086.1



18.3
0.27
−6
12.7
0.07
−3


LYD194
60086.2



18.5
L
−5
12.4
0.21
−5


LYD190
60241.2



18.7
0.07
−4





LYD190
60241.3






12.9
0.22
−2


LYD190
60242.2



18.3
0.12
−6
12.7
0.03
−3


LYD190
60243.2



18.2
0.18
−7
12.9
0.11
−2


LYD190
60244.1



18.9
L
−3
12.8
0.14
−2


LYD186
60237.3



18.5
L
−5
12.8
0.14
−2


LYD186
60237.4



18.2
0.18
−7
12.6
0.03
−4


LYD186
60238.4



17.8
0.03
−9
12.9
0.22
−2


LYD184
60228.4



17.7
0.06
−9





LYD184
60229.1



18.4
0.22
−5
12.6
0.03
−4


LYD173
60139.2



18.8
0.04
−4
12.9
0.19
−2


LYD173
60139.3






12.5
0.12
−5


LYD173
60139.5



18.8
0.01
−4
12.8
0.14
−2


LYD146
60024.2



18.4
0.22
−5





LYD146
60025.3



18.3
0.27
−6
12.6
0.03
−4


LYD146
60027.1



17.9
0.10
−8
12.3
0.24
−6


LYD14
60120.2



17.1
0.09
−12 
11.7
0.24
−11 


LYD14
60122.2



18.0
0.16
−8





LYD14
60123.8



16.7
L
−14 
11.0
L
−16 


LYD14
60123.9



18.7
0.10
−4
12.7
0.23
−3


LYD134
60109.6



19.0
0.13
−2
12.7
0.23
−3


LYD134
60110.1






12.8
0.14
−2


LYD134
60110.4






12.9
0.22
−2


LYD134
60110.5



17.9
0.29
−8
12.7
0.23
−4


LYD13
60193.4



17.7
0.06
−9





LYD13
60195.2






12.7
0.03
−3


LYD13
60195.4



19.1
0.28
−2
12.5
0.12
−5


LYD122
60199.2






12.8
0.14
−2


LYD122
60201.1



18.3
0.12
−6





LYD122
60201.3



18.8
0.23
−4
12.4
0.21
−5


LYD117
60033.5



17.2
L
−12 
12.3
L
−6


LYD117
60033.6



17.8
0.03
−9
12.5
0.12
−5


LYD117
60034.3






12.4
0.21
−5


LYD117
60034.4



17.7
0.13
−9





LYD11
60007.1



19.0
0.04
−2
12.6
0.01
−4


LYD11
60009.3



18.2
0.29
−6
12.5
0.12
−5


LYD11
60010.2



17.3
L
−11 
11.6
0.17
−12 


LYD11
60010.3



18.4
L
−6
12.4
L
−5


LYD101
60072.4



17.7
0.13
−9
12.3
0.27
−6


LYD101
60075.3



18.1
L
−7
12.2
L
−7


LYD101
60076.4



19.1
0.05
−2





LYD10
60132.1



19.2
0.21
−1
12.5
0.12
−5


LYD10
60132.2



17.0
0.18
−13 
11.6
0.20
−12 


LYD10
60132.3
1068.8 
0.16
11



12.8
0.14
−2


LYD10
60134.2



18.5
0.18
−5
12.5
L
−5


LYD10
60134.3



18.7
L
−4
12.6
0.03
−4


LYD10
60134.4



19.1
0.05
−2
12.7
0.23
−3


CONT.

961.2


19.5


13.1




LYD94
61678.1
877.5
0.20
 5








LYD90
60828.1
888.1
0.27
 6








LYD90
60831.5
899.4
0.02
 7








LYD75
60655.8
949.4
0.20
13








LYD43
60610.1
994.4
0.03
18








LYD43
60610.2
1102.5 
0.01
31








LYD38
60535.4
869.3
0.23
 4








LYD35
60949.1
982.3
0.25
17








LYD279
60553.3
886.2
0.13
 6








LYD279
60556.3
926.9
0.22
10








LYD257
60560.4
903.1
0.03
 8








LYD257
60562.1
917.5
0.06
 9








LYD257
60562.4
926.9
0.04
10








LYD253
60841.4
935.0
L
11








LYD245
60646.4
867.5
0.28
 3








LYD244
61647.3
1021.2 
0.02
22








LYD240
60965.1
891.2
0.05
 6








LYD219
60673.1



17.9
0.10
−3





LYD219
60674.4
1025.9 
0.24
22








LYD209
60294.3
952.5
0.03
13








LYD180
60462.2
896.2
0.22
 7








LYD180
60464.4
961.9
0.18
15








LYD144
60866.4
1008.8 
0.05
20
17.7
0.02
−4





LYD14
60123.1
1047.4 
0.26
25








LYD14
60123.9
917.5
0.11
 9








LYD129
60792.1
982.5
L
17
17.8
0.16
−3





LYD129
60794.2
896.2
0.06
 7








LYD125
60825.1
895.6
0.07
 7








LYD12
60936.4
972.7
L
16
17.8
0.29
−3





LYD104
60956.1
978.8
L
17








LYD104
60957.2
873.1
0.14
 4








LYD103
60261.7
1024.7 
L
22
18.1
0.22
−2





CONT.

839.5


18.4







LYD82
61061.3



18.3
0.15
−5





LYD82
61061.4
887.5
0.14
19
16.6
0.21
−14 





LYD81
60940.3



18.8
0.13
−3





LYD81
60943.4



18.7
0.22
−3





LYD81
60944.1



18.8
0.14
−3





LYD81
60944.4



18.6
0.11
−4





LYD81
60944.8



17.3
L
−10 





LYD70
60854.3



15.5
0.07
−20 
11.9
0.25
−9


LYD7
60668.1
833.8
0.02
12
17.6
0.29
−9





LYD7
60670.2



18.5
L
−4





LYD7
60671.2
776.9
0.30
 4








LYD69
61028.1



18.9
0.07
−2





LYD69
61028.5



19.0
0.08
−2





LYD67
60633.4
995.6
0.16
33
18.0
0.28
−7





LYD67
60634.1
823.1
0.30
10








LYD59
61011.2
818.8
0.03
10








LYD58
61098.4
884.4
0.22
19








LYD51
60266.6
821.2
0.20
10








LYD51
60269.3
857.5
0.02
15








LYD5
61087.2
861.9
L
15








LYD5
61090.2
921.9
0.01
24








LYD49
60710.2
1030.0 
0.13
38








LYD49
60712.1
1011.2 
L
36



12.9
0.29
−2


LYD49
60713.2
823.1
0.09
10








LYD49
60714.1
1159.4 
0.07
55








LYD48
61034.2
801.9
0.10
 7








LYD48
61035.4
825.6
0.03
11








LYD36
60980.3
859.4
0.13
15



12.6
L
−4


LYD36
60982.1
988.1
0.19
32








LYD276
61016.1
929.4
0.06
25








LYD276
61020.4
830.0
0.10
11








LYD253
60841.3
1009.4 
0.06
35








LYD253
60841.4
840.0
0.15
13








LYD253
60842.1
980.0
0.02
31
18.8
0.14
−3





LYD253
60842.3
994.4
L
33








LYD235
60930.6



17.4
0.05
−10 





LYD204
60704.4
923.1
L
24








LYD204
60707.1
978.1
L
31








LYD204
60707.2
946.2
0.23
27








LYD202
60421.2
1243.1 
0.07
67








LYD202
60421.3
980.0
0.13
31








LYD202
60422.2
953.8
L
28








LYD202
60422.4
930.0
L
25








LYD197
60988.2
810.6
0.09
 9








LYD195
60253.2



18.3
0.26
−5





LYD195
60257.2






12.9
0.30
−2


LYD176
61040.2
1038.8 
0.03
39








LYD176
61041.1
1000.0 
0.02
34








LYD176
61041.4
867.5
0.27
16








LYD176
61043.1
991.9
L
33








LYD172
61064.2
884.4
L
19








LYD172
61065.3
949.4
0.06
27








LYD172
61066.3
851.9
0.18
14








LYD172
61066.4
1008.8 
L
35








LYD172
61067.3
812.5
0.07
 9








LYD166
60998.3
1083.1 
0.08
45








LYD166
60999.1
1006.3 
0.05
35








LYD166
61000.2
1031.9 
0.18
38








LYD166
61000.4
878.8
0.03
18








LYD16
60313.2
1028.9 
0.13
38








LYD16
60314.1
928.1
L
24








LYD16
60314.4
956.2
L
28








LYD16
60315.1
839.4
0.27
12








LYD159
60662.6
1070.6 
0.12
43








LYD159
60665.1
826.2
0.20
11








LYD159
60665.5
1047.5 
L
40








LYD129
60792.1
1038.8 
L
39








LYD129
60793.2
796.9
0.10
 7








LYD129
60794.2
928.1
L
24



12.5
0.01
−4


LYD127
60682.3
1051.2 
0.24
41








LYD127
60683.1
871.9
0.21
17








LYD127
60683.4
857.5
0.18
15








LYD123
60786.3
907.5
0.02
22
18.2
0.07
−6





LYD123
60788.1
1059.4 
L
42








LYD123
60789.2
978.1
0.12
31








LYD12
60934.1



18.5
0.19
−4





LYD12
60937.1
981.2
0.25
31








LYD119
61004.2
895.6
L
20








LYD119
61008.3
881.2
0.17
18








LYD105
60652.4
960.6
0.06
29








LYD105
60653.2
976.2
0.25
31








LYD104
60952.1
866.9
0.09
16








LYD104
60953.2
888.1
0.15
19







LYD104
60957.2
883.1
L
18








LYD102
60958.3
838.8
0.13
12








LYD102
60960.1
863.8
0.18
16








LYD102
60961.2



16.7
0.29
−13 





LYD102
60961.3



17.1
L
−11 





CONT.

746.2


19.3


13.1




LYD142*
60971.1
  0.81
0.20
 8








LYD142*
60973.3
  0.84
0.07
12











Table 40.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value,


L—p < 0.01.


*was regulated by 35S promoter (SEQ ID NO: 8094).













TABLE 41







Genes showing improved plant performance at Normal growth conditions


under regulation of 6669 promoter










Gene
Leaf Blade Area [cm2]
Leaf Number
Plot Coverage [cm2]

















Name
Event #
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.
Ave.
P-Val.
% Incr.





LYD97
60082.1



9.4
0.01
5





LYD87
60150.3



9.9
0.22
10 
65.5
0.21
29


LYD87
60153.1



9.2
0.18
3





LYD85
60014.2
3.0
0.26
 4








LYD79
60021.1



9.1
0.23
2





LYD79
60021.4






60.5
0.25
19


LYD76
60288.4



9.5
0.22
6
70.0
0.29
38


LYD76
60289.3
3.7
L
27
10.1 
0.13
12 
71.4
L
41


LYD76
60290.1
3.1
0.07
 7
9.4
0.16
5
55.1
0.05
 9


LYD76
60291.3
3.1
0.25
 5








LYD6
60090.2



9.6
0.02
8
59.9
0.22
18


LYD6
60093.1



9.2
0.14
3





LYD6
60094.3



9.2
0.14
3





LYD55
60175.4



9.2
0.18
3
60.0
0.19
18


LYD53
60205.1
3.1
0.26
 8
9.6
0.27
7





LYD53
60206.2






53.0
0.24
 5


LYD53
60207.2



9.2
0.14
3
56.5
0.05
11


LYD53
60207.3



9.6
0.02
8





LYD44
60248.2



9.5
L
6





LYD44
60249.1



9.1
0.23
2





LYD4
60096.2
3.3
L
13



56.6
0.02
12


LYD4
60098.2



9.2
0.18
3





LYD33
60160.2
3.1
0.22
 7
9.3
0.04
4





LYD275
60000.3



9.4
0.16
5





LYD275
60002.3
3.1
0.09
 7



54.1
0.10
 7


LYD275
60003.5
3.1
0.29
 5
9.8
0.01
9
57.6
0.14
14


LYD246
60212.4
3.4
0.21
16
9.8
0.01
9
67.6
0.11
33


LYD246
60214.2



9.3
0.04
4





LYD234
60181.3



9.6
0.02
8
71.6
0.22
41


LYD234
60181.4
3.2
0.01
10



57.1
0.02
13


LYD234
60181.8
3.4
0.29
16
9.4
0.01
5
57.0
0.29
12


LYD23
60216.1
3.5
0.03
19



62.3
L
23


LYD23
60216.2






58.6
0.27
16


LYD23
60217.2
3.1
0.26
 6



54.9
0.08
 8


LYD224
60038.1



9.6
0.27
7





LYD224
60040.1






65.4
0.19
29


LYD224
60040.8
3.3
0.01
15



59.4
0.25
17


LYD220
60222.2



9.8
0.25
9
56.2
0.02
11


LYD220
60223.1
3.2
0.25
 9
9.1
0.23
2
56.3
0.14
11


LYD220
60223.2
3.2
0.14
11
9.3
0.25
4
59.5
0.03
17


LYD220
60224.1
3.7
0.14
26
9.8
0.14
9
68.6
0.21
35


LYD220
60224.2
3.2
0.02
10
9.2
0.14
3
55.1
0.06
 9


LYD217
60051.2
3.3
0.13
13








LYD217
60052.3
3.3
0.05
13



61.0
0.23
20


LYD213
60054.4
3.1
0.18
 5
9.4
0.01
5
55.3
0.04
 9


LYD213
60055.4
3.1
0.15
 5



57.6
L
14


LYD213
60056.3
3.4
L
16
10.2 
0.15
14 
64.1
0.03
26


LYD213
60058.3
3.2
0.10
 9



56.3
0.03
11


LYD208
60064.1



9.2
0.14
3





LYD208
60064.8
3.2
0.02
10
9.2
0.14
3
58.6
L
16


LYD20
60066.2



9.6
0.17
8





LYD20
60067.1






57.7
L
14


LYD20
60070.2



9.2
0.14
3





LYD194
60084.4
3.6
L
23
10.3 
0.10
15 
68.4
L
35


LYD194
60085.2
3.1
0.21
 5



53.2
0.29
 5


LYD194
60086.2



9.3
0.04
4





LYD190
60241.3



9.3
0.04
4





LYD190
60244.1



9.6
0.11
7





LYD186
60237.4
3.5
0.18
21
9.4
0.16
5
64.2
0.25
27


LYD186
60238.4
3.3
0.30
12
9.6
0.11
7





LYD184
60228.3



9.5
L
6
54.0
0.20
 7


LYD184
60229.1
3.3
0.05
14
9.2
0.14
3
57.6
0.04
14


LYD173
60139.3



9.3
0.04
4





LYD146
60026.2



9.2
0.14
3





LYD14
60120.2



9.6
L
8





LYD14
60123.8



9.4
0.01
5





LYD13
60193.4
3.5
0.01
18
9.7
0.08
8
63.0
0.04
24


LYD13
60195.2
3.2
0.07
 9



55.4
0.03
 9


LYD13
60195.4
3.3
L
13
9.4
0.08
5
57.6
0.10
14


LYD122
60199.2
3.3
0.03
13
9.2
0.18
3
58.6
0.29
16


LYD122
60199.4
3.3
0.04
13



58.9
L
16


LYD122
60200.2
3.6
0.17
24



63.7
L
26


LYD122
60201.1



9.7
L
8





LYD122
60201.3



9.4
0.16
5





LYD117
60033.5
3.3
0.27
12
9.7
0.08
8
60.9
0.13
20


LYD117
60033.6
3.3
0.25
13
9.4
0.01
5
60.3
0.18
19


LYD117
60034.4
3.2
0.14
 8








LYD11
60009.3
3.2
0.05
 9








LYD11
60010.2
3.5
L
20
9.4
0.08
5
64.5
L
27


LYD101
60072.4
3.1
0.07
 7



55.5
0.08
 9


LYD101
60075.3



9.6
0.17
8





LYD10
60132.2
3.8
0.03
29
10.4 
0.06
16 
71.2
0.11
40


CONT.

2.9


9.0


50.7




LYD43
60611.2



12.3 
0.20
3





LYD27
60542.1






106.7 
0.25
15


LYD257
60562.4
5.0
0.02
16



103.9 
0.04
12


LYD253
60841.4
4.8
0.07
10
12.4 
0.19
4
104.7 
0.03
13


LYD245
60646.1



12.3 
0.20
3





LYD240
60968.2






104.8 
0.18
13


LYD235
60929.3
4.9
0.02
14



107.9 
L
16


LYD219
60673.1
4.7
0.27
 9



102.2 
0.12
10


LYD201
60172.1






100.0 
0.12
 8


LYD174
60816.4
4.9
0.26
12



105.9 
0.10
14


LYD153
60697.3



12.6 
0.15
5





LYD153
60700.3
5.6
0.11
29



121.7 
0.19
31


LYD144
60866.4
4.9
0.18
13



109.6 
0.22
18


LYD144
60866.5
5.2
0.20
21
12.4 
0.17
3
109.5 
0.17
18


LYD129
60792.1






116.6 
0.28
26


LYD129
60794.2
4.7
0.28
 9








LYD125
60823.3
5.7
L
31



121.4 
0.16
31


LYD125
60825.1
4.7
0.12
 9








LYD12
60936.4
5.6
L
29



118.8 
0.02
28


LYD12
60938.2






108.1 
0.02
17


LYD104
60952.1
5.0
L
16



104.2 
0.03
12


LYD104
60956.1
5.4
L
26



119.6 
0.13
29


LYD103
60259.4






112.6 
0.29
21


LYD102
60959.1
4.8
0.08
11



100.0 
0.17
 8


LYD102
60961.2
5.1
L
19



109.6 
0.03
18


CONT.

