Isolated polynucleotides expressing or modulating microRNAs or targets of same, transgenic plants comprising same and uses thereof

Information

  • Patent Grant
  • 10184131
  • Patent Number
    10,184,131
  • Date Filed
    Wednesday, February 6, 2013
    11 years ago
  • Date Issued
    Tuesday, January 22, 2019
    5 years ago
Abstract
Isolated polynucleotides expressing or modulating microRNAs or targets of same are provided. Also provided are transgenic plants comprising same and uses thereof in improving nitrogen use efficiency, abiotic stress tolerance, biomass, vigor or yield of a plant.
Description
SEQUENCE LISTING STATEMENT

The ASCII file, entitled 59933SequenceListing.txt, created on Jul. 17, 2014, comprising 18,690,790 bytes, submitted concurrently with the filing of this application is incorporated herein by reference.


FIELD AND BACKGROUND OF THE INVENTION

The present invention, in some embodiments thereof, relates to isolated polynucleotides expressing or modulating microRNAs or targets of same, transgenic plants comprising same and uses thereof in improving nitrogen use efficiency, abiotic stress tolerance, biomass, vigor or yield of a plant.


Consumption of soybean for food production is increasing worldwide because of its reported beneficial health effects. Soybean is also viewed as an attractive crop for the production of biodiesel. Importantly, it has the ability to fix atmospheric nitrogen, which in turn may cut the input of nitrogen fertilizer that often accounts for the single largest energy input in agriculture.


With a growing world population, increasing demand for food, fuel and fiber, and a changing climate, agriculture faces unprecedented challenges. In general, shortage in water supply is one of the most severe global agricultural problems affecting plant growth and crop yield. Excessive efforts are made to alleviate the harmful effects of desertification of the world's arable land. Farmers are seeking advanced, biotechnology-based solutions to enable them to obtain stable high yields and give them the potential to reduce irrigation costs or to grow crops in areas where potable water is a limiting factor. It should be noted that improved abiotic stress (ABST) tolerance will confer plants with improved vigor also under non-stress conditions, resulting in crops having improved biomass and/or yield.


ABST is a collective term for numerous extreme environmental parameters such as drought, high or low salinity, high or low temperature/light, and nutrient imbalances. The major agricultural crops (corn, rice, wheat, canola and soybean) account for over half of total human caloric intake, giving their overall yield and quality vast importance. ABST causes more than 50% yield loss of the above mentioned major crops. Among the various ABSTs, drought is the major factor that limits crop productivity worldwide. Short-term conditions of reduced environmental water content typically occur during the life cycle of most crop plants. Although most plants have evolved strategies to survive these conditions, when the severity and duration of drought become too great, major alterations to the plant metabolism take place. As a result, the plant development, growth and yield profoundly diminish. Furthermore, drought is associated with increased susceptibility to various diseases. ABST-induced dehydration or osmotic stress, in the form of reduced availability of water and disruption of turgor pressure, cause irreversible cellular damage. A water-limiting environment at various plant developmental stages may activate various physiological changes.


In soybean, drought, for instance, reduces yield by approximately 40%, with the most critical period for water deprivation being the flowering stage and the period following flowering. Water deficit, salinity and low/high temperatures are stresses that cause plant cellular dehydration, due to transpiration rate that exceeds water uptake. Water use efficiency (WUE), defined as the amount of biomass accumulated per unit of water used, plays an important role in determining a plant's ability to tolerate drought stress. The higher the WUE of a plant, the higher the crop productivity and total biomass yield under drought conditions. Thus, efforts are made worldwide to increase the WUE of the most important crops and reach the best yield performance under extreme water deficiency conditions.


Studies have shown that plant adaptations to drought and other adverse environmental conditions are complex genetic traits with polygenic nature. Conventional means for crop and horticultural improvements utilize selective breeding techniques to identify plants having desirable characteristics. However, selective breeding is tedious, time consuming and has an unpredictable outcome. Furthermore, limited germplasm resources for yield improvement and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Advances in genetic engineering have allowed mankind to modify the germplasm of plants by expression of genes-of-interest in plants. Such a technology has the capacity to generate crops or plants with improved economic, agronomic or horticultural traits. However, generation of transgenic plants expressing full-length genes is typically hampered by the selection of optimal regulatory sequences and identification of those rare transformation events that exhibit sufficient levels of gene products expression.


SUMMARY OF THE INVENTION

According to an aspect of some embodiments of the present invention there is provided a method of improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of a plant, the method comprising expressing within the plant an exogenous polynucleotide which downregulates an activity or expression of a gene encoding an RNAi molecule having a nucleic acid sequence at least 90% identical to SEQ ID NOs: 139, 57-79, 202-219, 126-138, 140-161, 236-255, 169-173, 260-261, 3953-5114, 5117-6277, 6278, 11905-11909, 11940-11955, 11959-11961, wherein the RNAi molecule regulates abiotic stress tolerance of the plant, thereby improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of the plant.


According to an aspect of some embodiments of the present invention there is provided a method of improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of a plant, the method comprising expressing within the plant an exogenous polynucleotide having a nucleic acid sequence at least 90% identical to SEQ ID NOs: 1-56, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 2087-3910, 3911, 11616, 11615, 11874, 11875-11904, 11910-11939, 11956, 11957 or 11958, wherein the nucleic acid sequence is capable of regulating abiotic stress tolerance of the plant, thereby improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of the plant.


According to an aspect of some embodiments of the present invention there is provided a transgenic plant exogenously expressing a polynucleotide having a nucleic acid sequence at least 90% identical to SEQ ID NOs: SEQ ID NOs: 1-56, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 2087-3910, 3911, 11616, 11615, 11874, 11875-11904, 11910-11939, 11956, 11957 or 11958, wherein the nucleic acid sequence is capable of regulating abiotic stress tolerance of the plant.


According to some embodiments of the invention, the exogenous polynucleotide encodes a precursor of the nucleic acid sequence.


According to some embodiments of the invention, the precursor of the nucleic acid sequence is at least 60% identical to SEQ ID NO: 174-201, 220-235, 256-259, 2087-3910, 3911, 11910-11939, 11615, 11956, 11957 or 11958.


According to some embodiments of the invention, the precursor of the nucleic acid sequence is at least 60% identical to SEQ ID NO: 174-201, 220-235, 256-259, 2087-3910, 3911, 11875-11904, 11910-11939, 11615, 11956, 11957 or 11958.


According to some embodiments of the invention, the exogenous polynucleotide encodes a mature miRNA.


According to some embodiments of the invention, the exogenous polynucleotide is selected from the group consisting of SEQ ID NO: 1-56, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 2087-3910, 3911, 11616, 11615, 11874, 11875-11904, 11910-11939, 11956, 11957 or 11958.


According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising a nucleic acid sequence being at least 90% identical to SEQ ID NO: 139, 1-201, 202-235, 236-3910, 3911, 11616, 11615, 11874, 11875-11904, 11910-11939, 11956, 11957, 11958, 11940-11955, 11905-11909, 11959-11961, wherein the nucleic acid sequence is capable of regulating abiotic stress tolerance of a plant and wherein the nucleic acid sequence is under the regulation of a cis-acting regulatory element.


According to some embodiments of the invention, the nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 1-56, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 2087-3910, 3911, 11616, 11615, 11874, 11875-11904, 11910-11939, 11956, 11957 or 11958.


According to some embodiments of the invention, the nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 139, 57-79, 202-219, 126-138, 140-161, 236-255, 169-173, 260-261, 3953-5114, 5117-6277, 6278, 11905-11909, 11959-11961, 11940-11955.


According to an aspect of some embodiments of the present invention there is provided a transgenic plant exogenously expressing a polynucleotide which downregulates an activity or expression of a gene encoding an RNAi molecule having a nucleic acid sequence at least 90% identical to SEQ ID NOs: 139, 57-79, 202-219, 126-138, 140-161, 236-255, 169-173, 260-261, 3953-5114, 5117-6277, 6278 11905-11909, 11940-11955, 11959-11961.


According to an aspect of some embodiments of the present invention there is provided a transgenic plant exogenously expressing a polynucleotide which downregulates an activity or expression of a gene encoding an RNAi molecule having a nucleic acid sequence at least 90% identical to SEQ ID NOs: 139, 1-201, 202-235, 236-3910, 3911, 11616, 11615, 11874, 11875-11904, 11910-11939, 11956, 11957, 11958, 11905-11909, 11940-11955, 11959-11961.


According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide which downregulates an activity or expression of a gene encoding an RNAi molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 139, 57-79, 202-219, 126-138, 140-161, 236-255, 169-173, 260-261, 3953-5114, 5117-6277, 6278, 11905-11909, 11940-11955, 11959-11961.


According to an aspect of some embodiments of the present invention there is provided a transgenic plant exogenously expressing a polynucleotide which downregulates an activity or expression of a gene encoding an RNAi molecule having a nucleic acid sequence at least 90% identical to SEQ ID NOs: 139, 57-79, 202-219, 126-138, 140-161, 236-255, 169-173, 260-261, 3953-5114, 5117-6277, 6278, 11905-11909, 11940-11955, 11959-11961.


According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide which downregulates an activity or expression of a gene encoding an RNAi molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 139, 57-79, 202-219, 126-138, 140-161, 236-255, 169-173, 260-261, 3953-5114, 5117-6277, 6278, 11905-11909, 11940-11955, 11959-11961.


According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide which downregulates an activity or expression of a gene encoding an RNAi molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 139, 1-201, 202-235, 236-3910, 3911, 3953-5114, 5117-6277, 6278, 11616, 11615, 11874, 11875-11904, 11910-11939, 11956, 11957, 11958, 11905-11909, 11940-11955, 11959-11961.


According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide which downregulates an activity or expression of a gene encoding an RNAi molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 139, 1-201, 202-235, 236-3910, 3911, 11616, 11615, 11874, 11875-11904, 11910-11939, 11956, 11957, 11958, 11905-11909, 11940-11955, 11959-11961.


According to some embodiments of the invention, the polynucleotide encodes a miRNA-Resistant Target as set forth in SEQ ID NO: 11258-11359.


According to some embodiments of the invention, the polynucleotide encodes a miRNA-Resistant Target as set forth in SEQ ID NO: 11091-11257.


According to some embodiments of the invention, the isolated polynucleotide encodes a target mimic as set forth in SEQ ID NO: 11564-11613.


According to some embodiments of the invention, the polynucleotide encodes a target mimic as set forth in SEQ ID NO: 11437-11513.


According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising the isolated polynucleotide under the regulation of a cis-acting regulatory element.


According to some embodiments of the invention, the abiotic stress is selected from the group consisting of salinity, drought, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.


According to an aspect of some embodiments of the present invention there is provided a method of improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of a plant, the method comprising expressing within the plant an exogenous polynucleotide encoding a polypeptide having an amino acid sequence at least 80% homologous or identical to SEQ ID NOs: 9591-10364, wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant, thereby improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of the plant.


According to an aspect of some embodiments of the present invention there is provided a transgenic plant exogenously expressing a polynucleotide encoding a polypeptide having an amino acid sequence at least 80% homologous or identical to SEQ ID NOs: 9591-10364, wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant.


According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising a polynucleotide encoding a polypeptide having an amino acid sequence at least 80% homologous to SEQ ID NOs: 9591-10364, wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant, and wherein the polynucleotide is under a transcriptional control of a cis-acting regulatory element.


According to some embodiments of the invention, the polynucleotide is selected from the group consisting of SEQ ID NO: 10365-10963.


According to some embodiments of the invention, the polypeptide is selected from the group consisting of SEQ ID NO: 9591-10364.


According to some embodiments of the invention, the cis-acting regulatory element comprises a promoter.


According to some embodiments of the invention, the promoter comprises a tissue-specific promoter.


According to some embodiments of the invention, the tissue-specific promoter comprises a root specific promoter.


According to some embodiments of the invention, the method further comprises growing the plant under limiting nitrogen conditions.


According to some embodiments of the invention, the method further comprises growing the plant under abiotic stress.


According to some embodiments of the invention, the abiotic stress is selected from the group consisting of salinity, drought, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.


According to some embodiments of the invention, the plant is a monocotyledon.


According to some embodiments of the invention, the plant is a dicotyledon.


According to an aspect of some embodiments of the present invention there is provided a method of improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of a plant, the method comprising expressing within the plant an exogenous polynucleotide which downregulates an activity or expression of a polypeptide having an amino acid sequence at least 80% homologous or identical to SEQ ID NOs: 6315-8129, wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant, thereby improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of the plant.


According to an aspect of some embodiments of the present invention there is provided a transgenic plant exogenously expressing a polynucleotide which downregulates an activity or expression of a polypeptide having an amino acid sequence at least 80% homologous or identical to SEQ ID NOs: 6315-8129, wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant.


According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising a polynucleotide which downregulates an activity or expression of a polypeptide having an amino acid sequence at least 80% homologous to SEQ ID NOs: 6315-8129, wherein the polypeptide is capable of regulating abiotic stress tolerance of a plant, the nucleic acid sequence being under the regulation of a cis-acting regulatory element.


According to some embodiments of the invention, the polynucleotide acts by a mechanism selected from the group consisting of sense suppression, antisense suppression, ribozyme inhibition, gene disruption.


According to some embodiments of the invention, the cis-acting regulatory element comprises a promoter.


According to some embodiments of the invention, the promoter comprises a tissue-specific promoter.


According to some embodiments of the invention, the tissue-specific promoter comprises a root specific promoter.


Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.


In the drawings:



FIG. 1 is a schematic illustration of a plasmid map of the binary vector pORE-E1 used for plant transformation according to some embodiments of the invention.



FIG. 2 is a schematic illustration of a plasmid map of the binary vector pORE-E2 used for plant transformation according to some embodiments of the invention.



FIG. 3 is a schematic illustration of a plasmid map of the binary vector pORE-E3 used for plant transformation according to some embodiments of the invention.





DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION

The present invention, in some embodiments thereof, relates to isolated polynucleotides expressing or modulating microRNAs or targets of same, transgenic plants comprising same and uses thereof in improving nitrogen use efficiency, abiotic stress tolerance, biomass, vigor or yield of a plant.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.


Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. Abiotic stresses lead to dehydration or osmotic stress through reduced availability of water for vital cellular functions and maintenance of turgor pressure. Stomata closure, reduced supply of CO2 and slower rate of biochemical reactions during prolonged periods of dehydration, high light intensity, high and low temperatures lead to high production of Reactive Oxygen Intermediates (ROI) in the chloroplasts causing irreversible cellular damage and photo inhibition.


Understanding the molecular mechanism for providing protection against biotic and abiotic stresses may lead to the identification of genes associated with stress tolerance. Optimum homeostasis is always a key to living organisms for adjusted environments.


While reducing the present invention to practice, the present inventors have uncovered dsRNA sequences that are differentially expressed in soy plants grown under abiotic stress conditions including, salt stress, heat stress and drought, versus soy plants grown under optimal conditions (see Example 1 of the Examples section which follows). Following extensive experimentation and screening, the present inventors have uncovered miRNA sequences that are upregulated or downregulated in leaf samples, and suggest using same or sequences controlling same in the generation of transgenic plants having improved abiotic stress tolerance.


Each of the above mechanisms may affect water uptake as well as salt absorption and therefore embodiments of the invention further relate to enhancement of abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of the plant.


Example 5 of the Examples section below, validates the present results by showing that some miRs (e.g., gma-miR4376-5p, zma-miR396b-3p, aly-miR396b-3p, gma-miR156g, ma-miRf10687-akr-omolog gma-miR159d, aly-miR396b-3p, gma-miR4416a, aly-miR396a-3p, zma-miR396b-3p, gma-miR4412-3p, csi-miR162-5p, ath-miRf10279-akr) according to specific embodiment of the invention are indeed differentially expressed under abiotic stress conditions as was initially identified by microarray analysis. The present inventors were also capable of generating transgenic plants which overexpress the indicated miRs (see Example 7).


Thus, according to an aspect of the invention there is provided a method of improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of a plant, the method comprising expressing within the plant an exogenous polynucleotide having a nucleic acid sequence at least 80%, 85%, 90% or 95% identical to SEQ ID NOs: 1-56, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 11616, 11615, 2087-3910, 3911, 11910-11939, 11874-11904, 11956, 11957 or 11958 wherein the nucleic acid sequence is capable of regulating abiotic stress tolerance of the plant, thereby improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of the plant.


According to a specific embodiment the exogenous polynucleotide has a nucleic acid sequence at least 90% identical to SEQ ID NOs: 1-56, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 11616, 11615, 2087-3910, 3911, 11910-11939, 11874-11904, 11956, 11957 or 11958.


According to a specific embodiment the exogenous polynucleotide has a nucleic acid sequence at least 95% identical to SEQ ID NOs: 1-56, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 11616, 11615, 2087-3910, 3911, 11910-11939, 11874-11904, 11956, 11957 or 11958.


According to a specific embodiment the exogenous polynucleotide has a nucleic acid sequence as set forth in SEQ ID NOs: 1-56, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 11616, 11615, 2087-3910, 3911, 11910-11939, 11874-11904, 11956, 11957 or 11958.


The phrase “abiotic stress” as used herein refers to any adverse effect on metabolism, growth, viability and/or reproduction of a plant. Abiotic stress can be induced by any of suboptimal environmental growth conditions such as, for example, water deficit or drought, flooding, freezing, low or high temperature, strong winds, heavy metal toxicity, anaerobiosis, high or low nutrient levels (e.g. nutrient deficiency), high or low salt levels (e.g. salinity), atmospheric pollution, high or low light intensities (e.g. insufficient light) or UV irradiation. Abiotic stress may be a short term effect (e.g. acute effect, e.g. lasting for about a week) or alternatively may be persistent (e.g. chronic effect, e.g. lasting for example 10 days or more). The present invention contemplates situations in which there is a single abiotic stress condition or alternatively situations in which two or more abiotic stresses occur.


According to an exemplary embodiment the abiotic stress refers to salinity.


According to another exemplary embodiment the abiotic stress refers to drought.


According to another exemplary embodiment the abiotic stress refers to a temperature stress.


As used herein the phrase “abiotic stress tolerance” refers to the ability of a plant to endure an abiotic stress without exhibiting substantial physiological or physical damage (e.g. alteration in metabolism, growth, viability and/or reproducibility of the plant).


As used herein the phrase “nitrogen use efficiency (NUE)” refers to a measure of crop production per unit of nitrogen fertilizer input. Fertilizer use efficiency (FUE) is a measure of NUE. Crop production can be measured by biomass, vigor or yield. The plant's nitrogen use efficiency is typically a result of an alteration in at least one of the uptake, spread, absorbance, accumulation, relocation (within the plant) and use of nitrogen absorbed by the plant. Improved NUE is with respect to that of a non-transgenic plant (i.e., lacking the transgene of the transgenic plant) of the same species and of the same developmental stage and grown under the same conditions.


As used herein the phrase “nitrogen-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of nitrogen (e.g., ammonium or nitrate) applied which is below the level needed for optimal plant metabolism, growth, reproduction and/or viability.


As used herein the term/phrase “biomass”, “biomass of a plant” or “plant biomass” refers to the amount (e.g., measured in grams of air-dry tissue) of a tissue produced from the plant in a growing season. An increase in plant biomass can be in the whole plant or in parts thereof such as aboveground (e.g. harvestable) parts, vegetative biomass, roots and/or seeds or contents thereof (e.g., oil, starch etc.).


As used herein the term/phrase “vigor”, “vigor of a plant” or “plant vigor” refers to the amount (e.g., measured by weight) of tissue produced by the plant in a given time. Increased vigor could determine or affect the plant yield or the yield per growing time or growing area. In addition, early vigor (e.g. seed and/or seedling) results in improved field stand.


As used herein the term/phrase “yield”, “yield of a plant” or “plant yield” refers to the amount (e.g., as determined by weight or size) or quantity (e.g., numbers) of tissues or organs produced per plant or per growing season. Increased yield of a plant can affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time.


According to an exemplary embodiment the yield is measured by cellulose content, oil content, starch content and the like.


According to another exemplary embodiment the yield is measured by oil content.


According to another exemplary embodiment the yield is measured by protein content.


According to another exemplary embodiment, the yield is measured by seed number per plant or part thereof (e.g., kernel, bean).


A plant yield can be affected by various parameters including, but not limited to, plant biomass; plant vigor; plant growth rate; seed yield; seed or grain quantity; seed or grain quality; oil yield; content of oil, starch and/or protein in harvested organs (e.g., seeds or vegetative parts of the plant); number of flowers (e.g. florets) per panicle (e.g. expressed as a ratio of number of filled seeds over number of primary panicles); harvest index; number of plants grown per area; number and size of harvested organs per plant and per area; number of plants per growing area (e.g. density); number of harvested organs in field; total leaf area; carbon assimilation and carbon partitioning (e.g. the distribution/allocation of carbon within the plant); resistance to shade; number of harvestable organs (e.g. seeds), seeds per pod, weight per seed; and modified architecture [such as increase stalk diameter, thickness or improvement of physical properties (e.g. elasticity)].


As used herein the term “improving” or “increasing” refers to at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90% or greater increase in NUE, in tolerance to abiotic stress, in yield, in biomass or in vigor of a plant, as compared to a native or wild-type plants [i.e., plants not genetically modified to express the biomolecules (polynucleotides) of the invention, e.g., a non-transformed plant of the same species or a transformed plant transformed with a control vector, either of which being of the same developmental stage and grown under the same growth conditions as the transformed plant].


Improved plant NUE is translated in the field into either harvesting similar quantities of yield, while implementing less fertilizers, or increased yields gained by implementing the same levels of fertilizers. Thus, improved NUE or FUE has a direct effect on plant yield in the field.


The term “plant” as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, roots (including tubers), and isolated plant cells, tissues and organs. The plant may be in any form including suspension cultures, embryos, meristematic regions, callus tissue, leaves, gametophytes, sporophytes, pollen, and microspores.


As used herein the phrase “plant cell” refers to plant cells which are derived and isolated from disintegrated plant cell tissue or plant cell cultures.


As used herein the phrase “plant cell culture” refers to any type of native (naturally occurring) plant cells, plant cell lines and genetically modified plant cells, which are not assembled to form a complete plant, such that at least one biological structure of a plant is not present. Optionally, the plant cell culture of this aspect of the present invention may comprise a particular type of a plant cell or a plurality of different types of plant cells. It should be noted that optionally plant cultures featuring a particular type of plant cell may be originally derived from a plurality of different types of such plant cells.


Any commercially or scientifically valuable plant is envisaged in accordance with some embodiments of the invention. Plants that are particularly useful in the methods of the invention include all plants which belong to the super family Viridiplantae, in particular monocotyledonous and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp, Areca catechu, 30 Astelia fragrans, Astragalus cicer, Baikiaea plurijuga, Betula spp., Brassica spp., Bruguiera gymnorrhiza, Burkea africana, Butea frondosa, Cadaba farinosa, Calliandra spp, Camellia sinensis, Canna indica, Capsicum spp., Cassia spp., Centroema pubescens, Chacoomeles spp., Cinnamomum cassia, Coffea arabica, Colophospermum mopane, Coronillia varia, Cotoneaster serotina, Crataegus spp., Cucumis spp., Cupressus spp., Cyathea dealbata, Cydonia oblonga, Cryptomeria japonica, Cymbopogon spp., Cynthea dealbata, Cydonia oblonga, Dalbergia monetaria, Davallia divaricata, Desmodium spp., Dicksonia squarosa, Dibeteropogon amplectens, Dioclea spp, Dolichos spp., Dorycnium rectum, Echinochloa pyramidalis, Ehraffia spp., Eleusine coracana, Eragrestis spp., Erythrina spp., Eucalyptus spp., Euclea schimperi, Eulalia vi/losa, Pagopyrum spp., Feijoa sellowlana, Fragaria spp., Flemingia spp, Freycinetia banksli, Geranium thunbergii, GinAgo biloba, Glycine javanica, Gliricidia spp, Gossypium hirsutum, Grevillea spp., Guibourtia coleosperma, Hedysarum spp., Hemaffhia altissima, Heteropogon contoffus, Hordeum vulgare, Hyparrhenia rufa, Hypericum erectum, Hypeffhelia dissolute, Indigo incamata, Iris spp., Leptarrhena pyrolifolia, Lespediza spp., Lettuca spp., Leucaena leucocephala, Loudetia simplex, Lotonus bainesli, Lotus spp., Macrotyloma axillare, Malus spp., Manihot esculenta, Medicago saliva, Metasequoia glyptostroboides, Musa sapientum, Nicotianum spp., Onobrychis spp., Ornithopus spp., Oryza spp., Peltophorum africanum, Pennisetum spp., Persea gratissima, Petunia spp., Phaseolus spp., Phoenix canariensis, Phormium cookianum, Photinia spp., Picea glauca, Pinus spp., Pisum sativam, Podocarpus totara, Pogonarthria fleckii, Pogonaffhria squarrosa, Populus spp., Prosopis cineraria, Pseudotsuga menziesii, Pterolobium stellatum, Pyrus communis, Quercus spp., Rhaphiolepsis umbellata, Rhopalostylis sapida, Rhus natalensis, Ribes grossularia, Ribes spp., Robinia pseudoacacia, Rosa spp., Rubus spp., Salix spp., Schyzachyrium sanguineum, Sciadopitys vefficillata, Sequoia sempervirens, Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburus alopecuroides, Stylosanthos humilis, Tadehagi spp, Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp., Vitis vinifera, Watsonia pyramidata, Zantedeschia aethiopica, Zea mays, amaranth, artichoke, asparagus, broccoli, Brussels sprouts, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed rape, okra, onion, potato, rice, soybean, straw, sugar beet, sugar cane, sunflower, tomato, squash tea, maize, wheat, barley, rye, oat, peanut, pea, lentil and alfalfa, cotton, rapeseed, canola, pepper, sunflower, tobacco, eggplant, eucalyptus, a tree, an ornamental plant, a perennial grass and a forage crop. Alternatively algae and other non-Viridiplantae can be used for the methods of the present invention.


According to some embodiments of the invention, the plant used by the method of the invention is a crop plant including, but not limited to, cotton, Brassica vegetables, oilseed rape, sesame, olive tree, palm oil, banana, wheat, corn or maize, barley, alfalfa, peanuts, sunflowers, rice, oats, sugarcane, soybean, turf grasses, barley, rye, sorghum, sugar cane, chicory, lettuce, tomato, zucchini, bell pepper, eggplant, cucumber, melon, watermelon, beans, hibiscus, okra, apple, rose, strawberry, chili, garlic, pea, lentil, canola, mums, arabidopsis, broccoli, cabbage, beet, quinoa, spinach, squash, onion, leek, tobacco, potato, sugarbeet, papaya, pineapple, mango, Arabidopsis thaliana, and also plants used in horticulture, floriculture or forestry, such as, but not limited to, poplar, fir, eucalyptus, pine, an ornamental plant, a perennial grass and a forage crop, coniferous plants, moss, algae, as well as other plants listed in World Wide Web (dot) nationmaster (dot) com/encyclopedia/Plantae.


According to a specific embodiment of the present invention, the plant comprises soy.


As used herein, the phrase “exogenous polynucleotide” refers to a heterologous nucleic acid sequence which may not be naturally expressed within the plant or which overexpression [i.e., expression above that found in the control non-transformed plant (e.g., wild type) grown under the same conditions and being of the same developmental stage] in the plant is desired. The exogenous polynucleotide may be introduced into the plant in a stable or transient manner, so as to produce a ribonucleic acid (RNA) molecule. It should be noted that the exogenous polynucleotide may comprise a nucleic acid sequence which is identical or partially identical (homologous) to an endogenous nucleic acid sequence of the plant.


As mentioned, the present teachings are based on the identification of miRNA sequences which regulate the tolerance of plants to abiotic stress.


According to some embodiments the exogenous polynucleotide encodes a miRNA or a precursor thereof.


As used herein, the phrase “microRNA (also referred to herein interchangeably as “miRNA” or “miR”) or a precursor thereof” refers to a microRNA (miRNA) molecule acting as a post-transcriptional regulator. Typically, the miRNA molecules are RNA molecules of about 20 to 22 nucleotides in length which can be loaded into a RISC complex and which direct the cleavage of another RNA molecule, wherein the other RNA molecule comprises a nucleotide sequence essentially complementary to the nucleotide sequence of the miRNA molecule.


Typically, a miRNA molecule is processed from a “pre-miRNA” or as used herein a precursor of a pre-miRNA molecule by proteins, such as DCL proteins, present in any plant cell and loaded onto a RISC complex where it can guide the cleavage of the target RNA molecules.


Pre-microRNA molecules are typically processed from pri-microRNA molecules (primary transcripts). The single stranded RNA segments flanking the pre-microRNA are important for processing of the pri-miRNA into the pre-miRNA. The cleavage site appears to be determined by the distance from the stem-ssRNA junction (Han et al. 2006, Cell 125, 887-901, 887-901).


As used herein, a “pre-miRNA” molecule is an RNA molecule of about 100 to about 200 nucleotides, preferably about 100 to about 130 nucleotides which can adopt a secondary structure comprising a double stranded RNA stem and a single stranded RNA loop (also referred to as “hairpin”) and further comprising the nucleotide sequence of the miRNA (and its complement sequence) in the double stranded RNA stem.


According to a specific embodiment, the miRNA and its complement are located about 10 to about 20 nucleotides from the free ends of the miRNA double stranded RNA stem. The length and sequence of the single stranded loop region are not critical and may vary considerably, e.g. between 30 and 50 nt in length. The complementarity between the miRNA and its complement need not be perfect and about 1 to 3 bulges of unpaired nucleotides can be tolerated. The secondary structure adopted by an RNA molecule can be predicted by computer algorithms conventional in the art such as mFOLD. The particular strand of the double stranded RNA stem from the pre-miRNA which is released by DCL activity and loaded onto the RISC complex is determined by the degree of complementarity at the 5′ end, whereby the strand which at its 5′ end is the least involved in hydrogen bounding between the nucleotides of the different strands of the cleaved dsRNA stem is loaded onto the RISC complex and will determine the sequence specificity of the target RNA molecule degradation. However, if empirically the miRNA molecule from a particular synthetic pre-miRNA molecule is not functional (because the “wrong” strand is loaded on the RISC complex), it will be immediately evident that this problem can be solved by exchanging the position of the miRNA molecule and its complement on the respective strands of the dsRNA stem of the pre-miRNA molecule. As is known in the art, binding between A and U involving two hydrogen bounds, or G and U involving two hydrogen bounds is less strong that between G and C involving three hydrogen bounds. Exemplary hairpin sequences are provided in Tables 1-8, below.


Naturally occurring miRNA molecules may be comprised within their naturally occurring pre-miRNA molecules but they can also be introduced into existing pre-miRNA molecule scaffolds by exchanging the nucleotide sequence of the miRNA molecule normally processed from such existing pre-miRNA molecule for the nucleotide sequence of another miRNA of interest. The scaffold of the pre-miRNA can also be completely synthetic. Likewise, synthetic miRNA molecules may be comprised within, and processed from, existing pre-miRNA molecule scaffolds or synthetic pre-miRNA scaffolds. Some pre-miRNA scaffolds may be preferred over others for their efficiency to be correctly processed into the designed microRNAs, particularly when expressed as a chimeric gene wherein other DNA regions, such as untranslated leader sequences or transcription termination and polyadenylation regions are incorporated in the primary transcript in addition to the pre-microRNA.


According to the present teachings, the miRNA molecules may be naturally occurring or synthetic.


Thus, the present teachings contemplate expressing an exogenous polynucleotide having a nucleic acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 99% or 100% identical to—NOs: 1-56, 80-125, 11874, 262-2086, 11616, (mature), provided that they regulate ABST.


Alternatively or additionally, the present teachings contemplate expressing an exogenous polynucleotide having a nucleic acid sequence at least 65%, 50%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 99% or 100% identical to SEQ ID NOs: 1-56, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 11616, 11615, 2087-3910, 3911, 11910-11939, 11874-11904, 11956, 11957 or 11958 (mature and precursors Tables 1, 3, 5, 7), provided that they regulate abiotic stress tolerance of the plant.


Tables 1, 3, 5 and 7 below illustrate exemplary miRNA sequences and precursors thereof which over expression are associated with modulation of abiotic stress tolerance. It is noted that Tables 1-17 below are incorporated into the specification and are considered an integral part thereof.


The present invention envisages the use of homologous and orthologous sequences of the above miRNA molecules. At the precursor level use of homologous sequences can be done to a much broader extent. Thus, in such precursor sequences the degree of homology may be lower in all those sequences not including the mature miRNA segment therein.


As used herein, the phrase “stem-loop precursor” refers to stem loop precursor RNA structure from which the miRNA can be processed.


Pre-microRNA molecules are typically processed from pri-microRNA molecules (primary transcripts). The single stranded RNA segments flanking the pre-microRNA are important for processing of the pri-miRNA into the pre-miRNA. The cleavage site appears to be determined by the distance from the stem-ssRNA junction (Han et al. 2006, Cell 125, 887-901, 887-901).


As used herein, a “pre-miRNA” molecule is an RNA molecule of about 100 to about 200 nucleotides, preferably about 100 to about 130 nucleotides which can adopt a secondary structure comprising a double stranded RNA stem and a single stranded RNA loop (also referred to as “hairpin”) and further comprising the nucleotide sequence of the miRNA (and its complement sequence) in the double stranded RNA stem. According to a specific embodiment, the miRNA and its complement are located about 10 to about 20 nucleotides from the free ends of the miRNA double stranded RNA stem. The length and sequence of the single stranded loop region are not critical and may vary considerably, e.g. between 30 and 50 nt in length. The complementarity between the miRNA and its complement need not be perfect and about 1 to 3 bulges of unpaired nucleotides can be tolerated. The secondary structure adopted by an RNA molecule can be predicted by computer algorithms conventional in the art such as mFOLD. The particular strand of the double stranded RNA stem from the pre-miRNA which is released by DCL activity and loaded onto the RISC complex is determined by the degree of complementarity at the 5′ end, whereby the strand which at its 5′ end is the least involved in hydrogen bounding between the nucleotides of the different strands of the cleaved dsRNA stem is loaded onto the RISC complex and will determine the sequence specificity of the target RNA molecule degradation. However, if empirically the miRNA molecule from a particular synthetic pre-miRNA molecule is not functional (because the “wrong” strand is loaded on the RISC complex), it will be immediately evident that this problem can be solved by exchanging the position of the miRNA molecule and its complement on the respective strands of the dsRNA stem of the pre-miRNA molecule. As is known in the art, binding between A and U involving two hydrogen bounds, or G and U involving two hydrogen bounds is less strong that between G and C involving three hydrogen bounds.


Thus, according to a specific embodiment, the exogenous polynucleotide encodes a stem-loop precursor of the nucleic acid sequence. Such a stem-loop precursor can be at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95% or more identical to SEQ ID NOs: SEQ ID NO: 174-201, 220-235, 256-259, 2087-3910, 3911, 11910-11939, 11615, 11875-11904, 11956, 11957 or 11958 (homologs precursor), provided that it regulates abiotic stress tolerance.


Identity (e.g., percent identity) can be determined using any homology comparison software, including for example, the BlastN software of the National Center of Biotechnology Information (NCBI) such as by using default parameters.


Homology (e.g., percent homology, identity+similarity) can be determined using any homology comparison software, including for example, the TBLASTN software of the National Center of Biotechnology Information (NCBI) such as by using default parameters.


According to some embodiments of the invention, the term “homology” or “homologous” refers to identity of two or more nucleic acid sequences; or identity of two or more amino acid sequences.


Homologous sequences include both orthologous and paralogous sequences. The term “paralogous” relates to gene-duplications within the genome of a species leading to paralogous genes. The term “orthologous” relates to homologous genes in different organisms due to ancestral relationship.


One option to identify orthologues in monocot plant species is by performing a reciprocal blast search. This may be done by a first blast involving blasting the sequence-of-interest against any sequence database, such as the publicly available NCBI database which may be found at: Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov. The blast results may be filtered. The full-length sequences of either the filtered results or the non-filtered results are then blasted back (second blast) against the sequences of the organism from which the sequence-of-interest is derived. The results of the first and second blasts are then compared. An orthologue is identified when the sequence resulting in the highest score (best hit) in the first blast identifies in the second blast the query sequence (the original sequence-of-interest) as the best hit. Using the same rational a paralogue (homolog to a gene in the same organism) is found. In case of large sequence families, the ClustalW program may be used [Hypertext Transfer Protocol://World Wide Web (dot) ebi (dot) ac (dot) uk/Tools/clustalw2/index (dot) html], followed by a neighbor joining tree (Hypertext Transfer Protocol://en (dot) wikipedia (dot) org/wiki/Neighbor-joining) which helps visualizing the clustering.


As mentioned, the present inventors have also identified RNAi sequences which are down regulated under abiotic stress conditions.


Thus, according to an aspect of the invention there is provided a method of improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of a plant, the method comprising expressing within the plant an exogenous polynucleotide which downregulates an activity or expression of a gene encoding a miRNA molecule having a nucleic acid sequence at least 80%, 85% or preferably 90%, 95% or even 100% identical to the sequence selected from the group consisting of SEQ ID NOs: 57-79, 202-219, 126-161, 236-255, 169-173, 260-261, 3953-5114, 11905-11909, 11940-11955, 11959-11961, 5117-6277 or 6278 (Tables 2, 4, 6 and 8), thereby improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of a plant.


There are various approaches to down regulate miRNA sequences.


As used herein the term “down-regulation” refers to reduced activity or expression of the miRNA (at least 10%, 20%, 30%, 50%, 60%, 70%, 80%, 90% or 100% reduction in activity or expression) as compared to its activity or expression in a plant of the same species and the same developmental stage not expressing the exogenous polynucleotide.


Nucleic acid agents that down-regulate miR activity include, but are not limited to, a target mimic, a micro-RNA resistant gene and a miRNA inhibitor.


The target mimic or micro-RNA resistant target is essentially complementary to the microRNA provided that one or more of following mismatches are allowed:


(a) a mismatch between the nucleotide at the 5′ end of the microRNA and the corresponding nucleotide sequence in the target mimic or micro-RNA resistant target;


(b) a mismatch between any one of the nucleotides in position 1 to position 9 of the microRNA and the corresponding nucleotide sequence in the target mimic or micro-RNA resistant target; or


(c) three mismatches between any one of the nucleotides in position 12 to position 21 of the microRNA and the corresponding nucleotide sequence in the target mimic or micro-RNA resistant target provided that there are no more than two consecutive mismatches.


The target mimic RNA is essentially similar to the target RNA modified to render it resistant to miRNA induced cleavage, e.g. by modifying the sequence thereof such that a variation is introduced in the nucleotide of the target mimic sequence complementary to the nucleotides 10 or 11 of the miRNA resulting in a mismatch.


Alternatively, a microRNA-resistant target may be implemented. Thus, a silent mutation may be introduced in the microRNA binding site of the target gene so that the DNA and resulting RNA sequences are changed in a way that prevents microRNA binding, but the amino acid sequence of the protein is unchanged. Thus, a new sequence can be synthesized instead of the existing binding site, in which the DNA sequence is changed, resulting in lack of miRNA binding to its target.


Tables 14-17 below provide non-limiting examples of target mimics and target resistant sequences that can be used to down-regulate the activity of the miRs of the invention. According to a specific embodiment, the target mimic is listed in any one of the sequences of Table 7. According to a specific embodiment, the mir-resistant target sequence is listed in any one of the sequences of Table 15.