4.3


12.0 


92.8




LYD82
61058.2
3.0
L
28



57.2
L
45


LYD82
61058.3
3.2
L
33
9.7
L
11 
55.6
L
41


LYD82
61061.3
2.9
0.16
22



49.9
0.12
27


LYD82
61061.4
2.5
0.27
 6
9.4
0.07
8
47.1
0.01
20


LYD81
60940.3
2.7
0.15
12



48.0
0.18
22


LYD81
60943.4
3.1
L
30



53.2
L
35


LYD81
60944.1
2.9
0.16
23
9.3
0.11
6
52.8
L
34


LYD81
60944.4
2.7
0.11
13
9.1
0.16
4
47.4
L
21


LYD81
60944.8
3.1
L
30
9.1
0.16
4
56.5
L
44


LYD80
61049.1
2.7
0.01
15
9.2
0.06
5
47.6
0.16
21


LYD80
61049.4



9.0
0.24
3





LYD80
61050.1



9.2
0.07
6
44.2
0.06
12


LYD70
60853.3
2.9
L
24



49.1
L
25


LYD70
60853.4






44.2
0.06
12


LYD70
60854.3
3.6
L
54



67.1
L
71


LYD70
60856.4
2.7
0.02
13



44.9
0.04
14


LYD7
60667.1
2.8
L
17
9.6
L
9
50.7
L
29


LYD7
60668.1
3.3
0.13
38



60.8
0.19
54


LYD7
60670.2






51.0
0.27
30


LYD7
60671.2






45.1
0.03
15


LYD7
60671.3



9.0
0.24
3
50.4
0.19
28


LYD69
61028.1
2.9
L
23
9.3
0.02
6
51.6
L
31


LYD69
61028.5
2.6
0.08
 9
9.4
0.07
8
48.5
L
23


LYD69
61029.4
2.6
0.14
 9



45.6
0.04
16


LYD67
60633.4
3.0
0.20
27



53.5
0.20
36


LYD67
60635.3






44.9
0.13
14


LYD59
61010.1
2.6
0.19
 8
9.0
0.24
3
43.9
0.29
12


LYD59
61011.2
3.0
L
26
9.2
0.04
6
53.0
L
35


LYD58
61102.1
2.6
0.05
11








LYD51
60266.5
2.9
L
21



49.6
L
26


LYD51
60266.6
3.0
0.20
27
9.2
0.06
5
51.5
0.14
31


LYD51
60269.1
2.9
0.17
21
9.4
0.07
8
49.9
0.04
27


LYD51
60269.3
3.2
L
35
9.6
L
9
58.3
L
48


LYD51
60269.6
2.9
0.26
23
9.2
0.06
5
49.3
0.25
25


LYD5
61087.2
2.7
0.11
15



47.4
0.10
21


LYD5
61087.3
2.8
0.04
20



47.9
0.04
22


LYD5
61089.3
3.0
0.02
26
9.4
0.03
7
52.4
L
33


LYD5
61090.2



9.6
0.04
9





LYD49
60710.2
2.7
0.21
14



47.7
0.26
21


LYD49
60714.1
3.2
0.07
34
9.4
0.21
8
56.4
0.02
43


LYD48
61034.2
2.8
0.01
17
9.2
0.06
5
49.0
L
25


LYD48
61035.3
2.8
L
18
9.4
0.01
7
51.7
0.01
31


LYD48
61035.4
2.6
0.09
 9



45.3
0.03
15


LYD48
61036.3



9.3
0.02
6
49.7
0.27
26


LYD36
60980.1






57.4
0.29
46


LYD36
60980.2
3.2
0.20
35



61.4
0.18
56


LYD36
60980.3
2.9
0.15
24








LYD36
60982.1
3.2
L
36
9.2
0.19
5
57.0
L
45


LYD34
60270.4






54.7
0.06
39


LYD34
60270.6
3.4
0.05
45



60.0
0.04
53


LYD34
60271.2






49.7
0.08
26


LYD34
60271.3






50.4
L
28


LYD34
60272.5
3.2
L
36
9.5
0.25
9
58.7
L
49


LYD276
61016.1
3.4
L
42



58.3
L
48


LYD276
61016.3
2.7
L
15
9.1
0.09
4
45.0
0.03
14


LYD276
61016.4
3.2
L
34
9.2
0.19
5
55.5
L
41


LYD276
61020.4
2.6
0.08
 9



43.7
0.08
11


LYD253
60840.2






44.5
0.13
13


LYD253
60841.3
3.8
L
61
9.1
0.15
4
68.2
L
73


LYD253
60842.1
3.6
L
51
9.8
0.11
12 
63.3
0.04
61


LYD253
60842.3
3.4
0.25
43



62.4
0.26
59


LYD235
60929.3
3.3
0.24
41



62.0
0.27
57


LYD235
60930.3






43.1
0.12
10


LYD235
60930.6
3.0
0.15
27



51.4
0.14
31


LYD235
60931.2
3.2
0.18
36



55.0
0.15
40


LYD204
60704.2
3.0
0.08
26
9.4
0.03
7
51.8
0.02
32


LYD204
60704.4
3.0
L
25
9.6
L
10 
52.4
L
33


LYD204
60707.2
2.9
L
23



47.5
L
21


LYD202
60421.2
3.4
L
46
9.2
0.06
5
59.7
L
52


LYD202
60421.3
3.0
L
25



49.4
L
26


LYD202
60422.2
2.7
0.16
13



44.0
0.25
12


LYD202
60422.4
2.7
L
15



44.8
0.04
14


LYD202
60425.2
3.0
0.19
25



48.8
0.26
24


LYD197
60988.2
2.7
0.02
15



46.7
L
19


LYD197
60988.4
2.6
0.12
11



44.2
0.18
12


LYD197
60990.3
2.9
0.03
23



50.8
0.02
29


LYD195
60252.1
2.7
0.20
13



45.4
0.08
15


LYD195
60253.2
2.8
L
18



50.1
L
27


LYD195
60255.2
3.1
0.05
30



52.5
0.09
33


LYD195
60256.1
3.0
0.04
25



49.7
0.10
26


LYD195
60257.2
2.9
L
24



50.2
L
28


LYD180
60462.2
2.7
0.18
12



45.1
0.23
15


LYD180
60464.4
2.8
L
20



48.2
L
22


LYD180
60465.2
2.7
0.25
13
9.4
0.07
8
45.2
0.29
15


LYD180
60465.4






43.6
0.08
11


LYD176
61040.2
3.4
L
42
9.5
L
9
63.4
L
61


LYD176
61041.1
3.3
L
38



59.4
L
51


LYD176
61043.1
3.8
0.11
62
9.4
0.21
8
69.3
0.13
76


LYD172
61064.2
2.9
0.30
21
9.8
L
11 
52.7
0.21
34


LYD172
61065.3
3.6
L
52



64.6
0.16
64


LYD172
61066.3



9.1
0.09
4
59.8
0.18
52


LYD172
61066.4
3.6
0.02
50



60.7
0.03
54


LYD172
61067.3
2.6
0.10
11



46.1
0.02
17


LYD166
60998.3
3.5
L
50



61.6
0.09
56


LYD166
60998.4
3.7
0.09
55



64.1
L
63


LYD166
60999.1
3.4
0.16
42



61.0
L
55


LYD166
61000.2
3.5
0.13
47



59.5
0.12
51


LYD166
61000.4



9.4
0.01
7
57.9
0.29
47


LYD16
60314.1
3.2
0.29
34



54.1
0.29
38


LYD16
60314.4
3.2
0.20
34
9.1
0.15
4
55.0
0.16
40


LYD16
60315.1
3.0
0.28
27



51.6
0.30
31


LYD16
60315.3
3.0
0.26
25



50.7
0.22
29


LYD159
60662.6
3.6
0.06
53
9.3
0.11
6
63.1
0.07
60


LYD159
60665.5
2.8
0.03
17



45.4
0.02
15


LYD159
60666.2
2.6
0.30
 9
9.4
0.16
7





LYD129
60792.1






61.9
0.11
57


LYD129
60793.2






58.9
L
50


LYD129
60794.1
3.4
L
45



57.6
L
46


LYD129
60794.2
3.1
L
29
9.5
0.12
9
56.6
L
44


LYD129
60796.1



9.4
0.03
7
58.9
0.26
50


LYD127
60681.1
3.2
0.23
35
9.1
0.16
4
53.5
0.29
36


LYD127
60682.2
3.3
0.08
37



55.3
0.17
41


LYD127
60682.3
3.2
0.04
35



55.4
0.04
41


LYD127
60683.1
3.2
0.13
36



54.4
0.10
38


LYD123
60786.3
3.7
0.08
56
9.7
0.13
11 
68.0
L
73


LYD123
60788.1
4.1
0.05
72
9.7
0.13
11 
74.8
0.10
90


LYD123
60788.4
3.7
L
55
9.1
0.15
4
64.2
L
63


LYD123
60789.1
3.4
L
42
9.2
0.07
6
60.5
L
54


LYD123
60789.2
3.7
L
57
9.4
0.03
7
67.5
L
72


LYD12
60936.2
2.9
L
22



48.6
L
24


LYD12
60936.4
3.1
0.02
32
9.5
0.02
9
56.2
L
43


LYD12
60937.1
3.4
0.01
45
9.6
0.09
10 
60.9
L
55


LYD12
60938.2



9.3
0.11
6





LYD119
61004.2
2.8
0.06
18



46.7
0.04
19


LYD119
61005.4
2.5
0.26
 7



42.2
0.27
 7


LYD119
61008.3
2.7
0.13
13
9.4
L
8
46.6
0.20
19


LYD105
60652.2
3.0
0.05
27



50.6
0.05
29


LYD105
60652.4
3.6
0.10
51



64.8
0.15
65


LYD105
60653.2
3.5
L
46
9.1
0.15
4
57.6
L
46


LYD104
60952.1
3.0
L
25



51.0
L
30


LYD104
60953.2
3.5
0.03
48



59.2
0.08
50


LYD104
60955.1






47.5
0.16
21


LYD104
60956.1
3.1
L
31
9.7
0.03
11 
54.9
L
40


LYD104
60957.2
2.8
0.07
18
9.4
0.03
7
49.4
0.01
26


LYD102
60958.3
3.0
0.23
26



50.2
0.26
28


LYD102
60959.1



9.6
L
10 





LYD102
60960.1



9.4
0.03
7
53.3
0.19
35


LYD102
60961.3
3.3
L
39
9.4
0.07
8
59.7
L
52


CONT.

2.4


8.8


39.4







Table 41.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value,


L—p < 0.01.













TABLE 42







Genes showing improved plant performance at Normal growth


conditions under regulation of 6669 promoter











RGR Of
RGR Of Plot
RGR Of Rosette



Leaf Number
Coverage
Diameter

















Gene


P-
%

P-
%

P-
%


Name
Event #
Ave.
Val.
Incr.
Ave.
Val.
Incr.
Ave.
Val.
Incr.





LYD97
60078.4
0.7
0.18
20








LYD97
60082.1
0.7
0.06
26








LYD87
60150.3



8.5
0.06
27





LYD85
60015.1
0.7
0.07
28
7.9
0.19
19





LYD79
60021.4
0.7
0.27
17
8.0
0.16
19
0.5
0.21
9


LYD76
60288.3
0.7
0.18
20








LYD76
60288.4



9.3
0.01
39
0.5
0.05
15


LYD76
60289.3
0.7
0.14
20
9.4
L
41
0.5
0.03
15


LYD6
60090.2
0.7
0.12
22
7.9
0.19
18





LYD6
60093.4



7.9
0.21
18





LYD6
60094.3






0.5
0.29
8


LYD55
60175.4



7.9
0.21
17





LYD53
60207.2






0.5
0.19
9


LYD53
60207.3
0.7
0.30
15








LYD4
60096.6
0.7
0.30
15








LYD33
60160.2
0.7
0.24
18








LYD275
60003.5
0.7
0.14
21
7.7
0.28
15
0.5
0.03
16


LYD246
60212.4
0.7
0.18
19
9.1
0.02
35
0.5
0.12
11


LYD234
60181.3
0.7
0.10
24
9.5
L
41
0.5
0.02
18


LYD234
60181.4






0.5
0.05
14


LYD234
60181.8
0.7
0.18
19








LYD23
60216.1



8.2
0.10
23
0.5
0.07
13


LYD23
60216.2



7.7
0.28
15





LYD224
60038.1



7.8
0.22
17





LYD224
60040.1



8.5
0.06
27
0.5
0.29
8


LYD224
60040.8
0.7
0.17
23
7.9
0.22
17





LYD220
60222.2
0.7
0.15
21








LYD220
60223.2



7.8
0.23
17





LYD220
60224.1
0.7
0.27
15
9.0
0.02
34
0.5
0.29
8


LYD22
60043.4
0.7
0.11
25
8.4
0.09
25
0.5
0.06
14


LYD22
60044.1
0.7
0.23
16



0.5
0.07
14


LYD217
60051.2



7.8
0.25
16
0.5
0.14
11


LYD217
60052.3



8.1
0.14
20





LYD213
60055.4
0.7
0.20
17
7.7
0.29
15
0.5
0.24
8


LYD213
60056.3
0.8
0.01
36
8.5
0.07
26
0.5
0.27
8


LYD213
60058.3
0.7
0.17
18








LYD208
60064.8



7.8
0.23
16
0.5
0.18
9


LYD20
60066.2
0.7
0.13
21








LYD194
60084.4
0.7
0.04
30
9.0
0.02
35
0.5
0.12
11


LYD190
60244.1
0.7
0.13
21








LYD186
60237.4
0.7
0.30
15
8.5
0.06
27
0.5
0.18
9


LYD186
60238.4



8.0
0.19
19
0.5
0.27
8


LYD184
60228.3
0.7
0.16
19








LYD173
60139.3
0.7
0.14
20








LYD173
60141.1
0.7
0.30
15








LYD14
60120.2
0.7
0.14
20








LYD14
60122.2
0.7
0.30
15








LYD14
60123.8
0.7
0.09
24








LYD13
60193.4
0.7
0.25
16
8.3
0.08
24
0.5
0.21
9


LYD122
60199.2



7.8
0.22
17
0.5
0.06
13


LYD122
60199.4



7.7
0.26
15





LYD122
60200.2



8.4
0.08
25
0.5
0.11
11


LYD122
60201.1
0.7
0.24
16








LYD117
60033.5
0.7
0.21
17
8.1
0.14
21
0.5
0.14
11


LYD117
60033.6



8.0
0.15
20
0.5
0.08
12


LYD117
60034.4



7.8
0.25
16





LYD11
60007.1
0.7
0.22
17








LYD11
60007.4
0.7
0.26
16








LYD11
60010.2



8.5
0.06
27
0.5
0.13
11


LYD101
60075.3



8.1
0.16
20





LYD10
60132.2
0.7
0.15
20
9.4
L
40
0.5
0.03
16


CONT.

0.6


6.7


0.5




LYD81
60944.1






0.5
0.25
9


LYD279
60556.1
0.8
0.23
12








LYD27
60542.1
0.9
0.10
17
12.9
0.22
15





LYD257
60560.4
0.8
0.30
11








LYD257
60562.4



12.8
0.23
15





LYD253
60841.4



12.6
0.30
13





LYD253
60842.3



13.7
0.10
22
0.5
0.09
14


LYD245
60646.2
0.8
0.25
12








LYD235
60929.3
0.8
0.27
11
13.4
0.13
19
0.5
0.04
15


LYD219
60674.4



12.9
0.28
15
0.5
0.30
9


LYD201
60172.1






0.5
0.30
8


LYD200
60481.3
0.8
0.27
11








LYD153
60697.3
0.8
0.24
13
13.0
0.22
16
0.5
0.21
11


LYD153
60698.7
0.8
0.24
13








LYD153
60700.3



14.9
0.02
33
0.5
0.02
20


LYD144
60866.4



13.3
0.13
19
0.5
0.21
9


LYD144
60866.5



13.4
0.12
20
0.5
0.04
16


LYD129
60792.1



14.3
0.04
27
0.5
0.08
15


LYD125
60823.3



15.0
0.01
34
0.5
0.01
19


LYD12
60936.4



14.5
0.02
29
0.5
0.05
15


LYD12
60938.2



13.1
0.17
17





LYD104
60956.1



14.3
0.03
28





LYD103
60259.4



13.7
0.09
23
0.5
0.28
9


LYD103
60261.6



13.4
0.16
19
0.5
0.29
9


LYD102
60961.2



13.3
0.13
19





CONT.