According to a specific embodiment, the target mimic or micro-RNA resistant target is linked to the promoter naturally associated with the pre-miRNA recognizing the target gene and introduced into the plant cell. In this way, the miRNA target mimic or micro-RNA resistant target RNA will be expressed under the same circumstances as the miRNA and the target mimic or micro-RNA resistant target RNA will substitute for the non-target mimic/micro-RNA resistant target RNA degraded by the miRNA induced cleavage.


Non-functional miRNA alleles or miRNA resistant target genes may also be introduced by homologous recombination to substitute the miRNA encoding alleles or miRNA sensitive target genes.


Recombinant expression is effected by cloning the nucleic acid of interest (e.g., miRNA, target gene, silencing agent etc) into a nucleic acid expression construct under the expression of a plant promoter, as further described hereinbelow.


In other embodiments of the invention, synthetic single stranded nucleic acids are used as miRNA inhibitors. A miRNA inhibitor is typically between about 17 to 25 nucleotides in length and comprises a 5′ to 3′ sequence that is at least 90% complementary to the 5′ to 3′ sequence of a mature miRNA. In certain embodiments, a miRNA inhibitor molecule is 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, or any range derivable therein. Moreover, a miRNA inhibitor has a sequence (from 5′ to 3′) that is or is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9 or 100% complementary, or any range derivable therein, to the 5′ to 3′ sequence of a mature miRNA, particularly a mature, naturally occurring miRNA.


While further reducing the present invention to practice, the present inventors have identified gene targets for the differentially expressed miRNA molecules. It is therefore contemplated, that gene targets of those miRNAs that are down regulated during stress should be overexpressed in order to confer tolerance, while gene targets of those miRNAs that are up regulated during stress should be downregulated in the plant in order to confer tolerance.


Thus, according to an aspect of the invention there is provided a method of improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of a plant, the method comprising expressing within the plant an exogenous polynucleotide encoding a polypeptide having an amino acid sequence at least 80%, 82%, 84%, 85%, 86%, 88%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or 100% homologous to SEQ ID NOs: 9591-10364 (gene targets of down regulated miRNAs, see Table 10), wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant, thereby improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of the plant.


Nucleic acid sequences (also referred to herein as polynucleotides) of the polypeptides of some embodiments of the invention may be optimized for expression in a specific plant host. Examples of such sequence modifications include, but are not limited to, an altered G/C content to more closely approach that typically found in the plant species of interest, and the removal of codons atypically found in the plant species commonly referred to as codon optimization.


The phrase “codon optimization” refers to the selection of appropriate DNA nucleotides for use within a structural gene or fragment thereof that approaches codon usage within the plant of interest. Therefore, an optimized gene or nucleic acid sequence refers to a gene in which the nucleotide sequence of a native or naturally occurring gene has been modified in order to utilize statistically-preferred or statistically-favored codons within the plant. The nucleotide sequence typically is examined at the DNA level and the coding region optimized for expression in the plant species determined using any suitable procedure, for example as described in Sardana et al. (1996, Plant Cell Reports 15:677-681). In this method, the standard deviation of codon usage, a measure of codon usage bias, may be calculated by first finding the squared proportional deviation of usage of each codon of the native gene relative to that of highly expressed plant genes, followed by a calculation of the average squared deviation. The formula used is: 1 SDCU=n=1 N [(Xn−Yn)/Yn]2/N, where Xn refers to the frequency of usage of codon n in highly expressed plant genes, where Yn to the frequency of usage of codon n in the gene of interest and N refers to the total number of codons in the gene of interest. A table of codon usage from highly expressed genes of dicotyledonous plants is compiled using the data of Murray et al. (1989, Nuc Acids Res. 17:477-498).


One method of optimizing the nucleic acid sequence in accordance with the preferred codon usage for a particular plant cell type is based on the direct use, without performing any extra statistical calculations, of codon optimization tables such as those provided on-line at the Codon Usage Database through the NIAS (National Institute of Agrobiological Sciences) DNA bank in Japan (www(dot)kazusa(dot)or(dot)jp/codon/). The Codon Usage Database contains codon usage tables for a number of different species, with each codon usage table having been statistically determined based on the data present in Genbank.


By using the above tables to determine the most preferred or most favored codons for each amino acid in a particular species (for example, rice), a naturally-occurring nucleotide sequence encoding a protein of interest can be codon optimized for that particular plant species. This is effected by replacing codons that may have a low statistical incidence in the particular species genome with corresponding codons, in regard to an amino acid, that are statistically more favored. However, one or more less-favored codons may be selected to delete existing restriction sites, to create new ones at potentially useful junctions (5′ and 3′ ends to add signal peptide or termination cassettes, internal sites that might be used to cut and splice segments together to produce a correct full-length sequence), or to eliminate nucleotide sequences that may negatively effect mRNA stability or expression.


The naturally-occurring encoding nucleotide sequence may already, in advance of any modification, contain a number of codons that correspond to a statistically-favored codon in a particular plant species. Therefore, codon optimization of the native nucleotide sequence may comprise determining which codons, within the native nucleotide sequence, are not statistically-favored with regards to a particular plant, and modifying these codons in accordance with a codon usage table of the particular plant to produce a codon optimized derivative. A modified nucleotide sequence may be fully or partially optimized for plant codon usage provided that the protein encoded by the modified nucleotide sequence is produced at a level higher than the protein encoded by the corresponding naturally occurring or native gene. Construction of synthetic genes by altering the codon usage is described in for example PCT Patent Application 93/07278.


Target genes which are contemplated according to the present teachings are provided in the polynucleotide sequences which comprise nucleic acid sequences as set forth in the soy polynucleotides listed in Table 10). However the present teachings also relate to orthologs or homologs at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% or more identical or similar to SEQ ID NO: 10365-10963 (polynucleotides listed in Table 10). Parameters for determining the level of identity are provided hereinbelow.


Alternatively or additionally, target genes which are contemplated according to the present teachings are provided in the polypeptide sequences which comprise amino acid sequences as set forth in the soy polypeptides of Table 10). However the present teachings also relate to orthologs or homologs at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% or more identical or similar to SEQ ID NO: 9591-10364 (Table 10).


As mentioned the present inventors have also identified genes which down-regulation may be done in order to improve their abiotic stress tolerance, NUE, biomass, vigor and yield.


Thus, according to an aspect of the invention there is provided a method of improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of a plant, the method comprising expressing within the plant an exogenous polynucleotide which downregulates an activity or expression of a polypeptide having an amino acid sequence at least 80%, 85%, 90%, 95%, or 100% homologous to SEQ ID NOs: 6315-8129 (polypeptides of Table 9), wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant, thereby improving abiotic stress tolerance, nitrogen use efficiency, biomass, vigor or yield of the plant.


Down regulation of activity or expression is by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or even complete (100%) loss of activity or expression. Assays for measuring gene expression can be effected at the protein level (e.g., Western blot, ELISA) or at the mRNA level such as by RT-PCR.


According to a specific embodiment the amino acid sequence of the target gene is as set forth in SEQ ID NOs: 6315-8129 of Table 9.


Alternatively or additionally, the amino acid sequence of the target gene is encoded by a polynucleotide sequence as set forth in SEQ ID NOs: 8130-9590 of Table 9.


Examples of polynucleotide downregulating agents that inhibit (also referred to herein as inhibitors or nucleic acid (downregulating) agents) the expression of a target gene are given below.


1. Polynucleotide-Based Inhibition of Gene Expression.


It will be appreciated, that any of these methods when specifically referring to downregulating expression/activity of the target genes can be used, at least in part, to downregulate expression or activity of endogenous RNA molecules.


i. Sense Suppression/Cosuppression


In some embodiments of the invention, inhibition of the expression of target gene may be obtained by sense suppression or cosuppression. For cosuppression, an expression cassette is designed to express an RNA molecule corresponding to all or part of a messenger RNA encoding a target gene in the “sense” orientation. Over-expression of the RNA molecule can result in reduced expression of the native gene. Accordingly, multiple plant lines transformed with the cosuppression expression cassette are screened to identify those that show the greatest inhibition of target gene expression.


The polynucleotide used for cosuppression may correspond to all or part of the sequence encoding the target gene, all or part of the 5′ and/or 3′ untranslated region of a target transcript, or all or part of both the coding sequence and the untranslated regions of a transcript encoding the target gene. In some embodiments where the polynucleotide comprises all or part of the coding region for the target gene, the expression cassette is designed to eliminate the start codon of the polynucleotide so that no protein product will be transcribed.


Cosuppression may be used to inhibit the expression of plant genes to produce plants having undetectable protein levels for the proteins encoded by these genes. See, for example, Broin, et al., (2002) Plant Cell 15:1517-1532. Cosuppression may also be used to inhibit the expression of multiple proteins in the same plant. Methods for using cosuppression to inhibit the expression of endogenous genes in plants are described in Flavell, et al., (1995) Proc. Natl. Acad. Sci. USA 91:3590-3596; Jorgensen, et al., (1996) Plant Mol. Biol. 31:957-973; Johansen and Carrington, (2001) Plant Physiol. 126:930-938; Broin, et al., (2002) Plant Cell 15:1517-1532; Stoutjesdijk, et al., (2002) Plant Physiol. 129:1723-1731; Yu, et al., (2003) Phytochemistry 63:753-763; and U.S. Pat. Nos. 5,035,323, 5,283,185 and 5,952,657; each of which is herein incorporated by reference. The efficiency of cosuppression may be increased by including a poly-dt region in the expression cassette at a position 3′ to the sense sequence and 5′ of the polyadenylation signal. See, US Patent Publication Number 20020058815, herein incorporated by reference. Typically, such a nucleotide sequence has substantial sequence identity to the sequence of the transcript of the endogenous gene, optimally greater than about 65% sequence identity, more optimally greater than about 85% sequence identity, most optimally greater than about 95% sequence identity. See, U.S. Pat. Nos. 5,283,185 and 5,035,323; herein incorporated by reference.


Transcriptional gene silencing (TGS) may be accomplished through use of hpRNA constructs wherein the inverted repeat of the hairpin shares sequence identity with the promoter region of a gene to be silenced. Processing of the hpRNA into short RNAs which can interact with the homologous promoter region may trigger degradation or methylation to result in silencing. (Aufsatz, et al., (2002) PNAS 99(4):16499-16506; Mette, et al., (2000) EMBO J. 19(19):5194-5201)


ii. Antisense Suppression


In some embodiments of the invention, inhibition of the expression of the target gene may be obtained by antisense suppression. For antisense suppression, the expression cassette is designed to express an RNA molecule complementary to all or part of a messenger RNA encoding the target gene. Over-expression of the antisense RNA molecule can result in reduced expression of the native gene. Accordingly, multiple plant lines transformed with the antisense suppression expression cassette are screened to identify those that show the greatest inhibition of target gene expression.


The polynucleotide for use in antisense suppression may correspond to all or part of the complement of the sequence encoding the target gene, all or part of the complement of the 5′ and/or 3′ untranslated region of the target gene transcript, or all or part of the complement of both the coding sequence and the untranslated regions of a transcript encoding the target gene. In addition, the antisense polynucleotide may be fully complementary (i.e., 100% identical to the complement of the target sequence) or partially complementary (i.e., less than 100% identical to the complement of the target sequence) to the target sequence. Antisense suppression may be used to inhibit the expression of multiple proteins in the same plant. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, 300, 500, 550 or greater may be used. Methods for using antisense suppression to inhibit the expression of endogenous genes in plants are described, for example, in Liu, et al., (2002) Plant Physiol. 129:1732-1753 and U.S. Pat. No. 5,759,829, which is herein incorporated by reference. Efficiency of antisense suppression may be increased by including a poly-dT region in the expression cassette at a position 3′ to the antisense sequence and 5′ of the polyadenylation signal. See, US Patent Publication Number 20020058815.


iii. Double-Stranded RNA Interference


In some embodiments of the invention, inhibition of the expression of a target gene may be obtained by double-stranded RNA (dsRNA) interference. For dsRNA interference, a sense RNA molecule like that described above for cosuppression and an antisense RNA molecule that is fully or partially complementary to the sense RNA molecule are expressed in the same cell, resulting in inhibition of the expression of the corresponding endogenous messenger RNA.


Expression of the sense and antisense molecules can be accomplished by designing the expression cassette to comprise both a sense sequence and an antisense sequence. Alternatively, separate expression cassettes may be used for the sense and antisense sequences. Multiple plant lines transformed with the dsRNA interference expression cassette or expression cassettes are then screened to identify plant lines that show the greatest inhibition of target gene expression. Methods for using dsRNA interference to inhibit the expression of endogenous plant genes are described in Waterhouse, et al., (1998) Proc. Natl. Acad. Sci. USA 95:13959-13965, Liu, et al., (2002) Plant Physiol. 129:1732-1753, and WO 99/59029, WO 99/53050, WO 99/61631, and WO 00/59035.


iv. Hairpin RNA Interference and Intron-Containing Hairpin RNA Interference


In some embodiments of the invention, inhibition of the expression of one or more target gene may be obtained by hairpin RNA (hpRNA) interference or intron-containing hairpin RNA (ihpRNA) interference. These methods are highly efficient at downregulating the expression of endogenous genes. See, Waterhouse and Helliwell, (2003) Nat. Rev. Genet. 5:29-38 and the references cited therein.


For hpRNA interference, the expression cassette is designed to express an RNA molecule that hybridizes with itself to form a hairpin structure that comprises a single-stranded loop region and a base-paired stem. The base-paired stem region comprises a sense sequence corresponding to all or part of the endogenous messenger RNA encoding the gene whose expression is to be inhibited, and an antisense sequence that is fully or partially complementary to the sense sequence. Thus, the base-paired stem region of the molecule generally determines the specificity of the RNA interference. hpRNA molecules are highly efficient at inhibiting the expression of endogenous genes, and the RNA interference they induce is inherited by subsequent generations of plants. See, for example, Chuang and Meyerowitz, (2000) Proc. Natl. Acad. Sci. USA 97:5985-5990; Stoutjesdijk, et al., (2002) Plant Physiol. 129:1723-1731; and Waterhouse and Helliwell, (2003) Nat. Rev. Genet. 5:29-38. Methods for using hpRNA interference to inhibit or silence the expression of genes are described, for example, in Chuang and Meyerowitz, (2000) Proc. Natl. Acad. Sci. USA 97:5985-5990; Stoutjesdijk, et al., (2002) Plant Physiol. 129:1723-1731; Waterhouse and Helliwell, (2003) Nat. Rev. Genet. 5:29-38; Pandolfini, et al., BMC Biotechnology 3:7, and US Patent Publication Number 20030175965; each of which is herein incorporated by reference. A transient assay for the efficiency of hpRNA constructs to silence gene expression in vivo has been described by Panstruga, et al., (2003) Mol. Biol. Rep. 30:135-150, herein incorporated by reference.


For ihpRNA, the interfering molecules have the same general structure as for hpRNA, but the RNA molecule additionally comprises an intron that is capable of being spliced in the cell in which the ihpRNA is expressed. The use of an intron minimizes the size of the loop in the hairpin RNA molecule following splicing, and this increases the efficiency of interference. See, for example, Smith, et al., (2000) Nature 507:319-320. In fact, Smith, et al., show 100% suppression of endogenous gene expression using ihpRNA-mediated interference. Methods for using ihpRNA interference to inhibit the expression of endogenous plant genes are described, for example, in Smith, et al., (2000) Nature 507:319-320; Wesley, et al., (2001) Plant J. 27:584, 1-3, 590; Wang and Waterhouse, (2001) Curr. Opin. Plant Biol. 5:156-150; Waterhouse and Helliwell, (2003) Nat. Rev. Genet. 5:29-38; Helliwell and Waterhouse, (2003) Methods 30:289-295, and US Patent Publication Number 20030180955, each of which is herein incorporated by reference.


The expression cassette for hpRNA interference may also be designed such that the sense sequence and the antisense sequence do not correspond to an endogenous RNA. In this embodiment, the sense and antisense sequence flank a loop sequence that comprises a nucleotide sequence corresponding to all or part of the endogenous messenger RNA of the target gene. Thus, it is the loop region that determines the specificity of the RNA interference. See, for example, WO 02/00905, herein incorporated by reference.


v. Amplicon-Mediated Interference


Amplicon expression cassettes comprise a plant virus-derived sequence that contains all or part of the target gene but generally not all of the genes of the native virus. The viral sequences present in the transcription product of the expression cassette allow the transcription product to direct its own replication. The transcripts produced by the amplicon may be either sense or antisense relative to the target sequence (i.e., the messenger RNA for target gene). Methods of using amplicons to inhibit the expression of endogenous plant genes are described, for example, in Angell and Baulcombe, (1997) EMBO J. 16:3675-3685, Angell and Baulcombe, (1999) Plant J. 20:357-362, and U.S. Pat. No. 6,656,805, each of which is herein incorporated by reference.


vi. Ribozymes


In some embodiments, the polynucleotide expressed by the expression cassette of the invention is catalytic RNA or has ribozyme activity specific for the messenger RNA of target gene. Thus, the polynucleotide causes the degradation of the endogenous messenger RNA, resulting in reduced expression of the target gene. This method is described, for example, in U.S. Pat. No. 5,987,071, herein incorporated by reference.


2. Gene Disruption


In some embodiments of the present invention, the activity of a miRNA or a target gene is reduced or eliminated by disrupting the gene encoding the target polypeptide. The gene encoding the target polypeptide may be disrupted by any method known in the art. For example, in one embodiment, the gene is disrupted by transposon tagging. In another embodiment, the gene is disrupted by mutagenizing plants using random or targeted mutagenesis, and selecting for plants that have reduced response regulator activity.


Any of the nucleic acid agents described herein (for overexpression or downregulation of either the target gene or the miRNA) can be provided to the plant as naked RNA or expressed from a nucleic acid expression construct, where it is operably linked to a regulatory sequence.


According to a specific embodiment of the invention, there is provided a nucleic acid construct comprising a nucleic acid sequence encoding a nucleic acid agent (e.g., miRNA or a precursor thereof as described herein, gene target or silencing agent), the nucleic acid sequence being under a transcriptional control of a regulatory sequence such as a tissue specific promoter.


An exemplary nucleic acid construct which can be used for plant transformation include, the pORE E2 binary vector (FIG. 1) in which the relevant nucleic acid sequence is ligated under the transcriptional control of a promoter.


A coding nucleic acid sequence is “operably linked” or “transcriptionally linked to a regulatory sequence (e.g., promoter)” if the regulatory sequence is capable of exerting a regulatory effect on the coding sequence linked thereto. Thus, the regulatory sequence controls the transcription of the miRNA or precursor thereof, gene target or silencing agent.


The term “regulatory sequence”, as used herein, means any DNA, that is involved in driving transcription and controlling (i.e., regulating) the timing and level of transcription of a given DNA sequence, such as a DNA coding for a miRNA, precursor or inhibitor of same. For example, a 5′ regulatory region (or “promoter region”) is a DNA sequence located upstream (i.e., 5′) of a coding sequence and which comprises the promoter and the 5′-untranslated leader sequence. A 3′ regulatory region is a DNA sequence located downstream (i.e., 3′) of the coding sequence and which comprises suitable transcription termination (and/or regulation) signals, including one or more polyadenylation signals.


For the purpose of the invention, the promoter is a plant-expressible promoter. As used herein, the term “plant-expressible promoter” means a DNA sequence which is capable of controlling (initiating) transcription in a plant cell. This includes any promoter of plant origin, but also any promoter of non-plant origin which is capable of directing transcription in a plant cell, i.e., certain promoters of viral or bacterial origin. Thus, any suitable promoter sequence can be used by the nucleic acid construct of the present invention. According to some embodiments of the invention, the promoter is a constitutive promoter, a tissue-specific promoter or an inducible promoter (e.g. an abiotic stress-inducible promoter).


Suitable constitutive promoters include, for example, hydroperoxide lyase (HPL) promoter, CaMV 35S promoter (Odell et al, Nature 313:810-812, 1985); Arabidopsis At6669 promoter (see PCT Publication No. WO04081173A2); Arabidopsis new At6669 promoter; maize Ubi 1 (Christensen et al., Plant Sol. Biol. 18:675-689, 1992); rice actin (McElroy et al., Plant Cell 2:163-171, 1990); pEMU (Last et al, Theor. Appl. Genet. 81:584, 1-3, 588, 1991); CaMV 19S (Nilsson et al, Physiol. Plant 100:456-462, 1997); GOS2 (de Pater et al, Plant J Nov; 2(6):837-44, 1992); ubiquitin (Christensen et al, Plant MoI. Biol. 18: 675-689, 1992); Rice cyclophilin (Bucholz et al, Plant MoI Biol. 25(5):837-43, 1994); Maize H3 histone (Lepetit et al, MoI. Gen. Genet. 231:276-285, 1992); Actin 2 (An et al, Plant J. 10(1); 107-121, 1996) and Synthetic Super MAS (Ni et al., The Plant Journal 7: 661-76, 1995). Other constitutive promoters include those in U.S. Pat. Nos. 5,659,026, 5,608,149; 5,608,144; 5,604,121; 5,569,597: 5,466,785; 5,399,680; 5,268,463; and 5,608,142.


Suitable tissue-specific promoters include, but not limited to, leaf-specific promoters [such as described, for example, by Yamamoto et al., Plant J. 12:255-265, 1997; Kwon et al., Plant Physiol. 105:357-67, 1994; Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994; Gotor et al., Plant J. 3:509-18, 1993; Orozco et al., Plant MoI. Biol. 23:1129-1138, 1993; and Matsuoka et al., Proc. Natl. Acad. Sci. USA 90:9586-9590, 1993], seed-preferred promoters [e.g., from seed specific genes (Simon, et al., Plant MoI. Biol. 5. 191, 1985; Scofield, et al., J. Biol. Chem. 262: 12202, 1987; Baszczynski, et al., Plant MoI. Biol. 14: 633, 1990), Brazil Nut albumin (Pearson′ et al., Plant MoI. Biol. 18: 235-245, 1992), legumin (Ellis, et al. Plant MoI. Biol. 10: 203-214, 1988), Glutelin (rice) (Takaiwa, et al., MoI. Gen. Genet. 208: 15-22, 1986; Takaiwa, et al., FEBS Letts. 221:43-47, 1987), Zein (Matzke et al., Plant MoI Biol, 143)323-32 1990), napA (Stalberg, et al., Planta 199: 515-519, 1996), Wheat SPA (Albanietal, Plant Cell, 9: 171-184, 1997), sunflower oleosin (Cummins, et al, Plant MoI. Biol. 19: 873-876, 1992)], endosperm specific promoters [e.g., wheat LMW and HMW, glutenin-1 (MoI Gen Genet 216:81-90, 1989; NAR 17:461-2), wheat a, b and g gliadins (EMBO3: 1409-15, 1984), Barley ltrl promoter, barley Bl, C, D hordein (Theor Appl Gen 98:1253-62, 1999; Plant J 4:343-55, 1993; MoI Gen Genet 250:750-60, 1996), Barley DOF (Mena et al., The Plant Journal, 116(1): 53-62, 1998), Biz2 (EP99106056.7), Synthetic promoter (Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998), rice prolamin NRP33, rice-globulin GIb-I (Wu et al., Plant Cell Physiology 39(8) 885-889, 1998), rice alpha-globulin REB/OHP-1 (Nakase et al. Plant MoI. Biol. 33: 513-S22, 1997), rice ADP-glucose PP (Trans Res 6:157-68, 1997), maize ESR gene family (Plant J 12:235-46, 1997), sorghum gamma-kafirin (PMB 32:1029-35, 1996); e.g., the Napin promoter], embryo specific promoters [e.g., rice OSH1 (Sato et al, Proc. Natl. Acad. Sci. USA, 93: 8117-8122), KNOX (Postma-Haarsma et al, Plant MoI. Biol. 39:257-71, 1999), rice oleosin (Wu et at, J. Biochem., 123:386, 1998)], and flower-specific promoters [e.g., AtPRP4, chalene synthase (chsA) (Van der Meer, et al., Plant MoI. Biol. 15, 95-109, 1990), LAT52 (Twell et al., MoI. Gen Genet. 217:240-245; 1989), apetala-3]. Also contemplated are root-specific promoters such as the ROOTP promoter described in Vissenberg K, et al. Plant Cell Physiol. 2005 January; 46(1):192-200.


The nucleic acid construct of some embodiments of the invention can further include an appropriate selectable marker and/or an origin of replication.


The nucleic acid construct of some embodiments of the invention can be utilized to stably or transiently transform plant cells. In stable transformation, the exogenous polynucleotide is integrated into the plant genome and as such it represents a stable and inherited trait. In transient transformation, the exogenous polynucleotide is expressed by the cell transformed but it is not integrated into the genome and as such it represents a transient trait.


When naked RNA or DNA is introduced into a cell, the polynucleotides may be synthesized using any method known in the art, including either enzymatic syntheses or solid-phase syntheses. These are especially useful in the case of short polynucleotide sequences with or without modifications as explained above. Equipment and reagents for executing solid-phase synthesis are commercially available from, for example, Applied Biosystems. Any other means for such synthesis may also be employed; the actual synthesis of the oligonucleotides is well within the capabilities of one skilled in the art and can be accomplished via established methodologies as detailed in, for example: Sambrook, J. and Russell, D. W. (2001), “Molecular Cloning: A Laboratory Manual”; Ausubel, R. M. et al., eds. (1994, 1989), “Current Protocols in Molecular Biology,” Volumes I-III, John Wiley & Sons, Baltimore, Md.; Perbal, B. (1988), “A Practical Guide to Molecular Cloning,” John Wiley & Sons, New York; and Gait, M. J., ed. (1984), “Oligonucleotide Synthesis”; utilizing solid-phase chemistry, e.g. cyanoethyl phosphoramidite followed by deprotection, desalting, and purification by, for example, an automated trityl-on method or HPLC.


There are various methods of introducing foreign genes into both monocotyledonous and dicotyledonous plants (Potrykus, L, Annu. Rev. Plant. Physiol, Plant. MoI. Biol. (1991) 42:205-225; Shimamoto et al., Nature (1989) 338:274-276).


The principle methods of causing stable integration of exogenous DNA into plant genomic DNA include two main approaches:


(i) Agrobacterium-mediated gene transfer (e.g., T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes); see for example, Klee et al. (1987) Annu. Rev. Plant Physiol. 38:467-486; Klee and Rogers in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 2-25; Gatenby, in Plant Biotechnology, eds. Kung, S, and Arntzen, C. J., Butterworth Publishers, Boston, Mass. (1989) p. 93-112.


(ii) Direct DNA uptake: Paszkowski et al., in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 52-68; including methods for direct uptake of DNA into protoplasts, Toriyama, K. et al. (1988) Bio/Technology 6:1072-1074. DNA uptake induced by brief electric shock of plant cells: Zhang et al. Plant Cell Rep. (1988) 7:379-384. Fromm et al. Nature (1986) 319:791-793. DNA injection into plant cells or tissues by particle bombardment, Klein et al. Bio/Technology (1988) 6:559-563; McCabe et al. Bio/Technology (1988) 6:923-926; Sanford, Physiol. Plant. (1990) 79:206-209; by the use of micropipette systems: Neuhaus et al., Theor. Appl. Genet. (1987) 75:30-36; Neuhaus and Spangenberg, Physiol. Plant. (1990) 79:213-217; glass fibers or silicon carbide whisker transformation of cell cultures, embryos or callus tissue, U.S. Pat. No. 5,464,765 or by the direct incubation of DNA with germinating pollen, DeWet et al. in Experimental Manipulation of Ovule Tissue, eds. Chapman, G. P. and Mantell, S. H. and Daniels, W. Longman, London, (1985) p. 197-209; and Ohta, Proc. Natl. Acad. Sci. USA (1986) 83:715-719.


The Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A widely used approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. See, e.g., Horsch et al. in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9. A supplementary approach employs the Agrobacterium delivery system in combination with vacuum infiltration. The Agrobacterium system is especially viable in the creation of transgenic dicotyledonous plants.


According to a specific embodiment of the present invention, the exogenous polynucleotide is introduced into the plant by infecting the plant with bacteria, such as using a floral dip transformation method (as described in further detail in Example 7, of the Examples section which follows).


There are various methods of direct DNA transfer into plant cells. In electroporation, the protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues.


Following stable transformation plant propagation is exercised. The most common method of plant propagation is by seed. Regeneration by seed propagation, however, has the deficiency that due to heterozygosity there is a lack of uniformity in the crop, since seeds are produced by plants according to the genetic variances governed by Mendelian rules. Basically, each seed is genetically different and each will grow with its own specific traits. Therefore, it is preferred that the transformed plant be produced such that the regenerated plant has the identical traits and characteristics of the parent transgenic plant. For this reason it is preferred that the transformed plant be regenerated by micropropagation which provides a rapid, consistent reproduction of the transformed plants.


Micropropagation is a process of growing new generation plants from a single piece of tissue that has been excised from a selected parent plant or cultivar. The new generation plants which are produced are genetically identical to, and have all of the characteristics of, the original plant. Micropropagation allows mass production of quality plant material in a short period of time and offers a rapid multiplication of selected cultivars in the preservation of the characteristics of the original transgenic or transformed plant. The advantages of cloning plants are the speed of plant multiplication and the quality and uniformity of plants produced.


Micropropagation is a multi-stage procedure that requires alteration of culture medium or growth conditions between stages. Thus, the micropropagation process involves four basic stages: Stage one, initial tissue culturing; stage two, tissue culture multiplication; stage three, differentiation and plant formation; and stage four, greenhouse culturing and hardening. During stage one, initial tissue culturing, the tissue culture is established and certified contaminant-free. During stage two, the initial tissue culture is multiplied until a sufficient number of tissue samples are produced to meet production goals. During stage three, the tissue samples grown in stage two are divided and grown into individual plantlets. At stage four, the transformed plantlets are transferred to a greenhouse for hardening where the plants' tolerance to light is gradually increased so that it can be grown in the natural environment.


Although stable transformation is presently preferred, transient transformation of leaf cells, meristematic cells or the whole plant is also envisaged by the present invention.


Transient transformation can be effected by any of the direct DNA transfer methods described above or by viral infection using modified plant viruses.


Viruses that have been shown to be useful for the transformation of plant hosts include CaMV, Tobacco mosaic virus (TMV), brome mosaic virus (BMV) and Bean Common Mosaic Virus (BV or BCMV). Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (bean golden mosaic virus; BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al., Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants are described in WO 87/06261. According to some embodiments of the invention, the virus used for transient transformations is avirulent and thus is incapable of causing severe symptoms such as reduced growth rate, mosaic, ring spots, leaf roll, yellowing, streaking, pox formation, tumor formation and pitting. A suitable avirulent virus may be a naturally occurring avirulent virus or an artificially attenuated virus. Virus attenuation may be effected by using methods well known in the art including, but not limited to, sub-lethal heating, chemical treatment or by directed mutagenesis techniques such as described, for example, by Kurihara and Watanabe (Molecular Plant Pathology 4:259-269, 2003), Galon et al. (1992), Atreya et al. (1992) and Huet et al. (1994).


Suitable virus strains can be obtained from available sources such as, for example, the American Type culture Collection (ATCC) or by isolation from infected plants. Isolation of viruses from infected plant tissues can be effected by techniques well known in the art such as described, for example by Foster and Tatlor, Eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), VoI 81)”, Humana Press, 1998. Briefly, tissues of an infected plant believed to contain a high concentration of a suitable virus, preferably young leaves and flower petals, are ground in a buffer solution (e.g., phosphate buffer solution) to produce a virus infected sap which can be used in subsequent inoculations.


Construction of plant RNA viruses for the introduction and expression of non-viral exogenous polynucleotide sequences in plants is demonstrated by the above references as well as by Dawson, W. O. et al, Virology (1989) 172:285-292; Takamatsu et al. EMBO J. (1987) 6:307-311; French et al. Science (1986) 231:1294-1297; Takamatsu et al. FEBS Letters (1990) 269:73-76; and U.S. Pat. No. 5,316,931.


When the virus is a DNA virus, suitable modifications can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus can then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat proteins which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA.


In one embodiment, a plant viral nucleic acid is provided in which the native coat protein coding sequence has been deleted from a viral nucleic acid, a non-native plant viral coat protein coding sequence and a non-native promoter, preferably the subgenomic promoter of the non-native coat protein coding sequence, capable of expression in the plant host, packaging of the recombinant plant viral nucleic acid, and ensuring a systemic infection of the host by the recombinant plant viral nucleic acid, has been inserted. Alternatively, the coat protein gene may be inactivated by insertion of the non-native nucleic acid sequence within it, such that a protein is produced. The recombinant plant viral nucleic acid may contain one or more additional non-native subgenomic promoters. Each non-native subgenomic promoter is capable of transcribing or expressing adjacent genes or nucleic acid sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters. Non-native (foreign) nucleic acid sequences may be inserted adjacent the native plant viral subgenomic promoter or the native and a non-native plant viral subgenomic promoters if more than one nucleic acid sequence is included. The non-native nucleic acid sequences are transcribed or expressed in the host plant under control of the subgenomic promoter to produce the desired products.


In a second embodiment, a recombinant plant viral nucleic acid is provided as in the first embodiment except that the native coat protein coding sequence is placed adjacent one of the non-native coat protein subgenomic promoters instead of a non-native coat protein coding sequence.


In a third embodiment, a recombinant plant viral nucleic acid is provided in which the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral nucleic acid. The inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters. Non-native nucleic acid sequences may be inserted adjacent to the non-native subgenomic plant viral promoters such that the sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the desired product.


In a fourth embodiment, a recombinant plant viral nucleic acid is provided as in the third embodiment except that the native coat protein coding sequence is replaced by a non-native coat protein coding sequence.


The viral vectors are encapsidated by the coat proteins encoded by the recombinant plant viral nucleic acid to produce a recombinant plant virus. The recombinant plant viral nucleic acid or recombinant plant virus is used to infect appropriate host plants. The recombinant plant viral nucleic acid is capable of replication in the host, systemic spread in the host, and transcription or expression of foreign gene(s) (isolated nucleic acid) in the host to produce the desired sequence.


In addition to the above, the nucleic acid molecule of the present invention can also be introduced into a chloroplast genome thereby enabling chloroplast expression.


A technique for introducing exogenous nucleic acid sequences to the genome of the chloroplasts is known. This technique involves the following procedures. First, plant cells are chemically treated so as to reduce the number of chloroplasts per cell to about one. Then, the exogenous nucleic acid is introduced via particle bombardment into the cells with the aim of introducing at least one exogenous nucleic acid molecule into the chloroplasts. The exogenous nucleic acid is selected such that it gets integrated into the chloroplast's genome via homologous recombination which is readily effected by enzymes inherent to the chloroplast. To this end, the exogenous nucleic acid includes, in addition to a gene of interest, at least one nucleic acid stretch which is derived from the chloroplast's genome. In addition, the exogenous nucleic acid includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all of the copies of the chloroplast genomes following such selection will include the exogenous nucleic acid. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507 which are incorporated herein by reference.


Regardless of the method of transformation, propagation or regeneration, the present invention also contemplates a transgenic plant exogenously expressing the polynucleotide/nucleic acid agent of the invention.


According to a specific embodiment, the transgenic plant exogenously expresses a polynucleotide having a nucleic acid sequence at least, 80%, 85%, 90%, 95% or even 100% identical to SEQ ID NOs: 1-56, 11874, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 2087-3910 11616, 11615, 11910-11939, 11956-11958, 11875-11904 or 3911 (Tables 1, 3, 5 and 7), wherein the nucleic acid sequence is capable of regulating abiotic stress tolerance of the plant.


According to further embodiments, the exogenous polynucleotide encodes a precursor of the nucleic acid sequence.


According to yet further embodiments, the stem-loop precursor is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or even 100% identical to SEQ ID NOs: 1-56, 11874, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 2087-3910 11616, 11615, 11910-11939, 11956-11958, 11875-11904 or 3911 (Tables 1, 3, 5 and 7). More specifically the exogenous polynucleotide is selected from the group consisting of SEQ ID NO: 1-56, 11874, 174-201, 80-125, 220-235, 162-168, 256-259, 262-2086, 2087-3910 11616, 11615, 11910-11939, 11956-11958, 11875-11904 or 3911 (precursor and mature sequences of unregulated Tables 1, 3, 5 and 7).


Alternatively, there is provided a transgenic plant exogenously expressing a polynucleotide which downregulates an activity or expression of a gene encoding a miRNA molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 57-79, 202-219, 126-161, 236-255, 169-173, 260-261, 3953-5114, 5117-6277, 11905-11909, 11940-11955, 11959-11961 or 6278 (downregulated Tables 2, 4, 6, 8) or homologs thereof which are at least at least 80%, 85%, 90% or 95% identical to SEQ ID NOs: 57-79, 202-219, 126-161, 236-255, 169-173, 260-261, 3953-5114, 5117-6277, 11905-11909, 11940-11955, 11959-11961 or 6278 (downregulated Tables 2, 4, 6 and 8).


More specifically, the transgenic plant expresses the nucleic acid agent of Tables 14 or 16. Alternatively, the transgenic plant expresses the nucleic acid agent of Tables 15 or 17.


It will be appreciated that the present teachings also relate to nucleic acid constructs and transgenic plants expressing same which comprise a nucleic acid sequence at least 80%, 85%, 90%, 95% or even 100% identical to SEQ ID NOs: 57-79, 202-219, 126-161, 236-255, 169-173, 260-261, 3953-5114, 5117-6277, 11905-11909, 11940-11955, 11959-11961 or 6278 (Tables 2, 4, 6 and 8), wherein the nucleic acid sequence is capable of regulating abiotic stress tolerance of the plant.


Alternatively or additionally there is provided a transgenic plant exogenously expressing a polynucleotide encoding a polypeptide having an amino acid sequence at least 80%, 85%, 90%, 95% or even 100% homologous to SEQ ID NOs: 9591-10364 (polypeptides of Table 10), wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant.


Alternatively or additionally there is provided a transgenic plant exogenously expressing a polynucleotide encoding a polypeptide having an amino acid sequence at least 80%, 85%, 90%, 95% or even 100% homologous to SEQ ID NOs: 6315-8129 (polypeptides of Table 9), wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant.


Alternatively or additionally there is provided a transgenic plant exogenously expressing a polynucleotide which downregulates an activity or expression of a polypeptide having an amino acid sequence at least 80%, 85%, 90%, 95% or even 100% homologous to SEQ ID NOs: 6315-10963 (targets of Tables 9 and 10), wherein the polypeptide is capable of regulating abiotic stress tolerance of the plant.


Also contemplated are hybrids of the above described transgenic plants. A “hybrid plant” refers to a plant or a part thereof resulting from a cross between two parent plants, wherein one parent is a genetically engineered plant of the invention (transgenic plant expressing an exogenous miRNA sequence or a precursor thereof). Such a cross can occur naturally by, for example, sexual reproduction, or artificially by, for example, in vitro nuclear fusion. Methods of plant breeding are well-known and within the level of one of ordinary skill in the art of plant biology.


Since abiotic stress tolerance, nitrogen use efficiency as well as yield, vigor or biomass of the plant can involve multiple genes acting additively or in synergy (see, for example, in Quesda et al., Plant Physiol. 130:951-063, 2002), the invention also envisages expressing a plurality of exogenous polynucleotides in a single host plant to thereby achieve superior effect on the efficiency of nitrogen use, yield, vigor and biomass of the plant.


Expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing multiple nucleic acid constructs, each including a different exogenous polynucleotide, into a single plant cell. The transformed cell can then be regenerated into a mature plant using the methods described hereinabove. Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing into a single plant-cell a single nucleic-acid construct including a plurality of different exogenous polynucleotides. Such a construct can be designed with a single promoter sequence which can transcribe a polycistronic messenger RNA including all the different exogenous polynucleotide sequences. Alternatively, the construct can include several promoter sequences each linked to a different exogenous polynucleotide sequence.


The plant cell transformed with the construct including a plurality of different exogenous polynucleotides can be regenerated into a mature plant, using the methods described hereinabove.


Alternatively, expressing a plurality of exogenous polynucleotides can be effected by introducing different nucleic acid constructs, including different exogenous polynucleotides, into a plurality of plants. The regenerated transformed plants can then be cross-bred and resultant progeny selected for superior yield or tolerance traits as described above, using conventional plant breeding techniques.


Expression of the miRNAs of the present invention or precursors thereof can be qualified using methods which are well known in the art such as those involving gene amplification e.g., PCR or RT-PCR or Northern blot or in-situ hybridization.


According to some embodiments of the invention, the plant expressing the exogenous polynucleotide(s) is grown under stress (nitrogen or abiotic) or normal conditions (e.g., biotic conditions and/or conditions with sufficient water, nutrients such as nitrogen and fertilizer). Such conditions, which depend on the plant being grown, are known to those skilled in the art of agriculture, and are further, described above.


According to some embodiments of the invention, the method further comprises growing the plant expressing the exogenous polynucleotide(s) under abiotic stress or nitrogen limiting conditions. Non-limiting examples of abiotic stress conditions include, water deprivation, drought, excess of water (e.g., flood, waterlogging), freezing, low temperature, high temperature, strong winds, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, salinity, atmospheric pollution, intense light, insufficient light, or UV irradiation, etiolation and atmospheric pollution.


Thus, the invention encompasses plants exogenously expressing the polynucleotide(s), the nucleic acid constructs of the invention.


Methods of determining the level in the plant of the RNA transcribed from the exogenous polynucleotide are well known in the art and include, for example, Northern blot analysis, reverse transcription polymerase chain reaction (RT-PCR) analysis (including quantitative, semi-quantitative or real-time RT-PCR) and RNA-m situ hybridization.


The sequence information and annotations uncovered by the present teachings can be harnessed in favor of classical breeding. Thus, sub-sequence data of those polynucleotides described above, can be used as markers for marker assisted selection (MAS), in which a marker is used for indirect selection of a genetic determinant or determinants of a trait of interest (e.g., tolerance to abiotic stress). Nucleic acid data of the present teachings (DNA or RNA sequence) may contain or be linked to polymorphic sites or genetic markers on the genome such as restriction fragment length polymorphism (RFLP), microsatellites and single nucleotide polymorphism (SNP), DNA fingerprinting (DFP), amplified fragment length polymorphism (AFLP), expression level polymorphism, and any other polymorphism at the DNA or RNA sequence.


Examples of marker assisted selections include, but are not limited to, selection for a morphological trait (e.g., a gene that affects form, coloration, male sterility or resistance such as the presence or absence of awn, leaf sheath coloration, height, grain color, aroma of rice); selection for a biochemical trait (e.g., a gene that encodes a protein that can be extracted and observed; for example, isozymes and storage proteins); selection for a biological trait (e.g., pathogen races or insect biotypes based on host pathogen or host parasite interaction can be used as a marker since the genetic constitution of an organism can affect its susceptibility to pathogens or parasites).


The polynucleotides described hereinabove can be used in a wide range of economical plants, in a safe and cost effective manner.


Plant lines exogenously expressing the polynucleotide of the invention can be screened to identify those that show the greatest increase of the desired plant trait.


Thus, according to an additional embodiment of the present invention, there is provided a method of evaluating a trait of a plant, the method comprising: (a) expressing in a plant or a portion thereof the nucleic acid construct; and (b) evaluating a trait of a plant as compared to a wild type plant of the same type; thereby evaluating the trait of the plant.


Thus, the effect of the transgene (the exogenous polynucleotide) on different plant characteristics may be determined any method known to one of ordinary skill in the art.


Thus, for example, tolerance to limiting nitrogen conditions may be compared in transformed plants {i.e., expressing the transgene) compared to non-transformed (wild type) plants exposed to the same stress conditions (other stress conditions are contemplated as well, e.g. water deprivation, salt stress e.g. salinity, suboptimal temperatureosmotic stress, and the like), using the following assays.


Methods of qualifying plants as being tolerant or having improved tolerance to abiotic stress or limiting nitrogen levels are well known in the art and are further described hereinbelow.


Fertilizer use efficiency—To analyze whether the transgenic plants are more responsive to fertilizers, plants are grown in agar plates or pots with a limited amount of fertilizer, as described, for example, in Yanagisawa et al (Proc Natl Acad Sci USA. 2004; 101:7833-8). The plants are analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain. The parameters checked are the overall size of the mature plant, its wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf verdure is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots, oil content, etc. Similarly, instead of providing nitrogen at limiting amounts, phosphate or potassium can be added at increasing concentrations. Again, the same parameters measured are the same as listed above. In this way, nitrogen use efficiency (NUE), phosphate use efficiency (PUE) and potassium use efficiency (KUE) are assessed, checking the ability of the transgenic plants to thrive under nutrient restraining conditions.


Nitrogen use efficiency—To analyze whether the transgenic plants (e.g., Arabidopsis plants) are more responsive to nitrogen, plant are grown in 0.75-3 millimolar (mM, nitrogen deficient conditions) or 10, 6-9 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 25 days or until seed production. The plants are then analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain/seed production. The parameters checked can be the overall size of the plant, wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf greenness is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots and oil content. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher measured parameters levels than wild-type plants, are identified as nitrogen use efficient plants.


Nitrogen Use efficiency assay using plantlets—The assay is done according to Yanagisawa-S. et al. with minor modifications (“Metabolic engineering with Dofl transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions” Proc. Natl. Acad. Sci. USA 101, 7833-7838). Briefly, transgenic plants which are grown for 7-10 days in 0.5×MS [Murashige-Skoog] supplemented with a selection agent are transferred to two nitrogen-limiting conditions: MS media in which the combined nitrogen concentration (NH4NO3 and KNO3) was 0.75 mM (nitrogen deficient conditions) or 6-15 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 30-40 days and then photographed, individually removed from the Agar (the shoot without the roots) and immediately weighed (fresh weight) for later statistical analysis. Constructs for which only T1 seeds are available are sown on selective media and at least 20 seedlings (each one representing an independent transformation event) are carefully transferred to the nitrogen-limiting media. For constructs for which T2 seeds are available, different transformation events are analyzed. Usually, 20 randomly selected plants from each event are transferred to the nitrogen-limiting media allowed to grow for 3-4 additional weeks and individually weighed at the end of that period. Transgenic plants are compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS) under the same promoter or transgenic plants carrying the same promoter but lacking a reporter gene are used as control.


Nitrogen determination—The procedure for N (nitrogen) concentration determination in the structural parts of the plants involves the potassium persulfate digestion method to convert organic N to NO3(Purcell and King 1996 Argon. J. 88:111-113, the modified Cd mediated reduction of NO3to NO2(Vodovotz 1996 Biotechniques 20:390-394) and the measurement of nitrite by the Griess assay (Vodovotz 1996, supra). The absorbance values are measured at 550 nm against a standard curve of NaNO2. The procedure is described in details in Samonte et al. 2006 Agron. J. 98:168-176.


Tolerance to abiotic stress (e.g. tolerance to drought or salinity) can be evaluated by determining the differences in physiological and/or physical condition, including but not limited to, vigor, growth, size, or root length, or specifically, leaf color or leaf area size of the transgenic plant compared to a non-modified plant of the same species grown under the same conditions. Other techniques for evaluating tolerance to abiotic stress include, but are not limited to, measuring chlorophyll fluorescence, photosynthetic rates and gas exchange rates. Further assays for evaluating tolerance to abiotic stress are provided hereinbelow and in the Examples section which follows.


Drought tolerance assay—Soil-based drought screens are performed with plants overexpressing the polynucleotides detailed above. Seeds from control Arabidopsis plants, or other transgenic plants overexpressing nucleic acid of the invention are germinated and transferred to pots. Drought stress is obtained after irrigation is ceased. Transgenic and control plants are compared to each other when the majority of the control plants develop severe wilting. Plants are re-watered after obtaining a significant fraction of the control plants displaying a severe wilting. Plants are ranked comparing to controls for each of two criteria: tolerance to the drought conditions and recovery (survival) following re-watering.


Quantitative parameters of tolerance measured include, but are not limited to, the average wet and dry weight, growth rate, leaf size, leaf coverage (overall leaf area), the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as drought stress tolerant plants


Salinity tolerance assay—Transgenic plants with tolerance to high salt concentrations are expected to exhibit better germination, seedling vigor or growth in high salt. Salt stress can be effected in many ways such as, for example, by irrigating the plants with a hyperosmotic solution, by cultivating the plants hydroponically in a hyperosmotic growth solution (e.g., Hoagland solution with added salt), or by culturing the plants in a hyperosmotic growth medium [e.g., 50 Murashige-Skoog medium (MS medium) with added salt]. Since different plants vary considerably in their tolerance to salinity, the salt concentration in the irrigation water, growth solution, or growth medium can be adjusted according to the specific characteristics of the specific plant cultivar or variety, so as to inflict a mild or moderate effect on the physiology and/or morphology of the plants (for guidelines as to appropriate concentration see, Bernstein and Kafkafi, Root Growth Under Salinity Stress In: Plant Roots, The Hidden Half 3rd ed. Waisel Y, Eshel A and Kafkafi U. (editors) Marcel Dekker Inc., New York, 2002, and reference therein).


For example, a salinity tolerance test can be performed by irrigating plants at different developmental stages with increasing concentrations of sodium chloride (for example 50 mM, 150 mM, 300 mM NaCl) applied from the bottom and from above to ensure even dispersal of salt. Following exposure to the stress condition the plants are frequently monitored until substantial physiological and/or morphological effects appear in wild type plants. Thus, the external phenotypic appearance, degree of chlorosis and overall success to reach maturity and yield progeny are compared between control and transgenic plants. Quantitative parameters of tolerance measured include, but are not limited to, the average wet and dry weight, growth rate, leaf size, leaf coverage (overall leaf area), the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as abiotic stress tolerant plants.


Osmotic tolerance test—Osmotic stress assays (including sodium chloride and PEG assays) are conducted to determine if an osmotic stress phenotype was sodium chloride-specific or if it was a general osmotic stress related phenotype. Plants which are tolerant to osmotic stress may have more tolerance to drought and/or freezing. For salt and osmotic stress experiments, the medium is supplemented for example with 50 mM, 100 mM, 200 mM NaCl or 15%, 20% or 25% PEG.


Cold stress tolerance—One way to analyze cold stress is as follows. Mature (25 day old) plants are transferred to 4° C. chambers for 1 or 2 weeks, with constitutive light. Later on plants are moved back to greenhouse. Two weeks later damages from chilling period, resulting in growth retardation and other phenotypes, are compared between control and transgenic plants, by measuring plant weight (wet and dry), and by comparing growth rates measured as time to flowering, plant size, yield, and the like.


Heat stress tolerance—One way to measure heat stress tolerance is by exposing the plants to temperatures above 34° C. for a certain period. Plant tolerance is examined after transferring the plants back to 22° C. for recovery and evaluation after 5 days relative to internal controls (non-transgenic plants) or plants not exposed to neither cold or heat stress.


The biomass, vigor and yield of the plant can also be evaluated using any method known to one of ordinary skill in the art. Thus, for example, plant vigor can be calculated by the increase in growth parameters such as leaf area, fiber length, rosette diameter, plant fresh weight, oil content, seed yield and the like per time.


As mentioned, the increase of plant yield can be determined by various parameters. For example, increased yield of rice may be manifested by an increase in one or more of the following: number of plants per growing area, number of panicles per plant, number of spikelets per panicle, number of flowers per panicle, increase in the seed filling rate, increase in thousand kernel weight (1000-weight), increase oil content per seed, increase starch content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture. Similarly, increased yield of soybean may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, increase protein content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.


Thus, the present invention is of high agricultural value for increasing tolerance of plants to nitrogen deficiency or abiotic stress as well as promoting the yield, biomass and vigor of commercially desired crops.


According to another embodiment of the present invention, there is provided a food or feed comprising the plants or a portion thereof of the present invention.


In a further aspect the invention, the transgenic plants of the present invention or parts thereof are comprised in a food or feed product (e.g., dry, liquid, paste). A food or feed product is any ingestible preparation containing the transgenic plants, or parts thereof, of the present invention, or preparations made from these plants. Thus, the plants or preparations are suitable for human (or animal) consumption, i.e. the transgenic plants or parts thereof are more readily digested. Feed products of the present invention further include an oil or a beverage adapted for animal consumption.


It will be appreciated that the transgenic plants, or parts thereof, of the present invention may be used directly as feed products or alternatively may be incorporated or mixed with feed products for consumption. Furthermore, the food or feed products may be processed or used as is. Exemplary feed products comprising the transgenic plants, or parts thereof, include, but are not limited to, grains, cereals, such as oats, e.g. black oats, barley, wheat, rye, sorghum, corn, vegetables, leguminous plants, especially soybeans, root vegetables and cabbage, or green forage, such as grass or hay.


As used herein the term “about” refers to ±10%.


The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.


The term “consisting of” means “including and limited to”.


The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.


As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.


Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.


Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.


As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.


Various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.


EXAMPLES

Reference is now made to the following examples, which together with the above descriptions illustrate some embodiments of the invention in a non limiting fashion.


Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, “Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., “Current Protocols in Molecular Biology”, John Wiley and Sons, Baltimore, Md. (1989); Perbal, “A Practical Guide to Molecular Cloning”, John Wiley & Sons, New York (1988); Watson et al., “Recombinant DNA”, Scientific American Books, New York; Birren et al. (eds) “Genome Analysis: A Laboratory Manual Series”, Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; “Cell Biology: A Laboratory Handbook”, Volumes I-III Cellis, J. E., ed. (1994); “Current Protocols in Immunology” Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), “Basic and Clinical Immunology” (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), “Selected Methods in Cellular Immunology”, W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; “Oligonucleotide Synthesis” Gait, M. J., ed. (1984); “Nucleic Acid Hybridization” Hames, B. D., and Higgins S. J., eds. (1985); “Transcription and Translation” Hames, B. D., and Higgins S. J., Eds. (1984); “Animal Cell Culture” Freshney, R. I., ed. (1986); “Immobilized Cells and Enzymes” IRL Press, (1986); “A Practical Guide to Molecular Cloning” Perbal, B., (1984) and “Methods in Enzymology” Vol. 1-317, Academic Press; “PCR Protocols: A Guide To Methods And Applications”, Academic Press, San Diego, Calif. (1990); Marshak et al., “Strategies for Protein Purification and Characterization—A Laboratory Course Manual” CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.


Example 1
Differential Expression of miRNAs in Soybean Plant Under Abiotic Stress Versus Optimal Conditions

Plant Material



Glycine max seeds (soy) were obtained from Taam-Teva shop (Israel). Plants were grown at 28° C. under a 16 hours light:8 hours dark regime.


Drought Induction


Plants were grown under standard conditions as described above until seedlings were four weeks old. Next, plants were divided into two groups: control plants were irrigated with tap water twice a week and drought-treated plants received no irrigation. The experiment continued for five days, after which plants were harvested for RNA extraction.


Salt Induction


For salinity induction, irrigation with regular water was substituted by irrigation with 300 mM NaCl solution in the stress group, for an overall of 3 irrigations for a ten-day period.


Heat Shock Induction


For induction of heat shock, the stress group plants were exposed to a high temperature (37° C.) for one hour.


Total RNA Extraction


Total RNA of leaf samples from eight biological repeats were extracted using the mirVana™ kit (Ambion, Austin, Tex.) by pooling tissues from 2-4 plants to one biological repeat. RNA analysis was performed on plant tissue samples from both experimental and control groups.


Microarray Design


Custom microarrays were manufactured by Agilent Technologies by in situ synthesis. A microarray based on Sanger version 16 was designed and consisted of a total 4602 non-redundant DNA 45-nucleotide long probes for all known plant small RNAs, with 1875 sequences (40.7%) from miRBase (http://wwwDOTmirbaseDOTorg/indexDOTshtml) and 2678 sequences (58DOT2%) from PMRD (http://bioinformaticsDOTcauDOTeduDOTcn/PMRD/), with each probe being printed in triplicate. Control and spike probes account for the remaining sequences on the microarray.


Results


Wild type soybean plants were allowed to grow at standard, optimal conditions or stress conditions for a period of time as specified above, at the end of which they were evaluated for stress tolerance. Three to four plants from each group were grouped as a biological repeat. Four to eight biological repeats were obtained for each group, and RNA was extracted from leaf tissue. The expression level of the soybean small RNAs was analyzed by high throughput microarray to identify small RNAs that were differentially expressed between the experimental groups.


Tables 1-6 below present sequences that were found to be differentially expressed in soybean grown under drought conditions (lasting five days), high salt conditions (lasting ten days) or heat shock conditions (lasting one hour), compared to optimal growth conditions. To clarify, the sequence of an up-regulated miRNA is induced under stress conditions and the sequence of a down-regulated miRNA is repressed under stress conditions.









TABLE 1







Differentially Expressed (Up-regulated) Small RNAs in Soybean Plants


Growing under Drought (5 days) versus Optimal Conditions.












Mature Sequence
Stem Loop 

Fold-


miR Name
(SEQ ID NO)
Sequence (SEQ ID NO)
p-value
Change





ahy-miR3514-5p
AGGATTCTGTAT
ACAATAGAAGGATTCTGTATTAAC
5.90E−06
1.97 (+)



TAACGGTGGA (1)
GGTGGACATGATTTATCTCGTTTTT






AAAGATATCTTTGCATTTCATATG






AGATTTAAAGTTTTTATTGGTAAT






ATAAATCTCACATGAAATTTAAAT






TTATATTTTAAAGTTAAGATAAAG






TCATGTCACCGTTAATACAGAATC






CTTCAATTATATTTAGTCAGGGG






(174)







aly-miR831-5p
AGAAGAGGTAC
AAGTGCTACAAGAATGTATAGTCT
1.10E−05
1.88 (+)



AAGGAGATGAG
TAGAGTCTCAAGAAGAGGTACAA





A (2)
GGAGATGAGAAGTGAATCACTGA






AACAAGTGGTTCTGGTTTGTGGAT






CAGTATGGTTTACCCAAAACACGT






GTTTGGTGCTTCACTTCTAAACTCC






TCGTACTCTTCTTGGGATTCTATGA






CTTACACTTGTTGATTT (175)







aqc-miR159
TTTGGACTGAA
GGAGTCTTTCCAGCCCAAAACAGC
3.00E−03
1.51 (+)



GGGAGCTCTA (3)
TTCTTGATCTTCTTGAAAACTTCTG






TTTGGACTGAAGGGAGCTCTAA






(176)







ath-miR157a
TTGACAGAAGA
GTGTTGACAGAAGATAGAGAGCA
1.00E−03
1.70 (+)



TAGAGAGCAC (4)
CAGATGATGAGATACAATTCGGAG






CATGTTCTTTGCATCTTACTCCTTT






GTGCTCTCTAGCCTTCTGTCATCAC






C (177)







ath-miR159b
TTTGGATTGAAG
GGAAGAGCTCCTTGAAGTTCAATG
6.80E−03
1.63 (+)



GGAGCTCTT (5)
GAGGGTTTAGCAGGGTGAAGTAA






AGCTGCTAAGCTATGGATCCCATA






AGCCTTATCAAATTCAATATAATT






GATGATAAGGTTTTTTTTATGGAT






GCCATATCTCAGGAGCTTTCACTT






ACCCCTTTAATGGCTTCACTCTTCT






TTGGATTGAAGGGAGCTCTTCATC






TCTC (178)







ath-miR159c
TTTGGATTGAAG
GTGTAACAGAAGGAGCTCCCTTCC
1.20E−03
1.65 (+)



GGAGCTCCT (6)
TCCAAAACGAAGAGGACAAGATT






TGAGGAACTAAAATGCAGAATCTA






AGAGTTCATGTCTTCCTCATAGAG






AGTGCGCGGTGTTAAAAGCTTGAA






GAAAGCACACTTTAAGGGGATTGC






ACGACCTCTTAGATTCTCCCTCTTT






CTCTACATATCATTCTCTTCTCTTC






GTTTGGATTGAAGGGAGCTCCTTT






TCTTCTTC (179)







ath-miRf10068-
CACCGGTGGAG
GGACTTCTCATCTTCTTTCTTAGCC
2.00E−08
2.09 (+)


akr
GAGTGAGAG (7)
GCCGGTGCTCCAGCTCCACCACCG






TGTCCTCCAACATTACCGTGGCTT






CCAGTTCCACCGGTGGAGGAGTGA






GAGTGGGAAGTTT (11875)







ath-miRf10240-
ATCGAAGGAGA
GATTTCTCGTCCTCCGGCAATCCTT
1.90E−05
1.90 (+)


akr
TGGAGGACG (8)
CGAACTCATCTTCATCCCAGTAAT






CGAAGGAGATGGAGGACGAAGGC






TTC (11876)







ath-miRf10451-
AAGAAGGAGGA
CTCTAGATCTCAACAGGTTTCCTC
2.30E−07
2.19 (+)


akr
ACAACCTGTTG
CTCCTTCTTTCTATTTAGCTACTTG





(9)
GTTTCAATTGTTTCAAGCCTAGGT






AAGCATATGTAAAAAAGAGACAA






TTGAAACCAAGTAACTAAATAGAA






AGAAGGAGGAACAACCTGTTGAG






ATCTAGAG (11877)







ath-miRf10687-
TTAGCTGAAGA
TTTGTTTGTTTAGCTGAAGAAGCA
3.70E−06
1.84 (+)


akr
AGCAGAGGAG (10)
GAGGAGTCGGCATTGGGGCACAG






TCACTCATCGATGCTGCAATGGGT






AAGTCCTCTGCATACTTTTGCTGA






GATAGGAATAGA (11878)







ath-miRf10701-
TGCAGTTCCTGG
GGTGCCGCTGCAGTTCCTGGAGGT
1.30E−08
2.49 (+)


akr
AGGTGGAGGA (11)
GGAGGAGGTGGTGGTGGGGCCAC






TGCAGCTCTTGGAGGTGGAGGCGG






TGGAGGTGGAGCCGCTATAGTTGT






TGGAAGTGGAGGAGGTGGCGGTG






GTGGT (11879)







ath-miRf10751-
CTTGTGGAGAG
TTGTAATTTCTTGTGGAGAGGAAG
7.80E−08
2.10 (+)


akr
GAAGCAAGA (12)
CAAGAGGATGTGCTTGGTTGTGGA






AATATAGGGCCCTTAAAATATATT






CATCGTATTCACTCACATAACAAA






AATTCCACAAGTAAGCACATCATC






TTGCTTCCTCCACAAGAAATTACA






A (11880)







ath-miRf10924-
TGAGGCGTATC
TGAGGCGTATCAGGAGGTAGTGTT
5.70E−04
1.73 (+)


akr
AGGAGGTAGT (13)
CTTGGTGGGACAATTTGTGTTGTA






TGTTTCA (11881)







ath-miRf11021-
GAGGTTTGCGA
GATGTTGGAGGTTTGCGATGAGAA
1.80E−04
1.60 (+)


akr
TGAGAAAGAG (14)
AGAGATTGGCCGGAAGAATTATCA






GCCATCAACATCGAGATTGTGAGA






TAATCGGAAGACCTGTAATTGTGA






AGGTAACTCTTTCTCATCTGCAAA






TCTCAACTGTC (11882)







ath-miRf11037-
TCATCGGAGAA
TTGTCTCTGTTCATCGGAGAAACA
1.30E−07
2.78 (+)


akr
ACAGAGGAGC (15)
GAGGAGCAAGACGTTTCAAACGG






TTCTTGGCTCATAATTTGCTTCTCT






GTTACCTTGGATGACAAGAAAGAC






AA (11883)







ath-miRf11042-
GGAAGAGGCAG
AGGGAGCCAGGGAAGAGGCAGTG
2.20E−03
1.56 (+)


akr
TGCATGGGTA (16)
CATGGGTAGAGACAAAACAGAGT






CGTTTAATGTTTTAGTAAACTCAA






TCCATGCTCTGCTTGTTCCCTGTCT






CTCT (11884)







ath-miRf11045-
TTTCTTGTGGAG
TTGTAATTTCTTGTGGAGGAAGCA
8.60E−11
3.85 (+)


akr
GAAGCAAGAT (17)
AGATGATGTGCTTACTTGTGGAAT






TTTTGTTATGTGAGTGAATACGAT






GAATATATTTTAAGGGCCCTATAT






TTCCACAACCAAGCACATCCTCTT






GCTTCCTCTCCACAAGAAATTACA






A (11885)







csi-miR3946
TTGTAGAGAAA
ATAAAGATGATGATGACAATGAAT
1.80E−04
1.68 (+)



GAGAAGAGAGC
TTTGTAGAGAAAGAGAAGAGAGC





AC (18)
ACAAACTTTTTGCTGAAAGTAGCT






TTGATTCGATGTGTATCGGTTCAT






AGATAATGAGTTTTCAAGTCTATT






TTAATAGAATACTAAAAGTTAGCT






CTAAAAATC (180)







gma-miR156g
ACAGAAGATAG
TGAACAATATCTTGAACAGTTTGT
2.00E−04
1.76 (+)



AGAGCACAG (19)
TGACAGAAGATAGAGAGCACAGG






TGATCATACCCAAAAAAGCTTTTG






TGTGTGAGCAGTTTTGTGCTCTCTA






TCTTCTGTCAATGTACTTCTCA (181)







gma-miR157c
TGACAGAAGAC
TGACAGAAGACTAGAGAGCACAA
3.90E−04
1.58 (+)



TAGAGAGCAC (20)
AGGAGTGAGATGCCATTCCCTTTC






ATGCATTTCATCATCAGTGCTCTCT






ATCTTCTGTCAA (182)







gma-miR159a-3p
TTTGGATTGAAG
AATTAAAGGGGATTATGAAGTGG
8.40E−03
1.59 (+)



GGAGCTCTA (21)
AGCTCCTTGAAGTCCAATTGAGGA






TCTTACTGGGTGAATTGAGCTGCT






TAGCTATGGATCCCACAGTTCTAC






CCATCAATAAGTGCTTTTGTGGTA






GTCTTGTGGCTTCCATATTTGGGG






AGCTTCATTTGCCTTTATAGTATTA






ACCTTCTTTGGATTGAAGGGAGCT






CTACACCCTTCTCTTCTTTTCT (183)







iba-miR157
TTGACAGAAGA
TTGACAGAAGATAGAGAGCATGCT
6.40E−04
1.60 (+)



TAGAGAGCAT (22)
AGAAATTACATTGATAAGCTATGT






GGTTCAGAGACCAATCTTCTTATG






AGTTCCAATAAGGAGTTGGTTTGT






CCCCCCACTGGTATTATGTCTTCA






GGTTGACCCTTCACCATGAGAATC






ATATGTAATTCTCCGGCGGCGCTC






ATTGTGACCTGCCAATCGCCTCCG






GCAACTCCTCTTAGCTTCATCAAA






CTGGGCTAATTCATGAAACCTGCT






GCATTGCTGACAGAAGCGCTGTTG






AACTCCATTTATAAGTACT (184)







mdm-miR482a-5p
GGAATGGGCTG
GAGAAGAGGGAAAGGGAGATTGG
1.50E−04
1.62 (+)



TTTGGGAACA (23)
AGCTGCTGGAAGTTTTAGGAATGG






GCTGTTTGGGAACAAGGAAATTAC






CACAATAATTGTCTTGTGGGGTTT






CTTCCCAAGCCCGCCCATTCCTAT






GATTTCCAGCTGTTCCTCCCTTTCC






CTTGTCTC (185)







mtr-miR2119
TCAAAGGGAGG
TTTATTTTTTTTACACTAAGATACT
2.20E−07
2.64 (+)



TGTGGAGTAG (24)
CCCTACTTTCCTTTGATTGGAAATA






AAGAGAGACAAAAAGGTAAATTT






AATTTCTCTTCTTATGTCAATCAAA






GGGAGGTGTGGAGTAGGGTGTAA






AAAGTAAA (186)







osa-miR159e
ATTGGATTGAA
GATGAAGAAGAAGAGCTCCCTTTC
1.40E−03
1.67 (+)



GGGAGCTCCT (25)
GATCCAATTCAGGAGAGGAAGTG






GTAGGATGCAGCTGCCGGTTCATG






GATACCTCTGGAGTGCAGGGCAAA






TAGTCCTACCCTTTCATGGGTTTGC






ATGACTCGGGAGATGAACCCGCCA






TTGTCTTCCTCTATTGATTGGATTG






AAGGGAGCTCCTCTAGCTACAT






(187)







osa-miR159f
CTTGGATTGAA
GAAGAAGAAGACGAGCTCCCTTC
5.10E−03
1.75 (+)



GGGAGCTCTA (26)
GATCCAATCCAGGAGAGGAAGTG






GTAGGATGCAGCTGCCGGTTCATG






GATACCTCTGCAGTGCATGTCGTA






GGCTTGCACTTGCATGGGTTTGCA






TGACCCGGGAGATGAACCCACCAT






TGTCTTCCTCTTATGCTTGGATTGA






AGGGAGCTCTACACCTCTCTC (188)







osa-miR1858a
GAGAGGAGGAC
TCCCGTCATCGCTGCCGGCAAAGG
3.90E−04
1.63 (+)



GGAGTGGGGC (27)
GAGGGGGGGTGCCGCAACAAGGA






GAGGAGGACGGAGTGGGGCGAGT






GGAGCGTCAAAGGGGATGTCATC






GCCGCCGAATCTGCTCGTGGGACA






TCCCCTTCGATGCTCCACTCGCCCC






AATCCGTCCTCCTCTCCTTGTTGCG






GCACCCCCCTTCGCTGGCAGCGAC






GACGGCCTC (189)







osa-miR1874-3p
TATGGATGGAG
CCATAATCATCTATTAGTACAGTG
7.80E−10
4.36 (+)



GTGTAACCCGA
GTGAAGACATAGGGCTACTACACC





TG (28)
ATCCATAAGGGTTCGAATCTTCGA






TGTGCCTAGATAGGGTACAGTTGG






ATCCCATATGGATGGAGGTGTAAC






CCGATGCCTTTTACAAATAGATGG






TTATTTT (190)







osa-miR1879
GTGTTTGGTTTA
TCCAACCCATCCCACCTCGTCCCC
5.50E−06
1.91 (+)



GGGATGAGGTG
AAACCAAACACATGCACGCAAAT





G (29)
GGCTTGTTGAGGAATAAACATCTT






GCTCCCTTGCATTCTAAACTATGA






TATTCTTCAAGCATATGTGTTTGGT






TTAGGGATGAGGTGGGATGGGTTA






GGTCCA (191 (ATCCAACCCATCCCA






CCTCGTCCCCAAACCAAACACATG






CACGCAAATGGCTTGTTGAGGAAT






AAACATCTTGCTCCCTTGCATTCTA






AACTATGATATTCTTCAAGCATAT






GTGTTTGGTTTAGGGATGAGGTGG






GATGGGTTAGGTCCA (201)







osa-miRf10839-
CCTGTGACGTTG
CTGCGAGCCTCCAGCAGCGGCACA
1.90E−11
7.36 (+)


akr
GTGAAGGTG (30)
GGAGGAGGCCATTGCAGCTGTCAA






GGACGTTGAGAAACTCGCACTTGG






GCAGGAAGGGGAGCGAGGGGTCA






ACAAACGGGCGGCCTTCCCCTGTG






ACGTTGGTGAAGGTGTCGGAG






(11886)







osa-miRf11013-
GGTTTGCCGGA
CCAGCCATCCCTCTAGAGCCGGCG
7.70E−07
2.11 (+)


akr
GTTGGAGGAGA
AACTCCTCCCCTCCCCCCTCCCCCT





(31)
TCCACTCCCACCCCACCCCACCCC






GGGACCCTAACCCGTAGGGTCCTC






GCCGGCGCCAGAGAAGAAGAGGT






TTGCCGGAGTTGGAGGAGATGACA






TGG (11887)







osa-miRf11352-
AGGGATTTTGG
TATAATATAAGGGATTTTGGAAGG
1.20E−06
1.64 (+)


akr
AAGGAGGTGAC
AGGTGACATATTCTAGGACTATGT





A (32)
ATCTGGATCCAGAGATACTAGGAT






GTGTTACCTCCCTCTAAAATCCCTT






ATATTATG (11888)







osa-miRf11355-
GGTGGAGGTGG
GGTGGAGGTGGAGGTGGAGCTGT
7.60E−09
2.57 (+)


akr
AGCTGTGCCAA
GCCAAATAGGCCCTGAGTTGTATG





A (33)
CACCACCAGTTCAACCCAATAGCT






TAAGGGTCTGCTTGGCACAGCTCC






AGCTCCACGCAGCC (11889)







osa-miRf11595-
CATCGGTGTTGG
CATCGGTGTTGGAGGTGGCGGGGA
2.70E−06
2.10 (+)


akr
AGGTGGC (34)
CGAGGTGCTTCTCTAGAGCGGTGC






CACTACTGCCACCACCGTGGAATT






GACGAGGCACAATGCCCACCTCAC






CCTCCGCTGCCACTCTGCTGCCAC






CGATG (11890)







osa-miRf11649-
AAACCGTGCAA
TTACTTAAACCGTGCAAAGGAGGT
1.50E−09
4.07 (+)


akr
AGGAGGTCCC (35)
CCCATGGCAGTATTTGCACCCGTT






TTTACTAACGTGGCATCCTGTTGT






ACGGTTTTTTTTGACGCAAATACT






GCCATGGGACCTCTTTTGCATGGT






TTGAGTAA (11891)







osa-miRf11829-
ACGCGGAGGAG
GCACGCGGAGGAGGTGGTGTTCTC
2.80E−04
1.51 (+)


akr
GTGGTGTTCT (36)
GCCGGAGTACGAGGAGTTCGCCGT






CAGGAACGCCGCCCTCTGCGTCC






(11892)







ppt-miR895
GTAGCTTAGCG
GATTCATGTAATTATTGTTAACCTC
6.90E−13
12.97 (+)



AGGTGTTGGTA
TTTGTGTTCCGAGCTTTTATGATTG





(37)
GTAGCTTAGCGAGGTGTTGGTATG






ATACCAATCCCTGGTTTGCTTGTTC






CTAATTGAGTTATGCTTGCACTCA






AATCTAGGGGAGCGGTATTTTGGC






TCACTCGCAATGCTTTCATGTACC






CTTCCCGCATTATGAGTGCCACTT






GGCTCCATGGTGTGATATATAAGT






TTC (192)







psi-miR159
CTTGGATTGAA
TGGAGCTCCCTTCAGTCCAACCAA
9.90E−04
1.60 (+)



GGGAGCTCCA (38)
AGCTTGTGCGGCGGTGGTTCAGCT






GCTGATTCATGCATTCGACTGCCC






TGTCCGTGACTTTCCAGCAGCCTG






AATCAATCAATCTATCTCCATGAC






AGGATAGTGGTGTGCATGACGCAG






GAGATGTATTGTCACTGGACACGC






ATTCCTTGGATTGAAGGGAGCTCC






A (193)







pta-miR156a
CAGAAGATAGA
GATGACAGAAGATAGAGAGCACA
3.50E−04
1.58 (+)



GAGCACATC (39)
TCCGCTCACATGCCGGGACTCTGC






GTTTGAGGTGTATGTGGTCTCCAT






GATTCTGTCATC (194)







pta-miR156b
CAGAAGATAGA
GATGACAGAAGATAGAGAGCACA
1.80E−04
1.65 (+)



GAGCACAAC (40)
ACCGCTCAGATGCCGGCACTCTGC






GTTTGAGGTGTATGTGCTCTCGTT






GATTTTGTCATC (195)







ptc-miRf10148-
TGGTGCACCTG
CTAGTTCCGGAGCCCGGTGAACTT
7.40E−06
2.02 (+)


akr
GTGGTGGAG (41)
TATCACCACTTCCTGCTCCTCTTGG






CAAGCTTCCAGGTGGAGGAGGTG






GACGAGGTGGTCCACCAGGTGGA






GGAGGTGGTGGTGGTGGTGCACCT






GGTGGTGGAGGTGG (11893)







ptc-miRf10226-
TCCTTTGGGGAG
ATGGTTGGAGAAGCTTCCGATCTC
1.70E−06
1.88 (+)


akr
ATGGAGAGCTT
CCTCAAAGGCTTCCTCTATAATTG





(42)
CCTTACATGATGGCATTAGTGGAC






TCCTTTGGGGAGATGGAGAGCTTA






CTCCCCAT (11894)







ptc-miRf10271-
TTGGATTGAAG
GGGAGTGGAGCTCCTTGAAGTCCA
6.60E−03
1.65 (+)


akr
GGAGCTCTAA (43)
ATAGAGGTTCTTGCTGGGTAGATT






AAGCTGCTAAGCTATGGATCCACA






GTCCTATCTATCAACCGAAGGATA






GGTTTGCGGCTTGCATATCTCAGG






AGCTTTATTGCCTAATGTTAGATC






CCTTTTTGGATTGAAGGGAGCTCT






AAACCC (11895)







ptc-miRf10300-
TTTGGAAAGCA
TATACATATATCTCACTTGCTTTCT
2.70E−06
2.38 (+)


akr
AGTGAGGTG (44)
CAACTATCTCACTTTTCTTTTCAGA






TTTCAAAAAAACGACATCATGAGA






CAGTTTGGAAAGCAAGTGAGGTGT






GTGTATA (11896)







ptc-miRf10522-
TTGGGGAGCTG
TGACGGATTCGGAGAACAGCTGTC
1.20E−04
3.58 (+)


akr
GACTCTGGA (45)
GGTGTTGATGGTGGCTGTGGGCAG






AGGACATTTCAGAATTTGGGGAGC






TGGACTCTGGAGCAGTGG (11897)







ptc-miRf10619-
GTTGGGCTTGCT
TCTGCTTCGGGTGGCAGGTCTGGC
8.80E−07
2.47 (+)


akr
GCTGGAGGA (46)
GGTTGTAGAGGGGGCAGCGACGTT






GATGATCTTCGCTCCTGTTGGTTGC






CGTGGCGGTTGGGCTTGCTGCTGG






AGGAAGA (11898)







ptc-miRf10985-
CAGAAGATAGA
GTTGACAGAAGATAGAGAGCACT
3.20E−04
1.70 (+)


akr
GAGCACTGA (47)
GACGATGAAATGCATGGAGCTTAA






TTGCATCTCACTCCTTTGTGCTCTC






TAGTCTTCTGTCATC (11899)







ptc-miRf11757-
CTTGGTGAATG
TGGGACAGCTTGGTGAATGGTTGG
3.70E−07
1.84 (+)


akr
GTTGGGAGGAA
GAGGAATGTCTTTAATGTGGTTAT





T (48)
GCATCAGTGAAACTCTAGTAAGAT






TCTCTGTCCACTCCTCTGCATCCGG






CACTTCTCTTAACCGTGCACCTGCT






TTAACCA (11900)







ptc-miRf11844-
CCCAACTTGGA
GCGTCCAGACCCAACTTGGAGGTG
8.30E−04
1.73 (+)


akr
GGTGGGTGTGG
GGTGTGGACGCGTCCAACCCCAAG





(49)
TTGGGCGTGGATGCGTCCAGGCCT






AATTTCGAGTTGGGCGTAGACGC






(11901)







ptc-miRf11847-
GAAAGTGTGGA
ACTTTTCTACGAAAGTGTGGAGAA
4.30E−07
2.28 (+)


akr
GAAGGTTGCC (50)
GGTTGCCCCTAAAAAATCTTTTAT






GGCGACTTTCTCGACATTTTGGTA






GAAAAGT (11902)







ptc-miRf11855-
GGCAGAGCATG
CGGGGAACAGGCAGAGCATGGAT
5.90E−05
3.96 (+)


akr
GATGGAGCTA (51)
GGAGCTACTAACAGAAGTACTTGT






TTTGGCTCTACCCATGCACTGCCTC






TTCCCTG (11903)







sbi-miR159a
TTTGGATTGAAG
AGCGAAGCTCCTATCATTCCAATG
1.20E−02
1.59 (+)



GGAGCTCTG (52)
AAGGGCCCTTTTCATGGGTGGTTC






CGCTGCTCGTTCATGGTTCCCACT






ATCCTATCTCATCATGTATGTGTGT






ATGTACTCTAGAGGGCCCGAGAAG






AGATTCATGTGGTCGTCAGTCTTT






GAGATAGGCTTGTGGTTTGCATGA






CCGAGGAGCTGCACCGTCCCCTTG






CTGGCCGCTCTTTGGATTGAAGGG






AGCTCTGCA (196)







smo-miR1103-3p
TGGAAAAAGGA
GCCCATGAACAAGAGTGCACCCCC
7.50E−10
3.98 (+)



GGTGCATTCTTG
TTTCCAATCGGTTAAAGGTCTTAG





T (53)
GATAGTTGGAGTTTAAGCGTCCTT






GGGTTTGAATAGTACTGGGCTGGG






TGACCTCCCGGGAAGTCCAAATTC






AGGAGCTTACATTAACCCCAAGTA






TTCCAAAACGCTTAATCGATTGGA






AAAAGGAGGTGCATTCTTGTTCAT






AGGCCC (197)







smo-miR156b
CTGACAGAAGA
TGGACTGCTGCTGACAGAAGATAG
2.50E−04
1.62 (+)



TAGAGAGCAC (54)
AGAGCACAGACGTTTGGCTGCAAG






AGCGGAATCCATATCCAGCAGCTC






TGCGTTCGTGCTCTCTATTCTTCTG






TCATCAATCTTTCGA (198)







tae-miR2003
CGGTTGGGCTGT
CATTCGGATTCGCCATCATACGTC
7.90E−05
2.99 (+)



ATGATGGCGA (55)
CAACCGTGCATTTGATATGCATAT






ATATGCATCACGAGCAACGGTTGG






GCTGTATGATGGCGATACCGATTG






(199)









AGTGGGAGATGAAGGAGCCTTGC
7.80E−06
2.19 (+)


zma-miR482-5p
TGGGAGATGAA
ATCGATGTCACCGCCGGAGGAGCG





GGAGCCTT 
CTCGCCTTCTTCGCGCACCGCCGC





(11874)
AATAGCCGCCCTCGGACCCCTCGC






CTCGCTCTTCCTTGTTCCTCCCATT






TT (11904)





* NA = not available













TABLE 2







Differentially Expressed (Down-regulated) Small RNAs in Soybean Plants


Growing under Drought (5 days) versus Optimal Conditions.