0.7


11.2


0.4




LYD82
61058.2



9.2
L
50
0.5
0.05
27


LYD82
61058.3



8.8
L
44
0.5
0.05
26


LYD82
61061.3



8.0
0.03
30
0.5
0.11
22


LYD82
61061.4



7.4
0.13
20





LYD81
60940.3



7.2
0.21
17





LYD81
60943.4



8.3
L
35
0.4
0.17
18


LYD81
60944.1



8.4
L
37
0.5
0.13
21


LYD81
60944.4



7.3
0.15
19





LYD81
60944.8



8.9
L
45
0.5
0.14
20


LYD80
61049.1



7.5
0.10
22





LYD70
60853.3



7.6
0.07
24
0.4
0.16
19


LYD70
60854.3



10.4
L
70
0.5
0.01
36


LYD70
60856.2



7.5
0.16
22





LYD7
60667.1



7.9
0.03
29





LYD7
60668.1



9.1
L
49
0.4
0.25
16


LYD7
60670.2



7.8
0.06
27





LYD7
60671.2



7.0
0.30
14





LYD7
60671.3



7.6
0.09
24





LYD69
61028.1



8.0
0.02
30





LYD69
61028.5



7.4
0.13
20





LYD69
61029.4



7.1
0.23
16





LYD69
61030.3



7.3
0.26
18





LYD69
61030.5



7.6
0.12
24





LYD67
60633.4



8.3
0.02
36





LYD59
61011.2



8.0
0.03
30





LYD58
61098.4



7.5
0.16
22





LYD58
61102.1



7.1
0.26
15





LYD51
60266.5



7.6
0.07
24





LYD51
60266.6



7.8
0.06
27





LYD51
60269.1



7.7
0.07
25





LYD51
60269.3



9.0
L
47
0.5
0.13
21


LYD51
60269.6



7.8
0.06
27
0.4
0.22
18


LYD5
61087.2



7.1
0.21
16





LYD5
61087.3



7.5
0.09
23
0.4
0.21
17


LYD5
61089.3



8.2
0.01
34
0.4
0.22
16


LYD5
61090.2



8.0
0.14
30





LYD49
60710.2



7.3
0.16
20





LYD49
60712.1



7.7
0.11
26





LYD49
60713.2



7.5
0.13
22





LYD49
60714.1



8.8
L
43
0.5
0.07
24


LYD48
61034.2



7.4
0.12
20





LYD48
61035.3



8.2
0.02
33





LYD48
61036.3



7.6
0.08
25





LYD36
60980.1



8.4
0.04
36





LYD36
60980.2



9.5
L
55





LYD36
60980.3



7.5
0.14
22





LYD36
60980.4



7.5
0.13
23





LYD36
60982.1



8.7
L
42





LYD34
60270.4



8.2
0.02
34
0.4
0.25
16


LYD34
60270.6



9.3
L
51
0.5
0.08
24


LYD34
60271.2



7.6
0.08
24





LYD34
60271.3



7.5
0.10
22





LYD34
60272.5



9.1
L
48
0.4
0.18
18


LYD276
61016.1



8.9
L
44
0.5
0.13
20


LYD276
61016.4



8.6
L
41
0.4
0.22
16


LYD253
60841.3



10.5
L
70
0.5
0.03
31


LYD253
60841.4



7.7
0.13
26





LYD253
60842.1



9.6
L
56
0.5
0.08
24


LYD253
60842.3



9.8
L
59
0.5
0.04
34


LYD235
60929.3



9.7
L
57
0.5
0.09
26


LYD235
60930.6



7.8
0.05
27





LYD235
60931.2



8.5
L
39





LYD204
60704.2



8.3
0.01
36
0.4
0.16
19


LYD204
60704.4



8.0
0.03
30





LYD204
60707.2



7.6
0.07
24
0.5
0.14
20


LYD202
60421.2



9.4
L
53
0.5
0.06
26


LYD202
60421.3



7.9
0.03
28
0.4
0.17
18


LYD202
60422.4



7.1
0.25
15





LYD202
60425.2



7.8
0.06
27
0.5
0.12
22


LYD197
60988.2



7.2
0.17
18





LYD197
60988.4



7.0
0.28
14





LYD197
60989.4



9.0
0.01
47
0.5
0.07
28


LYD197
60990.3



8.0
0.03
30
0.4
0.23
16


LYD195
60252.1



7.1
0.24
15





LYD195
60253.2



8.0
0.03
30





LYD195
60255.2



8.1
0.02
33
0.4
0.19
17


LYD195
60256.1



7.6
0.08
23





LYD195
60257.2



8.0
0.02
30
0.4
0.16
19


LYD180
60462.2



7.2
0.21
17





LYD180
60464.4



7.5
0.08
23
0.4
0.30
14


LYD180
60465.2



7.3
0.17
18





LYD176
61040.2



9.7
L
57
0.4
0.21
17


LYD176
61041.1



9.3
L
51
0.5
0.13
20


LYD176
61043.1



10.9
L
77
0.5
0.09
25


LYD172
61064.2
0.8
0.19
32
8.4
0.01
36





LYD172
61065.3



9.9
L
61
0.4
0.19
19


LYD172
61066.3



9.2
L
50
0.4
0.22
18


LYD172
61066.4



9.1
L
49
0.5
0.15
20


LYD172
61067.3



7.0
0.29
13





LYD166
60998.3



9.4
L
54
0.5
0.06
26


LYD166
60998.4



9.9
L
61
0.5
0.03
30


LYD166
60999.1



9.3
L
51
0.4
0.24
16


LYD166
61000.2



9.1
L
48
0.5
0.07
26


LYD166
61000.4



9.3
L
51
0.4
0.29
16


LYD16
60314.1



8.4
0.02
36
0.4
0.26
15


LYD16
60314.4



8.7
L
41
0.5
0.10
24


LYD16
60315.1



8.0
0.04
30





LYD16
60315.3



7.7
0.08
25





LYD159
60662.6



9.9
L
61
0.5
0.03
32


LYD159
60665.5



7.1
0.25
15





LYD159
60666.2
0.8
0.20
30








LYD129
60792.1



9.4
L
53
0.5
0.07
28


LYD129
60793.2



8.9
L
45
0.4
0.19
17


LYD129
60794.1



8.7
L
41
0.5
0.15
19


LYD129
60794.2



8.7
L
41





LYD129
60796.1



8.9
0.01
45





LYD127
60681.1



8.4
0.02
38
0.5
0.15
21


LYD127
60682.2



8.8
L
43
0.5
0.15
19


LYD127
60682.3



8.5
L
38





LYD127
60683.1



8.7
L
42
0.4
0.17
19


LYD123
60786.3



10.6
L
73
0.5
0.02
32


LYD123
60788.1



11.5
L
88
0.5
0.01
36


LYD123
60788.4



9.9
L
62
0.5
0.03
30


LYD123
60789.1



9.0
L
46





LYD123
60789.2



10.5
L
72
0.5
0.04
28


LYD12
60936.2



7.3
0.14
19





LYD12
60936.4



8.7
L
41





LYD12
60937.1



9.5
L
54
0.5
0.09
23


LYD12
60938.2



7.8
0.09
27





LYD119
61004.2



7.3
0.15
19





LYD119
61008.3



7.4
0.13
21





LYD105
60652.2



8.3
0.01
35
0.5
0.12
21


LYD105
60652.4



10.0
L
63
0.5
0.07
26


LYD105
60653.2



8.6
L
40
0.4
0.17
18


LYD104
60952.1



7.6
0.08
23





LYD104
60953.2



9.3
L
51
0.5
0.08
24


LYD104
60955.1



7.2
0.18
18





LYD104
60956.1



8.5
L
38
0.4
0.20
17


LYD104
60957.2



7.6
0.07
24





LYD102
60958.3



7.7
0.08
25





LYD102
60959.1
0.8
0.18
34








LYD102
60960.1



8.0
0.03
31





LYD102
60961.2



7.5
0.15
23





LYD102
60961.3



9.1
L
48
0.4
0.24
16


CONT.

0.6


6.1


0.4







Table 42.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value, L-p < 0.01.













TABLE 43







Genes showing improved plant performance at Normal


growth conditions under regulation of 6669 promoter











Harvest
Rosette Area
Rosette Diameter



Index
[cm2]
[cm]

















Gene


P-
%

P-
%

P-
%


Name
Event #
Ave.
Val.
Incr.
Ave.
Val.
Incr.
Ave.
Val.
Incr.




















LYD97
60080.1
0.4
0.10
21








LYD87
60150.2
0.4
0.02
30








LYD87
60150.3



8.2
0.21
29





LYD85
60014.2
0.4
0.24
23








LYD85
60014.4
0.4
0.02
30








LYD85
60015.1
0.4
L
40








LYD85
60016.3
0.5
L
47








LYD79
60018.2
0.4
0.04
25








LYD79
60018.3
0.4
0.09
21



4.9
0.22
7


LYD79
60021.4



7.6
0.25
19
5.1
0.28
11


LYD76
60288.4



8.7
0.29
38
5.3
0.20
15


LYD76
60289.3



8.9
L
41
5.3
L
17


LYD76
60290.1
0.4
0.29
31
6.9
0.05
9
4.7
0.13
4


LYD76
60291.3






4.8
0.22
5


LYD6
60090.2



7.5
0.22
18





LYD6
60093.1
0.4
0.18
21








LYD6
60094.3
0.4
0.06
36








LYD55
60174.1
0.4
0.11
21








LYD55
60175.1
0.4
0.14
28








LYD55
60175.4



7.5
0.19
18
5.1
0.27
11


LYD53
60205.1






4.8
0.18
5


LYD53
60206.2



6.6
0.24
5
4.8
0.28
4


LYD53
60207.2



7.1
0.05
11
5.0
0.06
8


LYD44
60248.2
0.4
0.15
16



4.8
0.04
5


LYD44
60249.1
0.3
0.26
13








LYD4
60096.2



7.1
0.02
12
4.9
L
7


LYD4
60096.6
0.4
0.11
46








LYD33
60159.3
0.4
0.11
22








LYD33
60160.4
0.4
0.27
19








LYD275
60000.3
0.4
0.11
32








LYD275
60002.3



6.8
0.10
7
4.7
0.10
4


LYD275
60003.5



7.2
0.14
14
5.0
0.01
10


LYD246
60212.3
0.4
0.06
23








LYD246
60212.4



8.5
0.11
33
5.1
0.06
11


LYD246
60214.2
0.4
0.14
20








LYD234
60180.3
0.4
0.02
30








LYD234
60181.3
0.4
0.11
36
8.9
0.22
41
5.4
0.22
18


LYD234
60181.4
0.4
0.20
23
7.1
0.02
13
5.1
0.04
11


LYD234
60181.8
0.4
0.09
20
7.1
0.29
12





LYD23
60216.1
0.4
0.06
22
7.8
L
23
5.2
L
14


LYD23
60216.2



7.3
0.27
16
4.9
0.28
7


LYD23
60217.2
0.4
0.22
24
6.9
0.08
8





LYD224
60038.1






5.0
0.21
9


LYD224
60040.1



8.2
0.19
29
5.2
0.11
14


LYD224
60040.8



7.4
0.25
17
4.9
0.25
7


LYD220
60222.2
0.4
0.04
31
7.0
0.02
11





LYD220
60223.1



7.0
0.14
11
4.8
0.28
6


LYD220
60223.2



7.4
0.03
17
5.0
L
9


LYD220
60224.1



8.6
0.21
35
5.2
0.14
14


LYD220
60224.2



6.9
0.06
9
4.7
0.14
4


LYD22
60043.1
0.4
0.03
29








LYD22
60043.4






5.1
0.20
13


LYD22
60044.1



7.8
L
22
5.2
L
14


LYD217
60051.2
0.4
0.07
25



5.1
0.24
11


LYD217
60052.3
0.4
0.26
33
7.6
0.23
20
5.0
0.15
9


LYD213
60054.1
0.4
0.25
30








LYD213
60054.4



6.9
0.04
9
4.7
0.29
3


LYD213
60055.4



7.2
L
14
4.8
0.16
6


LYD213
60056.3



8.0
0.03
26
5.1
L
11


LYD213
60058.3



7.0
0.03
11
4.8
0.05
4


LYD208
60064.1
0.4
0.28
15








LYD208
60064.2
0.4
0.17
18








LYD208
60064.8
0.4
0.30
28
7.3
L
16
5.0
0.19
9


LYD20
60067.1



7.2
L
14
4.9
0.01
7


LYD20
60070.2
0.4
0.09
19








LYD2
60102.2
0.4
0.03
32








LYD2
60103.4
0.4
0.11
18








LYD2
60104.4
0.4
0.10
24








LYD194
60084.4
0.4
0.12
19
8.6
L
35
5.3
L
15


LYD194
60085.2



6.6
0.29
5
4.8
0.21
6


LYD190
60242.2
0.3
0.28
14








LYD186
60237.4



8.0
0.25
27
5.1
0.13
11


LYD186
60238.4






5.0
0.30
9


LYD184
60228.3



6.8
0.20
7





LYD184
60229.1
0.4
0.08
21
7.2
0.04
14
4.8
0.04
5


LYD184
60230.1
0.4
0.05
24








LYD146
60025.3
0.4
0.13
21








LYD14
60120.2
0.4
0.14
23








LYD14
60122.3
0.4
0.27
16








LYD134
60109.2
0.4
0.20
18








LYD134
60110.1
0.4
0.23
30








LYD134
60110.4
0.4
0.03
27








LYD134
60110.5
0.4
0.09
31








LYD13
60193.4
0.4
0.06
23
7.9
0.04
24
5.1
0.10
12


LYD13
60195.2



6.9
0.03
9
4.8
0.11
4


LYD13
60195.4



7.2
0.10
14
4.9
0.13
7


LYD122
60199.2



7.3
0.29
16
5.1
0.02
11


LYD122
60199.4



7.4
L
16
4.8
0.26
5


LYD122
60200.2
0.4
0.14
17
8.0
L
26
5.2
L
13


LYD122
60201.1
0.4
L
43








LYD117
60033.5



7.6
0.13
20
5.0
0.02
8


LYD117
60033.6



7.5
0.18
19
5.0
0.15
9


LYD117
60034.4
0.4
0.02
39








LYD11
60009.3






4.8
0.06
6


LYD11
60010.2



8.1
L
27
5.2
L
14


LYD101
60072.4



6.9
0.08
9





LYD101
60075.3
0.4
0.20
15








LYD10
60132.2



8.9
0.11
40
5.4
0.07
17


LYD10
60134.4
0.3
0.29
12








CONT.

0.3


6.3


4.6




LYD9
60595.1
0.4
0.09
7








LYD9
60598.4
0.4
0.20
7








LYD86
61671.3
0.4
L
12








LYD81
60944.1



13.8 
0.26
19
6.0
L
11


LYD75
60657.1
0.3
0.27
3








LYD45
60694.2
0.4
L
8








LYD38
60531.4
0.4
0.12
8








LYD35
60949.1
0.3
0.29
5








LYD27
60542.1



13.3 
0.25
15
5.7
0.16
7


LYD257
60562.4



13.0 
0.04
12
5.7
0.28
6


LYD253
60841.4
0.4
0.02
7
13.1 
0.03
13
5.9
L
9


LYD244
61648.2
0.4
0.02
11








LYD240
60968.2
0.3
0.16
3
13.1 
0.18
13





LYD235
60929.3
0.4
L
9
13.5 
L
16
5.8
L
8


LYD219
60673.1



12.8 
0.12
10
5.6
0.29
4


LYD201
60172.1



12.5 
0.12
8
5.6
0.06
4


LYD180
60464.4
0.4
0.12
17








LYD180
60465.4
0.4
0.02
8








LYD174
60816.4



13.2 
0.10
14
5.7
0.12
6


LYD153
60700.3



15.2 
0.19
31
6.2
0.28
15


LYD144
60866.4



13.7 
0.22
18
5.9
0.04
9


LYD144
60866.5



13.7 
0.17
18
6.1
0.03
13


LYD144
60868.4
0.4
0.08
11








LYD14
60123.9
0.4
0.07
11








LYD129
60792.1



14.6 
0.28
26
6.1
0.29
14


LYD129
60794.2






5.7
0.23
6


LYD125
60823.3
0.3
0.27
5
15.2 
0.16
31
6.2
0.10
14


LYD12
60936.4
0.4
0.25
16
14.9 
0.02
28
6.1
L
14


LYD12
60938.2



13.5 
0.02
17
5.8
0.22
7


LYD104
60952.1



13.0 
0.03
12
5.6
0.10
4


LYD104
60956.1



14.9 
0.13
29
5.9
0.01
9


LYD103
60259.4



14.1 
0.29
21
5.9
0.24
9


LYD102
60959.1



12.5 
0.17
8
5.6
0.25
3


LYD102
60961.2
0.4
L
9
13.7 
0.03
18
5.7
0.04
5


CONT.

0.3


11.6 


5.4




LYD82
61058.2



7.1
L
45
4.8
L
21


LYD82
61058.3



7.0
L
41
4.8
L
22


LYD82
61061.3



6.2
0.12
27
4.5
0.02
14


LYD82
61061.4



5.9
0.01
20
4.2
0.13
6


LYD81
60940.3



6.0
0.18
22
4.3
0.26
9


LYD81
60943.4



6.6
L
35
4.6
L
16


LYD81
60944.1



6.6
L
34
4.5
0.05
16


LYD81
60944.4



5.9
L
21
4.4
L
12


LYD81
60944.8



7.1
L
44
4.7
L
19


LYD80
61049.1



6.0
0.16
21
4.4
0.02
12


LYD80
61050.1



5.5
0.06
12
4.3
0.07
9


LYD70
60853.3



6.1
L
25
4.5
L
15


LYD70
60853.4



5.5
0.06
12
4.2
0.09
6


LYD70
60854.3
0.3
0.28
23
8.4
L
71
5.2
L
32


LYD70
60856.4



5.6
0.04
14
4.2
0.04
8


LYD7
60667.1



6.3
L
29
4.4
L
11


LYD7
60668.1



7.6
0.19
54
4.9
0.04
24


LYD7
60670.2



6.4
0.27
30
4.6
0.17
17


LYD7
60671.2



5.6
0.03
15
4.2
0.05
7


LYD7
60671.3



6.3
0.19
28
4.5
0.04
15


LYD69
61028.1



6.4
L
31
4.4
L
13


LYD69
61028.5



6.1
L
23
4.2
0.06
7


LYD69
61029.4



5.7
0.04
16
4.3
0.09
9


LYD67
60633.4



6.7
0.20
36
4.5
0.19
15


LYD67
60635.3



5.6
0.13
14
4.4
0.03
11


LYD59
61010.1



5.5
0.29
12
4.1
0.18
5


LYD59
61011.2



6.6
L
35
4.5
L
14


LYD58
61102.1






4.3
0.16
9


LYD51
60266.5



6.2
L
26
4.4
0.01
13


LYD51
60266.6



6.4
0.14
31
4.4
0.20
13


LYD51
60269.1



6.2
0.04
27
4.5
0.06
14


LYD51
60269.3



7.3
L
48
4.8
L
22


LYD51
60269.6



6.2
0.25
25
4.5
0.30
14


LYD5
61087.2



5.9
0.10
21
4.3
0.11
10


LYD5
61087.3



6.0
0.04
22
4.4
L
12


LYD5
61089.3



6.5
L
33
4.6
L
16


LYD49
60710.2



6.0
0.26
21
4.4
0.16
11


LYD49
60712.1






4.4
0.24
13


LYD49
60714.1



7.1
0.02
43
4.8
L
22


LYD48
61034.2



6.1
L
25
4.3
0.03
8


LYD48
61035.3



6.5
0.01
31
4.5
L
14


LYD48
61035.4



5.7
0.03
15
4.2
0.07
6


LYD48
61036.3



6.2
0.27
26





LYD36
60980.1



7.2
0.29
46
4.8
0.27
22


LYD36
60980.2



7.7
0.18
56
4.7
0.15
19


LYD36
60982.1



7.1
L
45
4.6
L
17


LYD34
60270.4



6.8
0.06
39
4.7
0.08
18


LYD34
60270.6



7.5
0.04
53
4.9
0.02
24


LYD34
60271.2



6.2
0.08
26
4.5
0.11
14


LYD34
60271.3



6.3
L
28
4.6
L
16


LYD34
60272.5



7.3
L
49
4.8
0.03
23


LYD276
61016.1



7.3
L
48
4.9
L
25


LYD276
61016.3



5.6
0.03
14
4.2
0.08
7


LYD276
61016.4



6.9
L
41
4.6
L
17


LYD276
61017.1
0.3
0.14
15








LYD276
61020.4



5.5
0.08
11
4.2
0.17
7


LYD253
60840.2



5.6
0.13
13
4.3
0.23
10


LYD253
60841.3



8.5
L
73
5.3
L
34


LYD253
60841.4






4.6
0.27
16


LYD253
60842.1



7.9
0.04
61
5.1
0.01
29


LYD253
60842.3



7.8
0.26
59
5.0
0.17
28


LYD235
60929.3



7.7
0.27
57
5.0
0.12
27


LYD235
60930.2






4.1
0.16
5


LYD235
60930.3



5.4
0.12
10





LYD235
60930.6



6.4
0.14
31
4.5
0.21
14


LYD235
60931.2



6.9
0.15
40
4.6
0.12
16


LYD204
60704.2



6.5
0.02
32
4.5
L
16


LYD204
60704.4



6.6
L
33
4.5
L
14


LYD204
60707.1
0.3
0.17
11








LYD204
60707.2



5.9
L
21
4.4
L
12


LYD202
60421.2



7.5
L
52
4.8
L
22


LYD202
60421.3



6.2
L
26
4.5
L
13


LYD202
60422.2



5.5
0.25
12
4.2
0.17
6


LYD202
60422.4



5.6
0.04
14
4.2
0.08
6


LYD202
60425.2



6.1
0.26
24
4.5
0.22
13


LYD197
60988.2



5.8
L
19
4.3
0.02
9


LYD197
60988.4



5.5
0.18
12
4.2
0.13
7


LYD197
60989.4






4.8
0.21
21


LYD197
60990.3



6.4
0.02
29
4.4
L
13


LYD195
60252.1



5.7
0.08
15
4.3
0.19
8


LYD195
60253.2



6.3
L
27
4.4
L
13


LYD195
60255.2



6.6
0.09
33
4.6
0.01
17


LYD195
60256.1



6.2
0.10
26
4.4
L
11


LYD195
60257.2



6.3
L
28
4.5
L
14


LYD180
60462.2



5.6
0.23
15
4.2
0.24
6


LYD180
60464.4



6.0
L
22
4.4
L
12


LYD180
60465.2



5.6
0.29
15
4.2
0.27
7


LYD180
60465.4



5.4
0.08
11
4.1
0.17
5


LYD176
61040.2



7.9
L
61
5.0
L
27


LYD176
61041.1



7.4
L
51
4.9
L
25


LYD176
61043.1



8.7
0.13
76
5.1
0.07
30


LYD172
61064.2



6.6
0.21
34
4.6
0.18
16


LYD172
61065.3



8.1
0.16
64
5.0
0.11
27


LYD172
61066.3



7.5
0.18
52
4.9
0.19
24


LYD172
61066.4



7.6
0.03
54
5.0
L
26


LYD172
61067.3



5.8
0.02
17
4.3
0.02
9


LYD166
60998.3



7.7
0.09
56
5.0
L
28


LYD166
60998.4



8.0
L
63
5.1
L
30


LYD166
60999.1



7.6
L
55
4.9
0.02
26


LYD166
61000.2



7.4
0.12
51
5.1
0.05
28


LYD166
61000.4



7.2
0.29
47
4.7
0.23
19


LYD16
60314.1



6.8
0.29
38
4.7
0.12
20


LYD16
60314.4



6.9
0.16
40
4.8
0.12
22


LYD16
60315.1



6.4
0.30
31





LYD16
60315.3



6.3
0.22
29
4.6
0.29
16


LYD159
60662.6



7.9
0.07
60
5.2
0.09
33


LYD159
60665.5



5.7
0.02
15
4.3
0.01
10


LYD159
60666.2






4.1
0.29
4


LYD129
60792.1



7.7
0.11
57
5.1
0.14
28


LYD129
60793.2



7.4
L
50
4.8
L
22


LYD129
60794.1



7.2
L
46
4.9
L
25


LYD129
60794.2



7.1
L
44
4.6
L
17


LYD129
60796.1



7.4
0.26
50
4.8
0.26
21


LYD127
60681.1



6.7
0.29
36
4.6
0.25
16


LYD127
60682.2



6.9
0.17
41
4.7
L
20


LYD127
60682.3



6.9
0.04
41
4.7
0.05
20


LYD127
60683.1



6.8
0.10
38
4.6
0.06
18


LYD123
60786.3



8.5
L
73
5.1
L
30


LYD123
60788.1



9.3
0.10
90
5.4
L
38


LYD123
60788.4



8.0
L
63
5.1
L
30


LYD123
60789.1



7.6
L
54
4.8
0.02
23


LYD123
60789.2



8.4
L
72
5.1
L
29


LYD12
60936.2



6.1
L
24
4.4
L
13


LYD12
60936.4



7.0
L
43
4.6
L
17


LYD12
60937.1
0.3 
0.23
18
7.6
L
55
4.9
L
25


LYD119
61004.2



5.8
0.04
19
4.3
0.05
9


LYD119
61005.4



5.3
0.27
7
4.1
0.19
5


LYD119
61008.3



5.8
0.20
19
4.2
0.25
8


LYD105
60652.2



6.3
0.05
29
4.6
L
16


LYD105
60652.4



8.1
0.15
65
5.1
0.05
29


LYD105
60653.2



7.2
L
46
4.8
L
23


LYD104
60952.1



6.4
L
30
4.4
L
13


LYD104
60953.2



7.4
0.08
50
4.8
0.02
23


LYD104
60955.1



5.9
0.16
21
4.2
0.21
6


LYD104
60956.1



6.9
L
40
4.6
L
17


LYD104
60957.2



6.2
0.01
26
4.4
L
12


LYD102
60958.3



6.3
0.26
28
4.4
0.18
13


LYD102
60960.1



6.7
0.19
35
4.5
0.16
15


LYD102
60961.3



7.5
L
52
4.8
L
21


CONT.

0.3 


4.9


3.9




LYD142*
60972.2
0.36
0.04
9








LYD142*
60973.3
0.34
0.26
3








LYD142*
60971.2
0.31
0.13
12











Table 43.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value, L-p < 0.01.


*was regulated by 35S promoter (SEQ ID NO: 8094).













TABLE 44







Genes showing improved plant performance at Normal growth


conditions under regulation of 6669 promoter










Seed Yield [mg]
1000 Seed Weight [mg]














Gene



%


%


Name
Event #
Ave.
P-Val.
Incr.
Ave.
P-Val
Incr.

















LYD87
60150.2
356.5
0.30
25
22.1
0.18
3


LYD85
60016.3
395.8
L
38
24.6
L
15


LYD76
60289.3



23.2
L
8


LYD6
60094.3
372.4
0.12
30





LYD55
60175.1



23.2
0.29
8


LYD55
60175.4
324.8
0.16
14





LYD55
60177.2



22.4
0.17
4


LYD53
60204.3



22.9
0.13
6


LYD4
60096.6



24.7
0.22
15


LYD4
60098.1



27.3
0.28
27


LYD33
60160.4
358.9
0.07
26





LYD275
60000.2
321.9
0.25
13
22.4
0.11
4


LYD275
60000.3



23.0
0.17
7


LYD246
60212.3



22.4
0.05
4


LYD246
60212.4



23.4
0.23
9


LYD234
60181.3



22.6
0.02
5


LYD234
60181.8



22.2
0.25
3


LYD224
60040.8



21.9
0.30
2


LYD22
60043.1
333.4
0.10
17





LYD217
60050.2
432.5
L
51





LYD217
60051.2
377.4
0.12
32
22.7
0.12
6


LYD2
60102.2
353.6
0.09
24





LYD190
60241.2



23.7
0.15
10


LYD190
60242.2



23.3
L
8


LYD186
60238.1
315.3
0.27
10
22.5
0.02
5


LYD146
60026.2



22.8
0.25
6


LYD14
60120.2
333.7
0.10
17





LYD122
60201.1
433.8
0.22
52
23.0
0.23
7


LYD117
60034.3



22.9
0.12
6


LYD117
60034.4



22.0
0.22
2


LYD11
60009.3



22.1
0.18
3


LYD11
60010.2



23.3
0.07
8


LYD11
60010.3



22.6
0.23
5


LYD10
60132.2



22.7
0.01
5


LYD10
60132.3



23.1
L
7


LYD10
60134.4



23.5
0.07
9


CONT.

285.8


21.5




LYD94
61678.3



2234.9
L
21


LYD90
60828.1



1977.0
0.26
7


LYD9
60597.1



2181.2
0.07
18


LYD86
61671.3
314.7
0.23
15
2549.8
0.07
38


LYD75
60655.8
300.7
0.19
10





LYD75
60657.1



2004.3
0.21
9


LYD74
60621.3



2040.3
0.05
11


LYD74
60621.4



2308.1
0.28
25


LYD49
60712.1



2023.9
0.19
10


LYD49
60713.2



2036.7
0.05
10


LYD45
60694.8



2189.2
L
19


LYD45
60695.4



2006.5
0.28
9


LYD43
60610.1



2054.3
0.04
11


LYD43
60611.4
301.5
0.09
10
1986.2
0.14
8


LYD38
60531.4



2195.4
L
19


LYD38
60534.2



2455.2
0.19
33


LYD38
60535.4



2216.7
0.09
20


LYD35
60947.5



2056.9
0.04
11


LYD35
60949.1
337.2
0.28
23





LYD279
60556.1



2202.7
0.28
19


LYD279
60556.3
314.9
L
15





LYD27
60542.1



2198.8
0.19
19


LYD257
60562.4
306.1
L
11
2194.6
0.17
19


LYD253
60840.2



1960.6
0.21
6


LYD253
60841.4
327.6
L
19





LYD253
60842.1



2031.2
0.07
10


LYD245
60646.1



1989.6
0.14
8


LYD244
61647.3
318.8
0.08
16





LYD244
61648.2
295.9
0.01
 8





LYD240
60968.2



2234.8
L
21


LYD219
60673.1
315.5
L
15





LYD219
60674.4



2185.2
0.26
18


LYD212
60522.3



2040.1
0.10
11


LYD209
60294.4



2037.3
0.06
10


LYD209
60295.4



2026.5
0.19
10


LYD201
60172.1
307.9
L
12





LYD200
60481.2



2119.7
0.19
15


LYD200
60485.3
294.4
0.01
 7
2056.7
0.11
11


LYD180
60464.4
368.9
0.20
34





LYD180
60465.2



2650.5
0.28
44


LYD174
60817.3



2253.4
L
22


LYD144
60866.4



2073.9
0.03
12


LYD144
60868.4
314.5
0.09
15





LYD14
60122.2



2501.4
0.05
36


LYD14
60123.1



2510.4
L
36


LYD14
60123.9
334.6
0.15
22
2501.4
L
36


LYD129
60794.2
290.4
0.04
 6





LYD125
60823.3



1999.5
0.13
8


LYD12
60934.1



2325.2
0.27
26


LYD12
60936.4
368.3
0.10
34





LYD12
60937.1



2479.5
0.22
34


LYD12
60938.2



2399.6
L
30


LYD104
60952.1
291.0
0.04
 6





LYD104
60956.1



2371.4
L
28


LYD104
60957.2



2041.5
0.05
11


LYD103
60259.4
316.0
L
15
2089.9
0.14
13


LYD103
60261.7
326.4
0.27
19





LYD102
60958.3



2297.1
0.30
24


LYD102
60961.2



2087.7
0.18
13


CONT.

274.6


1845.6




LYD82
61061.3



21.1
0.25
5


LYD70
60854.3
251.4
0.24
23





LYD7
60668.1
240.3
0.23
17





LYD67
60633.4



29.1
L
45


LYD67
60633.7



22.5
L
12


LYD49
60712.1
275.3
0.16
35





LYD49
60714.1



21.2
0.29
6


LYD276
61016.1
239.4
0.16
17





LYD253
60841.3
268.3
L
31





LYD253
60842.1
285.2
0.14
39





LYD253
60842.3
282.2
0.21
38





LYD235
60931.2
231.6
0.17
13





LYD204
60707.1
298.7
0.01
46





LYD202
60421.2
242.0
0.06
18
24.1
L
20


LYD202
60421.3
261.9
0.21
28





LYD176
61040.2
315.4
0.12
54





LYD176
61041.4
238.9
0.25
17





LYD176
61043.1
242.0
0.05
18





LYD172
61064.2
226.7
0.21
11





LYD166
61000.2
240.5
0.06
18





LYD16
60313.2
254.7
0.22
24





LYD16
60314.4
303.1
0.22
48
21.5
0.21
7


LYD159
60662.6
295.5
0.24
44
25.1
0.10
25


LYD159
60665.5



22.0
0.16
9


LYD129
60792.1
305.2
L
49





LYD123
60786.3
249.0
0.16
22





LYD123
60788.1
335.4
0.23
64





LYD12
60937.1
314.4
L
54





LYD119
61008.3



22.1
0.03
10


LYD105
60652.4



23.4
0.14
17


LYD105
60653.2



24.6
L
23


LYD104
60956.1



22.7
L
13


LYD102
60958.3
227.1
0.20
11





CONT.

204.7


20.1




LYD142*
60972.2
  0.30
0.24
10
2.21
0.21
13


LYD142*
60973.3
  0.29
0.09
 4
2.06
0.23
5


LYD142*
60971.2
  0.23
0.16
12





LYD142*
60973.3
  0.24
0.27
15








Table 44.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value, L-p < 0.01.


*was regulated by 35S promoter.






Example 16
Evaluation of Transgenic Arabidopsis NUE, Yield and Plant Growth Rate Under Low or Normal Nitrogen Fertilization in Greenhouse Assay

Assay 2: Nitrogen Use efficiency measured until bolting stage: plant biomass and plant growth rate at limited and optimal nitrogen concentration under greenhouse conditions—This assay follows the plant biomass formation and the rosette area growth of plants grown in the greenhouse at limiting and non-limiting nitrogen growth conditions. Transgenic Arabidopsis seeds were sown in agar media supplemented with ½ MS medium and a selection agent (Kanamycin). The T2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 1 mM KH2PO4, 1 mM MgSO4, 3.6 mM KCl, 2 mM CaCl2 and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3 with 1 mM KH2PO4, 1 mM MgSO4, 2 mM CaCl2 and microelements. All plants were grown in the greenhouse until mature seeds. Plant biomass (the above ground tissue) was weight in directly after harvesting the rosette (plant fresh weight [FW]). Following plants were dried in an oven at 50° C. for 48 hours and weighted (plant dry weight [DW]).


Each construct was validated at its T2 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the 35S promoter and the selectable marker was used as control.


The plants were analyzed for their overall size, growth rate, fresh weight and dry matter. Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.


The experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.


Digital imaging—A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4×150 Watts light bulb) was used for capturing images of plant samples.


The image capturing process was repeated every 2 days starting from day 1 after transplanting till day 15. Same camera, placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The tubs were square shape include 1.7 liter trays. During the capture process, the tubes were placed beneath the iron mount, while avoiding direct sun light and casting of shadows.


An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Images were captured in resolution of 10 Mega to Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).


Leaf analysis—Using the digital analysis leaves data was calculated, including leaf number, rosette area, rosette diameter, leaf blade area.


Vegetative growth rate: the relative growth rate (RGR) of leaf number (Formula XI, described above), rosette area (Formula XVI described above) and plot coverage (Formula XVII, described above) are calculated using the indicated formulas.


Plant Fresh and Dry weight—On about day 80 from sowing, the plants were harvested and directly weight for the determination of the plant fresh weight (FW) and left to dry at 50° C. in a drying chamber for about 48 hours before weighting to determine plant dry weight (DW).


Statistical analyses—To identify genes conferring significantly improved tolerance to abiotic stresses, the results obtained from the transgenic plants were compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. Data was analyzed using Student's t-test and results are considered significant if the p value was less than 0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).


Experimental Results:


The genes listed in Tables 45-48 improved plant NUE when grown at normal nitrogen concentration levels. These genes produced larger plants with a larger photosynthetic area, biomass (fresh weight, dry weight, rosette diameter, rosette area and plot coverage) when grown under normal nitrogen conditions. The genes were cloned under the regulation of a constitutive (At6669; SEQ ID NO:8096) and root preferred promoter (RootP). The evaluation of each gene was performed by testing the performance of different number of events. Event with p-value <0.1 was considered statistically significant









TABLE 45







Genes showing improved plant performance at Normal growth


conditions under regulation of 6669 promoter











Dry Weight [mg]
Fresh Weight [mg]
Leaf Number

















Gene


P-
%

P-
%

P-
%


Name
Event #
Ave.
Val.
Incr.
Ave.
Val.
Incr.
Ave.
Val.
Incr.