Mature






Sequence 


Fold-


miR Name
(SEQ ID NO:)
Stem Loop Sequence (SEQ ID NO:)
p-Value
Change





aly-miR396a-
GTTCAATAAAGCT
TCTACGTGACCCTCTCTGTATTCTTCCACA
7.20E−08
2.93 (−)


3p
GTGGGAAG (57)
GCTTTCTTGAACTGCAAAACTTCTTCAGAT






TTGTTTTTTTTATATATATGTCTTACGCAT






AAAATAGTGTTTTTGTTCACATCTCTGCTC






GATTGATTTGCGGTTCAATAAAGCTGTGG






GAAGATACGGACAGAGTCAAAGA (202)







aly-miR396b-
GCTCAAGAAAGCT
GAAGAAGAAGAAGAAGATCCTGGTCATA
2.10E−08
4.25 (−)


3p
GTGGGAAA (58)
TTTTTCCACAGCTTTCTTGAACTTTCTTTTT






CATTTCCATTGTTTTTTTTTTTCTAAACCAA






AAAAAAAGATCTCTAAAATTTAGCATTTT






GGAAACAAAGAAGAAGCTCAAGAAAGCT






GTGGGAAAACATGACAATTCAGGGTTTTA






CTCCATTGATTC (203)







bdi-miR2508
ATTGAGTGCAGCG
GCAAAGGCATCATTGAGTGCAGCGTTGAT
1.60E−02
1.73 (−)



TTGATGAAC (59)
GAACAGGGGCCAGGCGACCGGCGGCCGG






TCCGGTTCGGTTCACCGGCGCTGCACACA






GTGACGCCCTTGC (204)







ctr-miR171
TTGAGCCGCGTCA
ATCGACGGTTGAAGGGGAGAGTTGTAAAA
7.00E−04
1.90 (−)



ATATCTCC (60)
TGAAATCATCAAGGTATTGGCGCGCCTCA






ATTTAAAGACGTGGTTAAATGGGCATGAT






TAGCCATGTATTTTCATTGAGCCGCGTCAA






TATCTCCTTAATTATTTTGTAACTCTCTCCT






CTATATCCTCGCCTTCGGTATGCAGCTGCT






CCTCGATACATATGAGGATTCAGAAACAG






ACAAAGGCGGTAGAAGTAATCTTCATCAA






TATTATTGAAGCAGGAAACATAACGGCAA






GTTTTAAGACCCGTTTGGGGCATGTGGGG






TCTCATTTTGATGTTAATGAAGTGAAAACT






TGTATTTTCCCTCAAACATTCACTCACTCC






AGGCCGGCAGGAACAAC (205)







gma-
TCTCATTCCATACA
CAGTGTTTGGCAGAGGTGTATGGAGTGAG
3.20E−03
1.61 (−)


miR1507a
TCGTCTGA (61)
AGAAGGGAAAGGGTATTTTCCGATTCTGT






CGTTACTCTCTTCCCTCTCTCATTCCATAC






ATCGTCTGACGAACGTATC (206)







gma-miR159d
AGCTGCTTAGCTAT
GGGTGAATTGAGCTGCTTAGCTATGGATC
7.30E−07
2.63 (−)



GGATCCC (62)
CCACAGTTCTACCCATCAATAAGTGCTTTT






GTGGTAGTCTTGTGGCTTCCATATCTGGGG






AGCTTCATTTGCCT (207)







gma-miR396d
AAGAAAGCTGTGG
GGTCATGCTTTTCCACAGCTTTCTTGAACT
8.90E−06
2.12 (−)



GAGAATATGGC 
TCTTATGCATCTTATATCTCTCCACTTCCA





(63)
GCATTTTAAGCCCTAGAAGCTCAAGAAAG






CTGTGGGAGAATATGGCAA (208)







gma-
AAGTGATGACGTG
TTGTTAGTTGCCTTTCGTTAAGTGATGACG
2.10E−03
1.86 (−)


miR4371b
GTAGACGGAGT 
TGGTAGACGGAGTGCCGTGTCATTATGCC





(64)
TTGTCACAGACACCTCATTGCTACATCATC






ACCGCTAATGATATGGCACTGACGTGTTA






GTGATTGGTGTGATGACGTGACACTCTAT






CTGCCACATCATCACCTAACGGAAGACAA






CTAACGA (209)







gma-
TACGCAGGAGAGA
AAGGTTTGCTACGCAGGAGAGATGACGCT
6.10E−05
2.57 (−)


miR4376-5p
TGACGCTGT (65)
GTCCCTTGCACCCATCCTAGCTTCCCTTGA






GTAGGTAAGAGCAAGGCCAGCCAGCATC






ATATCTCCTGCATAGTAAACCTT (210)







gma-
ACGGGTCGCTCTCA
CTTTGATCTGGGTGAGAGAAACGCGTATC
1.40E−03
3.07 (−)


miR4416a
CCTAGG (66)
GATGGATTGGGTTCAGTTCTGGTCTCACA






CGGTTTGTTCTAACAATTTGTACTGACTGT






GTTTTGATCGATACGGGTCGCTCTCACCTA






GGCCAGAGTTGC (211







gma-
TCTTCCCAATTCCG
TCAGAATTTGTGGGAATGGGCTGATTGGG
1.30E−05
2.05 (−)


miR482a-3p
CCCATTCCTA (67
AAGCAATGTGTGCTGGTGCAATGCATTTA






ATTTCTTCCCAATTCCGCCCATTCCTATGA






TTTCTGA (212)







gma-
TATGGGGGGATTG
GGTATGGGGGGATTGGGAAGGAATATCCA
3.20E−08
1.71 (−)


miR482b-5p
GGAAGGAAT (68)
TAAGCAAAATATGCTATTTCTTCCCTACAC






CTCCCATACC (213)







gso-miR169g*
TCGGCAAGTTGGC
AGCCAAGGAUGACUUGCCGGCAUUAGCC
1.20E−05
2.46 (−)



CTTGGCT (69)
AAGUGAAUGAGCAUCAUAUAUAUAUAUA






UAUAUAUAUAUGACUCAUGUUCUUGUCG






GCAAGUUGGCCUUGGCU (11905)







gso-miR482a
TCTTCCCTACACCT
GGGGAAGGCATGGGTATGGGGGGATTGG
1.60E−02
1.74 (−)



CCCATAC (70
GAAGGAATATCCATAAGCAAAATATGCTA






TTTCTTCCCTACACCTCCCATACCACTGTT






TTTCCT (214)







osa-
GTCTTATAACCTGA
TACTACCTCCATTTCAGGTTATAAGACTTT
2.10E−02
1.84 (−)


miRf11996-
AACGGGGG (71)
CTAGTGTTGCTCACATTCATATATATGTTA




akr

ATAAATTCATTAACATATAGAAAGTCTTA






TAACCTGAAACGGGGGAAGTA (11906)







ppt-miR166m
TCGGACCAGGCAT
GCCGAGAACAGAGATTGTGTAGCTCAGCT
2.20E−05
1.77 (−)



CATTCCTT (72)
GTAAGGAATGTGGCATGGCTCGATGCTGT






TTGAGCATGTCAAGTTCAGCCTCGGACCA






GGCATCATTCCTTTCATCTCAGTTACACAT






TTGACATCCAGGA (215)







pta-miR166c
CCGGACCAGGCTT
ACCAATCGAATCCGGACCAGGCTTCATCC
8.30E−04
1.59 (−)



CATCCCAG (73)
CAGGCATCTGGACCCAATCGACAGCAGCT






CCTTTAGCCTTTGAAAGGAACTCTGTCAA






GGTCTCCTCTGCTATAGACAGGAGTCCAG






CGGGGCTAGCATCTCTTGGGGGATGCTGA






GGTGTTGGATTATGTTGGT (216)







ptc-miR166p
TCGGACCAGGCTC
TAAGGTTGAGAGGAACGCTGTCTGGGTCG
4.70E−05
1.77 (−)


ptc-
CATTCCTT (74)
AGGTCATGGAGGCCATGATTATACATAAA






TGGCATTATCTGATGACAGCCCAGATAAT






CGATGCACCTGTCTTGAACCTAAATGATT






CTCGGACCAGGCTCCATTCCTTCCAACCAT






(217)








AAGATGGAGAAGC
GTGTGTGAGCAAGATGGAGAAGCAGGGC
6.10E−04
1.56 (−)


miRf11079-
AGGGCACGTGC 
ACGTGCACTACTAACTCATGCACACAGAG




akr
(75)
AGGGAGACGCATTTCTTGCTGGAGTTACG






AGTTACGACTCTTACCTACTATTGATTTTG






TTAGCTCCAGTGAGTTAGTTATTCATGTGC






CTGTCTTCCTCATCATGATCACTAC 






(11907)







ptc-
CAAGGCTCTGATA
CTTGGTCATCAAGGCTCTGATACCATGTC
1.70E−05
1.81 (−)


miRf11396-
CCATGTCAA (76)
AAAGAATCATATTTTGAGACCTTATCTAA




akr

CAGCTTAAGCTATTGGGTTGAGATGGTTC






CTTGACATGATATCAGAGCCTTGATGACG






AAG (11908)







ptc-
CAAGGCTCTGATA
GCTTGGTCATCAAGGCTCTGATACCATGTT
2.30E−04
1.63 (−)


miRf11669-
CCATGTT (77)
AAAGAACCATCTCAACCTAATACCATGTT




akr

AGAGAATAATATAAATCATATCTAGAGAC






TTTACCTAACAGCTTAAGCTATTGGCCTAT






TGGATTAGTATGGTTCTTTGACATGGTATC






AGAGCCTTGATAACCAAGT (11909)







vvi-miR394b
TTGGCATTCTGTCC
ACAGAGTTTATTGGCATTCTGTCCACCTCC
6.70E−03
1.55 (−)



ACCTCC (78)
CATCTCTTGAAAATCTCTCTTTTCTCTCTG






TGGAGGTGGGCATACTGCCAACCAAGCTC






TGTT (218)







zma-
GTTCAATAAAGCT
AGATGGCCTTCTTTGTGATCTTCCACAGCT
2.10E−08
4.76 (−)


miR396b-3p
GTGGGAAA (79)
TTCTTGAACTGCATCTCTCAGAGGAGCGG






CAGCTTCAACTCCTCCACCCGCATCAGCA






GGTGCATGCAGTTCAATAAAGCTGTGGGA






AACTGCAGAGAGAGGCCAG (219)
















TABLE 3







Differentially Expressed (Up-regulated) Small RNAs in Soybean Plants


Growing under High Salt (10 days) versus Optimal Conditions.












Mature






Sequence


Fold-


miR Name
(SEQ ID NO:)
Stem Loop Sequence (SEQ ID NO:)
p-Value
Change





ppt-miR895
GTAGCTTAGC
GATTCATGTAATTATTGTTAACCTCTTTGTG
7.20E−10
9.36 (+)



GAGGTGTTGG
TTCCGAGCTTTTATGATTGGTAGCTTAGCGA





TA (80)
GGTGTTGGTATGATACCAATCCCTGGTTTGC






TTGTTCCTAATTGAGTTATGCTTGCACTCAA






ATCTAGGGGAGCGGTATTTTGGCTCACTCG






CAATGCTTTCATGTACCCTTCCCGCATTATG






AGTGCCACTTGGCTCCATGGTGTGATATAT






AAGTTTC (220)







ptc-
TTTGGAAAGC
TATACATATATCTCACTTGCTTTCTCAACTA
1.40E−07
6.02 (+)


miRf10300-
AAGTGAGGTG 
TCTCACTTTTCTTTTCAGATTTCAAAAAAAC




akr
(81)
GACATCATGAGACAGTTTGGAAAGCAAGTG






AGGTGTGTGTATA (11910)







osa-
CCTGTGACGTT
CTGCGAGCCTCCAGCAGCGGCACAGGAGGA
6.20E−09
5.21 (+)


miRf10839-
GGTGAAGGTG 
GGCCATTGCAGCTGTCAAGGACGTTGAGAA




akr
(82)
ACTCGCACTTGGGCAGGAAGGGGAGCGAG






GGGTCAACAAACGGGCGGCCTTCCCCTGTG






ACGTTGGTGAAGGTGTCGGAG (11911)







smo-
TGGAAAAAGG
GCCCATGAACAAGAGTGCACCCCCTTTCCA
6.50E−08
5.20 (+)


miR1103-3p
AGGTGCATTCT
ATCGGTTAAAGGTCTTAGGATAGTTGGAGT





TGT (83)
TTAAGCGTCCTTGGGTTTGAATAGTACTGG






GCTGGGTGACCTCCCGGGAAGTCCAAATTC






AGGAGCTTACATTAACCCCAAGTATTCCAA






AACGCTTAATCGATTGGAAAAAGGAGGTGC






ATTCTTGTTCATAGGCCC (221)







osa-
AAACCGTGCA
TTACTTAAACCGTGCAAAGGAGGTCCCATG
9.70E−08
5.10 (+)


miRf11649-
AAGGAGGTCC
GCAGTATTTGCACCCGTTTTTACTAACGTGG




akr
C (84)
CATCCTGTTGTACGGTTTTTTTTGACGCAAA






TACTGCCATGGGACCTCTTTTGCATGGTTTG






AGTAA (11912)







osa-miR1874-
TATGGATGGA
CCATAATCATCTATTAGTACAGTGGTGAAG
6.50E−09
4.75 (+)


3p
GGTGTAACCC
ACATAGGGCTACTACACCATCCATAAGGGT





GATG (85)
TCGAATCTTCGATGTGCCTAGATAGGGTAC






AGTTGGATCCCATATGGATGGAGGTGTAAC






CCGATGCCTTTTACAAATAGATGGTTATTTT 






(222)







ptc-
GTTGGGCTTGC
TCTGCTTCGGGTGGCAGGTCTGGCGGTTGT
2.00E−08
3.70 (+)


miRf10619-
TGCTGGAGGA 
AGAGGGGGCAGCGACGTTGATGATCTTCGC




akr
(86)
TCCTGTTGGTTGCCGTGGCGGTTGGGCTTGC






TGCTGGAGGAAGA (11913)







osa-
GCTGGAGGAT
GCCGGCTAGTACAATCGAATCCACTAGCAC
7.50E−08
3.48 (+)


miRf10362-
GCGACGGTGC
CGAGGCTTGGGTCACTAGATCCCGTGGCCC




akr
T (87)
TAGCCTAATTGCTGGAGGATGCGACGGTGC






TTGTGAGC (11914)







ahy-miR3514-
AGGATTCTGT
ACAATAGAAGGATTCTGTATTAACGGTGGA
2.40E−08
3.43 (+)


5p
ATTAACGGTG
CATGATTTATCTCGTTTTTAAAGATATCTTT





GA (88)
GCATTTCATATGAGATTTAAAGTTTTTATTG






GTAATATAAATCTCACATGAAATTTAAATTT






ATATTTTAAAGTTAAGATAAAGTCATGTCA






CCGTTAATACAGAATCCTTCAATTATATTTA






GTCAGGGG (223)







mtr-miR2119
TCAAAGGGAG
TTTATTTTTTTTACACTAAGATACTCCCTAC
2.00E−07
2.89 (+)



GTGTGGAGTA
TTTCCTTTGATTGGAAATAAAGAGAGACAA





G (89)
AAAGGTAAATTTAATTTCTCTTCTTATGTCA






ATCAAAGGGAGGTGTGGAGTAGGGTGTAA






AAAGTAAA (224)







osa-
GGTGGAGGTG
GGTGGAGGTGGAGGTGGAGCTGTGCCAAAT
2.40E−07
2.85 (+)


miRf11355-
GAGCTGTGCC
AGGCCCTGAGTTGTATGCACCACCAGTTCA




akr
AAA (90)
ACCCAATAGCTTAAGGGTCTGCTTGGCACA






GCTCCAGCTCCACGCAGCC (11915)







osa-
CATCGGTGTTG
CATCGGTGTTGGAGGTGGCGGGGACGAGGT
8.90E−06
2.77 (+)


miRf11595-
GAGGTGGC 
GCTTCTCTAGAGCGGTGCCACTACTGCCAC




akr
(91)
CACCGTGGAATTGACGAGGCACAATGCCCA






CCTCACCCTCCGCTGCCACTCTGCTGCCACC






GATG (11916)







ptc-
CCCAACTTGG
GCGTCCAGACCCAACTTGGAGGTGGGTGTG
1.20E−05
2.75 (+)


miRf11844-
AGGTGGGTGT
GACGCGTCCAACCCCAAGTTGGGCGTGGAT




akr
GG (92)
GCGTCCAGGCCTAATTTCGAGTTGGGCGTA






GACGC (11916)







ptc-
GAAAGTGTGG
ACTTTTCTACGAAAGTGTGGAGAAGGTTGC
2.50E−06
2.70 (+)


miRf11847-
AGAAGGTTGC
CCCTAAAAAATCTTTTATGGCGACTTTCTCG




akr
C (93)
ACATTTTGGTAGAAAAGT (11917)







ath-
TTTCTTGTGGA
TTGTAATTTCTTGTGGAGGAAGCAAGATGA
4.40E−07
2.59 (+)


miRf11045-
GGAAGCAAGA
TGTGCTTACTTGTGGAATTTTTGTTATGTGA




akr
T (94)
GTGAATACGATGAATATATTTTAAGGGCCC






TATATTTCCACAACCAAGCACATCCTCTTGC






TTCCTCTCCACAAGAAATTACAA (11918)







ath-
GTGGGAGGAC
AAACATGTGGGAGGACTCCAAGTGTGGTTA
8.90E−07
2.51 (+)


miRf10702-
TCCAAGTGTG 
TATCCTCGGTATTATCTCGATGTGAACCACA




akr
(95)
CTTGGAGTCCTCCCACATGTTT (11919)







ath-
TGCAGTTCCTG
GGTGCCGCTGCAGTTCCTGGAGGTGGAGGA
1.40E−06
2.40 (+)


miRf10701-
GAGGTGGAGG
GGTGGTGGTGGGGCCACTGCAGCTCTTGGA




akr
A (96)
GGTGGAGGCGGTGGAGGTGGAGCCGCTATA






GTTGTTGGAAGTGGAGGAGGTGGCGGTGGT






GGT (11920)







osa-miR1869
TGAGAACAAT
AAGGAACACCTGAGAACAATAGGCATGGG
2.20E−05
2.27 (+)



AGGCATGGGA
AGGTATTGGGAAAACACAGGAACATATTGT





GGTA (97)
GACCCCTAATTTTAAAGGGAAATAATGGTT






GAGGCTTTCCTCCATGTTCCCATGCCTAATG






CTCTTAGGTGCTCTTTTT (225)







ptc-
TGGTGCACCT
CTAGTTCCGGAGCCCGGTGAACTTTATCAC
2.80E−05
2.22 (+)


miRf10148-
GGTGGTGGAG 
CACTTCCTGCTCCTCTTGGCAAGCTTCCAGG




akr
(98)
TGGAGGAGGTGGACGAGGTGGTCCACCAG






GTGGAGGAGGTGGTGGTGGTGGTGCACCTG






GTGGTGGAGGTGG (11921)







osa-miR1879
GTGTTTGGTTT
TCCAACCCATCCCACCTCGTCCCCAAACCA
5.80E−05
2.21 (+)



AGGGATGAGG
AACACATGCACGCAAATGGCTTGTTGAGGA





TGG (99)
ATAAACATCTTGCTCCCTTGCATTCTAAACT






ATGATATTCTTCAAGCATATGTGTTTGGTTT






AGGGATGAGGTGGGATGGGTTAGGTCCA (226)






ATCCAACCCATCCCACCTCGTCCCCAAAC






CAAACACATGCACGCAAATGGCTTGTTGAG






GAATAAACATCTTGCTCCCTTGCATTCTAAA






CTATGATATTCTTCAAGCATATGTGTTTGGT






TTAGGGATGAGGTGGGATGGGTTAGGTCCA






(235)







ath-
GGTGGTGGAA
TAGGGAATATCTTGATCTTTCCACCATCTAC
4.90E−06
2.21 (+)


miRf10148-
AGATCAAGAT
AAAGAATAAAAAAAAAGCTTCCAATATTAC




akr
(100)
TAGGTATTTGGTGGTGGAAAGATCAAGATA






TTCCTTA (11922)







osa-
GGTTTGCCGG
CCAGCCATCCCTCTAGAGCCGGCGAACTCC
4.70E−06
2.21 (+)


miRf11013-
AGTTGGAGGA
TCCCCTCCCCCCTCCCCCTTCCACTCCCACC




akr
GA (101)
CCACCCCACCCCGGGACCCTAACCCGTAGG






GTCCTCGCCGGCGCCAGAGAAGAAGAGGTT






TGCCGGAGTTGGAGGAGATGACATGG (11923)







ath-
ATGGTGGTAC
TCCTCGACTTCCTGGTAGAGTGGTGTGATCG
8.60E−05
2.18 (+)


miRf10209-
TCGGCCAGGT
AGTGATGGTCAGGTGTGGAGGTGATGATAC




akr
GGT (102)
TCGACCAGGTGGTCAAGTGAAGTGATCAAG






TGACTCTCATGGTGGTACTCGGCCAGGTGG






TCGAGTGG (11924)







ath-
TGAGGCGTAT
TGAGGCGTATCAGGAGGTAGTGTTCTTGGT
1.50E−04
2.18 (+)


miRf10924-
CAGGAGGTAG
GGGACAATTTGTGTTGTATGTTTCA (11925)




akr
T (103)

1.90E−06
2.15 (+)





ppt-miR1220a
TTCCGGTGGTG
ACTTCTTGCACTCCTCTATCTCCCTCGGCAC





AGGAAGATAG
CTGCACAGTGATTTTCTCAATATCTTCACGT





(104)
TGGTGGCCACGTTCGAACATATCCCATGCG






GGCAACTCCGGCGTAGGTGTACACGGCCAG






CGTTGCTTACCATCTGGAGGATACCCTTGCT






CAAACCTACGACTCTGTTCCGGTGGTGAGG






AAGATAGAGGAGTTCAAGAAGT (227)







osa-
CGCGCCGACG
CGCCGTCTCCCTCGCCGTCGCCGGCGTCGCC
5.40E−06
2.12 (+)


miRf11341-
ATGACGGTGG
GGAGATGACGAGAAGACGTGCCCCGGCGC




akr
AGT (105)
GCCGACGATGACGGTGGAGTCGGCG (11926)







osa-
AGGGATTTTG
TATAATATAAGGGATTTTGGAAGGAGGTGA




miRf11352-
GAAGGAGGTG
CATATTCTAGGACTATGTATCTGGATCCAG
2.30E−06
2.11 (+)


akr
ACA (106)
AGATACTAGGATGTGTTACCTCCCTCTAAA






ATCCCTTATATTATG (11927)







osa-miR2055
TTTCCTTGGGA
AGAAGATGGAGGCACCAGCCCAAGGAAAC
7.20E−04
2.09 (+)



AGGTGGTTTC
ACAGACATTGACACGCAATTCAAGGAGAAG





(107)
ATTGCGTCCTACTTTTTCCTTGGGAAGGTGG






TTTCTCTTCT (228)







ath-
ATCGAAGGAG
GATTTCTCGTCCTCCGGCAATCCTTCGAACT
9.80E−07
2.03 (+)


miRf10240-
ATGGAGGACG
CATCTTCATCCCAGTAATCGAAGGAGATGG




akr
(108)
AGGACGAAGGCTTC (11928)







ath-
CACCGGTGGA
GGACTTCTCATCTTCTTTCTTAGCCGCCGGT
6.30E−07
1.99 (+)


miRf10068-
GGAGTGAGAG
GCTCCAGCTCCACCACCGTGTCCTCCAACAT




akr
(109)
TACCGTGGCTTCCAGTTCCACCGGTGGAGG






AGTGAGAGTGGGAAGTTT (11929)







ghr-miR2950
TGGTGTGCAG
CATGGGTTTATGTTATATTCCATCTCTTGCA
5.70E−06
1.98 (+)



GGGGTGGAAT
CACTGGACTAGCCAGCTTTTTGTTGGCTTCA





A (110)
GCTTCAGGTTGGTGTGCAGGGGGTGGAATA






CATCATTGATATCATG (229)







ath-
ACTTGGGTGG
TGGTAAGTGATAATCATTACCACCCAAGCT
7.90E−04
1.98 (+)


miRf10368-
TGCTGATTAT
AACATTCAAACCAAAAACCAGTTTAAGTTA




akr
(111)
ACTTGGGTGGTGCTGATTATCACTTGTCG






(11930)







ath-
GGTGGTGAAG
GGCGGTGGTGAAGAAGCATGGTTTGGAAAT
9.30E−05
1.93 (+)


miRf10763-
AAGCATGGTT
CTCACAGCCTGGATTAGAGCCATATGAAGG




akr
(112)
GCTCACATGGGAGATGACCAAGAAAAGAG






ACGACACTGAAGTCCACAAGTTAGAATTAT






ATAGTGAAGTTTCTACATTATTTTCTCACCA






CCGCT (11931)







ptc-
CATCTAGGTG
TCTTACCATTGGACCACCTACTAGATGATTA
4.30E−04
1.92 (+)


miRf10734-
GTGGTCCAGT
AAAACTACATCATCTAACCATCTAGGTGGT




akr
G (113)
GGTCCAGTGGTAAGA (11932)







osa-
ACGCGGAGGA
GCACGCGGAGGAGGTGGTGTTCTCGCCGGA
4.10E−05
1.90 (+)


miRf11829-
GGTGGTGTTCT
GTACGAGGAGTTCGCCGTCAGGAACGCCGC




akr
(114)
CCTCTGCGTCC (11933)







zma-miR482-
TGGGAGATGA
AGTGGGAGATGAAGGAGCCTTGCATCGATG
4.20E−05
1.88 (+)


5p
AGGAGCCTT
TCACCGCCGGAGGAGCGCTCGCCTTCTTCG





(115)
CGCACCGCCGCAATAGCCGCCCTCGGACCC






CTCGCCTCGCTCTTCCTTGTTCCTCCCATTTT






(230)







osa-
TGGAAAGTTG
ATGTGATGGAGATGCGATGGAAAGTTGGGA
1.30E−05
1.86 (+)


miR1850.1
GGAGATTGGG
GATTGGGGGAAGTTGTGTGTGAACTAAACG





G (116)
TGGATTGGGGCCCTGTTTAGTTCACATCAAT






CTTCCTCCAAATTCCCAACTTTTCATCACAT






CACAATCACAT (231)







osa-miR1881
AATGTTATTGT
AACCAAGTTAAAATGCTCATAGGTATGAAC
2.00E−03
1.76 (+)



AGCGTGGTGG
AAGCATCAATGTTATTGTAGCGTGGTGGTG





TGT (117)
TGACCTCTGTGCACGTAAGCTTGAGGCAGC






AAGTTCGACTCCTTCAAAAGGAAGATTTGT






ACCGCTGGGGAAGTGCCAGAAGAAAAGAA






CAAGGAAGACTTGCTAGCAGGACAAAAGG






ACGGTAAACTTGGAAAAAAAAAGGTCCAG






AAGAAAAGAACAAAGAAGAACTGCTTGAA






GGAGTCGAACTTGCTACCTCAAGCTTGCGT






GCACATAGGTCACACCACTACGCTACAATA






ACGTTGATGCTTGTTCAGACCTGTGAGCATT






TTAACTTGGTT (232)







ptc-
TCCTTTGGGGA
ATGGTTGGAGAAGCTTCCGATCTCCCTCAA
9.60E−05
1.74 (+)


miRf10226-
GATGGAGAGC
AGGCTTCCTCTATAATTGCCTTACATGATGG




akr
TT (118)
CATTAGTGGACTCCTTTGGGGAGATGGAGA






GCTTACTCCCCAT (11934)







ptc-
CTTGGTGAAT
TGGGACAGCTTGGTGAATGGTTGGGAGGAA
3.90E−05
1.73 (+)


miRf11757-
GGTTGGGAGG
TGTCTTTAATGTGGTTATGCATCAGTGAAAC




akr
AAT (119)
TCTAGTAAGATTCTCTGTCCACTCCTCTGCA






TCCGGCACTTCTCTTAACCGTGCACCTGCTT






TAACCA (11935)







ath-
GAGGTTTGCG
GATGTTGGAGGTTTGCGATGAGAAAGAGAT
1.50E−03
1.66 (+)


miRf11021-
ATGAGAAAGA
TGGCCGGAAGAATTATCAGCCATCAACATC




akr
G (120)
GAGATTGTGAGATAATCGGAAGACCTGTAA






TTGTGAAGGTAACTCTTTCTCATCTGCAAAT






CTCAACTGTC (11936)







ath-
TGGCGGTGGA
GTGGATACTGTTCTGGTGGAGGATACTTCA
6.50E−04
1.65 (+)


miRf10633-
TACTTCTTGAT
CCGGCGGATGAGGGTAAGTCTTGATCGGTG




akr
CGG (121)
GTGGATACTTCACCGGTGGATGCTCGTATG






GTGGCGGTGGATACTTCTTGATCGGTGGTG






GATAC (11937)







ptc-
TTGGCGGTGA
GAGAAACGCTCTAATTAATCATCGTTATGC
1.90E−04
1.63 (+)


miRf10132-
TTGAACGGAG
CACGTGTCTATTTACGGATAACGCAACGCT




akr
GGT (122)
ACTAAATCGCGAATTTTAGTTTGAGTGGAA






GATCTTGGCCGTTGGATTGGCGGTGATTGA






ACGGAGGGTTGATC (11938)







ptc-
CAACTTAGAG
GCCCTTAACCAACTTAGAGTTGGGGGTGGG
5.20E−03
1.61 (+)


miRf11315-
TTGGGGGTGG
CACGTCATGGGTCAACCTAGGGTTGGTCTC




akr
(123)
GGACTCGCCCTTGCTCAACTTAGAGTTGGG






TACGGGC (11939)







aly-miR831-
AGAAGAGGTA
AAGTGCTACAAGAATGTATAGTCTTAGAGT
1.60E−03
1.61 (+)


5p
CAAGGAGATG
CTCAAGAAGAGGTACAAGGAGATGAGAAG





AGA (124)
TGAATCACTGAAACAAGTGGTTCTGGTTTG






TGGATCAGTATGGTTTACCCAAAACACGTG






TTTGGTGCTTCACTTCTAAACTCCTCGTACT






CTTCTTGGGATTCTATGACTTACACTTGTTG






ATTT (233)







csi-miR3948
TGGAGTGGGA
AGGAGTGTGGAGTGGGAGTGGGAGTAGGG
7.10E−05
1.55 (+)



GTGGGAGTAG
TGTTTACTTAGACTAAATGAAAGTATGGAT





GGTG (125)
TATCAATCAGAATCCTAATTATTTGTTTACT






TTGTCTTGGATTGGGAGTAAATTATTTTAAA






TTATAATTTTATCCTTATGTACAAAATTATA






A (234)
















TABLE 4







Differentially Expressed (Down-regulated) Small RNAs in Soybean Plants


Growing under High Salt (10 days) versus Optimal Conditions.