LYD84
61134.3
316.9
L
19
3462.5
L
26
12.1
0.04
16 


LYD84
61134.4



2906.2
0.13
 6





LYD72
61164.1
326.2
0.01
22
3037.5
0.08
11





LYD72
61164.3






10.8
0.29
3


LYD62
60810.2






11.5
0.28
10 


LYD62
60813.3






11.4
0.04
9


LYD41
60757.2



3018.8
0.24
10





LYD41
60759.3



2925.0
0.26
 7





LYD40
61210.1



2950.0
0.07
 8





LYD40
61211.2






10.9
0.01
4


LYD40
61213.2
310.6
0.26
16
2887.5
0.26
 5





LYD40
61214.4



2925.0
0.07
 7





LYD37
60164.2



3131.2
0.12
14
10.8
0.29
3


LYD35
60946.1






10.7
0.21
2


LYD35
60950.2
388.8
0.02
45
3693.8
0.10
35





LYD288
60763.3



2931.2
0.07
 7





LYD288
60766.4



3118.8
0.26
14
10.8
0.05
3


LYD278
61026.3






10.9
0.01
4


LYD276
61016.1
340.0
L
27
2912.5
0.20
 6





LYD26
61169.3



2887.5
0.14
 5





LYD256
60741.1



2981.2
0.18
 9





LYD256
60743.3
365.6
0.15
37








LYD252
61052.4
363.8
0.29
36
3687.5
0.17
35
10.9
0.18
4


LYD252
61052.5



3418.8
L
25





LYD252
61054.1



3243.8
0.08
18





LYD252
61055.3



2975.0
0.10
 9





LYD250
61224.3



3062.5
0.29
12





LYD250
61225.4



3112.5
L
14





LYD236
60187.6



3262.5
0.04
19





LYD236
60188.4



2881.2
0.15
 5
10.7
0.21
2


LYD233
60733.1
322.5
0.07
21
3531.2
L
29
12.2
0.23
16 


LYD233
60733.2
338.1
L
27
3793.8
L
39





LYD233
60735.3



3306.2
0.03
21





LYD233
60735.4



3343.8
0.25
22





LYD231
60715.3



2868.8
0.20
 5





LYD225
61083.1



3050.0
0.22
11





LYD223
61194.2



3081.2
0.18
13
10.9
0.01
4


LYD223
61194.4






12.4
0.09
18 


LYD223
61195.3



2918.8
0.11
 7





LYD18
61216.4



3268.8
0.21
19





LYD18
61217.4
285.6
0.21
 7








LYD157
61156.1



2893.8
0.16
 6





LYD157
61158.1
318.8
L
19








LYD157
61159.3



3137.5
L
15





LYD133
61235.4






10.7
0.21
2


LYD113
60782.4



2937.5
0.09
 7





LYD112
61144.1



2912.5
0.16
 6





LYD112
61147.1
310.6
0.22
16



10.9
0.10
4


LYD109
61174.2



2981.2
0.08
 9





LYD109
61178.3
398.1
0.11
49
3456.2
0.01
26
10.8
0.29
3


CONT.

267.2


2737.5


10.5




LYD96
60285.1






10.9
0.25
6


LYD90
60828.1
192.5
0.29
10
2000.0
0.04
22





LYD90
60831.5
237.5
0.26
36
2318.8
0.23
42
11.2
0.27
8


LYD81
60940.3






11.2
0.27
8


LYD81
60944.1






11.0
0.16
7


LYD81
60944.8



2212.5
0.23
35
11.6
0.14
13 


LYD71
60638.1






11.4
0.08
10 


LYD71
60641.2
194.4
0.24
11








LYD71
60641.3






10.8
0.01
5


LYD70
60853.4
217.5
0.02
24
2068.8
0.02
27





LYD70
60854.3






10.8
0.08
4


LYD7
60667.1






10.6
0.15
2


LYD7
60668.1






11.2
0.17
8


LYD7
60671.2



1825.0
0.24
12
11.2
0.29
9


LYD65
60626.2
201.2
0.13
15
1862.5
0.17
14





LYD65
60629.2






10.6
0.17
3


LYD62
60813.3






10.5
0.24
2


LYD49
60710.2






11.4
0.21
11 


LYD49
60714.1
211.9
0.04
21
1856.2
0.18
14
10.6
0.07
3


LYD35
60946.1
233.8
L
33
2218.8
0.15
36
11.1
0.21
7


LYD35
60946.6
289.4
0.27
65



11.4
0.03
11 


LYD35
60947.5
212.5
0.04
21
1918.8
0.27
17
11.7
0.17
13 


LYD35
60949.1
228.1
0.02
30
2306.2
0.06
41





LYD35
60950.2
229.4
0.17
31
2293.8
0.17
40





LYD287
60145.3






11.0
0.29
7


LYD253
60841.3
212.5
0.05
21
2256.2
L
38
10.9
0.04
5


LYD253
60841.4
223.8
0.21
28
2162.5
0.17
32





LYD253
60842.1






11.1
0.21
7


LYD240
60965.1
213.1
0.04
22
2118.8
0.02
30
10.8
0.08
4


LYD240
60965.4






10.9
0.25
6


LYD240
60968.2
199.4
0.26
14
1900.0
0.21
16
11.0
0.29
7


LYD240
60968.4






10.7
0.05
4


LYD232
61641.1
210.0
0.05
20
1900.0
0.12
16
11.9
0.17
15 


LYD228
60403.2






10.6
0.15
2


LYD227
60547.3






10.9
L
6


LYD227
60548.3






11.2
0.17
8


LYD219
60673.2
261.9
0.28
49
2356.2
0.15
44
10.7
0.23
4


LYD219
60673.4
238.8
0.11
36
2462.5
0.08
51
11.6
0.21
13 


LYD219
60674.4
254.4
L
45
2575.0
0.16
58
11.4
0.12
11 


LYD214
60127.5






10.8
0.26
5


LYD211
60307.1



1806.2
0.29
11





LYD211
60309.6






11.6
0.19
12 


LYD204
60703.1






11.2
L
8


LYD204
60704.1
245.6
0.17
40
2431.2
0.06
49
10.9
L
5


LYD193
60504.2






11.1
0.01
8


LYD193
60505.2






11.2
L
9


LYD193
60506.1






11.0
L
7


LYD193
60506.4






11.6
0.25
12 


LYD180
60462.2
200.0
0.16
14
1950.0
0.09
19
10.9
0.25
6


LYD180
60464.4
280.6
0.05
60
2656.2
L
63
10.9
0.10
6


LYD180
60465.2
230.0
L
31
2225.0
L
36
11.1
0.01
8


LYD180
60465.4






10.9
L
5


LYD178
61689.2
219.8
0.24
25
2083.9
0.26
28
10.7
0.05
4


LYD178
61690.1






10.7
0.23
4


LYD178
61691.4






11.1
0.07
7


LYD174
60816.4






11.7
L
13 


LYD174
60821.1






11.2
0.27
8


LYD16
60315.3
201.9
0.14
15
1906.2
0.19
17
10.8
0.29
4


LYD159
60662.6






11.3
L
10 


LYD159
60665.5






11.1
0.21
7


LYD148
60432.4
257.1
0.03
47
2521.4
0.01
54





LYD144
60864.2
260.6
L
49
2643.8
0.02
62
11.2
L
8


LYD144
60866.1



2343.8
0.29
43





LYD140
60382.3






11.4
0.08
10 


LYD140
60383.2






11.2
0.05
8


LYD140
60384.2
191.9
0.30
 9
1831.2
0.25
12





LYD136
60444.1
249.4
0.06
42
2487.5
0.14
52





LYD136
60444.3
239.4
0.05
37
2375.0
0.11
45





LYD127
60683.1
201.9
0.20
15
1937.5
0.12
19





LYD127
60683.4
220.6
0.18
26



10.9
0.21
5


LYD125
60822.3
216.9
0.08
24
2081.2
0.02
27
11.4
L
10 


LYD125
60823.3
246.9
0.09
41
2562.5
0.03
57
11.3
0.14
10 


LYD123
60786.3
218.1
0.03
24
2125.0
0.01
30
11.2
L
9


LYD123
60788.1






11.6
L
13 


LYD123
60788.4






10.8
0.29
4


LYD123
60789.1
233.1
0.21
33
2368.8
0.06
45
12.1
0.07
17 


LYD110
60391.2






10.6
0.17
3


CONT.

175.2


1633.7


10.3




LYD82
61058.3
258.1
0.26
14
2275.0
0.08
10





LYD80
61048.3
251.2
0.09
11








LYD69
61028.1
242.5
0.12
 7








LYD69
61028.5
249.4
0.07
10



11.8
0.21
7


LYD67
60632.1



2306.2
0.25
12
11.5
0.07
4


LYD67
60633.7
248.8
0.23
10
2343.8
0.03
14
11.7
0.25
6


LYD67
60634.1
286.2
0.27
26








LYD67
60635.3
253.1
0.02
12








LYD59
61010.1






11.5
0.28
4


LYD59
61011.1
251.9
0.07
11
2300.0
0.09
12
11.4
0.14
3


LYD59
61011.2
265.6
L
17








LYD59
61013.4
246.9
0.13
 9








LYD58
61100.2






11.4
0.02
4


LYD58
61100.3
282.5
0.13
25
2400.0
0.01
16





LYD58
61101.3
271.9
0.14
20
2362.5
0.23
15





LYD51
60266.6
245.0
0.12
 8








LYD51
60269.3






11.9
L
8


LYD51
60269.6






12.0
0.29
9


LYD5
61086.3






11.5
0.28
4


LYD5
61087.2



2475.0
0.21
20





LYD48
61034.2



2650.0
0.29
29





LYD48
61035.3
255.6
L
13
2368.8
0.02
15





LYD48
61038.2
298.1
0.03
32
2593.8
L
26
11.4
0.22
4


LYD42
60729.2
267.5
0.22
18



11.5
L
4


LYD42
60729.3
266.2
0.21
18
2368.8
0.02
15





LYD42
60730.2



2441.1
0.03
18





LYD42
60731.4
263.1
0.22
16








LYD41
60757.2
248.1
0.06
10
2481.2
0.15
20





LYD41
60758.3






11.4
0.03
3


LYD41
60760.3
278.1
0.11
23








LYD40
61213.2
286.2
0.02
26








LYD36
60980.1






11.9
0.17
8


LYD36
60980.2
290.0
L
28
2643.8
L
28





LYD34
60270.4






11.5
0.28
4


LYD34
60270.6






12.1
0.15
9


LYD288
60764.1



2318.8
0.14
12





LYD288
60764.2
260.0
L
15
2356.2
0.03
14





LYD288
60766.2



2318.8
0.06
12





LYD288
60766.4






11.5
0.28
4


LYD285
60721.2
270.6
0.14
19
2443.8
L
19
11.9
L
7


LYD285
60722.4



2275.0
0.08
10
11.4
0.14
3


LYD285
60723.2
328.8
L
45
2637.5
L
28





LYD285
60724.1
268.1
0.02
18
2406.2
0.14
17
12.0
L
9


LYD278
61022.4






11.6
0.14
5


LYD278
61024.2






11.4
0.03
3


LYD278
61026.4






11.3
0.09
2


LYD276
61016.1
287.5
0.06
27
2800.0
0.24
36
11.9
L
7


LYD256
60741.1
256.9
0.02
13
2412.5
0.01
17
11.4
0.02
4


LYD256
60741.2
275.6
0.01
22
2512.5
0.12
22
11.7
0.25
6


LYD256
60742.1






11.6
L
5


LYD256
60743.3
331.9
L
47
2712.5
L
32
11.9
0.13
7


LYD256
60743.4
276.9
0.07
22








LYD250
61224.2
316.2
0.25
40
2612.5
0.06
27
11.9
0.05
8


LYD250
61224.7



2568.8
0.26
25





LYD250
61225.4






11.7
0.25
6


LYD221
60348.3






11.2
0.15
2


LYD221
60351.3






12.0
0.10
9


LYD197
60986.3



2418.8
0.24
17





LYD197
60988.2
319.4
0.27
41
2606.2
0.13
26





LYD197
60989.4






11.7
L
6


LYD195
60252.1



2262.5
0.09
10





LYD195
60253.2



2376.8
0.22
15





LYD195
60256.1
282.5
0.26
25
2493.8
0.09
21
11.4
0.02
4


LYD195
60257.2



2387.5
0.14
16





LYD18
61216.2



2212.5
0.21
 7





LYD18
61216.4
257.5
0.02
14
2312.5
0.06
12





LYD18
61217.4
318.8
0.07
41
2768.8
L
34
12.3
0.11
11 


LYD18
61218.6
275.0
0.18
21
2468.8
0.16
20





LYD176
61040.2






11.3
0.09
2


LYD176
61041.1






11.8
0.29
6


LYD176
61041.4
278.8
0.20
23



11.9
0.05
8


LYD176
61044.4
263.8
0.29
16



12.1
L
10 


LYD172
61066.4






11.6
0.03
5


LYD172
61067.3






11.4
0.02
4


LYD166
60998.3
306.7
L
35
2785.4
L
35
11.2
0.15
2


LYD166
60999.1
256.2
0.11
13
2443.8
0.02
19





LYD166
61000.2
286.9
L
27
2625.0
L
27
11.7
0.10
6


LYD166
61000.4
295.6
0.02
31
2437.5
0.02
18
11.4
0.22
4


LYD139
60318.1
301.9
0.15
33
2493.8
L
21
11.8
0.02
6


LYD139
60319.8
315.0
L
39
2643.8
L
28
11.5
0.07
4


LYD139
60320.5
246.9
0.06
 9
2212.5
0.20
 7





LYD139
60320.8
323.1
0.25
43








LYD139
60321.6



2406.2
L
17





LYD133
61234.1






12.4
0.06
12 


LYD133
61237.3






11.6
0.21
5


LYD119
61004.2






12.0
L
9


LYD119
61005.4






11.6
0.14
5


LYD113
60782.1
281.2
L
24
2568.8
L
25





LYD113
60782.4






11.4
0.03
3


LYD105
60649.2
276.9
L
22
2500.0
L
21
11.6
0.21
5


LYD105
60652.2
261.2
0.19
15
2387.5
0.01
16





LYD105
60652.4
273.1
0.13
21
2487.5
L
21





LYD105
60653.2



2257.1
0.12
 9





CONT.

226.5


2061.7


11.0




LYD97
60081.2
146.2
0.05
12
1768.8
0.19
16
10.8
0.25
6


LYD97
60082.1



1662.5
0.24
 9





LYD76
60288.4
142.5
0.18
 9



10.7
0.09
5


LYD53
60206.2
141.9
0.03
 9








LYD44
60248.2
156.2
0.27
20
1875.0
0.28
23





LYD246
60214.2



1706.2
0.24
12





LYD234
60182.3
141.2
0.21
 8








LYD224
60040.1
156.2
0.20
20








LYD220
60224.1
163.1
0.29
25
2075.0
0.20
36





LYD22
60043.1



1768.8
0.26
16





LYD22
60043.4



1637.5
0.24
 8





LYD217
60051.2
142.5
0.05
 9








LYD214
60126.1






10.6
0.16
4


LYD208
60064.1



1837.5
0.01
21





LYD208
60064.6
139.4
0.09
 7








LYD208
60064.8
141.9
0.08
 9
1712.5
0.07
12





LYD186
60237.1
148.1
0.23
13
1768.8
0.06
16





LYD184
60229.1
155.0
0.17
19
2150.0
0.02
41
10.9
0.19
7


LYD173
60140.1
147.5
0.01
13








LYD146
60024.2
140.0
0.09
 7
1737.5
0.25
14





LYD13
60193.1
153.8
L
18
1687.5
0.14
11





LYD13
60193.3
136.9
0.17
 5








LYD13
60193.4






10.8
0.10
6


LYD117
60033.6



2125.0
0.07
40
11.9
L
17 


LYD101
60075.3
145.0
0.06
11
1700.0
0.09
12





CONT.

130.6


1522.9


10.2




LYM104
12913.2
265.6
0.25
 2








LYD99
60328.6



2787.5
0.03
 7





LYD95
61199.1
280.0
L
 8








LYD84
61133.5
283.8
0.24
 9








LYD84
61134.3
304.4
L
17
3012.5
0.04
15
10.8
L
9


LYD72
61164.1



2700.9
0.18
 4





LYD72
61164.3
281.9
L
 9








LYD72
61165.4



2731.2
0.16
 5
10.4
0.11
4


LYD63
61229.8
272.5
0.15
 5



10.6
0.26
6


LYD63
61230.2






11.4
0.18
14 


LYD63
61231.1



2712.5
0.16
 4
10.3
0.11
4


LYD58
61306.2






10.6
0.10
6


LYD58
61307.3






10.5
0.21
5


LYD58
61310.4






10.8
0.04
9


LYD37
60162.3
285.0
0.01
10



10.8
0.11
8


LYD286
61701.4
287.5
0.17
11
2775.0
0.15
 6





LYD283
61317.4






10.6
0.03
7


LYD283
61319.3






10.4
0.04
5


LYD270
61370.4






10.3
0.11
4


LYD270
61374.2



2862.5
0.18
10





LYD268
61152.3






10.4
0.04
5


LYD260
61368.1
272.5
0.15
 5








LYD26
61168.1






10.4
0.04
5


LYD26
61170.1
292.5
0.22
13



10.2
0.27
2


LYD26
61171.1
294.6
L
13
2879.5
0.18
10





LYD259
61300.3



2718.8
0.20
 4





LYD259
61301.1
277.5
0.08
 7



10.4
0.16
5


LYD259
61301.2
321.2
0.08
24
3056.2
0.25
17





LYD259
61302.3
292.5
L
13
3012.5
0.16
15
10.6
0.29
7


LYD252
61054.3
290.0
L
12
2918.8
0.08
12





LYD252
61055.2






10.3
0.11
4


LYD252
61055.3
310.6
L
20
3156.2
0.10
21
10.2
0.23
3


LYD236
60188.3






10.2
0.23
3


LYD236
60188.4






11.0
0.26
10 


LYD230
61332.1



2885.7
0.11
11





LYD230
61332.3
276.9
0.06
 7








LYD230
61333.4






10.8
0.16
9


LYD230
61334.5
282.9
0.07
 9








LYD230
61335.2






10.4
0.04
5


LYD223
61193.3



3106.2
L
19





LYD223
61194.2
281.2
0.19
 8
2718.8
0.20
 4





LYD223
61194.4
286.7
0.19
10








LYD223
61195.3



2950.0
0.01
13





LYD223
61196.3
312.5
0.13
20
3156.2
0.16
21





LYD222
61328.1



3037.5
L
16





LYD222
61329.1
281.9
0.25
 9








LYD222
61329.2
272.5
0.04
 5








LYD222
61329.3
273.1
0.11
 5
2887.5
0.12
11





LYD21
61359.1






10.2
0.23
3


LYD187
61314.1
276.9
0.06
 7








LYD187
61314.2






10.6
0.10
6


LYD187
61314.4






10.2
0.27
2


LYD152
61352.1
271.9
0.13
 5



11.8
0.02
18 


LYD152
61352.4
297.5
L
15



10.4
0.16
5


LYD152
61353.1






11.0
0.26
10 


LYD152
61355.3






10.5
0.21
5


LYD150
61323.2






10.8
0.01
8


LYD150
61324.1






10.9
L
9


LYD150
61324.2






11.7
0.17
17 


LYD150
61325.4






11.0
L
10 


LYD126
61377.3






10.6
0.02
6


LYD126
61378.2






10.9
0.29
9


LYD126
61380.4
267.4
0.16
 3








LYD118
60747.2
273.1
0.18
 5



10.8
0.11
8


LYD118
60749.1






11.8
L
18 


LYD118
60749.3






10.7
L
7


LYD115
61350.3






10.6
0.03
7


LYD114
61383.6






10.5
0.03
5


LYD114
61384.2
305.6
0.05
18
2950.0
0.05
13
10.9
L
10 


LYD114
61385.2
293.1
L
13








LYD112
61144.1






10.2
0.23
3


LYD109
61177.4






10.3
0.11
4


LYD109
61178.3
268.1
0.14
3



10.9
0.29
9


LYD108
61294.1






11.1
0.11
11 


LYD108
61295.1






10.4
0.30
4


LYD106
61140.2






10.5
0.05
5


LYD106
61141.3
330.0
0.29
27








CONT.

259.6


2608.3


10.0




LYM275
 13193.17
332.5
L
28
3062.5
L
17





LYD273*







8 
L
14 





Table 45.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value, L-p < 0.01.


*measured at day 9 from planting













TABLE 46







Genes showing improved plant performance at Normal growth


conditions under regulation of 6669 promoter











Plot Coverage
Rosette Area
Rosette Diameter



[cm2]
[cm2]
[cm]

















Gene


P-
%

P-
%

P-
%


Name
Event #
Ave.
Val.
Incr.
Ave.
Val.
Incr.
Ave.
Val.
Incr.




















LYD84
61134.3
77.5
L
29
9.7
L
29
5.2
L
12


LYD63
61230.2






5.0
0.14
7


LYD62
60812.4






5.2
0.24
12


LYD62
60813.3
65.1
0.19
 9
8.1
0.19
 9
4.9
0.26
6


LYD37
60164.2
69.2
0.19
16
8.6
0.19
16
5.0
0.25
8


LYD35
60947.5
75.2
0.17
26
9.4
0.17
26
5.2
0.11
12


LYD35
60950.2
68.8
L
15
8.6
L
15
4.9
L
7


LYD268
61153.3
65.6
0.10
10
8.2
0.10
10
4.8
0.05
3


LYD26
61168.1






4.7
0.26
2


LYD252
61055.2
63.1
0.12
 5
7.9
0.12
 5
4.8
0.06
3


LYD233
60733.1
72.6
0.11
21
9.1
0.11
21
5.1
0.04
10


LYD223
61194.4
78.0
L
30
9.8
L
30
5.3
L
14


LYD223
61195.3
66.7
0.30
11
8.3
0.30
11





LYD113
60785.3
64.9
0.16
 8
8.1
0.16
 8
4.8
0.20
4


LYD109
61174.2






4.9
0.09
6


LYD109
61178.3
66.2
0.05
11
8.3
0.05
11
4.9
0.17
6


LYD106
61140.2
66.8
L
12
8.3
L
12
4.9
0.07
6


CONT.

59.9


7.5


4.6




LYD96
60285.1
63.9
0.08
22
8.0
0.08
22
4.5
0.16
11


LYD90
60828.1
66.9
L
28
8.4
L
28
4.7
0.02
14


LYD90
60831.5
85.2
0.04
63
10.7
0.04
63
5.2
0.03
29


LYD81
60940.3
91.6
0.26
75
11.4
0.26
75
5.3
0.22
31


LYD81
60944.4






5.3
0.26
30


LYD81
60944.8
82.4
0.24
57
10.3
0.24
57
5.0
0.14
24


LYD71
60641.2
63.8
0.10
22
8.0
0.10
22
4.5
0.06
11


LYD70
60853.4
79.8
L
52
10.0
L
52
5.1
L
26


LYD7
60668.1
71.0
L
36
8.9
L
36
4.8
0.02
17


LYD7
60671.2
83.5
L
59
10.4
L
59
5.1
L
25


LYD65
60626.2
66.5
0.04
27
8.3
0.04
27
4.7
0.04
15


LYD62
60813.3
64.6
0.02
23
8.1
0.02
23
4.6
0.06
13


LYD49
60710.2
84.8
0.29
62
10.6
0.29
62
5.3
0.19
30


LYD49
60712.1
74.2
L
42
9.3
L
42
5.0
L
22


LYD49
60713.2
63.4
0.18
21
7.9
0.18
21
4.6
0.03
12


LYD49
60714.1
68.5
0.04
31
8.6
0.04
31
4.7
L
16


LYD35
60946.1
88.3
L
69
11.0
L
69
5.3
L
31


LYD35
60946.6






5.9
0.24
46


LYD35
60947.5
78.4
L
50
9.8
L
50
5.0
L
23


LYD35
60949.1
81.7
0.05
56
10.2
0.05
56
5.1
L
24


LYD35
60950.2
84.9
0.13
62
10.6
0.13
62
5.2
0.02
28


LYD287
60145.3
60.8
0.08
16
7.6
0.08
16
4.3
0.20
6


LYD253
60841.3
76.6
L
46
9.6
L
46
5.0
L
23


LYD253
60841.4
76.1
0.26
45
9.5
0.26
45
4.8
0.19
19


LYD240
60965.1
76.1
L
45
9.5
L
45
5.0
L
23


LYD240
60965.4






5.4
0.24
32


LYD240
60968.2
65.9
0.19
26
8.2
0.19
26
4.6
0.19
14


LYD240
60968.4
64.2
0.04
23
8.0
0.04
23
4.5
0.03
11


LYD232
61641.1
80.8
0.24
54
10.1
0.24
54
5.1
0.12
25


LYD228
60402.3
58.0
0.21
11
7.3
0.21
11
4.3
0.19
6


LYD228
60403.2
69.9
0.20
34
8.7
0.20
34
4.7
0.16
15


LYD227
60547.3
64.3
0.21
23
8.0
0.21
23
4.5
0.21
11


LYD227
60548.3






5.0
0.27
23


LYD219
60673.1






4.3
0.21
6


LYD219
60673.2
80.7
L
54
10.1
L
54
5.0
0.02
23


LYD219
60673.4
86.0
0.18
64
10.7
0.18
64
5.2
0.08
28


LYD219
60674.4
94.6
0.12
81
11.8
0.12
81
5.4
0.05
34


LYD219
60675.1
61.6
0.09
18
7.7
0.09
18
4.4
0.17
9


LYD214
60127.5



7.6
0.09
16
4.6
0.05
14


LYD211
60307.1
66.4
0.02
27
8.3
0.02
27
4.6
0.02
14


LYD211
60309.6
62.6
0.05
20
7.8
0.05
20
4.5
0.08
10


LYD204
60703.1
71.9
0.15
37
9.0
0.15
37
4.8
0.10
18


LYD204
60704.1
89.8
0.11
72
11.2
0.11
72
5.5
0.02
34


LYD202
60423.4






4.3
0.28
6


LYD193
60504.2






5.3
0.29
30


LYD193
60506.1
59.9
0.15
14
7.5
0.15
14
4.4
0.19
8


LYD193
60506.4
75.2
0.26
44
9.4
0.26
44
5.0
0.25
24


LYD180
60462.2
72.2
L
38
9.0
L
38
4.8
L
17


LYD180
60464.4
94.1
L
80
11.8
L
80
5.5
L
36


LYD180
60465.2
80.2
L
53
10.0
L
53
5.1
0.01
26


LYD178
61689.2
79.4
L
52
9.9
L
52
5.1
0.01
24


LYD178
61690.1
70.6
L
35
8.8
L
35
4.7
L
16


LYD178
61691.2
65.7
0.29
25
8.2
0.29
25





LYD178
61691.4
77.7
0.16
48
9.7
0.16
48
4.9
0.16
20


LYD174
60816.4
91.8
0.29
75
11.5
0.29
75
5.4
0.24
32


LYD174
60817.3
66.2
0.02
26
8.3
0.02
26
4.6
0.03
14


LYD174
60817.4
71.1
0.08
36
8.9
0.08
36
4.8
0.07
18


LYD16
60314.1
59.9
0.11
14
7.5
0.11
14
4.4
0.09
8


LYD16
60315.3
69.0
0.06
32
8.6
0.06
32
4.9
0.07
19


LYD159
60665.5






4.9
0.29
21


LYD148
60432.4
72.9
L
39
9.1
L
39
4.8
L
19


LYD144
60864.2
89.2
L
70
11.2
L
70
5.5
L
34


LYD144
60866.1






5.3
0.29
30


LYD144
60866.5






5.2
0.18
27


LYD140
60383.2
78.0
0.20
49
9.8
0.20
49
4.9
0.25
21


LYD140
60383.3
65.1
0.03
24
8.1
0.03
24
4.6
0.02
13


LYD140
60384.2
67.6
0.01
29
8.4
0.01
29
4.7
L
15


LYD136
60444.1
90.3
0.17
72
11.3
0.17
72
5.4
0.09
32


LYD136
60444.3
84.9
0.16
62
10.6
0.16
62
5.4
0.12
34


LYD127
60681.1
61.7
0.21
18
7.7
0.21
18
4.4
0.29
9


LYD127
60683.1
65.7
0.26
25
8.2
0.26
25
4.7
0.10
16


LYD125
60822.3
88.1
0.01
68
11.0
0.01
68
5.2
0.02
29


LYD125
60823.3
91.7
0.13
75
11.5
0.13
75
5.5
0.07
35


LYD125
60826.2
87.4
0.25
67
10.9
0.25
67
5.2
0.20
27


LYD123
60786.3
96.5
0.06
84
12.1
0.06
84
5.5
L
36


LYD123
60788.4
72.0
0.26
38
9.0
0.26
38
4.9
0.24
21


LYD123
60789.1
95.6
0.05
83
11.9
0.05
83
5.5
L
35


LYD123
60789.2
64.3
0.05
23
8.0
0.05
23
4.6
0.09
13


CONT.

52.4


6.5


4.1




LYD82
61058.3
89.9
0.04
10
11.2
0.04
10
5.5
0.02
7


LYD80
61050.1
103.7
0.19
27
13.0
0.19
27
5.8
0.18
12


LYD69
61028.1
86.7
0.12
 7
10.8
0.12
 7





LYD69
61029.1






5.6
0.29
7


LYD69
61030.3
87.2
0.09
 7
10.9
0.09
 7
5.4
0.14
4


LYD69
61030.5
101.4
0.25
25
12.7
0.25
25





LYD67
60633.7
95.4
L
17
11.9
L
17
5.5
L
6


LYD67
60635.3
94.8
0.28
16
11.8
0.28
16





LYD59
61011.2
101.7
L
25
12.7
L
25
5.9
0.02
14


LYD59
61013.4
105.7
0.08
30
13.2
0.08
30
5.9
0.17
12


LYD58
61100.3
97.2
L
19
12.2
L
19
5.7
L
10


LYD58
61101.3
98.4
L
21
12.3
L
21
5.6
0.19
8


LYD58
61102.1
90.3
0.21
11
11.3
0.21
11
5.4
0.23
3


LYD51
60266.5
95.9
0.22
18
12.0
0.22
18





LYD51
60266.6
98.6
0.08
21
12.3
0.08
21
5.7
0.08
9


LYD51
60269.1
115.2
0.12
42
14.4
0.12
42
6.3
L
21


LYD51
60269.3
111.4
0.28
37
13.9
0.28
37





LYD51
60269.6
96.3
0.24
18
12.0
0.24
18
5.6
0.26
7


LYD5
61086.3
95.9
0.15
18
12.0
0.15
18





LYD48
61036.3
93.6
0.05
15
11.7
0.05
15
5.7
0.05
9


LYD48
61038.2
105.9
0.18
30
13.2
0.18
30
5.9
0.11
13


LYD40
61213.2
105.6
0.02
30
13.2
0.02
30
6.0
0.02
15


LYD36
60980.2
125.9
0.29
55
15.7
0.29
55





LYD36
60980.3
106.0
L
30
13.2
L
30
5.9
L
13


LYD36
60982.1
106.9
0.28
31
13.4
0.28
31
5.9
0.19
13


LYD34
60270.4
100.4
0.23
23
12.6
0.23
23





LYD34
60270.6
107.9
L
33
13.5
L
33
5.8
0.06
12


LYD34
60271.2
88.9
0.02
 9
11.1
0.02
 9
5.3
0.20
2


LYD34
60271.3
106.9
0.26
31
13.4
0.26
31
6.0
0.15
15


LYD34
60272.5
100.5
0.21
24
12.6
0.21
24





LYD288
60763.3
101.7
0.19
25
12.7
0.19
25
5.8
0.18
11


LYD288
60764.2






5.4
0.20
3


LYD285
60721.2
109.9
L
35
13.7
L
35
5.9
L
13


LYD285
60722.4
107.1
0.06
32
13.4
0.06
32
6.1
0.09
18


LYD278
61022.4
99.2
0.24
22
12.4
0.24
22
5.6
0.14
8


LYD278
61024.2
95.8
L
18
12.0
L
18
5.5
0.02
6


LYD276
61016.1
120.5
0.12
48
15.1
0.12
48
6.3
0.13
22


LYD276
61016.3
92.8
L
14
11.6
L
14
5.5
0.05
5


LYD276
61020.4






5.4
0.28
3


LYD256
60741.1
108.0
0.13
33
13.5
0.13
33
6.0
0.11
14


LYD256
60741.2
116.7
0.03
43
14.6
0.03
43
6.1
0.03
17


LYD256
60743.3
120.5
0.22
48
15.1
0.22
48
6.3
0.24
20


LYD256
60743.4
100.6
0.26
24
12.6
0.26
24
5.6
0.28
8


LYD250
61222.3
91.7
0.24
13
11.5
0.24
13
5.4
0.19
4


LYD250
61224.3
92.0
0.23
13
11.5
0.23
13





LYD250
61224.7
112.1
0.11
38
14.0
0.11
38
6.0
0.03
15


LYD233
60733.1
89.7
0.02
10
11.2
0.02
10
5.4
0.18
4


LYD233
60733.2






5.4
0.14
5


LYD228
60403.4
88.1
0.27
 8
11.0
0.27
 8
5.6
L
8


LYD221
60351.3
98.8
L
21
12.4
L
21
5.8
0.16
11


LYD197
60986.3
98.1
0.24
21
12.3
0.24
21
5.6
0.29
8


LYD197
60988.2
116.1
0.06
43
14.5
0.06
43
6.2
0.14
19


LYD197
60989.4
87.5
0.18
 8
10.9
0.18
 8





LYD197
60990.3
111.1
0.16
37
13.9
0.16
37
5.9
0.24
14


LYD195
60252.1
90.8
0.21
12
11.3
0.21
12
5.6
0.02
8


LYD195
60253.2
89.1
0.02
 9
11.1
0.02
 9
5.4
0.07
3


LYD195
60256.1
106.9
L
31
13.4
L
31
5.9
0.02
13


LYD195
60257.2
115.6
0.25
42
14.5
0.25
42
6.4
0.23
23


LYD18
61216.2
113.8
0.25
40
14.2
0.25
40
6.1
0.26
16


LYD18
61216.4
105.2
0.04
29
13.1
0.04
29
6.0
0.07
15


LYD18
61217.4
125.0
0.07
54
15.6
0.07
54
6.3
0.11
21


LYD18
61218.1
97.3
0.28
20
12.2
0.28
20
5.7
0.21
10


LYD18
61218.6
107.7
0.17
32
13.5
0.17
32
6.0
0.21
14


LYD176
61040.2
99.6
L
22
12.4
L
22
5.7
0.07
9


LYD176
61041.4
117.7
L
45
14.7
L
45
6.2
L
19


LYD176
61043.1
85.7
0.13
 5
10.7
0.13
 5





LYD176
61044.4
103.3
0.22
27
12.9
0.22
27
5.9
0.14
14


LYD172
61066.3
93.0
L
14
11.6
L
14
5.5
0.15
5


LYD172
61066.4
113.5
0.26
40
14.2
0.26
40





LYD172
61067.3
95.6
0.27
17
11.9
0.27
17
5.6
0.06
8


LYD166
60999.1
106.1
L
30
13.3
L
30
5.8
0.05
12


LYD166
61000.2
111.0
0.05
36
13.9
0.05
36
6.0
L
15


LYD166
61000.4
105.9
L
30
13.2
L
30
5.9
0.06
14


LYD139
60318.1
102.5
0.16
26
12.8
0.16
26
6.0
0.11
15


LYD139
60319.8
120.3
L
48
15.0
L
48
6.2
L
19


LYD139
60321.6
103.2
L
27
12.9
L
27
5.8
L
11


LYD133
61234.1
93.1
0.01
14
11.6
0.01
14
5.5
L
6


LYD133
61237.2
84.4
0.29
 4
10.5
0.29
 4





LYD133
61237.3
92.9
0.18
14
11.6
0.18
14
5.5
0.29
6


LYD119
61005.4
99.3
L
22
12.4
L
22
5.7
L
9


LYD119
61006.1
89.1
0.15
10
11.1
0.15
10
5.5
L
6


LYD118
60745.4
91.8
0.05
13
11.5
0.05
13
5.4
0.25
4


LYD113
60782.1
106.6
L
31
13.3
L
31
5.7
L
9


LYD113
60785.3
91.3
0.09
12
11.4
0.09
12
5.3
0.30
2


LYD105
60649.2
99.4
L
22
12.4
L
22
5.9
L
14


LYD105
60652.2
98.5
0.23
21
12.3
0.23
21





LYD105
60652.4
118.6
0.25
46
14.8
0.25
46
6.2
0.14
20


LYD105
60653.2
102.0
L
25
13.7
0.16
34
6.0
0.22
15


LYD105
60653.4
88.3
0.02
 9
11.0
0.02
 9
5.5
L
5


CONT.