Mature Sequence


Fold-


miR Name
(SEQ ID NO:)
Stem Loop Sequence (SEQ ID NO:)
p-Value
Change





aly-miR160c-3p
GCGTACAAGGAG
CATATAATAGTTTGTCGTCGTTATGCCTGGCT
7.60E−04
1.59 (−)



CCAAGCATG (126)
CCCTGTATGCCACGAGTGGATACCGATTTTGT






TATAAAATCGGCTGCCGGTGGCGTACAAGGA






GCCAAGCATGACCATAAGCATATG (236)







aly-miR396a-3p
GTTCAATAAAGCT
TCTACGTGACCCTCTCTGTATTCTTCCACAGC
1.20E−09
5.50 (−)



GTGGGAAG (127)
TTTCTTGAACTGCAAAACTTCTTCAGATTTGT






TTTTTTTATATATATGTCTTACGCATAAAATA






GTGTTTTTGTTCACATCTCTGCTCGATTGATT






TGCGGTTCAATAAAGCTGTGGGAAGATACGG






ACAGAGTCAAAGA (237)







aly-miR396b-3p
GCTCAAGAAAGC
GAAGAAGAAGAAGAAGATCCTGGTCATATTT
9.00E−07
3.80 (−)



TGTGGGAAA (128)
TTCCACAGCTTTCTTGAACTTTCTTTTTCATTT






CCATTGTTTTTTTTTTTCTAAACCAAAAAAAA






AGATCTCTAAAATTTAGCATTTTGGAAACAA






AGAAGAAGCTCAAGAAAGCTGTGGGAAAAC






ATGACAATTCAGGGTTTTACTCCATTGATTC






(238)







ath-miRf10197-
CACTCGACCAAG
GGTGAAGACACTCGACCTCGTGGTCGAGTGA
2.90E−07
3.71 (−)


akr
GGGGTCGAGTGA
TGTGATCGAGTGGTGGTCAGAAGATGGAGAT





(129)
GAAGTCACTCGACCAAGGGGGTCGAGTGATG






TGATC (11940)







ath-miRf10239-
CGCCTTGCATCAA
TCGGGCTCGGATTCGCTTGGTGCAGGTCGGG
1.00E−03
2.17 (−)


akr
CTGAATC (130)
AACCAATTCGGCTGACACAGCCTCGTGACTT






TTAAACCTTTATTGGTTTGTGAGCAGGGATTG






GATCCCGCCTTGCATCAACTGAATCGGATCC






TCGA (11941)







ath-miRf10279-
ACTCAGCCTGGG
TGATGGTGATACTCGACATCCAGGTAGAGTG
7.80E−06
4.99 (−)


akr
GGTCGAGTGAT
ATGAGGTCGAGTAGAGGTCTGGCAATGGGAT





(131)
GAAGTCACTCAGCCTGGGGGTCGAGTGATGT






GATCG (11942)







bna-miR2111b-
TAATCTGCATCCT
GCACTTGATGAGGAACTGGTAATCTGCATCC
4.40E−04
2.55 (−)


5p
GAGGTTTA (132)
TGAGGTTTAAAAATACATAGGCACATGCAAA






TGTGTGTATTATAGTTTTTAATCCTCGGGATA






CAGATTACCTCTTCCTTTTACTGAA (239







bra-miR160a-3p
GCGTATGAGGAG
TATGTGTAGTTGTATAAGATGTGTATGCCTGG
1.90E−04
1.94 (−)



CCATGCATA (133)
CTCCCTGTATGCCATCCTCTAAGCTCATCGAC






CATTGATGACCTCCGTGAATGGCGTATGAGG






AGCCATGCATATTTTCATATACATTTACATAC






(240)







csi-miR162-5p
TGGAGGCAGCGG
AAACTGTTTACACTGATCTGTGCTGCTGATAA
1.60E−03
1.95 (−)



TTCATCGATC
ATCTTAATTTTTTTTTTTGAATTTTTATTTAAC





 (134)
AGAAAATAGAGAGAGTGAAGTCACTGGAGG






CAGCGGTTCATCGATCACTTTGTGCAAATTTT






GTTGTGAAAAATAACACAAAATACATGAATC






GATCGATAAACCTCTGCATCCAGCGCTCACT






CCAACTCTATTC (241)







gma-miR1524
CGAGTCCGAGGA
GCGACTTATTGGAGTTCATTCTTCGCACTCTC
3.30E−03
1.73 (−)



AGGAACTCC (135)
TCGGAAACCACTTGTTTCCAATCATCTAATCA






GACGATAGCAGACTCAAGAAAGACGTTTCCT






TCCCAGATCCTTCTAGACCATTTGCAAACCGT






CTCCTTCCCCGAATCCATTCTCCAAACCCTCG






ATCCTTGAGGAGCTCCACCACCGTGACGGCG






CTCCGGTCTCCGCCGTCAATTGTGCCGTCGCG






GTGGAGCATGAGCGTCTTCATGAGTCTGAAA






GGGAATTATAGGAACTACTTTCCTGATTAGG






TTATTGGAAACAAGTGGTTTCCGAGTCCGAG






GAAGGAACTCCAACGCCCAAC (242)







gma-miR159d
AGCTGCTTAGCTA
GGGTGAATTGAGCTGCTTAGCTATGGATCCC
3.20E−06
3.24 (−)



TGGATCCC (136)
ACAGTTCTACCCATCAATAAGTGCTTTTGTGG






TAGTCTTGTGGCTTCCATATCTGGGGAGCTTC






ATTTGCCT (243)







gma-miR2119
TCAAAGGGAGTT
ATACTTCATTTTTTATACTTTAATTTCCTCTAT
2.70E−03
1.54 (−)



GTAGGGGAA (137)
ACCTCACTTTTATTGGAGAAAAAAGAGAATA






GAAAATAGTGGATTTCTCTTCTTTTTTTCAAT






CAAAGGGAGTTGTAGGGGAAAGTTTAGAAA






ATGGCGTGT (244)







gma-miR396d
AAGAAAGCTGTG
GGTCATGCTTTTCCACAGCTTTCTTGAACTTC
4.60E−08
2.76 (−)



GGAGAATATGGC
TTATGCATCTTATATCTCTCCACTTCCAGCAT





(138)
TTTAAGCCCTAGAAGCTCAAGAAAGCTGTGG






GAGAATATGGCAA (245)







gma-miR4412-
AGTGGCGTAGAT
AACTGTTGCGGGTATCTTTGCCTCTGAAGGA
9.80E−05
3.03 (−)


3p
CCCCACAAC (139)
AAGTTGTGCCTATTATTATGGCTTATTGCTTT






AGTGGCGTAGATCCCCACAACAGTT (246)







gma-miR4416a
ACGGGTCGCTCTC
CTTTGATCTGGGTGAGAGAAACGCGTATCGA
9.20E−06
4.30 (−)



ACCTAGG (140)
TGGATTGGGTTCAGTTCTGGTCTCACACGGTT






TGTTCTAACAATTTGTACTGACTGTGTTTTGA






TCGATACGGGTCGCTCTCACCTAGGCCAGAG






TTGC (247)







gma-miR482b-
TATGGGGGGATT
GGTATGGGGGGATTGGGAAGGAATATCCATA
2.30E−10
2.74 (−)


5p
GGGAAGGAAT (141)
AGCAAAATATGCTATTTCTTCCCTACACCTCC






CATACC (248)







osa-miR162a
TCGATAAACCTCT
GGTGATGCCTGGGCGCAGTGGTTTATCGATC
4.00E−04
1.52 (−)



GCATCCAG (142)
CCTTCCCTGCCTTGTGGCGCTGATCCAGGAGC






GGCGAATTTCTTTGAGAGGGTGTTCTTTTTTT






TTCTTCCTTTTGGTCCTTGTTGCAGCCAACGA






CAACGCGGGAATCGATCGATAAACCTCTGCA






TCCAGTTCTCGCC (249)







osa-miR1846e
CAACGAGGAGGC
CGCATCCGCCAACGAGGAGGCCGGGACCACC
4.30E−04
1.90 (−)



CGGGACCA (143)
GGATCCGGTGACTCCGGCCTCCTCGCCGGCA






GATCCGG (250)







osa-miR2104
GCGGCGAGGGGA
ACGGGCGCTCACGGTGGCTTCGACCCTCGTC
3.90E−02
1.51 (−)



TGCGAGCGTG (144)
TCGGCCGCGTGCGGTAGTGCGGGAGGCATGC






CGTGTGTACCGGCGGCGAGGGGATGCGAGCG






TGAGTGCCTCGG (251)







osa-miRf10849-
TGGACTGTTTGGG
GCTGGACTGTTTGGGGGAGCTTCTGATTTTGG
1.80E−03
1.52 (−)


akr
GGAGCTTCT (145)
GAGAAACGGCTATAGCTAGAAGCTCCCCGAA






ACAGGCCCAAC (11943)







osa-miRf11415-
GAGAGCAGGATG
GAAGAGGCAGAGAGCAGGATGCAGCCAAGG
6.70E−03
1.55 (−)


akr
CAGCCAAGG (146)
ATGACTTGCCGGCCGGCGATGGCCGACGGCG






AGGTTAATTAATTGGCCGGAGACTGGCAGTC






CTTCTCTGTTGATCCGGCAAGTTTGTCCTTGG






CTACACCTTGCTCTCTTCTCGTC (11944)







osa-miRf11996-
GTCTTATAACCTG
TACTACCTCCATTTCAGGTTATAAGACTTTCT
7.20E−03
2.01 (−)


akr
AAACGGGGG (147)
AGTGTTGCTCACATTCATATATATGTTAATAA






ATTCATTAACATATAGAAAGTCTTATAACCT






GAAACGGGGGAAGTA (11945)







ppt-miR533b-5p
GAGCTGTCCAGG
GGAGGACCGATATGGAGAGCTGTCCAGGCTG
7.90E−04
3.23 (−)



CTGTGAGGG (148)
TGAGGGGAGCACTCGTATTCTTTTGACCTTTG






CTAGAAGAGGGAATACAGCGCTCTCCCTCAC






AGTCTGTACAGCTCTCTGTATCTCTTCCTCT






(252)







ptc-miRf10007-
CATTGACAGGGA
TTGCTGTGGTGAGTTTCCCTGTCAGTGCTCAC
3.90E−02
1.77 (−)


akr
AACTCACCA (149)
TACGATATTTAATGAAGAAGAAAAATAAAGC






AAGAGATAAAAAAGGCATTTCCTCGATTCAG






ATTTCAGGGTGCAGCATTGCATTGAGCATTG






ACAGGGAAACTCACCACGGCAA (11946)







ptc-miRf10976-
TGGGAACGTGGC
GCCCTGTTTGGGAACGTGGCTGTGGCTACAC
2.30E−04
1.81 (−)


akr
TGTGGCTA (150)
TGATGCTTCTGGTTTGGAAATGGAGGTGCAA






CTGAAGTTATGGGAACGTTCCCAAACAGGGC






(11947)







ptc-miRf11018-
CTGCAAACCTAA
CTGCAAACCTAAGGGAGCGGTTTTGCAGACC
1.10E−02
1.79 (−)


akr
GGGAGCGG (151)
CCAAGCGCACAAGTCTGCAGACCCGCTCGCT






TGGGTCTGCAG (11948)







ptc-miRf11079-
AAGATGGAGAAG
GTGTGTGAGCAAGATGGAGAAGCAGGGCAC
2.30E−05
2.43 (−)


akr
CAGGGCACGTGC
GTGCACTACTAACTCATGCACACAGAGAGGG





(152)
AGACGCATTTCTTGCTGGAGTTACGAGTTAC






GACTCTTACCTACTATTGATTTTGTTAGCTCC






AGTGAGTTAGTTATTCATGTGCCTGTCTTCCT






CATCATGATCACTAC (11949)







ptc-miRf11324-
CTTGTCGCAGGA
TTGGGGGTTTCTTGTCGCAGGAGAGATGGCG
5.90E−05
1.73 (−)


akr
GAGATGGCGCT
CTAGCTAACCATGGTCATATCATATATATCAT





(153)
ATGGCAAGTATTACTTGCTCTTTGTATGTATC






AGCTGTAAAGATAGCTCAGCTAAAGCCATCC






TCCTGCGACTGGACACCCTGCAA (11950)







ptc-miRf11396-
CAAGGCTCTGAT
CTTGGTCATCAAGGCTCTGATACCATGTCAA
4.10E−04
1.51 (−)


akr
ACCATGTCAA (154)
AGAATCATATTTTGAGACCTTATCTAACAGCT






TAAGCTATTGGGTTGAGATGGTTCCTTGACAT






GATATCAGAGCCTTGATGACGAAG (11951)







ptc-miRf11953-
GTAATCTGCATCC
AGGATTGGGTAATCTGCATCCTGAGGTTTGG
1.90E−04
2.74 (−)


akr
TGAGGTT (155)
ATCACCACATGTTTTGATCTAGTCCTTGGGTT






GCAGATTACCTCTTCCT (11952)







ptc-miRf12069-
GGAGGGGCTGCA
CTTGGGCCAGGAGGGGCTGCAAGACCCAAGT
3.90E−07
3.81 (−)


akr
AGACCCAAG (156)
GACTTGGGTCTGCGCTCTTGCCACACCCAAG






CAACTTGGGTCAGACGCCCTTCCAAGCCCCA






AG (11953)







ptc-miRf12389-
GTCGACCTGGCG
TGAGTCGACCTGGCGAGTCAACCGGGTTTGA
1.00E−02
1.75 (−)


akr
AGTCAACCGGG
TTGTTTTTTTATCCTTGCTAGTCTTTCACCTTA





(157)
CTAGGACCGGTCCAGCCACCGGGTTAATCGA






GTCCCGGGTTGACTTGCTGGGCCGTCTGG






(11954)







vvi-miR2111-5p
TAATCTGCATCCT
GCAATATTGGGTCAGGATCGGGTAATCTGCA
3.10E−04
2.82 (−)



GAGGTCTA (158)
TCCTGAGGTCTAGATAAGTATATCTCCGTTGC






AGCTAGTCCTCTGGTTGCAGATTACTTCTTCC






TCACTGCCAATGC (253)







zma-miR167u
TGAAGCTGCCAC
TGAAGCTGCCACATGATCTGATGACGCAGAG
2.20E−05
1.57 (−)



ATGATCTG (159)
TCATGCATATGCATTGCATCCAGCAAGCTCC






ATGCGTGCGTGCATGGCCGAATGGCCGAAGA






GACTAGCTAGTCCATCTCTCCAAGGCCATCC






ACGTGTGAGAATTCAATTCCTCGTGGATCAG






ATCAGGCTGTTGTTGACAACTGCATGCCGCA






CCTGCACTACAGCAACCCAAGGCATAGGTAG






CTAGCTAGGTTTCGGTGGTCAGATCAGATCA






GGCTGGCAGCTTCA (254)







zma-miR396b-
GTTCAATAAAGCT
AGATGGCCTTCTTTGTGATCTTCCACAGCTTT
7.90E−09
6.05 (−)


3p
GTGGGAAA (160)
CTTGAACTGCATCTCTCAGAGGAGCGGCAGC






TTCAACTCCTCCACCCGCATCAGCAGGTGCA






TGCAGTTCAATAAAGCTGTGGGAAACTGCAG






AGAGAGGCCAG (255)







zma-miR398a-
GGGGCGAACTGA
GGGGGCGAACUGAGAACACAUGAGAAUAAU
3.00E−04
1.89 (−)


5p
GAACACATG (161)
GAGAUGAGAUUGCUCGCCUCGCGGUACGGU






UCGUGCUGGCCUGGACCACCGUCGUCGCCG






UUCAUCUUGUACGCAUAAUAAUGCUGCAUG






UGUUCUCAGGUCGCCCCCGC (11955)
















TABLE 5







Differentially Expressed (Up-regulated) Small RNAs in Soybean Plants


Growing under Heat Shock (1 hour) versus Optimal Conditions.












Mature Sequence
Stem Loop 

Fold-


miR Name
(SEQ ID NO:)
Sequence (SEQ ID NO:)
p-Value
Change





aly-miR831-
AGAAGAGGTACAAGG
AAGTGCTACAAGAATGTATAGTCTTAGAG
4.20E−05
1.73 (+)


5p
AGATGAGA (162)
TCTCAAGAAGAGGTACAAGGAGATGAGA






AGTGAATCACTGAAACAAGTGGTTCTGGT






TTGTGGATCAGTATGGTTTACCCAAAACA






CGTGTTTGGTGCTTCACTTCTAAACTCCTC






GTACTCTTCTTGGGATTCTATGACTTACAC






TTGTTGATTT (256)







ath-
TTAGCTGAAGAAGCA
TTTGTTTGTTTAGCTGAAGAAGCAGAGGA
2.10E−05
1.76 (+)


miRf10687-
GAGGAG (163)
GTCGGCATTGGGGCACAGTCACTCATCGA




akr

TGCTGCAATGGGTAAGTCCTCTGCATACTT






TTGCTGAGATAGGAATAGA (11956)







ath-
GAGGTTTGCGATGAG
GATGTTGGAGGTTTGCGATGAGAAAGAGA
2.10E−07
1.82 (+)


miRf11021-
AAAGAG (164)
TTGGCCGGAAGAATTATCAGCCATCAACA




akr

TCGAGATTGTGAGATAATCGGAAGACCTG






TAATTGTGAAGGTAACTCTTTCTCATCTGC






AAATCTCAACTGTC (11957)







far-miR1134
CGACAACAACAACAA
ACGGCAATCCCAGCTTCAACGGGCCGGTG
2.80E−04
1.63 (+)



GAAGAAGAG (165)
CCAGGCGTGCCTCCCGGCGATGCCCATCG






GTCGCCGACGCCTCCTAGCACGCCAGCTG






GCTCACAAGGTGTCTCTCCCGGCGGCGAC






AACAACAACAAGAAGAAGAGATCAGGTC






TGGTGCTGGCTACTACCATCCCGGTCTCA






GTCAGTGTGGTGGCGCTCATCTCGCTGGG






TGCCGTGCTGCTCTTCCGCAAGAAAAACA






ACGGGTCCG (257)







osa-
TTGGCCTCGTCGAAGA
TCTCGTTCTTGGAGAGGCCCTTGCCGACCT
1.90E−06
2.01 (+)


miRf10105-
AGGAGA (166)
TGGCGATGCGCTTGCCGGCCCTGGACCAG




akr

CGGGACGCCGCGGTCTCCTGCTTGGCCTC






GTCGAAGAAGGAGA (11958)







pab-
TGGCGCTAGAAGGAG
AAATGGCGCTAGAAGGAGGGCCTGAAAA
6.60E−05
1.68 (+)


miR3711
GGCCT (167)
TTATTAATGGCACGAGGCAGTCGTAAGAC






TCCTCCACCACCCAACCACTCACCTATAGT






GAAAAGAAGTCATTAAAATGATAACATCA






CCCCTCAAATAGAACCA (258)







zma-
TGGGAGATGAAGGAG
AGTGGGAGATGAAGGAGCCTTGCATCGAT
8.20E−07
2.05 (+)


miR482-5p
CCTT (168)
GTCACCGCCGGAGGAGCGCTCGCCTTCTT






CGCGCACCGCCGCAATAGCCGCCCTCGGA






CCCCTCGCCTCGCTCTTCCTTGTTCCTCCC






ATTTT (259)
















TABLE 6







Differentially Expressed (Down-regulated) Small RNAs in Soybean Plants


Growing under Heat Shock (1 hour) versus Optimal Conditions.












Mature Sequence
Stem Loop 

Fold-


miR Name
(SEQ ID NO:)
Sequence (SEQ ID NO:)
p-Value
Change














ath-miRf10279-
ACTCAGCCTGGGG
TGATGGTGATACTCGACATCCAGGTAGA
1.30E−02
2.56 (−)


akr
GTCGAGTGAT
GTGATGAGGTCGAGTAGAGGTCTGGCAA





(169)
TGGGATGAAGTCACTCAGCCTGGGGGTC






GAGTGATGTGATCG (11959)







csi-miR162-5p
TGGAGGCAGCGGT
AAACTGTTTACACTGATCTGTGCTGCTG
4.10E−05
1.71 (−)



TCATCGATC (170)
ATAAATCTTAATTTTTTTTTTTGAATTTTT






ATTTAACAGAAAATAGAGAGAGTGAAG






TCACTGGAGGCAGCGGTTCATCGATCAC






TTTGTGCAAATTTTGTTGTGAAAAATAA






CACAAAATACATGAATCGATCGATAAAC






CTCTGCATCCAGCGCTCACTCCAACTCTA






TTC (260)







gma-miR4412-
AGTGGCGTAGATC
AACTGTTGCGGGTATCTTTGCCTCTGAA
1.60E−05
1.81 (−)


3p
CCCACAAC (171)
GGAAAGTTGTGCCTATTATTATGGCTTAT






TGCTTTAGTGGCGTAGATCCCCACAACA






GTT (261)







osa-miRf10151-
TGGCTATATTTTGG
GTATACTACCTCCGTCCCAAAATATAGC
3.60E−03
2.06 (−)


akr
GACGGAG (172)
CACTTTTAGATTCATAAACAAAAGTGGC






TATATTTTGGGACGGAGGGAGTATAT 






(11960)







ptc-miRf12069-
GGAGGGGCTGCAA
CTTGGGCCAGGAGGGGCTGCAAGACCCA
1.90E−03
2.03 (−)


akr
GACCCAAG (173)
AGTGACTTGGGTCTGCGCTCTTGCCACA






CCCAAGCAACTTGGGTCAGACGCCCTTC






CAAGCCCCAAG (11961)









Example 2
Identification of Homologous and Orthologous Sequences of Differential Small RNAs Associated with Enhanced Abiotic Stress Tolerance

The miRNA sequences of the invention that were either down- or up-regulated under abiotic stress conditions were examined for homologous and orthologous sequences using the miRBase database (http://wwwDOTmirbaseDOTorg/) and the Plant MicroRNA Database (PMRD, http://bioinformaticsDOTcauDOTeduDOTcn/PMRD). The mature miRNA sequences that are homologous or orthologous to the soy miRNAs listed in Tables 1-6 above, were found using miRNA public databases, having at least 75% identity of the entire mature miRNA length of the original soy sequence listed in Tables 1-6 and are summarized in Tables 7-8 below.









TABLE 7







Summary of Homologs (Orthologs to Small RNAs which are up-regulated


in Abiotic Stress in Soybean Plants.















Homolog stem-




Homolog Sequence
%
loop sequence 


Mir Name
Homolog Name
(SEQ ID NO:)
Identity
(SEQ ID NO:)














far-
tae-miR1134
CAACAACAACAAGAAG
0.88
2087


miR1134

AAGAAGAT (262)







mtr-
gma-miR2119
TCAAAGGGAGTTGTAG
0.76
2088


miR2119

GGGAA (263)








pvu-miR2119
TCAAAGGGAGTTGTAG
0.76
2089




GGGAA (264)







ppt-
ppt-miR1220b
TTCCGGTGGTGAGGAAG
1
2090


miR1220a

ATAG (265)







aqc-
acb-miR159
TTGGACTGAAGGGAGCT
0.86
2091


miR159

CCCT (266)








aha-miR159
TTGGACTGAAGGGAGCT
0.86
2092




CCCT (267)








ahi-miR159
TTGGACTGAAGGGAGCT
0.86
2093




CCCT (268)








ahy-miR159
TTTGGATTGAAGGGAGC
0.95
2094




TCTA (269)








aly-miR159a
TTTGGATTGAAGGGAGC
0.95
2095




TCTA (270)








aly-miR159b
TTTGGATTGAAGGGAGC
0.9
2096




TCTT (271)








aly-miR159c
TTTGGATTGAAGGGAGC
0.86
2097




TCCT (272)








ape-miR159
TTGGACTGAAGGGAGCT
0.86
2098




CCCT (273)








ath-miR159a
TTTGGATTGAAGGGAGC
0.95
2099




TCTA (274)








ath-miR159b
TTTGGATTGAAGGGAGC
0.9
2100




TCTT (275)








ath-miR159c
TTTGGATTGAAGGGAGC
0.86
2101




TCCT (276)








bdi-miR159
CTTGGATTGAAGGGAGC
0.86
2102




TCT (277)








bna-miR159
TTTGGATTGAAGGGAGC
0.95
2103




TCTA (278)








bra-miR159a
TTTGGATTGAAGGGAGC
0.95
2104




TCTA (279)








bvl-miR159
TTGGACTGAAGGGAGCT
0.86
2105




CCCT (280)








cmi-miR159
TTGGACTGAAGGGAGCT
0.86
2106




CCCT (281)








cor-miR159
TTGGACTGAAGGGAGCT
0.86
2107




CCCT (282)








crb-miR159
TTGGACTGAAGGGAGCT
0.86
2108




CCCT (283)








csi-miR159
TTTGGATTGAAGGGAGC
0.95
2109




TCTA (284)








dso-miR159
TTGGACTGAAGGGAGCT
0.86
2110




CCCT (285)








ech-miR159
TTGGACTGAAGGGAGCT
0.86
2111




CCCT (286)








fal-miR159
TTGGACTGAAGGGAGCT
0.86
2112




CCCT (287)








far-miR159
TTTGGATTGAAGGGAGC
0.9
2113




TCTG (288)








gma-miR159a-3p
TTTGGATTGAAGGGAGC
0.95
2114




TCTA (289)








gma-miR159b
ATTGGAGTGAAGGGAG
0.86
2115




CTCCA (290)








gma-miR159c
ATTGGAGTGAAGGGAG
0.81
2116




CTCCG (291)








hvu-miR159a
TTTGGATTGAAGGGAGC
0.9
2117




TCTG (292)








hvu-miR159b
TTTGGATTGAAGGGAGC
0.9
2118




TCTG (293)








hvv-miR159a
TTTGGATTGAAGGGAGC
0.9
2119




TCTG (294)








hvv-miR159b
TTTGGATTGAAGGGAGC
0.9
2120




TCTG (295)








ltu-miR159
TTTGGATTGAAGGGAGC
0.95
2121




TCTA (296)








mma-miR159
TTGGACTGAAGGGAGCT
0.86
2122




CCCT (297)








mtr-miR159a
TTTGGATTGAAGGGAGC
0.95
2123




TCTA (298)








mtr-miR159b
ATTGAATTGAAGGGAG
0.67
2124




CAACT (299)








mtr-miR159c
TTTGGATTGAAGGGAGC
0.95
2125




TCTA (300)








nof-miR159
TTGGACTGAAGGGAGCT
0.86
2126




CCCT (301)








oru-miR159
TTTGGATTGAAGGGAGC
0.9
2127




TCTG (302)








osa-miR159a
TTTGGATTGAAGGGAGC
0.9
2128




TCTG (303)








osa-miR159a.1
TTTGGATTGAAGGGAGC
0.9
2129




TCTG (304)








osa-miR159b
TTTGGATTGAAGGGAGC
0.9
2130




TCTG (305)








osa-miR159c
ATTGGATTGAAGGGAG
0.86
2131




CTCCA (306)








osa-miR159d
ATTGGATTGAAGGGAG
0.81
2132




CTCCG (307)








osa-miR159e
ATTGGATTGAAGGGAG
0.81
2133




CTCCT (308)








osa-miR159f
CTTGGATTGAAGGGAGC
0.9
2134




TCTA (309)








osa-miR159m
TTTGGATTGAAGGGAGC
0.9
2135




TCTG (310)








pgl-miR159
TTTGGATTGAAGGGAGC
0.9
2136




TCTG (311)








psi-miR159
CTTGGATTGAAGGGAGC
0.86
2137




TCCA (312)








pta-miR159a
TTGGATTGAAGGGAGCT
0.86
2138




CCA (313)








pta-miR159b
TTGGATTGAAGAGAGCT
0.76
2139




CCC (314)








pta-miR159c
CTTGGATTGAAGGGAGC
0.81
2140




TCCC (315)








ptc-miR159a
TTTGGATTGAAGGGAGC
0.95
2141




TCTA (316)








ptc-miR159b
TTTGGATTGAAGGGAGC
0.95
2142




TCTA (317)








ptc-miR159c
TTTGGATTGAAGGGAGC
0.95
2143




TCTA (318)








ptc-miR159d
CTTGGATTGAAGGGAGC
0.81
2144




TCCT (319)








ptc-miR159e
CTTGGGGTGAAGGGAG
0.76
2145




CTCCT (320)








ptc-miR159f
ATTGGAGTGAAGGGAG
0.86
2146




CTCGA (321)








pvu-miR159
TTTGGATTGAAGGGAGC
0.95
2147




TCTA (322)








pvu-miR159a.1
TTTGGATTGAAGGGAGC
0.95
2148




TCTA (323)








rco-miR159
TTTGGATTGAAGGGAGC
0.95
2149




TCTA (324)








rin-miR159
TTGGACTGAAGGGAGCT
0.86
2150




CCCT (325)








sar-miR159
TTTGGATTGAAGGGAGC
0.9
2151




TCTG (326)








sbi-miR159a
TTTGGATTGAAGGGAGC
0.9
2152




TCTG (327)








sbi-miR159b
CTTGGATTGAAGGGAGC
0.81
2153




TCCT (328)








sly-miR159
TTTGGATTGAAGGGAGC
0.95
2154




TCTA (329)








smo-miR159
CTTGGATTGAAGGGAGC
0.81
2155




TCCC (330)








sof-miR159a
TTTGGATTGAAGGGAGC
0.9
2156




TCTG (331)








sof-miR159b
TTTGGATTGAAGGGAGC
0.9
2157




TCTG (332)








sof-miR159c
CTTGGATTGAAGGGAGC
0.81
2158




TCCT (333)








sof-miR159d
TTTGGATTGAAGGGAGC
0.9
2159




TCTG (334)








sof-miR159e
TTTGGATTGAAAGGAGC
0.86
2160




TCTT (335)








spr-miR159
TTTGGATTGAAGGGAGC
0.9
2161




TCTG (336)








ssp-miR159a
TTTGGATTGAAGGGAGC
0.9
2162




TCTG (337)








svi-miR159
TTGGACTGAAGGGAGCT
0.86
2163




CCCT (338)








tae-miR159a
TTTGGATTGAAGGGAGC
0.9
2164




TCTG (339)








tae-miR159b
TTTGGATTGAAGGGAGC
0.9
2165




TCTG (340)








tar-miR159
TTGGACTGAAGGGAGCT
0.86
2166




CCCT (341)








vvi-miR159a
CTTGGAGTGAAGGGAG
0.86
2167




CTCTC (342)








vvi-miR159b
CTTGGAGTGAAGGGAG
0.86
2168




CTCTC (343)








vvi-miR159c
TTTGGATTGAAGGGAGC
0.95
2169




TCTA (344)








zma-miR159a
TTTGGATTGAAGGGAGC
0.9
2170




TCTG (345)








zma-miR159b
TTTGGATTGAAGGGAGC
0.9
2171




TCTG (346)








zma-miR159c
CTTGGATTGAAGGGAGC
0.81
2172




TCCT (347)








zma-miR159d
CTTGGATTGAAGGGAGC
0.81
2173




TCCT (348)








zma-miR159e
ATTGGTTTGAAGGGAGC
0.81
2174




TCCA (349)








zma-miR159f
TTTGGATTGAAGGGAGC
0.9
2175




TCTG (350)








zma-miR159g
TTTGGAGTGAAGGGAGT
0.86
2176




TCTG (351)








zma-miR159h
TTTGGAGTGAAGGGAG
0.9
2177




CTCTG (352)








zma-miR159i
TTTGGAGTGAAGGGAG
0.9
2178




CTCTG (353)








zma-miR159j
TTTGGATTGAAGGGAGC
0.9
2179




TCTG (354)








zma-miR159k
TTTGGATTGAAGGGAGC
0.9
2180




TCTG (355)








zma-miR159m
TTTGGATTGAAGGGAGC
0.9
2181




TCTG (356)







ath-
acb-miR159
TTGGACTGAAGGGAGCT
0.81
2182


miR159b

CCCT (357)








aha-miR159
TTGGACTGAAGGGAGCT
0.81
2183




CCCT (358)








ahi-miR159
TTGGACTGAAGGGAGCT
0.81
2184




CCCT (359)








ahy-miR159
TTTGGATTGAAGGGAGC
0.95
2185




TCTA (360)








aly-miR159a
TTTGGATTGAAGGGAGC
0.95
2186




TCTA (361)








aly-miR159b
TTTGGATTGAAGGGAGC
1
2187




TCTT (362)








aly-miR159c
TTTGGATTGAAGGGAGC
0.95
2188




TCCT (363)








ape-miR159
TTGGACTGAAGGGAGCT
0.81
2189




CCCT (364)








aqc-miR159
TTTGGACTGAAGGGAGC
0.9
2190




TCTA (365)








ath-miR159a
TTTGGATTGAAGGGAGC
0.95
2191




TCTA (366)








ath-miR159c
TTTGGATTGAAGGGAGC
0.95
2192




TCCT (367)








bdi-miR159
CTTGGATTGAAGGGAGC
0.9
2193




TCT (368)








bna-miR159
TTTGGATTGAAGGGAGC
0.95
2194




TCTA (369)








bra-miR159a
TTTGGATTGAAGGGAGC
0.95
2195




TCTA (370)








byl-miR159
TTGGACTGAAGGGAGCT
0.81
2196




CCCT (371)








cmi-miR159
TTGGACTGAAGGGAGCT
0.81
2197




CCCT (372)








cor-miR159
TTGGACTGAAGGGAGCT
0.81
2198




CCCT (373)








crb-miR159
TTGGACTGAAGGGAGCT
0.81
2199




CCCT (374)








csi-miR159
TTTGGATTGAAGGGAGC
0.95
2200




TCTA (375)








dso-miR159
TTGGACTGAAGGGAGCT
0.81
2201




CCCT (376)








ech-miR159
TTGGACTGAAGGGAGCT
0.81
2202




CCCT (377)








fal-miR159
TTGGACTGAAGGGAGCT
0.81
2203




CCCT (378)








far-miR159
TTTGGATTGAAGGGAGC
0.95
2204




TCTG (379)








gma-miR159a-3p
TTTGGATTGAAGGGAGC
0.95
2205




TCTA (380)








gma-miR159b
ATTGGAGTGAAGGGAG
0.81
2206




CTCCA (381)








gma-miR159c
ATTGGAGTGAAGGGAG
0.81
2207




CTCCG (382)








hvu-miR159a
TTTGGATTGAAGGGAGC
0.95
2208




TCTG (383)








hvu-miR159b
TTTGGATTGAAGGGAGC
0.95
2209




TCTG (384)








hvv-miR159a
TTTGGATTGAAGGGAGC
0.95
2210




TCTG (385)








hvv-miR159b
TTTGGATTGAAGGGAGC
0.95
2211




TCTG (386)








ltu-miR159
TTTGGATTGAAGGGAGC
0.95
2212




TCTA (387)








mma-miR159
TTGGACTGAAGGGAGCT
0.81
2213




CCCT (388)








mtr-miR159a
TTTGGATTGAAGGGAGC
0.95
2214




TCTA (389)








mtr-miR159b
ATTGAATTGAAGGGAG
0.76
2215




CAACT (390)








mtr-miR159c
TTTGGATTGAAGGGAGC
0.95
2216




TCTA (391)








nof-miR159
TTGGACTGAAGGGAGCT
0.81
2217




CCCT (392)








oru-miR159
TTTGGATTGAAGGGAGC
0.95
2218




TCTG (393)








osa-miR159a
TTTGGATTGAAGGGAGC
0.95
2219




TCTG (394)








osa-miR159a.1
TTTGGATTGAAGGGAGC
0.95
2220




TCTG (395)








osa-miR159b
TTTGGATTGAAGGGAGC
0.95
2221




TCTG (396)








osa-miR159c
ATTGGATTGAAGGGAG
0.86
2222




CTCCA (397)








osa-miR159d
ATTGGATTGAAGGGAG
0.86
2223




CTCCG (398)








osa-miR159e
ATTGGATTGAAGGGAG
0.9
2224




CTCCT (399)








osa-miR159f
CTTGGATTGAAGGGAGC
0.9
2225




TCTA (400)








osa-miR159m
TTTGGATTGAAGGGAGC
0.95
2226




TCTG (401)








pgl-miR159
TTTGGATTGAAGGGAGC
0.95
2227




TCTG (402)








psi-miR159
CTTGGATTGAAGGGAGC
0.86
2228




TCCA (403)








pta-miR159a
TTGGATTGAAGGGAGCT
0.86
2229




CCA (404)








pta-miR159b
TTGGATTGAAGAGAGCT
0.81
2230




CCC (405)








pta-miR159c
CTTGGATTGAAGGGAGC
0.86
2231




TCCC (406)








ptc-miR159a
TTTGGATTGAAGGGAGC
0.95
2232




TCTA (407)








ptc-miR159b
TTTGGATTGAAGGGAGC
0.95
2233




TCTA (408)








ptc-miR159c
TTTGGATTGAAGGGAGC
0.95
2234




TCTA (409)








ptc-miR159d
CTTGGATTGAAGGGAGC
0.9
2235




TCCT (410)








ptc-miR159e
CTTGGGGTGAAGGGAG
0.81
2236




CTCCT (411)








ptc-miR159f
ATTGGAGTGAAGGGAG
0.81
2237




CTCGA (412)








pvu-miR159
TTTGGATTGAAGGGAGC
0.95
2238




TCTA (413)








pvu-miR159a.1
TTTGGATTGAAGGGAGC
0.95
2239




TCTA (414)








rco-miR159
TTTGGATTGAAGGGAGC
0.95
2240




TCTA (415)








rin-miR159
TTGGACTGAAGGGAGCT
0.81
2241




CCCT (416)








sar-miR159
TTTGGATTGAAGGGAGC
0.95
2242




TCTG (417)








sbi-miR159a
TTTGGATTGAAGGGAGC
0.95
2243




TCTG (418)








sbi-miR159b
CTTGGATTGAAGGGAGC
0.9
2244




TCCT (419)








sly-miR159
TTTGGATTGAAGGGAGC
0.95
2245




TCTA (420)








smo-miR159
CTTGGATTGAAGGGAGC
0.86
2246




TCCC (421)








sof-miR159a
TTTGGATTGAAGGGAGC
0.95
2247




TCTG (422)








sof-miR159b
TTTGGATTGAAGGGAGC
0.95
2248




TCTG (423)








sof-miR159c
CTTGGATTGAAGGGAGC
0.9
2249




TCCT (424)








sof-miR159d
TTTGGATTGAAGGGAGC
0.95
2250




TCTG (425)








sof-miR159e
TTTGGATTGAAAGGAGC
0.95
2251




TCTT (426)








spr-miR159
TTTGGATTGAAGGGAGC
0.95
2252




TCTG (427)








ssp-miR159a
TTTGGATTGAAGGGAGC
0.95
2253




TCTG (428)








svi-miR159
TTGGACTGAAGGGAGCT
0.81
2254




CCCT (429)








tae-miR159a
TTTGGATTGAAGGGAGC
0.95
2255




TCTG (430)








tae-miR159b
TTTGGATTGAAGGGAGC
0.95
2256




TCTG (431)








tar-miR159
TTGGACTGAAGGGAGCT
0.81
2257




CCCT (432)








vvi-miR159a
CTTGGAGTGAAGGGAG
0.86
2258




CTCTC (433)








vvi-miR159b
CTTGGAGTGAAGGGAG
0.86
2259




CTCTC (434)








vvi-miR159c
TTTGGATTGAAGGGAGC
0.95
2260




TCTA (435)








zma-miR159a
TTTGGATTGAAGGGAGC
0.95
2261




TCTG (436)








zma-miR159b
TTTGGATTGAAGGGAGC
0.95
2262




TCTG (437)








zma-miR159c
CTTGGATTGAAGGGAGC
0.9
2263




TCCT (438)








zma-miR159d
CTTGGATTGAAGGGAGC
0.9
2264




TCCT (439)








zma-miR159e
ATTGGTTTGAAGGGAGC
0.81
2265




TCCA (440)








zma-miR159f
TTTGGATTGAAGGGAGC
0.95
2266




TCTG (441)








zma-miR159g
TTTGGAGTGAAGGGAGT
0.86
2267




TCTG (442)








zma-miR159h
TTTGGAGTGAAGGGAG
0.9
2268




CTCTG (443)








zma-miR159i
TTTGGAGTGAAGGGAG
0.9
2269




CTCTG (444)








zma-miR159j
TTTGGATTGAAGGGAGC
0.95
2270




TCTG (445)








zma-miR159k
TTTGGATTGAAGGGAGC
0.95
2271




TCTG (446)








zma-miR159m
TTTGGATTGAAGGGAGC
0.95
2272




TCTG (447)







ath-
acb-miR159
TTGGACTGAAGGGAGCT
0.86
2273


miR159c

CCCT (448)








aha-miR159
TTGGACTGAAGGGAGCT
0.86
2274




CCCT (449)








ahi-miR159
TTGGACTGAAGGGAGCT
0.86
2275




CCCT (450)








ahy-miR159
TTTGGATTGAAGGGAGC
0.9
2276




TCTA (451)








aly-miR159a
TTTGGATTGAAGGGAGC
0.9
2277




TCTA (452)








aly-miR159b
TTTGGATTGAAGGGAGC
0.95
2278




TCTT (453)








aly-miR159c
TTTGGATTGAAGGGAGC
1
2279




TCCT (454)








ape-miR159
TTGGACTGAAGGGAGCT
0.86
2280




CCCT (455)








aqc-miR159
TTTGGACTGAAGGGAGC
0.86
2281




TCTA (456)








ath-miR159a
TTTGGATTGAAGGGAGC
0.9
2282




TCTA (457)








ath-miR159b
TTTGGATTGAAGGGAGC
0.95
2283




TCTT (458)








bdi-miR159
CTTGGATTGAAGGGAGC
0.86
2284




TCT (459)








bna-miR159
TTTGGATTGAAGGGAGC
0.9
2285




TCTA (460)








bra-miR159a
TTTGGATTGAAGGGAGC
0.9
2286




TCTA (461)








byl-miR159
TTGGACTGAAGGGAGCT
0.86
2287




CCCT (462)








cmi-miR159
TTGGACTGAAGGGAGCT
0.86
2288




CCCT (463)








cor-miR159
TTGGACTGAAGGGAGCT
0.86
2289




CCCT (464)








crb-miR159
TTGGACTGAAGGGAGCT
0.86
2290




CCCT (465)








csi-miR159
TTTGGATTGAAGGGAGC
0.9
2291




TCTA (466)








dso-miR159
TTGGACTGAAGGGAGCT
0.86
2292




CCCT (467)








ech-miR159
TTGGACTGAAGGGAGCT
0.86
2293




CCCT (468)








fal-miR159
TTGGACTGAAGGGAGCT
0.86
2294




CCCT (469)








far-miR159
TTTGGATTGAAGGGAGC
0.9
2295




TCTG (470)








gma-miR159a-3p
TTTGGATTGAAGGGAGC
0.9
2296




TCTA (471)








gma-miR159b
ATTGGAGTGAAGGGAG
0.86
2297




CTCCA (472)








gma-miR159c
ATTGGAGTGAAGGGAG
0.86
2298




CTCCG (473)








hvu-miR159a
TTTGGATTGAAGGGAGC
0.9
2299




TCTG (474)








hvu-miR159b
TTTGGATTGAAGGGAGC
0.9
2300




TCTG (475)








hvv-miR159a
TTTGGATTGAAGGGAGC
0.9
2301




TCTG (476)








hvv-miR159b
TTTGGATTGAAGGGAGC
0.9
2302




TCTG (477)








ltu-miR159
TTTGGATTGAAGGGAGC
0.9
2303




TCTA (478)








mma-miR159
TTGGACTGAAGGGAGCT
0.86
2304




CCCT (479)








mtr-miR159a
TTTGGATTGAAGGGAGC
0.9
2305




TCTA (480)








mtr-miR159b
ATTGAATTGAAGGGAG
0.81
2306




CAACT (481)








mtr-miR159c
TTTGGATTGAAGGGAGC
0.9
2307




TCTA (482)








nof-miR159
TTGGACTGAAGGGAGCT
0.86
2308




CCCT (483)








oru-miR159
TTTGGATTGAAGGGAGC
0.9
2309




TCTG (484)








osa-miR159a
TTTGGATTGAAGGGAGC
0.9
2310




TCTG (485)








osa-miR159a.1
TTTGGATTGAAGGGAGC
0.9
2311




TCTG (486)








osa-miR159b
TTTGGATTGAAGGGAGC
0.9
2312




TCTG (487)








osa-miR159c
ATTGGATTGAAGGGAG
0.9
2313




CTCCA (488)








osa-miR159d
ATTGGATTGAAGGGAG
0.9
2314




CTCCG (489)








osa-miR159e
ATTGGATTGAAGGGAG
0.95
2315




CTCCT (490)








osa-miR159f
CTTGGATTGAAGGGAGC
0.86
2316




TCTA (491)