81.4


10.2


5.2




LYD97
60081.2
80.4
0.08
17
10.0
0.08
17
5.4
0.16
11


LYD85
60014.4
75.6
0.04
10
9.5
0.04
10
5.3
L
8


LYD76
60289.3
80.9
0.25
18
10.1
0.25
18
5.4
0.16
11


LYD76
60291.3
77.1
0.28
12
9.6
0.28
12
5.4
0.26
12


LYD55
60175.2






5.2
0.05
6


LYD53
60206.2






5.1
0.07
4


LYD224
60040.1






5.4
0.25
11


LYD220
60223.1
76.1
0.18
11
9.5
0.18
11
5.2
0.01
6


LYD220
60224.1
95.5
0.17
39
11.9
0.17
39
5.9
0.20
21


LYD22
60043.1
80.4
L
17
10.0
L
17
5.4
L
11


LYD217
60048.4






5.0
0.25
2


LYD214
60126.1
76.3
0.07
11
9.5
0.07
11
5.2
L
7


LYD213
60058.3
82.3
0.17
20
10.3
0.17
20
5.6
0.10
15


LYD208
60064.1
87.5
0.10
27
10.9
0.10
27
5.8
0.15
19


LYD208
60064.6
84.2
0.24
22
10.5
0.24
22
5.5
0.25
12


LYD208
60064.8
85.3
0.09
24
10.7
0.09
24
5.6
0.21
15


LYD20
60069.3
74.6
0.07
 8
9.3
0.07
 8
5.4
L
10


LYD20
60070.1






5.1
0.28
6


LYD190
60242.2
78.9
0.23
15
9.9
0.23
15
5.3
L
8


LYD186
60237.1
80.9
0.16
18
10.1
0.16
18
5.4
0.16
10


LYD186
60237.4






5.0
0.26
2


LYD184
60229.1
91.2
0.17
33
11.4
0.17
33
5.7
0.16
16


LYD146
60024.2






5.3
0.25
9


LYD146
60024.3






5.0
0.28
2


LYD13
60193.1
75.3
0.15
10
9.4
0.15
10
5.3
L
10


LYD13
60193.3






5.0
0.23
3


LYD122
60201.3






5.2
0.03
6


LYD117
60033.5






5.2
L
7


LYD117
60033.6
108.6
0.09
58
13.6
0.09
58
6.4
0.08
31


LYD101
60075.3
87.3
0.09
27
10.9
0.09
27
5.7
L
17


CONT.

68.8


8.6


4.9




LYD99
60328.6
57.8
0.19
14
7.2
0.19
14
4.7
0.16
7


LYD84
61134.3
61.0
0.03
20
7.6
0.03
20
4.7
0.11
7


LYD84
61134.4
59.2
0.06
17
7.4
0.06
17
4.7
0.07
9


LYD63
61230.2
68.6
0.24
36
8.6
0.24
36





LYD58
61306.2
62.4
0.07
23
7.8
0.07
23
4.8
0.08
11


LYD58
61306.6
61.2
0.19
21
7.7
0.19
21
4.8
0.11
11


LYD37
60162.3
59.1
0.07
17
7.4
0.07
17
4.7
0.08
8


LYD283
61317.4
61.3
0.08
21
7.7
0.08
21
4.8
0.06
10


LYD270
61374.2






4.6
0.21
5


LYD259
61302.3






4.6
0.18
5


LYD252
61055.3
56.6
0.15
12
7.1
0.15
12
4.6
0.11
7


LYD230
61333.4
60.0
0.19
19
7.5
0.19
19





LYD222
61327.3






4.6
0.25
5


LYD152
61352.1
73.4
L
45
9.2
L
45
5.1
L
18


LYD152
61352.4
57.0
0.13
13
7.1
0.13
13





LYD152
61355.3
61.7
0.03
22
7.7
0.03
22
4.8
0.04
11


LYD150
61324.1
63.8
0.05
26
8.0
0.05
26
4.8
0.24
10


LYD150
61325.4
58.8
0.13
16
7.4
0.13
16
4.7
0.06
9


LYD150
61326.1
63.9
0.01
26
8.0
0.01
26
4.8
0.08
9


LYD126
61376.1
58.3
0.22
15
7.3
0.22
15





LYD126
61380.4
64.8
0.25
28
8.1
0.25
28
4.9
0.03
14


LYD118
60747.2
61.3
0.04
21
7.7
0.04
21
4.8
0.04
10


LYD118
60749.1
68.1
0.28
35
8.5
0.28
35
4.9
0.24
13


LYD118
60749.3
61.1
0.16
21
7.6
0.16
21
4.7
0.23
8


LYD118
60749.4
59.0
0.08
17
7.4
0.08
17
4.6
0.17
6


LYD114
61383.3
58.0
0.11
15
7.2
0.11
15
4.7
0.08
8


LYD114
61383.6
59.7
0.07
18
7.5
0.07
18
4.6
0.16
7


LYD114
61384.2
58.3
0.28
15
7.3
0.28
15





LYD112
61144.1
57.0
0.18
13
7.1
0.18
13
4.7
0.10
7


LYD112
61147.1
59.5
0.05
18
7.4
0.05
18
4.6
0.17
6


LYD112
61147.2






4.6
0.22
5


LYD109
61175.3
58.3
0.09
15
7.3
0.09
15
4.7
0.09
7


LYD109
61177.4
55.6
0.22
10
7.0
0.22
10





LYD109
61178.3
61.3
0.03
21
7.7
0.03
21
4.8
0.03
10


LYD108
61296.1
59.9
0.05
18
7.5
0.05
18
4.6
0.25
6


LYD108
61297.2
57.2
0.28
13
7.2
0.28
13
4.6
0.23
6


CONT.

50.6


6.3


4.3







Table 46.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value, L-p < 0.01.













TABLE 47







Genes showing improved plant performance at Normal growth


conditions under regulation of 6669 promoter











RGR Of Leaf
RGR Of Plot
RGR Of Rosette



Number
Coverage
Diameter

















Gene


P-
%

P-
%

P-
%


Name
Event #
Ave.
Val.
Incr.
Ave.
Val.
Incr.
Ave.
Val.
Incr.




















LYD84
61134.3
0.9
L
35
10.0
0.01
31
0.5
0.06
15


LYD72
61165.4
0.8
0.23
16








LYD63
61229.8



9.6
0.04
26





LYD62
60810.2
0.8
0.08
22
9.0
0.14
18
0.5
0.14
12


LYD62
60812.4
0.9
0.05
25
9.7
0.03
27
0.5
0.09
14


LYD62
60813.3
0.8
0.13
20








LYD40
61211.2
0.9
0.07
23








LYD40
61213.2
0.8
0.26
14








LYD37
60164.2
0.8
0.24
15
8.8
0.20
15
0.4
0.29
9


LYD35
60947.5



9.6
0.03
26
0.5
0.12
13


LYD35
60950.2



8.7
0.23
14





LYD288
60766.4
0.8
0.18
17








LYD278
61022.3
0.8
0.18
18








LYD256
60741.2
0.8
0.26
15








LYD233
60733.1
1.0
L
40
9.4
0.05
24
0.5
0.03
18


LYD233
60733.2
0.8
0.08
23
9.2
0.09
21
0.5
0.08
14


LYD225
61083.1
0.8
0.18
17








LYD223
61194.4
1.0
L
40
10.0
0.01
31
0.5
0.06
16


LYD223
61195.3
0.8
0.11
20








LYD18
61218.6
0.9
0.07
23








LYD113
60781.4






0.4
0.21
10


LYD113
60782.4
0.8
0.13
20
8.6
0.29
13
0.5
0.17
11


LYD112
61147.1
0.8
0.20
17








LYD112
61148.1
0.8
0.22
16








LYD109
61174.2
0.8
0.17
18
8.7
0.25
14
0.4
0.24
10


LYD109
61178.2
0.8
0.23
15








LYD109
61178.3
0.8
0.14
19








LYD106
61140.2
0.8
0.22
16
8.6
0.27
13
0.4
0.22
10


CONT.

0.7


7.6


0.4




LYD287
60146.1






0.2
0.27
185


LYD253
60842.1



5.5
0.19
255 
0.2
0.28
183


LYD232
61641.1



5.3
0.22
242 





LYD204
60704.1



5.3
0.25
240 





LYD144
60866.1



6.5
0.12
318 
0.3
0.16
246


LYD140
60384.3



4.8
0.26
210 
0.2
0.29
178


LYD136
60444.3



5.5
0.21
256 
0.3
0.27
197


LYD125
60825.1



7.0
0.07
352 
0.3
0.09
287


LYD125
60826.2



6.1
0.15
292 
0.2
0.29
184


LYD123
60786.3



5.5
0.24
253 





LYD123
60789.1



5.0
0.30
223 





CONT.




1.6


0.1




LYD82
61058.3



10.9
0.26
12
0.5
0.13
12


LYD82
61061.3






0.5
0.06
15


LYD82
61061.4
0.8
0.18
13








LYD80
61048.2






0.5
0.29
8


LYD80
61049.4
0.8
0.17
13








LYD80
61050.1



12.6
L
29
0.5
0.04
16


LYD69
61028.5
0.8
0.12
15
11.1
0.19
14





LYD69
61029.1



11.8
0.05
21





LYD69
61030.3
0.7
0.24
12








LYD69
61030.5
0.7
0.21
12
12.4
0.01
27
0.5
0.08
14


LYD67
60632.1



12.1
0.03
24
0.5
0.12
12


LYD67
60633.4



12.8
L
31
0.5
0.24
9


LYD67
60633.7



11.5
0.09
18
0.5
0.27
8


LYD67
60634.1
0.7
0.25
11








LYD67
60635.3



11.3
0.15
15





LYD59
61010.1



10.9
0.28
12





LYD59
61011.2
0.7
0.29
10
12.5
L
28
0.5
0.01
20


LYD59
61013.4



12.8
L
32
0.5
0.05
15


LYD58
61100.2



12.8
0.02
31
0.5
0.03
20


LYD58
61100.3



11.8
0.05
20
0.5
0.06
14


LYD58
61101.3



11.9
0.04
22





LYD58
61102.1



10.8
0.29
11





LYD51
60266.5



11.8
0.05
21





LYD51
60266.6



12.0
0.03
23
0.5
0.19
10


LYD51
60269.1



13.8
L
41
0.5
L
21


LYD51
60269.3



13.3
L
36
0.5
0.24
9


LYD51
60269.6
0.7
0.29
10
11.5
0.09
18





LYD5
61086.3



11.4
0.11
17





LYD48
61036.3



11.6
0.07
19
0.5
0.05
15


LYD48
61038.2



13.1
L
34
0.5
L
21


LYD42
60729.3
0.7
0.28
10
11.7
0.07
20
0.5
0.02
19


LYD42
60731.4



12.6
0.01
29
0.5
0.03
18


LYD41
60758.2
0.8
0.03
22








LYD40
61210.1






0.5
0.18
10


LYD40
61211.2
0.8
0.20
12








LYD40
61213.2



12.6
L
29
0.5
0.04
16


LYD40
61214.4
0.8
0.15
15








LYD36
60980.1
0.7
0.21
12








LYD36
60980.2



15.4
L
58
0.6
L
26


LYD36
60980.3



12.9
L
32
0.5
0.02
18


LYD36
60982.1



12.9
L
32
0.5
0.10
13


LYD34
60270.4



11.9
0.04
22





LYD34
60270.6



12.7
L
30





LYD34
60271.3



12.8
L
32
0.5
0.05
15


LYD34
60272.5



12.3
0.01
26





LYD288
60763.3



12.0
0.04
22





LYD288
60766.2
0.8
0.07
17








LYD288
60766.4



11.8
0.05
21





LYD285
60721.2
0.8
0.13
15
13.3
L
36
0.5
0.05
15


LYD285
60722.4



13.0
L
34
0.5
L
24


LYD285
60724.1



14.1
L
45
0.6
L
25


LYD278
61022.4



11.8
0.05
21
0.5
0.29
8


LYD278
61024.2



11.6
0.08
18





LYD278
61026.3



10.9
0.28
12





LYD278
61026.4



11.2
0.16
15





LYD276
61016.1
0.8
0.08
16
14.7
L
51
0.5
L
23


LYD276
61016.3



11.1
0.17
14





LYD256
60741.1
0.7
0.29
10
13.0
L
34
0.5
0.05
15


LYD256
60741.2
0.8
0.08
17
14.1
L
44
0.5
0.02
18


LYD256
60742.1
0.8
0.08
17
10.9
0.26
12





LYD256
60743.3



14.8
L
52
0.5
L
23


LYD256
60743.4



12.2
0.02
25
0.5
0.26
9


LYD250
61222.3
0.8
0.18
13
10.9
0.26
12





LYD250
61224.2



15.1
L
54
0.6
L
27


LYD250
61224.3



10.9
0.24
12





LYD250
61224.7
0.8
0.04
20
13.6
L
39
0.5
0.02
17


LYD250
61225.4
0.8
0.02
23
11.0
0.23
13





LYD233
60733.1



11.0
0.23
12





LYD233
60733.2



10.9
0.28
11





LYD228
60402.3



11.3
0.15
16
0.5
0.16
11


LYD228
60403.2
0.7
0.29
10








LYD228
60403.4






0.5
0.12
12


LYD221
60348.1






0.5
0.22
9


LYD221
60349.3
0.8
0.15
14








LYD221
60350.2
0.8
0.20
13








LYD221
60351.3
0.8
0.04
19
12.0
0.03
23
0.5
0.15
11


LYD197
60986.3



11.8
0.05
21
0.5
0.18
10


LYD197
60988.2



14.2
L
46
0.5
L
24


LYD197
60990.3



13.3
L
37
0.5
0.08
14


LYD195
60256.1



13.0
L
33
0.5
0.06
14


LYD195
60257.2



13.9
L
42
0.6
L
27


LYD18
61216.2
0.8
0.12
16
13.8
L
41
0.5
0.03
18


LYD18
61216.4



12.5
L
28
0.5
0.05
15


LYD18
61217.4
0.8
0.07
17
15.4
L
58
0.6
L
27


LYD18
61218.1
0.8
0.06
18
11.6
0.08
19





LYD18
61218.6



13.0
L
33
0.5
0.02
18


LYD176
61040.2



11.9
0.04
22
0.5
0.22
9


LYD176
61041.1
0.8
0.11
16
11.9
0.04
22
0.5
0.12
12


LYD176
61041.4



14.3
L
46
0.5
L
21


LYD176
61044.4
0.8
0.21
12
12.7
L
30
0.5
0.04
16


LYD172
61066.3



11.2
0.15
15





LYD172
61066.4
0.8
0.06
18
13.9
L
43
0.5
L
24


LYD172
61067.3



11.5
0.10
18





LYD166
60998.3
0.7
0.26
12
14.1
L
45
0.5
0.02
21


LYD166
60998.4



11.5
0.12
18
0.5
0.14
12


LYD166
60999.1
0.8
0.02
23
12.7
L
30
0.5
0.16
11


LYD166
61000.2



13.5
L
38
0.5
0.01
20


LYD166
61000.4



12.9
L
32
0.5
0.06
14


LYD139
60318.1
0.7
0.25
11
12.2
0.02
25
0.5
0.08
14


LYD139
60319.8



14.6
L
50
0.5
L
22


LYD139
60320.5



11.9
0.05
22
0.5
0.10
13


LYD139
60320.8
0.8
0.12
15
12.3
0.02
26
0.5
0.15
12


LYD139
60321.6



12.5
L
28
0.5
0.06
15


LYD133
61234.1
0.8
0.08
17
11.0
0.22
13





LYD133
61237.2
0.8
0.10
16








LYD133
61237.3
0.8
0.11
15
11.0
0.20
13





LYD119
61005.4



11.8
0.05
21
0.5
0.28
8


LYD118
60745.4
0.7
0.24
11
11.1
0.17
14





LYD113
60780.2
0.8
0.14
14








LYD113
60781.4
0.8
0.04
23
10.9
0.30
11





LYD113
60782.1



12.8
L
31





LYD113
60785.3
0.8
0.14
14
10.9
0.26
12





LYD105
60649.2
0.7
0.28
10
12.0
0.03
23
0.5
0.02
18


LYD105
60652.2
0.8
0.01
26
11.9
0.04
22
0.5
0.05
16


LYD105
60652.4



14.5
L
49
0.5
L
22


LYD105
60653.2



12.3
0.02
26
0.5
0.06
15


CONT.