osa-miR159m
TTTGGATTGAAGGGAGC
0.9
2317




TCTG (492)








pgl-miR159
TTTGGATTGAAGGGAGC
0.9
2318




TCTG (493)








psi-miR159
CTTGGATTGAAGGGAGC
0.9
2319




TCCA (494)








pta-miR159a
TTGGATTGAAGGGAGCT
0.9
2320




CCA (495)








pta-miR159b
TTGGATTGAAGAGAGCT
0.86
2321




CCC (496)








pta-miR159c
CTTGGATTGAAGGGAGC
0.9
2322




TCCC (497)








ptc-miR159a
TTTGGATTGAAGGGAGC
0.9
2323




TCTA (498)








ptc-miR159b
TTTGGATTGAAGGGAGC
0.9
2324




TCTA (499)








ptc-miR159c
TTTGGATTGAAGGGAGC
0.9
2325




TCTA (500)








ptc-miR159d
CTTGGATTGAAGGGAGC
0.95
2326




TCCT (501)








ptc-miR159e
CTTGGGGTGAAGGGAG
0.86
2327




CTCCT (502)








ptc-miR159f
ATTGGAGTGAAGGGAG
0.81
2328




CTCGA (503)








pvu-miR159
TTTGGATTGAAGGGAGC
0.9
2329




TCTA (504)








pvu-miR159a.1
TTTGGATTGAAGGGAGC
0.9
2330




TCTA (505)








rco-miR159
TTTGGATTGAAGGGAGC
0.9
2331




TCTA (506)








rin-miR159
TTGGACTGAAGGGAGCT
0.86
2332




CCCT (507)








sar-miR159
TTTGGATTGAAGGGAGC
0.9
2333




TCTG (508)








sbi-miR159a
TTTGGATTGAAGGGAGC
0.9
2334




TCTG (509)








sbi-miR159b
CTTGGATTGAAGGGAGC
0.95
2335




TCCT (510)








sly-miR159
TTTGGATTGAAGGGAGC
0.9
2336




TCTA (511)








smo-miR159
CTTGGATTGAAGGGAGC
0.9
2337




TCCC (512)








sof-miR159a
TTTGGATTGAAGGGAGC
0.9
2338




TCTG (513)








sof-miR159b
TTTGGATTGAAGGGAGC
0.9
2339




TCTG (514)








sof-miR159c
CTTGGATTGAAGGGAGC
0.95
2340




TCCT (515)








sof-miR159d
TTTGGATTGAAGGGAGC
0.9
2341




TCTG (516)








sof-miR159e
TTTGGATTGAAAGGAGC
0.9
2342




TCTT (517)








spr-miR159
TTTGGATTGAAGGGAGC
0.9
2343




TCTG (518)








ssp-miR159a
TTTGGATTGAAGGGAGC
0.9
2344




TCTG (519)








svi-miR159
TTGGACTGAAGGGAGCT
0.86
2345




CCCT (520)








tae-miR159a
TTTGGATTGAAGGGAGC
0.9
2346




TCTG (521)








tae-miR159b
TTTGGATTGAAGGGAGC
0.9
2347




TCTG (522)








tar-miR159
TTGGACTGAAGGGAGCT
0.86
2348




CCCT (523)








vvi-miR159a
CTTGGAGTGAAGGGAG
0.81
2349




CTCTC (524)








vvi-miR159b
CTTGGAGTGAAGGGAG
0.81
2350




CTCTC (525)








vvi-miR159c
TTTGGATTGAAGGGAGC
0.9
2351




TCTA (526)








zma-miR159a
TTTGGATTGAAGGGAGC
0.9
2352




TCTG (527)








zma-miR159b
TTTGGATTGAAGGGAGC
0.9
2353




TCTG (528)








zma-miR159c
CTTGGATTGAAGGGAGC
0.95
2354




TCCT (529)








zma-miR159d
CTTGGATTGAAGGGAGC
0.95
2355




TCCT (530)








zma-miR159e
ATTGGTTTGAAGGGAGC
0.86
2356




TCCA (531)








zma-miR159f
TTTGGATTGAAGGGAGC
0.9
2357




TCTG (532)








zma-miR159g
TTTGGAGTGAAGGGAGT
0.81
2358




TCTG (533)








zma-miR159h
TTTGGAGTGAAGGGAG
0.86
2359




CTCTG (534)








zma-miR159i
TTTGGAGTGAAGGGAG
0.86
2360




CTCTG (535)








zma-miR159j
TTTGGATTGAAGGGAGC
0.9
2361




TCTG (536)








zma-miR159k
TTTGGATTGAAGGGAGC
0.9
2362




TCTG (537)








zma-miR159m
TTTGGATTGAAGGGAGC
0.9
2363




TCTG (538)







ath-
gma-miRf10687-
TTAGCCGCAGAGGCAG
0.86
11615


miRf10687-
akr-homolog
AGGAG (11616)




akr









ghr-
vvi-miR2950*
TGGTGTGCACGGGATGG
0.9
2364


miR2950

AATA (539)







gma-
ahy-miR156a
TGACAGAAGAGAGAGA
0.85
2365


miR156g

GCAC (540)








ahy-miR156b-5p
TTGACAGAAGATAGAG
0.9
2366




AGCAC (541)








ahy-miR156c
TTGACAGAAGAGAGAG
0.85
2367




AGCAC (542)








aly-miR156a
TGACAGAAGAGAGTGA
0.8
2368




GCAC (543)








aly-miR156b
TGACAGAAGAGAGTGA
0.8
2369




GCAC (544)








aly-miR156c
TGACAGAAGAGAGTGA
0.8
2370




GCAC (545)








aly-miR156d
TGACAGAAGAGAGTGA
0.8
2371




GCAC (546)








aly-miR156e
TGACAGAAGAGAGTGA
0.8
2372




GCAC (547)








aly-miR156f
TGACAGAAGAGAGTGA
0.8
2373




GCAC (548)








aly-miR156g
CGACAGAAGAGAGTGA
0.8
2374




GCAC (549)








aly-miR156h
TGACAGAAGAAAGAGA
0.85
2375




GCAC (550)








aqc-miR156a
TGACAGAAGATAGAGA
0.9
2376




GCAC (551)








aqc-miR156b
TGACAGAAGATAGAGA
0.9
2377




GCAC (552)








ath-miR156a
TGACAGAAGAGAGTGA
0.8
2378




GCAC (553)








ath-miR156b
TGACAGAAGAGAGTGA
0.8
2379




GCAC (554)








ath-miR156c
TGACAGAAGAGAGTGA
0.8
2380




GCAC (555)








ath-miR156d
TGACAGAAGAGAGTGA
0.8
2381




GCAC (556)








ath-miR156e
TGACAGAAGAGAGTGA
0.8
2382




GCAC (557)








ath-miR156f
TGACAGAAGAGAGTGA
0.8
2383




GCAC (558)








ath-miR156g
CGACAGAAGAGAGTGA
0.8
2384




GCAC (559)








ath-miR156h
TGACAGAAGAAAGAGA
0.85
2385




GCAC (560)








bdi-miR156
TGACAGAAGAGAGAGA
0.9
2386




GCACA (561)








bdi-miR156b
TGACAGAAGAGAGTGA
0.8
2387




GCAC (562)








bdi-miR156c
TGACAGAAGAGAGTGA
0.8
2388




GCAC (563)








bdi-miR156d
TGACAGAAGAGAGTGA
0.8
2389




GCAC (564)








bna-miR156a
TGACAGAAGAGAGTGA
0.85
2390




GCACA (565)








bna-miR156b
TTGACAGAAGATAGAG
0.9
2391




AGCAC (566)








bna-miR156c
TTGACAGAAGATAGAG
0.9
2392




AGCAC (567)








csi-miR156
TGACAGAAGAGAGTGA
0.8
2393




GCAC (568)








ctr-miR156
TGACAGAAGAGAGTGA
0.8
2394




GCAC (569)








far-miR156a
TGACAGAAGAGAGAGA
0.9
2395




GCACA (570)








far-miR156b
TTGACAGAAGAGAGAG
0.85
2396




AGCAC (571)








ghr-miR156a
TGACAGAAGAGAGTGA
0.8
2397




GCAC (572)








ghr-miR156b
TGACAGAAGAGAGTGA
0.8
2398




GCAC (573)








ghr-miR156c
TGTCAGAAGAGAGTGA
0.75
2399




GCAC (574)








ghr-miR156d
TGACAGAAGAGAGTGA
0.8
2400




GCAC (575)








gma-miR156a
TGACAGAAGAGAGTGA
0.8
2401




GCAC (576)








gma-miR156b
TGACAGAAGAGAGAGA
0.9
2402




GCACA (577)








gma-miR156c
TTGACAGAAGATAGAG
0.9
2403




AGCAC (578)








gma-miR156d
TTGACAGAAGATAGAG
0.9
2404




AGCAC (579)








gma-miR156e
TTGACAGAAGATAGAG
0.9
2405




AGCAC (580)








gma-miR156f
TTGACAGAAGAGAGAG
0.9
2406




AGCACA (581)








hvu-miR156
TGACAGAAGAGAGTGA
0.85
2407




GCACA (582)








mtr-miR156
TGACAGAAGAGAGAGA
0.9
2408




GCACA (583)








mtr-miR156b
TGACAGAAGAGAGTGA
0.8
2409




GCAC (584)








mtr-miR156c
TGACAGAAGAGAGTGA
0.8
2410




GCAC (585)








mtr-miR156d
TGACAGAAGAGAGTGA
0.8
2411




GCAC (586)








mtr-miR156e
TTGACAGAAGATAGAG
0.9
2412




AGCAC (587)








mtr-miR156f
TTGACAGAAGATAGAG
0.9
2413




AGCAC (588)








mtr-miR156g
TTGACAGAAGATAGAG
0.85
2414




GGCAC (589)








mtr-miR156h
TTGACAGAAGATAGAG
0.9
2415




AGCAC (590)








mtr-miR156i
TGACAGAAGAGAGTGA
0.8
2416




GCAC (591)








osa-miR156a
TGACAGAAGAGAGTGA
0.8
2417




GCAC (592)








osa-miR156b
TGACAGAAGAGAGTGA
0.8
2418




GCAC (593)








osa-miR156c
TGACAGAAGAGAGTGA
0.8
2419




GCAC (594)








osa-miR156d
TGACAGAAGAGAGTGA
0.8
2420




GCAC (595)








osa-miR156e
TGACAGAAGAGAGTGA
0.8
2421




GCAC (596)








osa-miR156f
TGACAGAAGAGAGTGA
0.8
2422




GCAC (597)








osa-miR156g
TGACAGAAGAGAGTGA
0.8
2423




GCAC (598)








osa-miR156h
TGACAGAAGAGAGTGA
0.8
2424




GCAC (599)








osa-miR156i
TGACAGAAGAGAGTGA
0.8
2425




GCAC (600)








osa-miR156j
TGACAGAAGAGAGTGA
0.8
2426




GCAC (601)








osa-miR156k
TGACAGAAGAGAGAGA
0.9
2427




GCACA (602)








osa-miR156l
CGACAGAAGAGAGTGA
0.8
2428




GCATA (603)








ppt-miR156a
TGACAGAAGAGAGTGA
0.8
2429




GCAC (604)








ppt-miR156b
TGACAGAAGAGAGTGA
0.8
2430




GCAC (605)








ppt-miR156c
TGACAGAAGAGAGTGA
0.8
2431




GCAC (606)








pta-miR156a
CAGAAGATAGAGAGCA
0.9
2432




CATC (607)








pta-miR156b
CAGAAGATAGAGAGCA
0.9
2433




CAAC (608)








ptc-miR156a
TGACAGAAGAGAGTGA
0.8
2434




GCAC (609)








ptc-miR156b
TGACAGAAGAGAGTGA
0.8
2435




GCAC (610)








ptc-miR156c
TGACAGAAGAGAGTGA
0.8
2436




GCAC (611)








ptc-miR156d
TGACAGAAGAGAGTGA
0.8
2437




GCAC (612)








ptc-miR156e
TGACAGAAGAGAGTGA
0.8
2438




GCAC (613)








ptc-miR156f
TGACAGAAGAGAGTGA
0.8
2439




GCAC (614)








ptc-miR156g
TTGACAGAAGATAGAG
0.9
2440




AGCAC (615)








ptc-miR156h
TTGACAGAAGATAGAG
0.9
2441




AGCAC (616)








ptc-miR156i
TTGACAGAAGATAGAG
0.9
2442




AGCAC (617)








ptc-miR156j
TTGACAGAAGATAGAG
0.9
2443




AGCAC (618)








ptc-miR156k
TGACAGAAGAGAGGGA
0.8
2444




GCAC (619)








rco-miR156a
TGACAGAAGAGAGTGA
0.85
2445




GCACA (620)








rco-miR156b
TGACAGAAGAGAGTGA
0.85
2446




GCACA (621)








rco-miR156c
TGACAGAAGAGAGTGA
0.85
2447




GCACA (622)








rco-miR156d
TGACAGAAGAGAGTGA
0.85
2448




GCACA (623)








rco-miR156e
TGACAGAAGAGAGAGA
0.9
2449




GCACA (624)








rco-miR156f
TTGACAGAAGATAGAG
0.9
2450




AGCAC (625)








rco-miR156g
TTGACAGAAGATAGAG
0.9
2451




AGCAC (626)








rco-miR156h
TTGACAGAAGATAGAG
0.9
2452




AGCAC (627)








sbi-miR156a
TGACAGAAGAGAGTGA
0.8
2453




GCAC (628)








sbi-miR156b
TGACAGAAGAGAGTGA
0.8
2454




GCAC (629)








sbi-miR156c
TGACAGAAGAGAGTGA
0.8
2455




GCAC (630)








sbi-miR156d
TGACAGAAGAGAGAGA
0.9
2456




GCACA (631)








sbi-miR156e
TGACAGAAGAGAGCGA
0.8
2457




GCAC (632)








sbi-miR156f
TGACAGAAGAGAGTGA
0.8
2458




GCAC (633)








sbi-miR156g
TGACAGAAGAGAGTGA
0.8
2459




GCAC (634)








sbi-miR156h
TGACAGAAGAGAGTGA
0.8
2460




GCAC (635)








sbi-miR156i
TGACAGAAGAGAGTGA
0.8
2461




GCAC (636)








sly-miR156a
TTGACAGAAGATAGAG
0.9
2462




AGCAC (637)








sly-miR156b
TTGACAGAAGATAGAG
0.9
2463




AGCAC (638)








sly-miR156c
TTGACAGAAGATAGAG
0.9
2464




AGCAC (639)








smo-miR156a
CGACAGAAGAGAGTGA
0.8
2465




GCAC (640)








smo-miR156b
CTGACAGAAGATAGAG
0.9
2466




AGCAC (641)








smo-miR156c
TTGACAGAAGAAAGAG
0.85
2467




AGCAC (642)








smo-miR156d
TTGACAGAAGACAGGG
0.8
2468




AGCAC (643)








sof-miR156
TGACAGAAGAGAGTGA
0.8
2469




GCAC (644)








ssp-miR156
TGACAGAAGAGAGTGA
0.85
2470




GCACA (645)








tae-miR156
TGACAGAAGAGAGTGA
0.85
2471




GCACA (646)








tcc-miR156a
TGACAGAAGAGAGAGA
0.9
2472




GCACA (647)








tcc-miR156b
TGACAGAAGAGAGTGA
0.8
2473




GCAC (648)








tcc-miR156c
TGACAGAAGAGAGTGA
0.8
2474




GCAC (649)








tcc-miR156d
TGACAGAAGAGAGTGA
0.8
2475




GCAC (650)








tcc-miR156e
TTGACAGAAGATAGAG
0.9
2476




AGCAC (651)








tcc-miR156f
TTGACAGAAGATAGAG
0.9
2477




AGCAC (652)








tcc-miR156g
TGACAGAAGAGAGTGA
0.8
2478




GCAC (653)








vvi-miR156a
TGACAGAAGAGAGGGA
0.8
2479




GCAC (654)








vvi-miR156b
TGACAGAAGAGAGTGA
0.8
2480




GCAC (655)








vvi-miR156c
TGACAGAAGAGAGTGA
0.8
2481




GCAC (656)








vvi-miR156d
TGACAGAAGAGAGTGA
0.8
2482




GCAC (657)








vvi-miR156e
TGACAGAGGAGAGTGA
0.75
2483




GCAC (658)








vvi-miR156f
TTGACAGAAGATAGAG
0.9
2484




AGCAC (659)








vvi-miR156g
TTGACAGAAGATAGAG
0.9
2485




AGCAC (660)








vvi-miR156h
TGACAGAAGAGAGAGA
0.8
2486




GCAT (661)








vvi-miR156i
TTGACAGAAGATAGAG
0.9
2487




AGCAC (662)








zma-miR156a
TGACAGAAGAGAGTGA
0.8
2488




GCAC (663)








zma-miR156b
TGACAGAAGAGAGTGA
0.8
2489




GCAC (664)








zma-miR156c
TGACAGAAGAGAGTGA
0.8
2490




GCAC (665)








zma-miR156d
TGACAGAAGAGAGTGA
0.8
2491




GCAC (666)








zma-miR156e
TGACAGAAGAGAGTGA
0.8
2492




GCAC (667)








zma-miR156f
TGACAGAAGAGAGTGA
0.8
2493




GCAC (668)








zma-miR156g
TGACAGAAGAGAGTGA
0.8
2494




GCAC (669)








zma-miR156h
TGACAGAAGAGAGTGA
0.8
2495




GCAC (670)








zma-miR156i
TGACAGAAGAGAGTGA
0.8
2496




GCAC (671)








zma-miR156j
TGACAGAAGAGAGAGA
0.9
2497




GCACA (672)








zma-miR156k
TGACAGAAGAGAGCGA
0.8
2498




GCAC (673)








zma-miR1561
TGACAGAAGAGAGTGA
0.8
2499




GCAC (674)







gma-
ahy-miR157a-5p
TTGACAGAAGATAGAG
0.95
2500


miR157c

AGCAC (675)








ahy-miR157k
TTGACAGAAGAGAGAG
0.9
2501




AGCAC (676)








aly-miR157a
TTGACAGAAGATAGAG
0.95
2502




AGCAC (677)








aly-miR157b
TTGACAGAAGATAGAG
0.95
2503




AGCAC (678)








aly-miR157c
TTGACAGAAGATAGAG
0.95
2504




AGCAC (679)








aly-miR157d
TGACAGAAGATAGAGA
0.95
2505




GCAC (680)








ath-miR157a
TTGACAGAAGATAGAG
0.95
2506




AGCAC (681)








ath-miR157b
TTGACAGAAGATAGAG
0.95
2507




AGCAC (682)








ath-miR157c
TTGACAGAAGATAGAG
0.95
2508




AGCAC (683)








ath-miR157d
TGACAGAAGATAGAGA
0.95
2509




GCAC (684)








ath-miR157m
TTGACAGAAGAGAGAG
0.9
2510




AGCAC (685)








bol-miR157a
TTGACAGAAGATAGAG
0.95
2511




AGCAC (686)








bra-miR157a
TTGACAGAAGATAGAG
0.95
2512




AGCAC (687)








can-miR157
TTGACAGAAGAGAGAG
0.9
2513




AGCAC (688)








ghr-miR157
ATGACAGAAGAGAGAG
0.9
2514




AGCAC (689)








gma-miR157r
TTGACAGAAGAGAGAG
0.9
2515




AGCAC (690)








gra-miR157a
TTGACAGAAGATAGAG
0.95
2516




AGCAC (691)








gra-miR157b
TTGACAGAAGATAGAG
0.95
2517




AGCAC (692)








gra-miR157c
TTGACAGAAGAGAGAG
0.9
2518




AGCAC (693)








gra-miR157d
TTGACAGAAGAGAGAG
0.9
2519




AGCAC (694)








han-miR157a
TTGACAGAAGATAGAG
0.95
2520




AGCAC (695)








han-miR157b
TTGACAGAAGAGAGAG
0.9
2521




AGCAC (696)








iba-miR157
TTGACAGAAGATAGAG
0.9
2522




AGCAT (697)








ini-miR157a
TTGACAGAAGATAGAG
0.9
2523




AGCAT (698)








ini-miR157b
TTGACAGAAGATAGAG
0.9
2524




AGCAT (699)








lja-miR157a
TTGACAGAAGATAGAG
0.95
2525




AGCAC (700)








lja-miR157b
TTGACAGAAGAGAGAG
0.9
2526




AGCAC (701)








lja-miR157c
TTGACAGAAGATAGAG
0.9
2527




AGCAT (702)








lsa-miR157
TTGACAGAAGAGAGAG
0.9
2528




AGCAC (703)








mtr-miR157
TTGACAGAAGATAGAG
0.9
2529




GGCAC (704)








nad-miR157a
TTGACAGAAGACAGAG
0.95
2530




AGCAC (705)








nad-miR157b
TTGACAGAAGACAGAG
0.95
2531




AGCAC (706)








nad-miR157c
TTGACAGAAGACAGAG
0.95
2532




AGCAC (707)








nbe-miR157a
TTGACAGAAGAGAGAG
0.9
2533




AGCAC (708)








nbe-miR157b
TTGACAGAAGAGAGAG
0.9
2534




AGCAC (709)








nta-miR157
TTGACAGAAGATAGAG
0.95
2535




AGCAC (710)








pam-miR157
TTGACAGAAGAGAGAG
0.9
2536




AGCAC (711)








par-miR157
TTGACAGAAGAGAGAG
0.9
2537




AGCAC (712)








pco-miR157
TTGACAGAAGATAGAG
0.9
2538




AGCAT (713)








pts-miR157
TTGACAGAAGAGAGAG
0.9
2539




AGCAC (714)








sbi-miR157
TTGACAGAAGAGAGTG
0.86
2540




AGCAC (715)








sin-miR157
TTGACAGAAGAGAGAG
0.9
2541




AGCAC (716)








sly-miR157a
TTGACAGAAGATAGAG
0.9
2542




AGCAT (717)








sly-miR157b
TTGACAGAAGATAGAG
0.9
2543




AGCAT (718)








sly-miR157c
TTGACAGAAGATAGAG
0.9
2544




AGCAT (719)








stu-miR157a
TTGACAGAAGATAGAG
0.95
2545




AGCAC (720)








stu-miR157b
TTGACAGAAGAGAGAG
0.9
2546




AGCAC (721)








stu-miR157c
TTGACAGAAGAGAGAG
0.9
2547




AGCAC (722)








zel-miR157
TTGACAGAAGAGAGAG
0.9
2548




AGCAC (723)








zma-miR157m
TTGACAGAAGAGAGAG
0.9
2549




AGCAC (724)







iba-miR157
ahy-miR157a-5p
TTGACAGAAGATAGAG
0.95
2550




AGCAC (725)








ahy-miR157k
TTGACAGAAGAGAGAG
0.9
2551




AGCAC (726)








aly-miR157a
TTGACAGAAGATAGAG
0.95
2552




AGCAC (727)








aly-miR157b
TTGACAGAAGATAGAG
0.95
2553




AGCAC (728)








aly-miR157c
TTGACAGAAGATAGAG
0.95
2554




AGCAC (729)








aly-miR157d
TGACAGAAGATAGAGA
0.9
2555




GCAC (730)








ath-miR157a
TTGACAGAAGATAGAG
0.95
2556




AGCAC (731)








ath-miR157b
TTGACAGAAGATAGAG
0.95
2557




AGCAC (732)








ath-miR157c
TTGACAGAAGATAGAG
0.95
2558




AGCAC (733)








ath-miR157d
TGACAGAAGATAGAGA
0.9
2559




GCAC (734)








ath-miR157m
TTGACAGAAGAGAGAG
0.9
2560




AGCAC (735)








bol-miR157a
TTGACAGAAGATAGAG
0.95
2561




AGCAC (736)








bra-miR157a
TTGACAGAAGATAGAG
0.95
2562




AGCAC (737)








can-miR157
TTGACAGAAGAGAGAG
0.9
2563




AGCAC (738)








ghr-miR157
ATGACAGAAGAGAGAG
0.86
2564




AGCAC (739)








gma-miR157c
TGACAGAAGACTAGAG
0.9
2565




AGCAC (740)








gma-miR157r
TTGACAGAAGAGAGAG
0.9
2566




AGCAC (741)








gra-miR157a
TTGACAGAAGATAGAG
0.95
2567




AGCAC (742)








gra-miR157b
TTGACAGAAGATAGAG
0.95
2568




AGCAC (743)








gra-miR157c
TTGACAGAAGAGAGAG
0.9
2569




AGCAC (744)








gra-miR157d
TTGACAGAAGAGAGAG
0.9
2570




AGCAC (745)








han-miR157a
TTGACAGAAGATAGAG
0.95
2571




AGCAC (746)








han-miR157b
TTGACAGAAGAGAGAG
0.9
2572




AGCAC (747)








ini-miR157a
TTGACAGAAGATAGAG
1
2573




AGCAT (748)








ini-miR157b
TTGACAGAAGATAGAG
1
2574




AGCAT (749)








lja-miR157a
TTGACAGAAGATAGAG
0.95
2575




AGCAC (750)








lja-miR157b
TTGACAGAAGAGAGAG
0.9
2576




AGCAC (751)








lja-miR157c
TTGACAGAAGATAGAG
1
2577




AGCAT (752)








lsa-miR157
TTGACAGAAGAGAGAG
0.9
2578




AGCAC (753)








mtr-miR157
TTGACAGAAGATAGAG
0.9
2579




GGCAC (754)








nad-miR157a
TTGACAGAAGACAGAG
0.9
2580




AGCAC (755)








nad-miR157b
TTGACAGAAGACAGAG
0.9
2581




AGCAC (756)








nad-miR157c
TTGACAGAAGACAGAG
0.9
2582




AGCAC (757)








nbe-miR157a
TTGACAGAAGAGAGAG
0.9
2583




AGCAC (758)








nbe-miR157b
TTGACAGAAGAGAGAG
0.9
2584




AGCAC (759)








nta-miR157
TTGACAGAAGATAGAG
0.95
2585




AGCAC (760)








pam-miR157
TTGACAGAAGAGAGAG
0.9
2586




AGCAC (761)








par-miR157
TTGACAGAAGAGAGAG
0.9
2587




AGCAC (762)








pco-miR157
TTGACAGAAGATAGAG
1
2588




AGCAT (763)








pts-miR157
TTGACAGAAGAGAGAG
0.9
2589




AGCAC (764)








sbi-miR157
TTGACAGAAGAGAGTG
0.86
2590




AGCAC (765)








sin-miR157
TTGACAGAAGAGAGAG
0.9
2591




AGCAC (766)








sly-miR157a
TTGACAGAAGATAGAG
1
2592




AGCAT (767)








sly-miR157b
TTGACAGAAGATAGAG
1
2593




AGCAT (768)








sly-miR157c
TTGACAGAAGATAGAG
1
2594




AGCAT (769)








stu-miR157a
TTGACAGAAGATAGAG
0.95
2595




AGCAC (770)








stu-miR157b
TTGACAGAAGAGAGAG
0.9
2596




AGCAC (771)








stu-miR157c
TTGACAGAAGAGAGAG
0.9
2597




AGCAC (772)








zel-miR157
TTGACAGAAGAGAGAG
0.9
2598




AGCAC (773)








zma-miR157m
TTGACAGAAGAGAGAG
0.9
2599




AGCAC (774)







mdm-
gma-miR482b-5p
TATGGGGGGATTGGGA
0.62
2600


miR482a-

AGGAAT (775)




5p










mdo-miR482*
GGAATGGGCTGTTTGGG
1
2601




AACA (776)








pvu-miR482*
GGAATGGGCTGATTGG
0.95
2602




GAAGCA (777)







osa-
acb-miR159
TTGGACTGAAGGGAGCT
0.86
2603


miR159e

CCCT (778)








aha-miR159
TTGGACTGAAGGGAGCT
0.86
2604




CCCT (779)








ahi-miR159
TTGGACTGAAGGGAGCT
0.86
2605




CCCT (780)








ahy-miR159
TTTGGATTGAAGGGAGC
0.86
2606




TCTA (781)








aly-miR159a
TTTGGATTGAAGGGAGC
0.86
2607




TCTA (782)








aly-miR159b
TTTGGATTGAAGGGAGC
0.9
2608




TCTT (783)








aly-miR159c
TTTGGATTGAAGGGAGC
0.95
2609




TCCT (784)








ape-miR159
TTGGACTGAAGGGAGCT
0.86
2610




CCCT (785)








aqc-miR159
TTTGGACTGAAGGGAGC
0.81
2611




TCTA (786)








ath-miR159a
TTTGGATTGAAGGGAGC
0.86
2612




TCTA (787)








ath-miR159b
TTTGGATTGAAGGGAGC
0.9
2613




TCTT (788)








ath-miR159c
TTTGGATTGAAGGGAGC
0.95
2614




TCCT (789)








bdi-miR159
CTTGGATTGAAGGGAGC
0.86
2615




TCT (790)








bna-miR159
TTTGGATTGAAGGGAGC
0.86
2616




TCTA (791)








bra-miR159a
TTTGGATTGAAGGGAGC
0.86
2617




TCTA (792)








bvl-miR159
TTGGACTGAAGGGAGCT
0.86
2618




CCCT (793)








cmi-miR159
TTGGACTGAAGGGAGCT
0.86
2619




CCCT (794)








cor-miR159
TTGGACTGAAGGGAGCT
0.86
2620




CCCT (795)








crb-miR159
TTGGACTGAAGGGAGCT
0.86
2621




CCCT (796)








csi-miR159
TTTGGATTGAAGGGAGC
0.86
2622




TCTA (797)








dso-miR159
TTGGACTGAAGGGAGCT
0.86
2623




CCCT (798)








ech-miR159
TTGGACTGAAGGGAGCT
0.86
2624




CCCT (799)








fal-miR159
TTGGACTGAAGGGAGCT
0.86
2625




CCCT (800)








far-miR159
TTTGGATTGAAGGGAGC
0.86
2626




TCTG (801)








gma-miR159a-3p
TTTGGATTGAAGGGAGC
0.86
2627




TCTA (802)








gma-miR159b
ATTGGAGTGAAGGGAG
0.9
2628




CTCCA (803)








gma-miR159c
ATTGGAGTGAAGGGAG
0.9
2629




CTCCG (804)








hvu-miR159a
TTTGGATTGAAGGGAGC
0.86
2630




TCTG (805)








hvu-miR159b
TTTGGATTGAAGGGAGC
0.86
2631




TCTG (806)








hvv-miR159a
TTTGGATTGAAGGGAGC
0.86
2632




TCTG (807)








hvv-miR159b
TTTGGATTGAAGGGAGC
0.86
2633




TCTG (808)








ltu-miR159
TTTGGATTGAAGGGAGC
0.86
2634




TCTA (809)








mma-miR159
TTGGACTGAAGGGAGCT
0.86
2635




CCCT (810)








mtr-miR159a
TTTGGATTGAAGGGAGC
0.86
2636




TCTA (811)








mtr-miR159b
ATTGAATTGAAGGGAG
0.86
2637




CAACT (812)








mtr-miR159c
TTTGGATTGAAGGGAGC
0.86
2638




TCTA (813)








nof-miR159
TTGGACTGAAGGGAGCT
0.86
2639




CCCT (814)








oru-miR159
TTTGGATTGAAGGGAGC
0.86
2640




TCTG (815)








osa-miR159a
TTTGGATTGAAGGGAGC
0.86
2641




TCTG (816)








osa-miR159a.1
TTTGGATTGAAGGGAGC
0.86
2642




TCTG (817)








osa-miR159b
TTTGGATTGAAGGGAGC
0.86
2643




TCTG (818)








osa-miR159c
ATTGGATTGAAGGGAG
0.95
2644




CTCCA (819)








osa-miR159d
ATTGGATTGAAGGGAG
0.95
2645




CTCCG (820)








osa-miR159f
CTTGGATTGAAGGGAGC
0.86
2646




TCTA (821)








osa-miR159m
TTTGGATTGAAGGGAGC
0.86
2647




TCTG (822)








pgl-miR159
TTTGGATTGAAGGGAGC
0.86
2648




TCTG (823)








psi-miR159
CTTGGATTGAAGGGAGC
0.9
2649




TCCA (824)








pta-miR159a
TTGGATTGAAGGGAGCT
0.9
2650




CCA (825)








pta-miR159b
TTGGATTGAAGAGAGCT
0.86
2651




CCC (826)








pta-miR159c
CTTGGATTGAAGGGAGC
0.9
2652




TCCC (827)








ptc-miR159a
TTTGGATTGAAGGGAGC
0.86
2653




TCTA (828)








ptc-miR159b
TTTGGATTGAAGGGAGC
0.86
2654




TCTA (829)








ptc-miR159c
TTTGGATTGAAGGGAGC
0.86
2655




TCTA (830)








ptc-miR159d
CTTGGATTGAAGGGAGC
0.95
2656




TCCT (831)








ptc-miR159e
CTTGGGGTGAAGGGAG
0.86
2657




CTCCT (832)








ptc-miR159f
ATTGGAGTGAAGGGAG
0.86
2658




CTCGA (833)








pvu-miR159
TTTGGATTGAAGGGAGC
0.86
2659




TCTA (834)








pvu-miR159.2
CTTCCATATCTGGGGAG
0.62
2660




CTTC (835)








pvu-miR159a.1
TTTGGATTGAAGGGAGC
0.86
2661




TCTA (836)








pvu-miR159a.2
CTTCCATATCTGGGGAG
0.62
2662




CTTC (837)








rco-miR159
TTTGGATTGAAGGGAGC
0.86
2663




TCTA (838)








rin-miR159
TTGGACTGAAGGGAGCT
0.86
2664




CCCT (839)








sar-miR159
TTTGGATTGAAGGGAGC
0.86
2665




TCTG (840)








sbi-miR159a
TTTGGATTGAAGGGAGC
0.86
2666




TCTG (841)








sbi-miR159b
CTTGGATTGAAGGGAGC
0.95
2667




TCCT (842)








sly-miR159
TTTGGATTGAAGGGAGC
0.86
2668




TCTA (843)








smo-miR159
CTTGGATTGAAGGGAGC
0.9
2669




TCCC (844)








sof-miR159a
TTTGGATTGAAGGGAGC
0.86
2670




TCTG (845)








sof-miR159b
TTTGGATTGAAGGGAGC
0.86
2671




TCTG (846)








sof-miR159c
CTTGGATTGAAGGGAGC
0.95
2672




TCCT (847)








sof-miR159d
TTTGGATTGAAGGGAGC
0.86
2673




TCTG (848)








sof-miR159e
TTTGGATTGAAAGGAGC
0.86
2674




TCTT (849)








spr-miR159
TTTGGATTGAAGGGAGC
0.86
2675




TCTG (850)








ssp-miR159a
TTTGGATTGAAGGGAGC
0.86
2676




TCTG (851)








svi-miR159
TTGGACTGAAGGGAGCT
0.86
2677




CCCT (852)








tae-miR159a
TTTGGATTGAAGGGAGC
0.86
2678




TCTG (853)








tae-miR159b
TTTGGATTGAAGGGAGC
0.86
2679




TCTG (854)








tar-miR159
TTGGACTGAAGGGAGCT
0.86
2680




CCCT (855)








vvi-miR159a
CTTGGAGTGAAGGGAG
0.81
2681




CTCTC (856)








vvi-miR159b
CTTGGAGTGAAGGGAG
0.81
2682




CTCTC (857)








vvi-miR159c
TTTGGATTGAAGGGAGC
0.86
2683




TCTA (858)








zma-miR159a
TTTGGATTGAAGGGAGC
0.86
2684




TCTG (859)








zma-miR159b
TTTGGATTGAAGGGAGC
0.86
2685




TCTG (860)








zma-miR159c
CTTGGATTGAAGGGAGC
0.95
2686




TCCT (861)








zma-miR159d
CTTGGATTGAAGGGAGC
0.95
2687




TCCT (862)








zma-miR159e
ATTGGTTTGAAGGGAGC
0.9
2688




TCCA (863)








zma-miR159f
TTTGGATTGAAGGGAGC
0.86
2689




TCTG (864)








zma-miR159g
TTTGGAGTGAAGGGAGT
0.76
2690




TCTG (865)








zma-miR159h
TTTGGAGTGAAGGGAG
0.81
2691




CTCTG (866)








zma-miR159i
TTTGGAGTGAAGGGAG
0.81
2692




CTCTG (867)








zma-miR159j
TTTGGATTGAAGGGAGC
0.86
2693




TCTG (868)








zma-miR159k
TTTGGATTGAAGGGAGC
0.86
2694




TCTG (869)








zma-miR159m
TTTGGATTGAAGGGAGC
0.86
2695




TCTG (870)







osa-
acb-miR159
TTGGACTGAAGGGAGCT
0.81
2696


miR159f

CCCT (871)








aha-miR159
TTGGACTGAAGGGAGCT
0.81
2697




CCCT (872)








ahi-miR159
TTGGACTGAAGGGAGCT
0.81
2698




CCCT (873)








ahy-miR159
TTTGGATTGAAGGGAGC
0.95
2699




TCTA (874)








aly-miR159a
TTTGGATTGAAGGGAGC
0.95
2700




TCTA (875)








aly-miR159b
TTTGGATTGAAGGGAGC
0.9
2701




TCTT (876)








aly-miR159c
TTTGGATTGAAGGGAGC
0.86
2702




TCCT (877)








ape-miR159
TTGGACTGAAGGGAGCT
0.81
2703




CCCT (878)








aqc-miR159
TTTGGACTGAAGGGAGC
0.9
2704




TCTA (879)








ath-miR159a
TTTGGATTGAAGGGAGC
0.95
2705




TCTA (880)








ath-miR159b
TTTGGATTGAAGGGAGC
0.9
2706




TCTT (881)








ath-miR159c
TTTGGATTGAAGGGAGC
0.86
2707




TCCT (882)








bdi-miR159
CTTGGATTGAAGGGAGC
0.95
2708




TCT (883)








bna-miR159
TTTGGATTGAAGGGAGC
0.95
2709




TCTA (884)








bra-miR159a
TTTGGATTGAAGGGAGC
0.95
2710




TCTA (885)








bvl-miR159
TTGGACTGAAGGGAGCT
0.81
2711




CCCT (886)








cmi-miR159
TTGGACTGAAGGGAGCT
0.81
2712




CCCT (887)








cor-miR159
TTGGACTGAAGGGAGCT
0.81
2713




CCCT (888)








crb-miR159
TTGGACTGAAGGGAGCT
0.81
2714




CCCT (889)








csi-miR159
TTTGGATTGAAGGGAGC
0.95
2715




TCTA (890)








dso-miR159
TTGGACTGAAGGGAGCT
0.81
2716




CCCT (891)








ech-miR159
TTGGACTGAAGGGAGCT
0.81
2717




CCCT (892)








fal-miR159
TTGGACTGAAGGGAGCT
0.81
2718




CCCT (893)








far-miR159
TTTGGATTGAAGGGAGC
0.9
2719




TCTG (894)








gma-miR159a-3p
TTTGGATTGAAGGGAGC
0.95
2720




TCTA (895)








gma-miR159b
ATTGGAGTGAAGGGAG
0.86
2721




CTCCA (896)








gma-miR159c
ATTGGAGTGAAGGGAG
0.81
2722




CTCCG (897)








hvu-miR159a
TTTGGATTGAAGGGAGC
0.9
2723




TCTG (898)








hvu-miR159b
TTTGGATTGAAGGGAGC
0.9
2724




TCTG (899)








hvv-miR159a
TTTGGATTGAAGGGAGC
0.9
2725




TCTG (900)








hvv-miR159b
TTTGGATTGAAGGGAGC
0.9
2726




TCTG (901)








ltu-miR159
TTTGGATTGAAGGGAGC
0.95
2727




TCTA (902)








mma-miR159
TTGGACTGAAGGGAGCT
0.81
2728




CCCT (903)








mtr-miR159a
TTTGGATTGAAGGGAGC
0.95
2729




TCTA (904)








mtr-miR159b
ATTGAATTGAAGGGAG
0.71
2730




CAACT (905)








mtr-miR159c
TTTGGATTGAAGGGAGC
0.95
2731




TCTA (906)








nof-miR159
TTGGACTGAAGGGAGCT
0.81
2732




CCCT (907)








oru-miR159
TTTGGATTGAAGGGAGC
0.9
2733




TCTG (908)








osa-miR159a
TTTGGATTGAAGGGAGC
0.9
2734




TCTG (909)








osa-miR159a.1
TTTGGATTGAAGGGAGC
0.9
2735




TCTG (910)








osa-miR159b
TTTGGATTGAAGGGAGC
0.9
2736




TCTG (911)








osa-miR159c
ATTGGATTGAAGGGAG
0.9
2737




CTCCA (912)








osa-miR159d
ATTGGATTGAAGGGAG
0.86
2738




CTCCG (913)








osa-miR159e
ATTGGATTGAAGGGAG
0.86
2739




CTCCT (914)








osa-miR159m
TTTGGATTGAAGGGAGC
0.9
2740




TCTG (915)








pgl-miR159
TTTGGATTGAAGGGAGC
0.9
2741




TCTG (916)








psi-miR159
CTTGGATTGAAGGGAGC
0.95
2742




TCCA (917)








pta-miR159a
TTGGATTGAAGGGAGCT
0.9
2743




CCA (918)








pta-miR159b
TTGGATTGAAGAGAGCT
0.81
2744




CCC (919)








pta-miR159c
CTTGGATTGAAGGGAGC
0.9
2745




TCCC (920)








ptc-miR159a
TTTGGATTGAAGGGAGC
0.95
2746




TCTA (921)








ptc-miR159b
TTTGGATTGAAGGGAGC
0.95
2747




TCTA (922)








ptc-miR159c
TTTGGATTGAAGGGAGC
0.95
2748




TCTA (923)








ptc-miR159d
CTTGGATTGAAGGGAGC
0.9
2749




TCCT (924)








ptc-miR159e
CTTGGGGTGAAGGGAG
0.81
2750




CTCCT (925)








ptc-miR159f
ATTGGAGTGAAGGGAG
0.86
2751




CTCGA (926)








pvu-miR159
TTTGGATTGAAGGGAGC
0.95
2752




TCTA (927)








pvu-miR159.2
CTTCCATATCTGGGGAG
0.62
2753




CTTC (928)








pvu-miR159a.1
TTTGGATTGAAGGGAGC
0.95
2754




TCTA (929)








pvu-miR159a.2
CTTCCATATCTGGGGAG
0.62
2755




CTTC (930)








rco-miR159
TTTGGATTGAAGGGAGC
0.95
2756




TCTA (931)








rin-miR159
TTGGACTGAAGGGAGCT
0.81
2757




CCCT (932)








sar-miR159
TTTGGATTGAAGGGAGC
0.9
2758




TCTG (933)








sbi-miR159a
TTTGGATTGAAGGGAGC
0.9
2759




TCTG (934)








sbi-miR159b
CTTGGATTGAAGGGAGC
0.9
2760




TCCT (935)








sly-miR159
TTTGGATTGAAGGGAGC
0.95
2761




TCTA (936)








smo-miR159
CTTGGATTGAAGGGAGC
0.9
2762




TCCC (937)








sof-miR159a
TTTGGATTGAAGGGAGC
0.9
2763




TCTG (938)








sof-miR159b
TTTGGATTGAAGGGAGC
0.9
2764




TCTG (939)








sof-miR159c
CTTGGATTGAAGGGAGC
0.9
2765




TCCT (940)








sof-miR159d
TTTGGATTGAAGGGAGC
0.9
2766




TCTG (941)








sof-miR159e
TTTGGATTGAAAGGAGC
0.86
2767




TCTT (942)








spr-miR159
TTTGGATTGAAGGGAGC
0.9
2768




TCTG (943)








ssp-miR159a
TTTGGATTGAAGGGAGC
0.9
2769




TCTG (944)








svi-miR159
TTGGACTGAAGGGAGCT
0.81
2770




CCCT (945)








tae-miR159a
TTTGGATTGAAGGGAGC
0.9
2771




TCTG (946)








tae-miR159b
TTTGGATTGAAGGGAGC
0.9
2772




TCTG (947)








tar-miR159
TTGGACTGAAGGGAGCT
0.81
2773




CCCT (948)








vvi-miR159a
CTTGGAGTGAAGGGAG
0.9
2774




CTCTC (949)








vvi-miR159b
CTTGGAGTGAAGGGAG
0.9
2775




CTCTC (950)








vvi-miR159c
TTTGGATTGAAGGGAGC
0.95
2776




TCTA (951)








zma-miR159a
TTTGGATTGAAGGGAGC
0.9
2777




TCTG (952)








zma-miR159b
TTTGGATTGAAGGGAGC
0.9
2778




TCTG (953)








zma-miR159c
CTTGGATTGAAGGGAGC
0.9
2779




TCCT (954)








zma-miR159d
CTTGGATTGAAGGGAGC
0.9
2780




TCCT (955)








zma-miR159e
ATTGGTTTGAAGGGAGC
0.86
2781




TCCA (956)








zma-miR159f
TTTGGATTGAAGGGAGC
0.9
2782




TCTG (957)








zma-miR159g
TTTGGAGTGAAGGGAGT
0.81
2783




TCTG (958)








zma-miR159h
TTTGGAGTGAAGGGAG
0.86
2784




CTCTG (959)








zma-miR159i
TTTGGAGTGAAGGGAG
0.86
2785




CTCTG (960)








zma-miR159j
TTTGGATTGAAGGGAGC
0.9
2786




TCTG (961)








zma-miR159k
TTTGGATTGAAGGGAGC
0.9
2787




TCTG (962)








zma-miR159m
TTTGGATTGAAGGGAGC
0.9
2788




TCTG (963)







osa-
osa-miR1858b
GAGAGGAGGACGGAGT
1
2789


miR1858a

GGGGC (964)







psi-miR159
acb-miR159
TTGGACTGAAGGGAGCT
0.86
2790




CCCT (965)








aha-miR159
TTGGACTGAAGGGAGCT
0.86
2791




CCCT (966)








ahi-miR159
TTGGACTGAAGGGAGCT
0.86
2792




CCCT (967)








ahy-miR159
TTTGGATTGAAGGGAGC
0.9
2793




TCTA (968)








aly-miR159a
TTTGGATTGAAGGGAGC
0.9
2794




TCTA (969)








aly-miR159b
TTTGGATTGAAGGGAGC
0.86
2795




TCTT (970)








aly-miR159c
TTTGGATTGAAGGGAGC
0.9
2796




TCCT (971)








ape-miR159
TTGGACTGAAGGGAGCT
0.86
2797




CCCT (972)








aqc-miR159
TTTGGACTGAAGGGAGC
0.86
2798




TCTA (973)








ath-miR159a
TTTGGATTGAAGGGAGC
0.9
2799




TCTA (974)








ath-miR159b
TTTGGATTGAAGGGAGC
0.86
2800




TCTT (975)








ath-miR159c
TTTGGATTGAAGGGAGC
0.9
2801




TCCT (976)








bdi-miR159
CTTGGATTGAAGGGAGC
0.9
2802




TCT (977)








bna-miR159
TTTGGATTGAAGGGAGC
0.9
2803




TCTA (978)








bra-miR159a
TTTGGATTGAAGGGAGC
0.9
2804




TCTA (979)








bvl-miR159
TTGGACTGAAGGGAGCT
0.86
2805




CCCT (980)








cmi-miR159
TTGGACTGAAGGGAGCT
0.86
2806




CCCT (981)








cor-miR159
TTGGACTGAAGGGAGCT
0.86
2807




CCCT (982)








crb-miR159
TTGGACTGAAGGGAGCT
0.86
2808




CCCT (983)








csi-miR159
TTTGGATTGAAGGGAGC
0.9
2809




TCTA (984)








dso-miR159
TTGGACTGAAGGGAGCT
0.86
2810




CCCT (985)








ech-miR159
TTGGACTGAAGGGAGCT
0.86
2811




CCCT (986)








fal-miR159
TTGGACTGAAGGGAGCT
0.86
2812




CCCT (987)








far-miR159
TTTGGATTGAAGGGAGC
0.86
2813




TCTG (988)








gma-miR159a-3p
TTTGGATTGAAGGGAGC
0.9
2814




TCTA (989)








gma-miR159b
ATTGGAGTGAAGGGAG
0.9
2815




CTCCA (990)








gma-miR159c
ATTGGAGTGAAGGGAG
0.86
2816




CTCCG (991)








hvu-miR159a
TTTGGATTGAAGGGAGC
0.86
2817




TCTG (992)








hvu-miR159b
TTTGGATTGAAGGGAGC
0.86
2818




TCTG (993)








hvv-miR159a
TTTGGATTGAAGGGAGC
0.86
2819




TCTG (994)








hvv-miR159b
TTTGGATTGAAGGGAGC
0.86
2820




TCTG (995)








ltu-miR159
TTTGGATTGAAGGGAGC
0.9
2821




TCTA (996)








mma-miR159
TTGGACTGAAGGGAGCT
0.86
2822




CCCT (997)








mtr-miR159a
TTTGGATTGAAGGGAGC
0.9
2823




TCTA (998)








mtr-miR159b
ATTGAATTGAAGGGAG
0.76
2824




CAACT (999)








mtr-miR159c
TTTGGATTGAAGGGAGC
0.9
2825




TCTA (1000)








nof-miR159
TTGGACTGAAGGGAGCT
0.86
2826




CCCT (1001)








oru-miR159
TTTGGATTGAAGGGAGC
0.86
2827




TCTG (1002)








osa-miR159a
TTTGGATTGAAGGGAGC
0.86
2828




TCTG (1003)








osa-miR159a.1
TTTGGATTGAAGGGAGC
0.86
2829




TCTG (1004)








osa-miR159a.2
TTGCATGCCCCAGGAGC
0.62
2830




TGCA (1005)








osa-miR159b
TTTGGATTGAAGGGAGC
0.86
2831




TCTG (1006)








osa-miR159c
ATTGGATTGAAGGGAG
0.95
2832




CTCCA (1007)








osa-miR159d
ATTGGATTGAAGGGAG
0.9
2833




CTCCG (1008)








osa-miR159e
ATTGGATTGAAGGGAG
0.9
2834




CTCCT (1009)








osa-miR159f
CTTGGATTGAAGGGAGC
0.95
2835




TCTA (1010)








osa-miR159m
TTTGGATTGAAGGGAGC
0.86
2836




TCTG (1011)








pgl-miR159
TTTGGATTGAAGGGAGC
0.86
2837




TCTG (1012)








pta-miR159a
TTGGATTGAAGGGAGCT
0.95
2838




CCA (1013)








pta-miR159b
TTGGATTGAAGAGAGCT
0.86
2839




CCC (1014)








pta-miR159c
CTTGGATTGAAGGGAGC
0.95
2840




TCCC (1015)








ptc-miR159a
TTTGGATTGAAGGGAGC
0.9
2841




TCTA (1016)








ptc-miR159b
TTTGGATTGAAGGGAGC
0.9
2842




TCTA (1017)








ptc-miR159c
TTTGGATTGAAGGGAGC
0.9
2843




TCTA (1018)








ptc-miR159d
CTTGGATTGAAGGGAGC
0.95
2844




TCCT (1019)








ptc-miR159e
CTTGGGGTGAAGGGAG
0.86
2845




CTCCT (1020)








ptc-miR159f
ATTGGAGTGAAGGGAG
0.86
2846




CTCGA (1021)








pvu-miR159
TTTGGATTGAAGGGAGC
0.9
2847




TCTA (1022)








pvu-miR159.2
CTTCCATATCTGGGGAG
0.67
2848




CTTC (1023)








pvu-miR159a.1
TTTGGATTGAAGGGAGC
0.9
2849




TCTA (1024)








pvu-miR159a.2
CTTCCATATCTGGGGAG
0.67
2850




CTTC (1025)








rco-miR159
TTTGGATTGAAGGGAGC
0.9
2851




TCTA (1026)








rin-miR159
TTGGACTGAAGGGAGCT
0.86
2852




CCCT (1027)








sar-miR159
TTTGGATTGAAGGGAGC
0.86
2853




TCTG (1028)








sbi-miR159a
TTTGGATTGAAGGGAGC
0.86
2854




TCTG (1029)








sbi-miR159b
CTTGGATTGAAGGGAGC
0.95
2855




TCCT (1030)








sly-miR159
TTTGGATTGAAGGGAGC
0.9
2856




TCTA (1031)








smo-miR159
CTTGGATTGAAGGGAGC
0.95
2857




TCCC (1032)








sof-miR159a
TTTGGATTGAAGGGAGC
0.86
2858




TCTG (1033)








sof-miR159b
TTTGGATTGAAGGGAGC
0.86
2859




TCTG (1034)








sof-miR159c
CTTGGATTGAAGGGAGC
0.95
2860




TCCT (1035)








sof-miR159d
TTTGGATTGAAGGGAGC
0.86
2861




TCTG (1036)








sof-miR159e
TTTGGATTGAAAGGAGC
0.81
2862




TCTT (1037)








spr-miR159
TTTGGATTGAAGGGAGC
0.86
2863




TCTG (1038)








ssp-miR159a
TTTGGATTGAAGGGAGC
0.86
2864




TCTG (1039)








svi-miR159
TTGGACTGAAGGGAGCT
0.86
2865




CCCT (1040)








tae-miR159a
TTTGGATTGAAGGGAGC
0.86
2866




TCTG (1041)








tae-miR159b
TTTGGATTGAAGGGAGC
0.86
2867




TCTG (1042)








tar-miR159
TTGGACTGAAGGGAGCT
0.86
2868




CCCT (1043)








vvi-miR159a
CTTGGAGTGAAGGGAG
0.86
2869




CTCTC (1044)








vvi-miR159b
CTTGGAGTGAAGGGAG
0.86
2870




CTCTC (1045)








vvi-miR159c
TTTGGATTGAAGGGAGC
0.9
2871




TCTA (1046)








zma-miR159a
TTTGGATTGAAGGGAGC
0.86
2872




TCTG (1047)








zma-miR159b
TTTGGATTGAAGGGAGC
0.86
2873




TCTG (1048)








zma-miR159c
CTTGGATTGAAGGGAGC
0.95
2874




TCCT (1049)








zma-miR159d
CTTGGATTGAAGGGAGC
0.95
2875




TCCT (1050)








zma-miR159e
ATTGGTTTGAAGGGAGC
0.9
2876




TCCA (1051)








zma-miR159f
TTTGGATTGAAGGGAGC
0.86
2877




TCTG (1052)








zma-miR159g
TTTGGAGTGAAGGGAGT
0.76
2878




TCTG (1053)








zma-miR159h
TTTGGAGTGAAGGGAG
0.81
2879




CTCTG (1054)








zma-miR159i
TTTGGAGTGAAGGGAG
0.81
2880




CTCTG (1055)








zma-miR159j
TTTGGATTGAAGGGAGC
0.86
2881




TCTG (1056)








zma-miR159k
TTTGGATTGAAGGGAGC
0.86
2882




TCTG (1057)








zma-miR159m
TTTGGATTGAAGGGAGC
0.86
2883




TCTG (1058)







pta-
ahy-miR156a
TGACAGAAGAGAGAGA
0.8
2884


miR156a

GCAC (1059)








ahy-miR156b-5p
TTGACAGAAGATAGAG
0.85
2885




AGCAC (1060)








ahy-miR156c
TTGACAGAAGAGAGAG
0.8
2886




AGCAC (1061)








aly-miR156a
TGACAGAAGAGAGTGA
0.75
2887




GCAC (1062)








aly-miR156b
TGACAGAAGAGAGTGA
0.75
2888




GCAC (1063)








aly-miR156c
TGACAGAAGAGAGTGA
0.75
2889




GCAC (1064)








aly-miR156d
TGACAGAAGAGAGTGA
0.75
2890




GCAC (1065)








aly-miR156e
TGACAGAAGAGAGTGA
0.75
2891




GCAC (1066)








aly-miR156f
TGACAGAAGAGAGTGA
0.75
2892




GCAC (1067)








aly-miR156g
CGACAGAAGAGAGTGA
0.75
2893




GCAC (1068)








aly-miR156h
TGACAGAAGAAAGAGA
0.8
2894




GCAC (1069)








aqc-miR156a
TGACAGAAGATAGAGA
0.85
2895




GCAC (1070)








aqc-miR156b
TGACAGAAGATAGAGA
0.85
2896




GCAC (1071)








ath-miR156a
TGACAGAAGAGAGTGA
0.75
2897




GCAC (1072)








ath-miR156b
TGACAGAAGAGAGTGA
0.75
2898




GCAC (1073)








ath-miR156c
TGACAGAAGAGAGTGA
0.75
2899




GCAC (1074)








ath-miR156d
TGACAGAAGAGAGTGA
0.75
2900




GCAC (1075)








ath-miR156e
TGACAGAAGAGAGTGA
0.75
2901




GCAC (1076)








ath-miR156f
TGACAGAAGAGAGTGA
0.75
2902




GCAC (1077)








ath-miR156g
CGACAGAAGAGAGTGA
0.75
2903




GCAC (1078)








ath-miR156h
TGACAGAAGAAAGAGA
0.8
2904




GCAC (1079)








ath-miR156m
TGACAGAAGAGAGAGA
0.8
2905




GCAC (1080)








ath-miR156o
TGACAGAAGAGAGAGA
0.8
2906




GCAC (1081)








ath-miR156p
TGACAGAAGAGAGAGA
0.8
2907




GCAC (1082)








ath-miR156q
TGACAGAAGAGAGAGA
0.8
2908




GCAC (1083)








ath-miR156r
TGACAGAAGAGAGAGA
0.8
2909




GCAC (1084)








ath-miR156s
TGACAGAAGAGAGAGA
0.8
2910




GCAC (1085)








bdi-miR156
TGACAGAAGAGAGAGA
0.85
2911




GCACA (1086)








bdi-miR156b
TGACAGAAGAGAGTGA
0.75
2912




GCAC (1087)








bdi-miR156c
TGACAGAAGAGAGTGA
0.75
2913




GCAC (1088)








bdi-miR156d
TGACAGAAGAGAGTGA
0.75
2914




GCAC (1089)








bna-miR156a
TGACAGAAGAGAGTGA
0.8
2915




GCACA (1090)








bna-miR156b
TTGACAGAAGATAGAG
0.85
2916




AGCAC (1091)








bna-miR156c
TTGACAGAAGATAGAG
0.85
2917




AGCAC (1092)








can-miR156a
TGACAGAAGAGAGAGA
0.8
2918




GCAC (1093)








can-miR156b
TGACAGAAGAGAGGGA
0.75
2919




GCAC (1094)








cpt-miR156a
TGACAGAAGAGAGTGA
0.75
2920




GCAC (1095)








cpt-miR156b
TGACAGAAGAGAGAGA
0.8
2921




GCAC (1096)








cru-miR156
TGACAGAAGAGAGAGA
0.8
2922




GCAC (1097)








csi-miR156
TGACAGAAGAGAGTGA
0.75
2923




GCAC (1098)








csi-miR156a
TGACAGAAGAGAGAGA
0.8
2924




GCAC (1099)








csi-miR156b
TGACAGAAGAGAGAGA
0.8
2925




GCAC (1100)








ctr-miR156
TGACAGAAGAGAGTGA
0.75
2926




GCAC (1101)








eca-miR156
TGACAGAAGAGAGAGA
0.8
2927




GCAC (1102)








far-miR156a
TGACAGAAGAGAGAGA
0.85
2928




GCACA (1103)








far-miR156b
TTGACAGAAGAGAGAG
0.8
2929




AGCAC (1104)








ghr-miR156a
TGACAGAAGAGAGTGA
0.75
2930




GCAC (1105)








ghr-miR156b
TGACAGAAGAGAGTGA
0.75
2931




GCAC (1106)








ghr-miR156c
TGTCAGAAGAGAGTGA
0.75
2932




GCAC (1107)








ghr-miR156d
TGACAGAAGAGAGTGA
0.75
2933




GCAC (1108)








gma-miR156a
TGACAGAAGAGAGTGA
0.75
2934




GCAC (1109)








gma-miR156b
TGACAGAAGAGAGAGA
0.85
2935




GCACA (1110)








gma-miR156c
TTGACAGAAGATAGAG
0.85
2936




AGCAC (1111)








gma-miR156d
TTGACAGAAGATAGAG
0.85
2937




AGCAC (1112)








gma-miR156e
TTGACAGAAGATAGAG
0.85
2938




AGCAC (1113)








gma-miR156f
TTGACAGAAGAGAGAG
0.85
2939




AGCACA (1114)








gma-miR156g
ACAGAAGATAGAGAGC
0.9
2940




ACAG (1115)








gma-miR156h
TGACAGAAGAGAGAGA
0.8
2941




GCAC (1116)








gma-miR156i
TGACAGAAGAGAGAGA
0.8
2942




GCAC (1117)








han-miR156
TGACAGAAGAGAGAGA
0.8
2943




GCAC (1118)








hvs-miR156
TGACAGAAGAGAGAGA
0.8
2944




GCAC (1119)








hvu-miR156
TGACAGAAGAGAGTGA
0.8
2945




GCACA (1120)








hvv-miR156a
TGACAGAAGAGAGTGA
0.75
2946




GCAC (1121)








hvv-miR156b
TGACAGAAGAGAGAGA
0.8
2947




GCAC (1122)








hvv-miR156c
TGACAGAAGAGAGAGA
0.8
2948




GCAC (1123)








hvv-miR156d
TGACAGAAGAGAGAGA
0.8
2949




GCAC (1124)








lja-miR156
TGACAGAAGAGAGAGA
0.8
2950




GCAC (1125)








lsa-miR156
TGACAGAAGAGAGAGA
0.8
2951




GCAC (1126)








mdo-miR156a
TGACAGAAGAGAGAGA
0.8
2952




GCAC (1127)








mdo-miR156b
TGACAGAAGAGAGAGA
0.8
2953




GCAC (1128)








mtr-miR156
TGACAGAAGAGAGAGA
0.85
2954




GCACA (1129)








mtr-miR156b
TGACAGAAGAGAGTGA
0.75
2955




GCAC (1130)








mtr-miR156c
TGACAGAAGAGAGTGA
0.75
2956




GCAC (1131)








mtr-miR156d
TGACAGAAGAGAGTGA
0.75
2957




GCAC (1132)








mtr-miR156e
TTGACAGAAGATAGAG
0.85
2958




AGCAC (1133)








mtr-miR156f
TTGACAGAAGATAGAG
0.85
2959




AGCAC (1134)








mtr-miR156g
TTGACAGAAGATAGAG
0.8
2960




GGCAC (1135)








mtr-miR156h
TTGACAGAAGATAGAG
0.85
2961




AGCAC (1136)








mtr-miR156i
TGACAGAAGAGAGTGA
0.75
2962




GCAC (1137)








nbe-miR156a
TGACAGAAGAGAGAGA
0.8
2963




GCAC (1138)








nbe-miR156b
TGACAGAAGAGAGAGA
0.8
2964




GCAC (1139)








oru-miR156
TGACAGAAGAGAGTGA
0.75
2965




GCAC (1140)








osa-miR156a
TGACAGAAGAGAGTGA
0.75
2966




GCAC (1141)








osa-miR156b
TGACAGAAGAGAGTGA
0.75
2967




GCAC (1142)








osa-miR156c
TGACAGAAGAGAGTGA
0.75
2968




GCAC (1143)








osa-miR156d
TGACAGAAGAGAGTGA
0.75
2969




GCAC (1144)








osa-miR156e
TGACAGAAGAGAGTGA
0.75
2970




GCAC (1145)








osa-miR156f
TGACAGAAGAGAGTGA
0.75
2971




GCAC (1146)








osa-miR156g
TGACAGAAGAGAGTGA
0.75
2972




GCAC (1147)








osa-miR156h
TGACAGAAGAGAGTGA
0.75
2973




GCAC (1148)








osa-miR156i
TGACAGAAGAGAGTGA
0.75
2974




GCAC (1149)








osa-miR156j
TGACAGAAGAGAGTGA
0.75
2975




GCAC (1150)








osa-miR156k
TGACAGAAGAGAGAGA
0.85
2976




GCACA (1151)








osa-miR156l
CGACAGAAGAGAGTGA
0.75
2977




GCATA (1152)








osa-miR156m
TGACAGAAGAGAGTGA
0.75
2978




GCAC (1153)








osa-miR156n
TGACAGAAGAGAGTGA
0.75
2979




GCAC (1154)








osa-miR156o
TGACAGAAGAGAGTGA
0.7
2980




GCAT (1155)








osa-miR156p
TGACAGAAGAGAGTGA
0.7
2981




GCTC (1156)








osa-miR156q
TGACAGAACAGAGTGA
0.7
2982




GCAC (1157)








osa-miR156r
TGACAGAAGAGAGAGA
0.8
2983




GCAC (1158)








par-miR156
TGACAGAAGAGAGAGA
0.8
2984




GCAC (1159)








ppd-miR156
TGACAGAAGAGAGAGA
0.8
2985




GCAC (1160)








ppr-miR156
TGACAGAAGAGAGTGA
0.75
2986




GCAC (1161)








ppt-miR156a
TGACAGAAGAGAGTGA
0.75
2987




GCAC (1162)








ppt-miR156b
TGACAGAAGAGAGTGA
0.75
2988




GCAC (1163)








ppt-miR156c
TGACAGAAGAGAGTGA
0.75
2989




GCAC (1164)








pta-miR156b
CAGAAGATAGAGAGCA
0.95
2990




CAAC (1165)








ptc-miR156a
TGACAGAAGAGAGTGA
0.75
2991




GCAC (1166)








ptc-miR156b
TGACAGAAGAGAGTGA
0.75
2992




GCAC (1167)








ptc-miR156c
TGACAGAAGAGAGTGA
0.75
2993




GCAC (1168)








ptc-miR156d
TGACAGAAGAGAGTGA
0.75
2994




GCAC (1169)








ptc-miR156e
TGACAGAAGAGAGTGA
0.75
2995




GCAC (1170)








ptc-miR156f
TGACAGAAGAGAGTGA
0.75
2996




GCAC (1171)








ptc-miR156g
TTGACAGAAGATAGAG
0.85
2997




AGCAC (1172)








ptc-miR156h
TTGACAGAAGATAGAG
0.85
2998




AGCAC (1173)








ptc-miR156i
TTGACAGAAGATAGAG
0.85
2999




AGCAC (1174)








ptc-miR156j
TTGACAGAAGATAGAG
0.85
3000




AGCAC (1175)








ptc-miR156k
TGACAGAAGAGAGGGA
0.75
3001




GCAC (1176)








ptr-miR156
TGACAGAAGAGAGAGA
0.8
3002




GCAC (1177)








pts-miR156a
TGACAGAAGAGAGTGA
0.7
3003




GCGC (1178)








pts-miR156b
TGACAGAAGAGAGAGA
0.8
3004




GCAC (1179)








pts-miR156c
TGACAGAAGAGAGAGA
0.8
3005




GCAC (1180)








rco-miR156a
TGACAGAAGAGAGTGA
0.8
3006




GCACA (1181)








rco-miR156b
TGACAGAAGAGAGTGA
0.8
3007




GCACA (1182)








rco-miR156c
TGACAGAAGAGAGTGA
0.8
3008




GCACA (1183)








rco-miR156d
TGACAGAAGAGAGTGA
0.8
3009




GCACA (1184)








rco-miR156e
TGACAGAAGAGAGAGA
0.85
3010




GCACA (1185)








rco-miR156f
TTGACAGAAGATAGAG
0.85
3011




AGCAC (1186)








rco-miR156g
TTGACAGAAGATAGAG
0.85
3012




AGCAC (1187)








rco-miR156h
TTGACAGAAGATAGAG
0.85
3013




AGCAC (1188)








sbi-miR156a
TGACAGAAGAGAGTGA
0.75
3014




GCAC (1189)








sbi-miR156b
TGACAGAAGAGAGTGA
0.75
3015




GCAC (1190)








sbi-miR156c
TGACAGAAGAGAGTGA
0.75
3016




GCAC (1191)








sbi-miR156d
TGACAGAAGAGAGAGA
0.85
3017




GCACA (1192)








sbi-miR156e
TGACAGAAGAGAGCGA
0.75
3018




GCAC (1193)








sbi-miR156f
TGACAGAAGAGAGTGA
0.75
3019




GCAC (1194)








sbi-miR156g
TGACAGAAGAGAGTGA
0.75
3020




GCAC (1195)








sbi-miR156h
TGACAGAAGAGAGTGA
0.75
3021




GCAC (1196)








sbi-miR156i
TGACAGAAGAGAGTGA
0.75
3022




GCAC (1197)








sin-miR156
TGACAGAAGAGAGAGA
0.8
3023




GCAC (1198)








sly-miR156a
TTGACAGAAGATAGAG
0.85
3024




AGCAC (1199)








sly-miR156b
TTGACAGAAGATAGAG
0.85
3025




AGCAC (1200)








sly-miR156c
TTGACAGAAGATAGAG
0.85
3026




AGCAC (1201)








smo-miR156a
CGACAGAAGAGAGTGA
0.75
3027




GCAC (1202)








smo-miR156b
CTGACAGAAGATAGAG
0.85
3028




AGCAC (1203)








smo-miR156c
TTGACAGAAGAAAGAG
0.8
3029




AGCAC (1204)








smo-miR156d
TTGACAGAAGACAGGG
0.75
3030




AGCAC (1205)








sof-miR156
TGACAGAAGAGAGTGA
0.75
3031




GCAC (1206)








sof-miR156c
TGACAGAAGAGAGAGA
0.8
3032




GCAC (1207)








sof-miR156d
TGACAGAAGAGAGAGA
0.8
3033




GCAC (1208)








sof-miR156e
TGACAGAAGAGAGAGA
0.8
3034




GCAC (1209)








sof-miR156f
TGACAGAAGAGAGAGA
0.8
3035




GCAC (1210)








sof-miR156g
TGACAGAAGAGAGAGA
0.8
3036




GCAC (1211)








sof-miR156h
TGACAGAAGAGAGAGA
0.8
3037




GCAC (1212)








sof-miR156u
TGACAGAAGAGAGAGA
0.8
3038




GCAC (1213)








spr-miR156
TGACAGAAGAGAGAGA
0.8
3039




GCAC (1214)








ssp-miR156
TGACAGAAGAGAGTGA
0.8
3040




GCACA (1215)








stu-miR156a
TGACAGAAGAGAGTGA
0.75
3041




GCAC (1216)








stu-miR156b
TGACAGAAGAGAGAGA
0.8
3042




GCAC (1217)








stu-miR156c
TGACAGAAGAGAGAGA
0.8
3043




GCAC (1218)








stu-miR156d
TGACAGAAGAGAGAGA
0.8
3044




GCAC (1219)








stu-miR156e
TGACAGAAGAGAGAGA
0.8
3045




GCAC (1220)








tae-miR156
TGACAGAAGAGAGTGA
0.8
3046




GCACA (1221)








tae-miR156a
TGACAGAAGAGAGAGA
0.8
3047




GCAC (1222)








tae-miR156b
TGACAGAAGAGAGAGA
0.8
3048




GCAC (1223)








tcc-miR156a
TGACAGAAGAGAGAGA
0.85
3049




GCACA (1224)








tcc-miR156b
TGACAGAAGAGAGTGA
0.75
3050




GCAC (1225)








tcc-miR156c
TGACAGAAGAGAGTGA
0.75
3051




GCAC (1226)








tcc-miR156d
TGACAGAAGAGAGTGA
0.75
3052




GCAC (1227)








tcc-miR156e
TTGACAGAAGATAGAG
0.85
3053




AGCAC (1228)








tcc-miR156f
TTGACAGAAGATAGAG
0.85
3054




AGCAC (1229)








tcc-miR156g
TGACAGAAGAGAGTGA
0.75
3055




GCAC (1230)








tre-miR156
TGACAGAAGAGAGTGA
0.75
3056




GCAC (1231)








vvi-miR156a
TGACAGAAGAGAGGGA
0.75
3057




GCAC (1232)








vvi-miR156b
TGACAGAAGAGAGTGA
0.75
3058




GCAC (1233)








vvi-miR156c
TGACAGAAGAGAGTGA
0.75
3059




GCAC (1234)








vvi-miR156d
TGACAGAAGAGAGTGA
0.75
3060




GCAC (1235)








vvi-miR156e
TGACAGAGGAGAGTGA
0.7
3061




GCAC (1236)








vvi-miR156f
TTGACAGAAGATAGAG
0.85
3062




AGCAC (1237)








vvi-miR156g
TTGACAGAAGATAGAG
0.85
3063




AGCAC (1238)








vvi-miR156h
TGACAGAAGAGAGAGA
0.75
3064




GCAT (1239)








vvi-miR156i
TTGACAGAAGATAGAG
0.85
3065




AGCAC (1240)








zel-miR156
TGACAGAAGAGAGAGA
0.8
3066




GCAC (1241)








zma-miR156a
TGACAGAAGAGAGTGA
0.75
3067




GCAC (1242)








zma-miR156b
TGACAGAAGAGAGTGA
0.75
3068




GCAC (1243)








zma-miR156c
TGACAGAAGAGAGTGA
0.75
3069




GCAC (1244)








zma-miR156d
TGACAGAAGAGAGTGA
0.75
3070




GCAC (1245)








zma-miR156e
TGACAGAAGAGAGTGA
0.75
3071




GCAC (1246)








zma-miR156f
TGACAGAAGAGAGTGA
0.75
3072




GCAC (1247)








zma-miR156g
TGACAGAAGAGAGTGA
0.75
3073




GCAC (1248)








zma-miR156h
TGACAGAAGAGAGTGA
0.75
3074




GCAC (1249)








zma-miR156i
TGACAGAAGAGAGTGA
0.75
3075




GCAC (1250)








zma-miR156j
TGACAGAAGAGAGAGA
0.85
3076




GCACA (1251)








zma-miR156k
TGACAGAAGAGAGCGA
0.75
3077




GCAC (1252)








zma-miR1561
TGACAGAAGAGAGTGA
0.75
3078




GCAC (1253)








zma-miR156m
TGACAGAAGAGAGTGA
0.75
3079




GCAC (1254)








zma-miR156n
TGACAGAAGAGAGTGA
0.75
3080




GCAC (1255)








zma-miR156o
TGACAGAAGAGAGTGA
0.75
3081




GCAC (1256)








zma-miR156p
TGACAGAAGAGAGAGA
0.8
3082




GCAC (1257)








zma-miR156q
TGACAGAAGAGAGAGA
0.8
3083




GCAC (1258)








zma-miR156r
TGACAGAAGAGAGTGG
0.7
3084




GCAC (1259)







pta-
ahy-miR156a
TGACAGAAGAGAGAGA
0.8
3085


miR156b

GCAC (1260)








ahy-miR156b-5p
TTGACAGAAGATAGAG
0.85
3086




AGCAC (1261)








ahy-miR156c
TTGACAGAAGAGAGAG
0.8
3087




AGCAC (1262)








aly-miR156a
TGACAGAAGAGAGTGA
0.75
3088




GCAC (1263)








aly-miR156b
TGACAGAAGAGAGTGA
0.75
3089




GCAC (1264)








aly-miR156c
TGACAGAAGAGAGTGA
0.75
3090




GCAC (1265)








aly-miR156d
TGACAGAAGAGAGTGA
0.75
3091




GCAC (1266)








aly-miR156e
TGACAGAAGAGAGTGA
0.75
3092




GCAC (1267)








aly-miR156f
TGACAGAAGAGAGTGA
0.75
3093




GCAC (1268)








aly-miR156g
CGACAGAAGAGAGTGA
0.75
3094




GCAC (1269)








aly-miR156h
TGACAGAAGAAAGAGA
0.8
3095




GCAC (1270)








aqc-miR156a
TGACAGAAGATAGAGA
0.85
3096




GCAC (1271)








aqc-miR156b
TGACAGAAGATAGAGA
0.85
3097




GCAC (1272)








ath-miR156a
TGACAGAAGAGAGTGA
0.75
3098




GCAC (1273)








ath-miR156b
TGACAGAAGAGAGTGA
0.75
3099




GCAC (1274)








ath-miR156c
TGACAGAAGAGAGTGA
0.75
3100




GCAC (1275)








ath-miR156d
TGACAGAAGAGAGTGA
0.75
3101




GCAC (1276)








ath-miR156e
TGACAGAAGAGAGTGA
0.75
3102




GCAC (1277)








ath-miR156f
TGACAGAAGAGAGTGA
0.75
3103




GCAC (1278)








ath-miR156g
CGACAGAAGAGAGTGA
0.75
3104




GCAC (1279)








ath-miR156h
TGACAGAAGAAAGAGA
0.8
3105




GCAC (1280)








ath-miR156m
TGACAGAAGAGAGAGA
0.8
3106




GCAC (1281)








ath-miR156o
TGACAGAAGAGAGAGA
0.8
3107




GCAC (1282)








ath-miR156p
TGACAGAAGAGAGAGA
0.8
3108




GCAC (1283)








ath-miR156q
TGACAGAAGAGAGAGA
0.8
3109




GCAC (1284)








ath-miR156r
TGACAGAAGAGAGAGA
0.8
3110




GCAC (1285)








ath-miR156s
TGACAGAAGAGAGAGA
0.8
3111




GCAC (1286)








bdi-miR156
TGACAGAAGAGAGAGA
0.85
3112




GCACA (1287)








bdi-miR156b
TGACAGAAGAGAGTGA
0.75
3113




GCAC (1288)








bdi-miR156c
TGACAGAAGAGAGTGA
0.75
3114




GCAC (1289)








bdi-miR156d
TGACAGAAGAGAGTGA
0.75
3115




GCAC (1290)








bna-miR156a
TGACAGAAGAGAGTGA
0.8
3116




GCACA (1291)








bna-miR156b
TTGACAGAAGATAGAG
0.85
3117




AGCAC (1292)








bna-miR156c
TTGACAGAAGATAGAG
0.85
3118




AGCAC (1293)








can-miR156a
TGACAGAAGAGAGAGA
0.8
3119




GCAC (1294)








can-miR156b
TGACAGAAGAGAGGGA
0.75
3120




GCAC (1295)








cpt-miR156a
TGACAGAAGAGAGTGA
0.75
3121




GCAC (1296)








cpt-miR156b
TGACAGAAGAGAGAGA
0.8
3122




GCAC (1297)








cru-miR156
TGACAGAAGAGAGAGA
0.8
3123




GCAC (1298)








csi-miR156
TGACAGAAGAGAGTGA
0.75
3124




GCAC (1299)








csi-miR156a
TGACAGAAGAGAGAGA
0.8
3125




GCAC (1300)








csi-miR156b
TGACAGAAGAGAGAGA
0.8
3126




GCAC (1301)








ctr-miR156
TGACAGAAGAGAGTGA
0.75
3127




GCAC (1302)








eca-miR156
TGACAGAAGAGAGAGA
0.8
3128




GCAC (1303)








far-miR156a
TGACAGAAGAGAGAGA
0.85
3129




GCACA (1304)