0.7


9.8


0.4




LYD97
60078.4
0.8
0.26
18








LYD97
60081.2
0.8
0.23
17
10.6
0.17
19
0.5
0.03
13


LYD97
60082.1
0.8
0.27
16



0.5
0.07
12


LYD85
60016.3
0.8
0.29
14








LYD79
60018.2






0.5
0.05
13


LYD76
60288.4
0.8
0.30
14
10.7
0.16
19
0.5
0.12
11


LYD76
60289.3



10.6
0.17
18
0.5
0.09
9


LYD76
60291.3



10.2
0.29
14
0.5
0.01
16


LYD55
60175.1






0.5
0.19
8


LYD55
60175.2






0.5
0.13
9


LYD53
60207.3
0.8
0.16
20








LYD44
60248.2



12.9
0.01
44
0.6
0.07
21


LYD33
60159.5






0.5
0.26
6


LYD234
60181.4






0.5
0.08
13


LYD234
60182.3






0.5
0.29
10


LYD224
60040.1



10.3
0.27
15
0.5
0.12
11


LYD224
60040.8






0.5
0.22
8


LYD220
60224.1



12.6
L
40
0.6
L
23


LYD220
60224.2






0.5
0.17
9


LYD22
60043.1
0.8
0.21
18
10.5
0.20
17
0.5
0.07
10


LYD22
60043.4






0.5
0.13
11


LYD217
60048.4






0.5
0.13
8


LYD214
60126.1






0.5
0.11
9


LYD213
60058.3



10.9
0.13
21
0.6
L
20


LYD208
60064.1



11.5
0.04
28
0.6
L
22


LYD208
60064.6



11.1
0.09
24
0.5
0.02
15


LYD208
60064.8



11.3
0.06
26
0.5
0.01
18


LYD20
60069.3
0.8
0.24
17



0.5
0.03
13


LYD20
60070.1






0.5
0.15
9


LYD194
60086.2






0.5
0.27
9


LYD190
60242.2
0.8
0.20
19
10.4
0.24
16
0.5
0.06
11


LYD186
60237.1



10.7
0.16
19
0.5
0.02
14


LYD186
60237.3






0.5
0.10
12


LYD184
60229.1
0.8
0.18
18
12.1
0.02
35
0.6
L
23


LYD184
60230.1






0.5
0.12
10


LYD146
60024.2






0.5
0.03
13


LYD13
60193.1






0.5
0.04
13


LYD13
60193.4
0.8
0.27
16



0.5
0.05
16


LYD122
60199.2






0.5
0.20
7


LYD122
60201.1
0.8
0.13
21



0.5
0.08
10


LYD122
60201.3






0.5
0.13
9


LYD117
60033.5






0.5
0.19
7


LYD117
60033.6
0.9
0.03
30
14.3
L
59
0.6
L
34


LYD101
60072.8






0.5
0.16
9


LYD101
60075.3



11.6
0.05
29
0.6
L
20


CONT.

0.7


9.0


0.5




LYD99
60328.6



7.2
0.29
15





LYD95
61202.3
0.7
0.27
13








LYD84
61133.5
0.7
0.18
16








LYD84
61134.3



7.5
0.16
20





LYD84
61134.4



7.4
0.21
18





LYD63
61230.2
0.8
0.08
24
8.5
0.03
35
0.4
0.19
14


LYD58
61306.2



7.7
0.11
23





LYD58
61306.6



7.6
0.15
21
0.4
0.17
14


LYD58
61307.3
0.7
0.20
14








LYD58
61310.4
0.8
0.11
19








LYD37
60162.3
0.7
0.23
13
7.3
0.23
17





LYD283
61317.4



7.6
0.15
21
0.4
0.25
12


LYD270
61370.4
0.7
0.29
11








LYD26
61169.2
0.7
0.28
13








LYD259
61301.1
0.7
0.19
14








LYD259
61302.3
0.7
0.15
16








LYD252
61055.3
0.7
0.12
17



0.4
0.18
13


LYD236
60188.1
0.7
0.25
14








LYD236
60188.4
0.7
0.15
17








LYD231
60715.3
0.8
0.13
21








LYD230
61333.4
0.8
0.07
20
7.4
0.21
18





LYD230
61335.2
0.7
0.19
14








LYD223
61195.3
0.7
0.17
16








LYD187
61314.4






0.4
0.21
13


LYD152
61352.1
0.8
0.08
22
9.1
L
45
0.4
0.13
16


LYD152
61353.1
0.7
0.30
13
7.9
0.12
26





LYD152
61355.3



7.6
0.13
21





LYD150
61323.2
0.7
0.12
18








LYD150
61324.1
0.7
0.18
15
7.9
0.07
27





LYD150
61324.2
0.8
0.02
30
7.9
0.15
27





LYD150
61325.4
0.7
0.13
17
7.2
0.29
15





LYD150
61326.1
0.8
0.12
21
7.9
0.06
26





LYD126
61376.1
0.7
0.22
14
7.2
0.28
15





LYD126
61377.3
0.8
0.09
19








LYD126
61378.2
0.7
0.13
18








LYD126
61380.4



8.1
0.06
29





LYD118
60747.2



7.5
0.18
19





LYD118
60749.1
0.8
0.02
28
8.4
0.04
35
0.4
0.24
13


LYD118
60749.3



7.5
0.17
20





LYD118
60749.4



7.3
0.23
17





LYD115
61349.2
0.7
0.14
17








LYD114
61383.3
0.7
0.27
13
7.3
0.23
17





LYD114
61383.6



7.4
0.21
18





LYD114
61384.2
0.8
0.02
26
7.3
0.24
16





LYD112
61147.1



7.3
0.23
17





LYD109
61177.4
0.7
0.20
15








LYD109
61178.3



7.5
0.17
19





LYD108
61294.1
0.7
0.13
18
8.4
0.04
34
0.4
0.24
14


LYD108
61295.1
0.7
0.19
15








LYD108
61296.1
0.7
0.17
15
7.4
0.21
18





LYD108
61297.2






0.4
0.25
12


LYD106
61140.2
0.7
0.26
12








LYD106
61140.4
0.7
0.18
15








CONT.

0.6


6.3


0.4







Table 47.


“CONT.”—Control;


“Ave.”—Average;


“% Incr.” = % increment;


“p-val.”—p-value, L-p < 0.01.













TABLE 48







Genes showing improved plant performance at Normal growth


conditions under regulation of 6669 promoter









Leaf Relative Area













Gene Name
Event #
Ave.
P-Val.
% Incr.







LYM275
13192.1
92.3
0.21
3







Table 48.



“CONT.”—Control;



“Ave.”—Average;



“% Incr.” = % increment;



“p-val.”—p-value, L-p < 0.01.






Example 17
Identification of a Novel Promoter from Arabidopsis

WO2004/081173 discloses the At6669 promoter (SEQ ID NO:8093 herein) which is capable of expressing a heterologous polynucleotide operably linked thereto in a host cell.


Experimental Procedures


Isolation of DNA regulatory elements (DREs): A high throughput method of cloning DNA regulating elements (DREs) using a single reaction tube, referred to herein as the “one-tube” method, was utilized in order to enable large scale production of DRE transformed plants. Accordingly, genomic DNA (gDNA) was extracted from leaves of Arabidopsis thaliana Col1 using DNAeasy Plant Mini Kit (Qiagen, Germany). Primers for PCR amplification of DREs were designed using PRIMER3© software and modified to contain restriction sites absent from the DRE sequence, for PCR product insertion into the pQYN plasmid.


Amplification of the novel AT6669 promoter sequence—The promoter was cloned from a genomic DNA of Arabidopsis thaliana using the following primers:


Forward primer (without any restriction site): 5′-TATACCAGTGGAGACGAAAGC (SEQ ID NO:8098); and Reverse primer (which includes a SalI restriction site): 5′-TAATAAATAGTCGACTCTTTGGGG (SEQ ID NO:8099).


Polymerase chain reaction analyses were performed using Taq Expand Long Template PCR kit (Roche), according to the manufacturer's instructions, using as thermal cycle: 92° C./2 min→10×[94° C./10 min→55° C./30 sec→68° C./5 min]→18×[94° C./10 min→55° C./30 sec→68° C./5 min (+20 sec each cycle)]→68° C./7 min


The amplified PCR product was digested with the HindIII and SalI restriction enzymes and was designated 6669_Cid506.


The pQYN vector—The starting plasmid is pQYN (Pid #1468; FIG. 5). This plasmid is based on the pBI101 plasmid (Clontech, Laboratories, Inc. Mountain View, Calif. 94043) and contains the following features different from pBI101: (i) PolyA signal was inserted before MCS (multi cloning site) (upstream to HindIII restriction site); (ii) GUS gene was substituted by GUS intron gene; (iii) Originally in pBI101 NPTII expression cassette was close to the right border of tDNA. In pQYN the region between left and right borders (not including the borders) was inverted in order to bring NPTII expression cassette close to the left border and GUS intron expression cassette close to the right border.


Cloning of the promoter sequence into pQYN vector—The pQYN vector was digested with HindIII/SalI. The 6669_Cid506 which was digested HindIII/SalI was ligated into the HindIII/SalI—digested pQYN (Pid #1468) plasmid, creating the pQYN6669 (Pid#1996) plasmid. To facilitate the cloning into pQYN6669 (Pid#1996) plasmid, expanded MCS+NOS terminator was ligated into the pQYN6669 (Pid#1996) digested with SalI/EcoRI, replacing the existing MCS+GUS intron+NOS terminator. There was no change in the NOS terminator sequence. Resulting plasmid was designated pQFN (Pid#2054) (FIG. 6).


Generation of a Nucleic Acid Construct Including the Novel Promoter and a Heterologous Coding Sequence (e.g., a Reporter Gene):

I. GUS Reporter Expression Cassette


Generation of expression cassette 6669_Cid506 promoter+GUS intron+NOS terminator (At6669-GUS intron expression cassette)—GUS intron+NOS terminator cassette was excised from pQXYN (Pid#1481) by digesting with SmaI/EcoRI restriction enzymes and ligated into pQFN (Pid#2054), which was also digested with SmaI/EcoRI, generating pQFYN (Pid#2431; FIG. 8) final plasmid. There was no change in the sequence of NOS terminator.


Transformation of agrobactrium with the At6660-GUS intron expression cassette and further into Arabidopsis thaliana Columbia (T0 plants) was performed essentially as described in Example 13 hereinabove using the At6660-GUS intron expression cassette. In addition, generation of T1 and T2 transgenic plants harbouring the At6660-GUS intron expression cassette was performed as described in Example 13 hereinabove.


Evaluation of Promoter Activity


Evaluating the novel AT6669 promoter sequence activity in transgenic plants:


The ability of DRE to promote gene expression in plants was determined based on the expression of GUS reporter gene. Accordingly, transgenic Arabidopsis plantlets at different development stages were subjected to GUS assays using standard GUS staining protocol [Jefferson R A, Kavanagh T A, Bevan M W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6(13): 3901-7].


Experimental Results


Identification of a novel At6669 promoter with two new regulatory elements—The present inventors have surprisingly uncovered that during the cloning procedure a novel sequence (set forth by SEQ ID NO:8096) which includes some mutations with respect to the previously disclosed At6669 promoter (SEQ ID NO:8093) was obtained. A sequence comparison between the two promoters is provided in FIG. 5 with the mismatched nucleotides being underlined. As shown by the sequence alignment (FIG. 5), the novel promoter identified herein exhibits 3 additional sites of regulatory elements as compared to the previously disclosed At6669 promoter, as follows: the “YACT” regulatory element (Y can be a cytosine or a thymidine nucleotide) at position 862-865 of SEQ ID NO:8096; and two sites of the “AAAG” regulatory element at positions 2392-2395 and 2314-2317 of SEQ ID NO:8096.


The novel At6669 comprises an additional YACT regulatory element which is capable of driving a mesophyll expression module—High rates of photosynthesis, increased water use efficiency and nitrogen use efficiency of C4 plants are attributed to the unique mode of carbon assimilation in these plants which includes strict compartmentation of the CO2 assimilatory enzymes into mesophyll cells [which include the phosphoenol-pyruvate carboxylase (ppcA1)] and bundle-sheath cells [which include to ribulose bisphosphate carboxylase/oxygenase]. The “YACT” regulatory element was found by Gowik U, et al., 2004 (cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flayeria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene; Plant Cell. 16:1077-1090) to be a key component of the mesophyll expression module 1 (Mem1) of the ppcA1 in the C4 dicot F. trinervia. In addition, when used in a heterologous expression system the YACT regulatory sequence was shown necessary and sufficient for high mesophyll-specific expression of the β-glucuronidase reporter, and as an enhancer which directs mesophyll-specific expression when inserted into the ppcA1promoter of the C3 plant F. pringlei (Gowik U, et al., 2004, Supra).


The novel At6669 comprises two additional sites of the AAAG regulatory elements, the core binding site for the Dof transcription factors—The AAAG regulatory element is the core site required for binding of Dof proteins in maize (Z.m.). Dof proteins are DNA binding proteins, with presumably only one zinc finger, and are unique to plants. There are four known Dof proteins: Dof1, which enhances transcription from the promoters of both cytosolic orthophosphate kinase (CyPPDK) and a non-photosynthetic PEPC gene; Dof2, which suppresses the C4PEPC promoter; Dof3; and PBF, which is an endosperm specific Dof protein that binds to prolamin box [Yanagisawa S, Schmidt R J, Diversity and similarity among recognition sequences of Dof transcription factors. Plant J, 17:209-214 (1999)]. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize [Yanagisawa S, Plant J 21:281-288 (2000)].


Altogether, these results show that the novel promoter identified herein can drive expression of heterologous polynucleotides in a host cell with high efficiency.


Characterization of novel At6669 promoter sequence (SEQ ID NO:8096)—The ability of At6669 promoter to promote gene expression in plants was determined based on the expression of GUS reporter gene. Various features of the isolated At6669 promoter of some embodiments of the invention are described in FIGS. 9A-D, 10A-D, and 11A-L. As is clearly evident from these experiments, the At6669 promoter is constitutively expressed in the plant model in various developmental stages, including the early vegetative stage of the seedling (e.g., day 10-11; FIGS. 9A-D), the bolting to stage in which the plant develops towards the reproductive stage (e.g., day 20, FIGS. 10A-D), and the mature reproductive stage (e.g., day 40-41; FIGS. 11A-L) in which various tissues express the reporter gene under the novel At6669 promoter (SEQ ID NO:8096), including the roots, leaves, stems and flowers, with a strong expression in leaves and flowers.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.


All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.

Claims
  • 1. A method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 799, 488-798, 800-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8090 or 8091, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
  • 2. The method of claim 1, wherein said exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 799, 488-798, 800-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
  • 3. (canceled)
  • 4. The method of claim 1, wherein said exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 460, 1-459, 461-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4850 or 4851, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
  • 5. The method of claim 4, wherein said exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 460, 1-459, 461-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
  • 6. (canceled)
  • 7. An isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least 80% homologous to the amino acid sequence set forth in SEQ ID NO: 799, 488-798, 800-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8090 or 8091, wherein said amino acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.
  • 8. The isolated polynucleotide of claim 7, wherein said nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence is selected from the group consisting of SEQ ID NOs: 799, 488-798, 800-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.
  • 9. The isolated polynucleotide of claim 7, wherein said nucleic acid sequence is at least 80% identical to SEQ ID NO: 460, 1-459, 461-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4850 or 4851, wherein said nucleic acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.
  • 10. The isolated polynucleotide of claim 9, wherein said nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 460, 1-459, 461-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.
  • 11. A nucleic acid construct comprising the isolated polynucleotide of claim 7, and a promoter for directing transcription of said nucleic acid sequence in a host cell.
  • 12. An isolated polypeptide comprising an amino acid sequence at least 80% homologous to SEQ ID NO: 799, 488-798, 800-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8090 or 8091, wherein said amino acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.
  • 13. The isolated polypeptide of claim 12, wherein said amino acid sequence is selected from the group consisting of SEQ ID NOs: 799, 488-798, 800-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.
  • 14. A plant cell exogenously expressing the polynucleotide of claim 7.
  • 15. A plant cell exogenously expressing the polypeptide of claim 12.
  • 16. The method of claim 1, wherein said nucleic acid sequence encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 799, 488-798, 800-813, 4852-5453, 5460, 5461, 5484, 5486-5550, 5553, 5558-8091, 5454-5459, 5462-5469, 5471-5475, 5477-5480, 5482, 5483, 5485, 5551, 5552, and 5554-5557.
  • 17. The method of claim 1, wherein said nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 460, 1-459, 461-487, 814-1598, 1600-1603, 1605-1626, 1632-1642, 1645-4851, 1599, 1604, 1628, 1630, and 1644.
  • 18-19. (canceled)
  • 20. The plant cell of claim 14, wherein said plant cell forms part of a plant.
  • 21. The method of claim 1, further comprising growing the plant expressing said exogenous polynucleotide under the abiotic stress.
  • 22. The method of claim 1, wherein said abiotic stress is selected from the group consisting of salinity, drought, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.
  • 23. The method of claim 1, wherein the yield comprises seed yield or oil yield.
  • 24. The nucleic acid construct of claim 11, wherein said promoter is set forth by SEQ ID NO: 8096.
  • 25-36. (canceled)
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2010/056023 12/22/2010 WO 00 6/28/2012
Provisional Applications (2)
Number Date Country
61282183 Dec 2009 US
61345205 May 2010 US