far-miR156b
TTGACAGAAGAGAGAG
0.8
3130




AGCAC (1305)








ghr-miR156a
TGACAGAAGAGAGTGA
0.75
3131




GCAC (1306)








ghr-miR156b
TGACAGAAGAGAGTGA
0.75
3132




GCAC (1307)








ghr-miR156c
TGTCAGAAGAGAGTGA
0.75
3133




GCAC (1308)








ghr-miR156d
TGACAGAAGAGAGTGA
0.75
3134




GCAC (1309)








gma-miR156a
TGACAGAAGAGAGTGA
0.75
3135




GCAC (1310)








gma-miR156b
TGACAGAAGAGAGAGA
0.85
3136




GCACA (1311)








gma-miR156c
TTGACAGAAGATAGAG
0.85
3137




AGCAC (1312)








gma-miR156d
TTGACAGAAGATAGAG
0.85
3138




AGCAC (1313)








gma-miR156e
TTGACAGAAGATAGAG
0.85
3139




AGCAC (1314)








gma-miR156f
TTGACAGAAGAGAGAG
0.85
3140




AGCACA (1315)








gma-miR156g
ACAGAAGATAGAGAGC
0.9
3141




ACAG (1316)








gma-miR156h
TGACAGAAGAGAGAGA
0.8
3142




GCAC (1317)








gma-miR156i
TGACAGAAGAGAGAGA
0.8
3143




GCAC (1318)








han-miR156
TGACAGAAGAGAGAGA
0.8
3144




GCAC (1319)








hvs-miR156
TGACAGAAGAGAGAGA
0.8
3145




GCAC (1320)








hvu-miR156
TGACAGAAGAGAGTGA
0.8
3146




GCACA (1321)








hvv-miR156a
TGACAGAAGAGAGTGA
0.75
3147




GCAC (1322)








hvv-miR156b
TGACAGAAGAGAGAGA
0.8
3148




GCAC (1323)








hvv-miR156c
TGACAGAAGAGAGAGA
0.8
3149




GCAC (1324)








hvv-miR156d
TGACAGAAGAGAGAGA
0.8
3150




GCAC (1325)








lja-miR156
TGACAGAAGAGAGAGA
0.8
3151




GCAC (1326)








lsa-miR156
TGACAGAAGAGAGAGA
0.8
3152




GCAC (1327)








mdo-miR156a
TGACAGAAGAGAGAGA
0.8
3153




GCAC (1328)








mdo-miR156b
TGACAGAAGAGAGAGA
0.8
3154




GCAC (1329)








mtr-miR156
TGACAGAAGAGAGAGA
0.85
3155




GCACA (1330)








mtr-miR156b
TGACAGAAGAGAGTGA
0.75
3156




GCAC (1331)








mtr-miR156c
TGACAGAAGAGAGTGA
0.75
3157




GCAC (1332)








mtr-miR156d
TGACAGAAGAGAGTGA
0.75
3158




GCAC (1333)








mtr-miR156e
TTGACAGAAGATAGAG
0.85
3159




AGCAC (1334)








mtr-miR156f
TTGACAGAAGATAGAG
0.85
3160




AGCAC (1335)








mtr-miR156g
TTGACAGAAGATAGAG
0.8
3161




GGCAC (1336)








mtr-miR156h
TTGACAGAAGATAGAG
0.85
3162




AGCAC (1337)








mtr-miR156i
TGACAGAAGAGAGTGA
0.75
3163




GCAC (1338)








nbe-miR156a
TGACAGAAGAGAGAGA
0.8
3164




GCAC (1339)








nbe-miR156b
TGACAGAAGAGAGAGA
0.8
3165




GCAC (1340)








oru-miR156
TGACAGAAGAGAGTGA
0.75
3166




GCAC (1341)








osa-miR156a
TGACAGAAGAGAGTGA
0.75
3167




GCAC (1342)








osa-miR156b
TGACAGAAGAGAGTGA
0.75
3168




GCAC (1343)








osa-miR156c
TGACAGAAGAGAGTGA
0.75
3169




GCAC (1344)








osa-miR156d
TGACAGAAGAGAGTGA
0.75
3170




GCAC (1345)








osa-miR156e
TGACAGAAGAGAGTGA
0.75
3171




GCAC (1346)








osa-miR156f
TGACAGAAGAGAGTGA
0.75
3172




GCAC (1347)








osa-miR156g
TGACAGAAGAGAGTGA
0.75
3173




GCAC (1348)








osa-miR156h
TGACAGAAGAGAGTGA
0.75
3174




GCAC (1349)








osa-miR156i
TGACAGAAGAGAGTGA
0.75
3175




GCAC (1350)








osa-miR156j
TGACAGAAGAGAGTGA
0.75
3176




GCAC (1351)








osa-miR156k
TGACAGAAGAGAGAGA
0.85
3177




GCACA (1352)








osa-miR156l
CGACAGAAGAGAGTGA
0.75
3178




GCATA (1353)








osa-miR156m
TGACAGAAGAGAGTGA
0.75
3179




GCAC (1354)








osa-miR156n
TGACAGAAGAGAGTGA
0.75
3180




GCAC (1355)








osa-miR156o
TGACAGAAGAGAGTGA
0.7
3181




GCAT (1356)








osa-miR156p
TGACAGAAGAGAGTGA
0.7
3182




GCTC (1357)








osa-miR156q
TGACAGAACAGAGTGA
0.7
3183




GCAC (1358)








osa-miR156r
TGACAGAAGAGAGAGA
0.8
3184




GCAC (1359)








par-miR156
TGACAGAAGAGAGAGA
0.8
3185




GCAC (1360)








ppd-miR156
TGACAGAAGAGAGAGA
0.8
3186




GCAC (1361)








ppr-miR156
TGACAGAAGAGAGTGA
0.75
3187




GCAC (1362)








ppt-miR156a
TGACAGAAGAGAGTGA
0.75
3188




GCAC (1363)








ppt-miR156b
TGACAGAAGAGAGTGA
0.75
3189




GCAC (1364)








ppt-miR156c
TGACAGAAGAGAGTGA
0.75
3190




GCAC (1365)








pta-miR156a
CAGAAGATAGAGAGCA
0.95
3191




CATC (1366)








ptc-miR156a
TGACAGAAGAGAGTGA
0.75
3192




GCAC (1367)








ptc-miR156b
TGACAGAAGAGAGTGA
0.75
3193




GCAC (1368)








ptc-miR156c
TGACAGAAGAGAGTGA
0.75
3194




GCAC (1369)








ptc-miR156d
TGACAGAAGAGAGTGA
0.75
3195




GCAC (1370)








ptc-miR156e
TGACAGAAGAGAGTGA
0.75
3196




GCAC (1371)








ptc-miR156f
TGACAGAAGAGAGTGA
0.75
3197




GCAC (1372)








ptc-miR156g
TTGACAGAAGATAGAG
0.85
3198




AGCAC (1373)








ptc-miR156h
TTGACAGAAGATAGAG
0.85
3199




AGCAC (1374)








ptc-miR156i
TTGACAGAAGATAGAG
0.85
3200




AGCAC (1375)








ptc-miR156j
TTGACAGAAGATAGAG
0.85
3201




AGCAC (1376)








ptc-miR156k
TGACAGAAGAGAGGGA
0.75
3202




GCAC (1377)








ptr-miR156
TGACAGAAGAGAGAGA
0.8
3203




GCAC (1378)








pts-miR156a
TGACAGAAGAGAGTGA
0.7
3204




GCGC (1379)








pts-miR156b
TGACAGAAGAGAGAGA
0.8
3205




GCAC (1380)








pts-miR156c
TGACAGAAGAGAGAGA
0.8
3206




GCAC (1381)








rco-miR156a
TGACAGAAGAGAGTGA
0.8
3207




GCACA (1382)








rco-miR156b
TGACAGAAGAGAGTGA
0.8
3208




GCACA (1383)








rco-miR156c
TGACAGAAGAGAGTGA
0.8
3209




GCACA (1384)








rco-miR156d
TGACAGAAGAGAGTGA
0.8
3210




GCACA (1385)








rco-miR156e
TGACAGAAGAGAGAGA
0.85
3211




GCACA (1386)








rco-miR156f
TTGACAGAAGATAGAG
0.85
3212




AGCAC (1387)








rco-miR156g
TTGACAGAAGATAGAG
0.85
3213




AGCAC (1388)








rco-miR156h
TTGACAGAAGATAGAG
0.85
3214




AGCAC (1389)








sbi-miR156a
TGACAGAAGAGAGTGA
0.75
3215




GCAC (1390)








sbi-miR156b
TGACAGAAGAGAGTGA
0.75
3216




GCAC (1391)








sbi-miR156c
TGACAGAAGAGAGTGA
0.75
3217




GCAC (1392)








sbi-miR156d
TGACAGAAGAGAGAGA
0.85
3218




GCACA (1393)








sbi-miR156e
TGACAGAAGAGAGCGA
0.75
3219




GCAC (1394)








sbi-miR156f
TGACAGAAGAGAGTGA
0.75
3220




GCAC (1395)








sbi-miR156g
TGACAGAAGAGAGTGA
0.75
3221




GCAC (1396)








sbi-miR156h
TGACAGAAGAGAGTGA
0.75
3222




GCAC (1397)








sbi-miR156i
TGACAGAAGAGAGTGA
0.75
3223




GCAC (1398)








sin-miR156
TGACAGAAGAGAGAGA
0.8
3224




GCAC (1399)








sly-miR156a
TTGACAGAAGATAGAG
0.85
3225




AGCAC (1400)








sly-miR156b
TTGACAGAAGATAGAG
0.85
3226




AGCAC (1401)








sly-miR156c
TTGACAGAAGATAGAG
0.85
3227




AGCAC (1402)








smo-miR156a
CGACAGAAGAGAGTGA
0.75
3228




GCAC (1403)








smo-miR156b
CTGACAGAAGATAGAG
0.85
3229




AGCAC (1404)








smo-miR156c
TTGACAGAAGAAAGAG
0.8
3230




AGCAC (1405)








smo-miR156d
TTGACAGAAGACAGGG
0.75
3231




AGCAC (1406)








sof-miR156
TGACAGAAGAGAGTGA
0.75
3232




GCAC (1407)








sof-miR156c
TGACAGAAGAGAGAGA
0.8
3233




GCAC (1408)








sof-miR156d
TGACAGAAGAGAGAGA
0.8
3234




GCAC (1409)








sof-miR156e
TGACAGAAGAGAGAGA
0.8
3235




GCAC (1410)








sof-miR156f
TGACAGAAGAGAGAGA
0.8
3236




GCAC (1411)








sof-miR156g
TGACAGAAGAGAGAGA
0.8
3237




GCAC (1412)








sof-miR156h
TGACAGAAGAGAGAGA
0.8
3238




GCAC (1413)








sof-miR156u
TGACAGAAGAGAGAGA
0.8
3239




GCAC (1414)








spr-miR156
TGACAGAAGAGAGAGA
0.8
3240




GCAC (1415)








ssp-miR156
TGACAGAAGAGAGTGA
0.8
3241




GCACA (1416)








stu-miR156a
TGACAGAAGAGAGTGA
0.75
3242




GCAC (1417)








stu-miR156b
TGACAGAAGAGAGAGA
0.8
3243




GCAC (1418)








stu-miR156c
TGACAGAAGAGAGAGA
0.8
3244




GCAC (1419)








stu-miR156d
TGACAGAAGAGAGAGA
0.8
3245




GCAC (1420)








stu-miR156e
TGACAGAAGAGAGAGA
0.8
3246




GCAC (1421)








tae-miR156
TGACAGAAGAGAGTGA
0.8
3247




GCACA (1422)








tae-miR156a
TGACAGAAGAGAGAGA
0.8
3248




GCAC (1423)








tae-miR156b
TGACAGAAGAGAGAGA
0.8
3249




GCAC (1424)








tcc-miR156a
TGACAGAAGAGAGAGA
0.85
3250




GCACA (1425)








tcc-miR156b
TGACAGAAGAGAGTGA
0.75
3251




GCAC (1426)








tcc-miR156c
TGACAGAAGAGAGTGA
0.75
3252




GCAC (1427)








tcc-miR156d
TGACAGAAGAGAGTGA
0.75
3253




GCAC (1428)








tcc-miR156e
TTGACAGAAGATAGAG
0.85
3254




AGCAC (1429)








tcc-miR156f
TTGACAGAAGATAGAG
0.85
3255




AGCAC (1430)








tcc-miR156g
TGACAGAAGAGAGTGA
0.75
3256




GCAC (1431)








tre-miR156
TGACAGAAGAGAGTGA
0.75
3257




GCAC (1432)








vvi-miR156a
TGACAGAAGAGAGGGA
0.75
3258




GCAC (1433)








vvi-miR156b
TGACAGAAGAGAGTGA
0.75
3259




GCAC (1434)








vvi-miR156c
TGACAGAAGAGAGTGA
0.75
3260




GCAC (1435)








vvi-miR156d
TGACAGAAGAGAGTGA
0.75
3261




GCAC (1436)








vvi-miR156e
TGACAGAGGAGAGTGA
0.7
3262




GCAC (1437)








vvi-miR156f
TTGACAGAAGATAGAG
0.85
3263




AGCAC (1438)








vvi-miR156g
TTGACAGAAGATAGAG
0.85
3264




AGCAC (1439)








vvi-miR156h
TGACAGAAGAGAGAGA
0.75
3265




GCAT (1440)








vvi-miR156i
TTGACAGAAGATAGAG
0.85
3266




AGCAC (1441)








zel-miR156
TGACAGAAGAGAGAGA
0.8
3267




GCAC (1442)








zma-miR156a
TGACAGAAGAGAGTGA
0.75
3268




GCAC (1443)








zma-miR156b
TGACAGAAGAGAGTGA
0.75
3269




GCAC (1444)








zma-miR156c
TGACAGAAGAGAGTGA
0.75
3270




GCAC (1445)








zma-miR156d
TGACAGAAGAGAGTGA
0.75
3271




GCAC (1446)








zma-miR156e
TGACAGAAGAGAGTGA
0.75
3272




GCAC (1447)








zma-miR156f
TGACAGAAGAGAGTGA
0.75
3273




GCAC (1448)








zma-miR156g
TGACAGAAGAGAGTGA
0.75
3274




GCAC (1449)








zma-miR156h
TGACAGAAGAGAGTGA
0.75
3275




GCAC (1450)








zma-miR156i
TGACAGAAGAGAGTGA
0.75
3276




GCAC (1451)








zma-miR156j
TGACAGAAGAGAGAGA
0.85
3277




GCACA (1452)








zma-miR156k
TGACAGAAGAGAGCGA
0.75
3278




GCAC (1453)








zma-miR156l
TGACAGAAGAGAGTGA
0.75
3279




GCAC (1454)








zma-miR156m
TGACAGAAGAGAGTGA
0.75
3280




GCAC (1455)








zma-miR156n
TGACAGAAGAGAGTGA
0.75
3281




GCAC (1456)








zma-miR156o
TGACAGAAGAGAGTGA
0.75
3282




GCAC (1457)








zma-miR156p
TGACAGAAGAGAGAGA
0.8
3283




GCAC (1458)








zma-miR156q
TGACAGAAGAGAGAGA
0.8
3284




GCAC (1459)








zma-miR156r
TGACAGAAGAGAGTGG
0.7
3285




GCAC (1460)







ptc-
ahy-miR159
TTTGGATTGAAGGGAGC
0.95
3286


miRf10271-

TCTA (1461)




akr










aly-miR159a
TTTGGATTGAAGGGAGC
0.95
3287




TCTA (1462)








aly-miR159b
TTTGGATTGAAGGGAGC
0.9
3288




TCTT (1463)








aqc-miR159
TTTGGACTGAAGGGAGC
0.9
3289




TCTA (1464)








ath-miR159a
TTTGGATTGAAGGGAGC
0.95
3290




TCTA (1465)








ath-miR159b
TTTGGATTGAAGGGAGC
0.9
3291




TCTT (1466)








bdi-miR159
CTTGGATTGAAGGGAGC
0.9
3292




TCT (1467)








bna-miR159
TTTGGATTGAAGGGAGC
0.95
3293




TCTA (1468)








bra-miR159a
TTTGGATTGAAGGGAGC
0.95
3294




TCTA (1469)








csi-miR159
TTTGGATTGAAGGGAGC
0.95
3295




TCTA (1470)








far-miR159
TTTGGATTGAAGGGAGC
0.9
3296




TCTG (1471)








gma-miR159a-3p
TTTGGATTGAAGGGAGC
0.95
3297




TCTA (1472)








hvu-miR159a
TTTGGATTGAAGGGAGC
0.9
3298




TCTG (1473)








hvu-miR159b
TTTGGATTGAAGGGAGC
0.9
3299




TCTG (1474)








mtr-miR159a
TTTGGATTGAAGGGAGC
0.95
3300




TCTA (1475)








osa-miR159a.1
TTTGGATTGAAGGGAGC
0.9
3301




TCTG (1476)








osa-miR159b
TTTGGATTGAAGGGAGC
0.9
3302




TCTG (1477)








osa-miR159c
ATTGGATTGAAGGGAG
0.9
3303




CTCCA (1478)








osa-miR159f
CTTGGATTGAAGGGAGC
0.95
3304




TCTA (1479)








pta-miR159a
TTGGATTGAAGGGAGCT
0.9
3305




CCA (1480)








ptc-miR159a
TTTGGATTGAAGGGAGC
0.95
3306




TCTA (1481)








ptc-miR159b
TTTGGATTGAAGGGAGC
0.95
3307




TCTA (1482)








ptc-miR159c
TTTGGATTGAAGGGAGC
0.95
3308




TCTA (1483)








pvu-miR159a.1
TTTGGATTGAAGGGAGC
0.95
3309




TCTA (1484)








rco-miR159
TTTGGATTGAAGGGAGC
0.95
3310




TCTA (1485)








sbi-miR159a
TTTGGATTGAAGGGAGC
0.9
3311




TCTG (1486)








sly-miR159
TTTGGATTGAAGGGAGC
0.95
3312




TCTA (1487)








sof-miR159a
TTTGGATTGAAGGGAGC
0.9
3313




TCTG (1488)








sof-miR159b
TTTGGATTGAAGGGAGC
0.9
3314




TCTG (1489)








sof-miR159d
TTTGGATTGAAGGGAGC
0.9
3315




TCTG (1490)








ssp-miR159a
TTTGGATTGAAGGGAGC
0.9
3316




TCTG (1491)








tae-miR159a
TTTGGATTGAAGGGAGC
0.9
3317




TCTG (1492)








tae-miR159b
TTTGGATTGAAGGGAGC
0.9
3318




TCTG (1493)








vvi-miR159c
TTTGGATTGAAGGGAGC
0.95
3319




TCTA (1494)








zma-miR159a
TTTGGATTGAAGGGAGC
0.9
3320




TCTG (1495)








zma-miR159b
TTTGGATTGAAGGGAGC
0.9
3321




TCTG (1496)








zma-miR159f
TTTGGATTGAAGGGAGC
0.9
3322




TCTG (1497)








zma-miR159j
TTTGGATTGAAGGGAGC
0.9
3323




TCTG (1498)








zma-miR159k
TTTGGATTGAAGGGAGC
0.9
3324




TCTG (1499)







ptc-
gma-miR156g
ACAGAAGATAGAGAGC
0.9
3325


miRf10985-

ACAG (1500)




akr









ath-
ahy-miR156a
TGACAGAAGAGAGAGA
0.9
3326


miR157a

GCAC (1501)








ahy-miR156b-5p
TTGACAGAAGATAGAG
1
3327




AGCAC (1502)








ahy-miR156c
TTGACAGAAGAGAGAG
0.95
3328




AGCAC (1503)








aly-miR156a
TGACAGAAGAGAGTGA
0.86
3329




GCAC (1504)








aly-miR156b
TGACAGAAGAGAGTGA
0.86
3330




GCAC (1505)








aly-miR156c
TGACAGAAGAGAGTGA
0.86
3331




GCAC (1506)








aly-miR156d
TGACAGAAGAGAGTGA
0.86
3332




GCAC (1507)








aly-miR156e
TGACAGAAGAGAGTGA
0.86
3333




GCAC (1508)








aly-miR156f
TGACAGAAGAGAGTGA
0.86
3334




GCAC (1509)








aly-miR156g
CGACAGAAGAGAGTGA
0.81
3335




GCAC (1510)








aly-miR156h
TGACAGAAGAAAGAGA
0.9
3336




GCAC (1511)








aqc-miR156a
TGACAGAAGATAGAGA
0.95
3337




GCAC (1512)








aqc-miR156b
TGACAGAAGATAGAGA
0.95
3338




GCAC (1513)








ath-miR156a
TGACAGAAGAGAGTGA
0.86
3339




GCAC (1514)








ath-miR156b
TGACAGAAGAGAGTGA
0.86
3340




GCAC (1515)








ath-miR156c
TGACAGAAGAGAGTGA
0.86
3341




GCAC (1516)








ath-miR156d
TGACAGAAGAGAGTGA
0.86
3342




GCAC (1517)








ath-miR156e
TGACAGAAGAGAGTGA
0.86
3343




GCAC (1518)








ath-miR156f
TGACAGAAGAGAGTGA
0.86
3344




GCAC (1519)








ath-miR156g
CGACAGAAGAGAGTGA
0.81
3345




GCAC (1520)








ath-miR156h
TGACAGAAGAAAGAGA
0.9
3346




GCAC (1521)








ath-miR156m
TGACAGAAGAGAGAGA
0.9
3347




GCAC (1522)








ath-miR156o
TGACAGAAGAGAGAGA
0.9
3348




GCAC (1523)








ath-miR156p
TGACAGAAGAGAGAGA
0.9
3349




GCAC (1524)








ath-miR156q
TGACAGAAGAGAGAGA
0.9
3350




GCAC (1525)








ath-miR156r
TGACAGAAGAGAGAGA
0.9
3351




GCAC (1526)








ath-miR156s
TGACAGAAGAGAGAGA
0.9
3352




GCAC (1527)








bdi-miR156
TGACAGAAGAGAGAGA
0.9
3353




GCACA (1528)








bdi-miR156b
TGACAGAAGAGAGTGA
0.86
3354




GCAC (1529)








bdi-miR156c
TGACAGAAGAGAGTGA
0.86
3355




GCAC (1530)








bdi-miR156d
TGACAGAAGAGAGTGA
0.86
3356




GCAC (1531)








bna-miR156a
TGACAGAAGAGAGTGA
0.86
3357




GCACA (1532)








bna-miR156b
TTGACAGAAGATAGAG
1
3358




AGCAC (1533)








bna-miR156c
TTGACAGAAGATAGAG
1
3359




AGCAC (1534)








can-miR156a
TGACAGAAGAGAGAGA
0.9
3360




GCAC (1535)








can-miR156b
TGACAGAAGAGAGGGA
0.86
3361




GCAC (1536)








cpt-miR156a
TGACAGAAGAGAGTGA
0.86
3362




GCAC (1537)








cpt-miR156b
TGACAGAAGAGAGAGA
0.9
3363




GCAC (1538)








cru-miR156
TGACAGAAGAGAGAGA
0.9
3364




GCAC (1539)








csi-miR156
TGACAGAAGAGAGTGA
0.86
3365




GCAC (1540)








csi-miR156a
TGACAGAAGAGAGAGA
0.9
3366




GCAC (1541)








csi-miR156b
TGACAGAAGAGAGAGA
0.9
3367




GCAC (1542)








ctr-miR156
TGACAGAAGAGAGTGA
0.86
3368




GCAC (1543)








eca-miR156
TGACAGAAGAGAGAGA
0.9
3369




GCAC (1544)








far-miR156a
TGACAGAAGAGAGAGA
0.9
3370




GCACA (1545)








far-miR156b
TTGACAGAAGAGAGAG
0.95
3371




AGCAC (1546)








ghr-miR156a
TGACAGAAGAGAGTGA
0.86
3372




GCAC (1547)








ghr-miR156b
TGACAGAAGAGAGTGA
0.86
3373




GCAC (1548)








ghr-miR156c
TGTCAGAAGAGAGTGA
0.81
3374




GCAC (1549)








ghr-miR156d
TGACAGAAGAGAGTGA
0.86
3375




GCAC (1550)








gma-miR156a
TGACAGAAGAGAGTGA
0.86
3376




GCAC (1551)








gma-miR156b
TGACAGAAGAGAGAGA
0.9
3377




GCACA (1552)








gma-miR156c
TTGACAGAAGATAGAG
1
3378




AGCAC (1553)








gma-miR156d
TTGACAGAAGATAGAG
1
3379




AGCAC (1554)








gma-miR156e
TTGACAGAAGATAGAG
1
3380




AGCAC (1555)








gma-miR156f
TTGACAGAAGAGAGAG
0.95
3381




AGCACA (1556)








gma-miR156g
ACAGAAGATAGAGAGC
0.86
3382




ACAG (1557)








gma-miR156h
TGACAGAAGAGAGAGA
0.9
3383




GCAC (1558)








gma-miR156i
TGACAGAAGAGAGAGA
0.9
3384




GCAC (1559)








han-miR156
TGACAGAAGAGAGAGA
0.9
3385




GCAC (1560)








hvs-miR156
TGACAGAAGAGAGAGA
0.9
3386




GCAC (1561)








hvu-miR156
TGACAGAAGAGAGTGA
0.86
3387




GCACA (1562)








hvv-miR156a
TGACAGAAGAGAGTGA
0.86
3388




GCAC (1563)








hvv-miR156b
TGACAGAAGAGAGAGA
0.9
3389




GCAC (1564)








hvv-miR156c
TGACAGAAGAGAGAGA
0.9
3390




GCAC (1565)








hvv-miR156d
TGACAGAAGAGAGAGA
0.9
3391




GCAC (1566)








lja-miR156
TGACAGAAGAGAGAGA
0.9
3392




GCAC (1567)








lsa-miR156
TGACAGAAGAGAGAGA
0.9
3393




GCAC (1568)








mdo-miR156a
TGACAGAAGAGAGAGA
0.9
3394




GCAC (1569)








mdo-miR156b
TGACAGAAGAGAGAGA
0.9
3395




GCAC (1570)








mtr-miR156
TGACAGAAGAGAGAGA
0.9
3396




GCACA (1571)








mtr-miR156b
TGACAGAAGAGAGTGA
0.86
3397




GCAC (1572)








mtr-miR156c
TGACAGAAGAGAGTGA
0.86
3398




GCAC (1573)








mtr-miR156d
TGACAGAAGAGAGTGA
0.86
3399




GCAC (1574)








mtr-miR156e
TTGACAGAAGATAGAG
1
3400




AGCAC (1575)








mtr-miR156f
TTGACAGAAGATAGAG
1
3401




AGCAC (1576)








mtr-miR156g
TTGACAGAAGATAGAG
0.95
3402




GGCAC (1577)








mtr-miR156h
TTGACAGAAGATAGAG
1
3403




AGCAC (1578)








mtr-miR156i
TGACAGAAGAGAGTGA
0.86
3404




GCAC (1579)








nbe-miR156a
TGACAGAAGAGAGAGA
0.9
3405




GCAC (1580)








nbe-miR156b
TGACAGAAGAGAGAGA
0.9
3406




GCAC (1581)








oru-miR156
TGACAGAAGAGAGTGA
0.86
3407




GCAC (1582)








osa-miR156a
TGACAGAAGAGAGTGA
0.86
3408




GCAC (1583)








osa-miR156b
TGACAGAAGAGAGTGA
0.86
3409




GCAC (1584)








osa-miR156c
TGACAGAAGAGAGTGA
0.86
3410




GCAC (1585)








osa-miR156d
TGACAGAAGAGAGTGA
0.86
3411




GCAC (1586)








osa-miR156e
TGACAGAAGAGAGTGA
0.86
3412




GCAC (1587)








osa-miR156f
TGACAGAAGAGAGTGA
0.86
3413




GCAC (1588)








osa-miR156g
TGACAGAAGAGAGTGA
0.86
3414




GCAC (1589)








osa-miR156h
TGACAGAAGAGAGTGA
0.86
3415




GCAC (1590)








osa-miR156i
TGACAGAAGAGAGTGA
0.86
3416




GCAC (1591)








osa-miR156j
TGACAGAAGAGAGTGA
0.86
3417




GCAC (1592)








osa-miR156k
TGACAGAAGAGAGAGA
0.9
3418




GCACA (1593)








osa-miR156l
CGACAGAAGAGAGTGA
0.76
3419




GCATA (1594)








osa-miR156m
TGACAGAAGAGAGTGA
0.86
3420




GCAC (1595)








osa-miR156n
TGACAGAAGAGAGTGA
0.86
3421




GCAC (1596)








osa-miR156o
TGACAGAAGAGAGTGA
0.81
3422




GCAT (1597)








osa-miR156p
TGACAGAAGAGAGTGA
0.81
3423




GCTC (1598)








osa-miR156q
TGACAGAACAGAGTGA
0.81
3424




GCAC (1599)








osa-miR156r
TGACAGAAGAGAGAGA
0.9
3425




GCAC (1600)








par-miR156
TGACAGAAGAGAGAGA
0.9
3426




GCAC (1601)








pga-miR156a
GATCCTAGAGCCCTTGA
0.38
3427




GCC (1602)








ppd-miR156
TGACAGAAGAGAGAGA
0.9
3428




GCAC (1603)








ppr-miR156
TGACAGAAGAGAGTGA
0.86
3429




GCAC (1604)








ppt-miR156a
TGACAGAAGAGAGTGA
0.86
3430




GCAC (1605)








ppt-miR156b
TGACAGAAGAGAGTGA
0.86
3431




GCAC (1606)








ppt-miR156c
TGACAGAAGAGAGTGA
0.86
3432




GCAC (1607)








pta-miR156a
CAGAAGATAGAGAGCA
0.81
3433




CATC (1608)








pta-miR156b
CAGAAGATAGAGAGCA
0.81
3434




CAAC (1609)








ptc-miR156a
TGACAGAAGAGAGTGA
0.86
3435




GCAC (1610)








ptc-miR156b
TGACAGAAGAGAGTGA
0.86
3436




GCAC (1611)








ptc-miR156c
TGACAGAAGAGAGTGA
0.86
3437




GCAC (1612)








ptc-miR156d
TGACAGAAGAGAGTGA
0.86
3438




GCAC (1613)








ptc-miR156e
TGACAGAAGAGAGTGA
0.86
3439




GCAC (1614)








ptc-miR156f
TGACAGAAGAGAGTGA
0.86
3440




GCAC (1615)








ptc-miR156g
TTGACAGAAGATAGAG
1
3441




AGCAC (1616)








ptc-miR156h
TTGACAGAAGATAGAG
1
3442




AGCAC (1617)








ptc-miR156i
TTGACAGAAGATAGAG
1
3443




AGCAC (1618)








ptc-miR156j
TTGACAGAAGATAGAG
1
3444




AGCAC (1619)








ptc-miR156k
TGACAGAAGAGAGGGA
0.86
3445




GCAC (1620)








ptr-miR156
TGACAGAAGAGAGAGA
0.9
3446




GCAC (1621)








pts-miR156a
TGACAGAAGAGAGTGA
0.81
3447




GCGC (1622)








pts-miR156b
TGACAGAAGAGAGAGA
0.9
3448




GCAC (1623)








pts-miR156c
TGACAGAAGAGAGAGA
0.9
3449




GCAC (1624)








rco-miR156a
TGACAGAAGAGAGTGA
0.86
3450




GCACA (1625)








rco-miR156b
TGACAGAAGAGAGTGA
0.86
3451




GCACA (1626)








rco-miR156c
TGACAGAAGAGAGTGA
0.86
3452




GCACA (1627)








rco-miR156d
TGACAGAAGAGAGTGA
0.86
3453




GCACA (1628)








rco-miR156e
TGACAGAAGAGAGAGA
0.9
3454




GCACA (1629)








rco-miR156f
TTGACAGAAGATAGAG
1
3455




AGCAC (1630)








rco-miR156g
TTGACAGAAGATAGAG
1
3456




AGCAC (1631)








rco-miR156h
TTGACAGAAGATAGAG
1
3457




AGCAC (1632)








sbi-miR156a
TGACAGAAGAGAGTGA
0.86
3458




GCAC (1633)








sbi-miR156b
TGACAGAAGAGAGTGA
0.86
3459




GCAC (1634)








sbi-miR156c
TGACAGAAGAGAGTGA
0.86
3460




GCAC (1635)








sbi-miR156d
TGACAGAAGAGAGAGA
0.9
3461




GCACA (1636)








sbi-miR156e
TGACAGAAGAGAGCGA
0.86
3462




GCAC (1637)








sbi-miR156f
TGACAGAAGAGAGTGA
0.86
3463




GCAC (1638)








sbi-miR156g
TGACAGAAGAGAGTGA
0.86
3464




GCAC (1639)








sbi-miR156h
TGACAGAAGAGAGTGA
0.86
3465




GCAC (1640)








sbi-miR156i
TGACAGAAGAGAGTGA
0.86
3466




GCAC (1641)








sin-miR156
TGACAGAAGAGAGAGA
0.9
3467




GCAC (1642)








sly-miR156a
TTGACAGAAGATAGAG
1
3468




AGCAC (1643)








sly-miR156b
TTGACAGAAGATAGAG
1
3469




AGCAC (1644)








sly-miR156c
TTGACAGAAGATAGAG
1
3470




AGCAC (1645)








smo-miR156a
CGACAGAAGAGAGTGA
0.81
3471




GCAC (1646)








smo-miR156b
CTGACAGAAGATAGAG
0.95
3472




AGCAC (1647)








smo-miR156c
TTGACAGAAGAAAGAG
0.95
3473




AGCAC (1648)








smo-miR156d
TTGACAGAAGACAGGG
0.9
3474




AGCAC (1649)








sof-miR156
TGACAGAAGAGAGTGA
0.86
3475




GCAC (1650)








sof-miR156c
TGACAGAAGAGAGAGA
0.9
3476




GCAC (1651)








sof-miR156d
TGACAGAAGAGAGAGA
0.9
3477




GCAC (1652)








sof-miR156e
TGACAGAAGAGAGAGA
0.9
3478




GCAC (1653)








sof-miR156f
TGACAGAAGAGAGAGA
0.9
3479




GCAC (1654)








sof-miR156g
TGACAGAAGAGAGAGA
0.9
3480




GCAC (1655)








sof-miR156h
TGACAGAAGAGAGAGA
0.9
3481




GCAC (1656)








sof-miR156u
TGACAGAAGAGAGAGA
0.9
3482




GCAC (1657)








spr-miR156
TGACAGAAGAGAGAGA
0.9
3483




GCAC (1658)








ssp-miR156
TGACAGAAGAGAGTGA
0.86
3484




GCACA (1659)








stu-miR156a
TGACAGAAGAGAGTGA
0.86
3485




GCAC (1660)








stu-miR156b
TGACAGAAGAGAGAGA
0.9
3486




GCAC (1661)








stu-miR156c
TGACAGAAGAGAGAGA
0.9
3487




GCAC (1662)








stu-miR156d
TGACAGAAGAGAGAGA
0.9
3488




GCAC (1663)








stu-miR156e
TGACAGAAGAGAGAGA
0.9
3489




GCAC (1664)








tae-miR156
TGACAGAAGAGAGTGA
0.86
3490




GCACA (1665)








tae-miR156a
TGACAGAAGAGAGAGA
0.9
3491




GCAC (1666)








tae-miR156b
TGACAGAAGAGAGAGA
0.9
3492




GCAC (1667)








tcc-miR156a
TGACAGAAGAGAGAGA
0.9
3493




GCACA (1668)








tcc-miR156b
TGACAGAAGAGAGTGA
0.86
3494




GCAC (1669)








tcc-miR156c
TGACAGAAGAGAGTGA
0.86
3495




GCAC (1670)








tcc-miR156d
TGACAGAAGAGAGTGA
0.86
3496




GCAC (1671)








tcc-miR156e
TTGACAGAAGATAGAG
1
3497




AGCAC (1672)








tcc-miR156f
TTGACAGAAGATAGAG
1
3498




AGCAC (1673)








tcc-miR156g
TGACAGAAGAGAGTGA
0.86
3499




GCAC (1674)








tre-miR156
TGACAGAAGAGAGTGA
0.86
3500




GCAC (1675)








vvi-miR156a
TGACAGAAGAGAGGGA
0.86
3501




GCAC (1676)








vvi-miR156b
TGACAGAAGAGAGTGA
0.86
3502




GCAC (1677)








vvi-miR156c
TGACAGAAGAGAGTGA
0.86
3503




GCAC (1678)








vvi-miR156d
TGACAGAAGAGAGTGA
0.86
3504




GCAC (1679)








vvi-miR156e
TGACAGAGGAGAGTGA
0.81
3505




GCAC (1680)








vvi-miR156f
TTGACAGAAGATAGAG
1
3506




AGCAC (1681)








vvi-miR156g
TTGACAGAAGATAGAG
1
3507




AGCAC (1682)








vvi-miR156h
TGACAGAAGAGAGAGA
0.86
3508




GCAT (1683)








vvi-miR156i
TTGACAGAAGATAGAG
1
3509




AGCAC (1684)








zel-miR156
TGACAGAAGAGAGAGA
0.9
3510




GCAC (1685)








zma-miR156a
TGACAGAAGAGAGTGA
0.86
3511




GCAC (1686)








zma-miR156b
TGACAGAAGAGAGTGA
0.86
3512




GCAC (1687)








zma-miR156c
TGACAGAAGAGAGTGA
0.86
3513




GCAC (1688)








zma-miR156d
TGACAGAAGAGAGTGA
0.86
3514




GCAC (1689)








zma-miR156e
TGACAGAAGAGAGTGA
0.86
3515




GCAC (1690)








zma-miR156f
TGACAGAAGAGAGTGA
0.86
3516




GCAC (1691)








zma-miR156g
TGACAGAAGAGAGTGA
0.86
3517




GCAC (1692)








zma-miR156h
TGACAGAAGAGAGTGA
0.86
3518




GCAC (1693)








zma-miR156i
TGACAGAAGAGAGTGA
0.86
3519




GCAC (1694)








zma-miR156j
TGACAGAAGAGAGAGA
0.9
3520




GCACA (1695)








zma-miR156k
TGACAGAAGAGAGCGA
0.86
3521




GCAC (1696)








zma-miR1561
TGACAGAAGAGAGTGA
0.86
3522




GCAC (1697)








zma-miR156m
TGACAGAAGAGAGTGA
0.86
3523




GCAC (1698)








zma-miR156n
TGACAGAAGAGAGTGA
0.86
3524




GCAC (1699)








zma-miR156o
TGACAGAAGAGAGTGA
0.86
3525




GCAC (1700)








zma-miR156p
TGACAGAAGAGAGAGA
0.9
3526




GCAC (1701)








zma-miR156q
TGACAGAAGAGAGAGA
0.9
3527




GCAC (1702)








zma-miR156r
TGACAGAAGAGAGTGG
0.81
3528




GCAC (1703)







smo-
ahy-miR156a
TGACAGAAGAGAGAGA
0.9
3529


miR156b

GCAC (1704)








ahy-miR156b-5p
TTGACAGAAGATAGAG
0.95
3530




AGCAC (1705)








ahy-miR156c
TTGACAGAAGAGAGAG
0.9
3531




AGCAC (1706)








aly-miR156a
TGACAGAAGAGAGTGA
0.86
3532




GCAC (1707)








aly-miR156b
TGACAGAAGAGAGTGA
0.86
3533




GCAC (1708)








aly-miR156c
TGACAGAAGAGAGTGA
0.86
3534




GCAC (1709)








aly-miR156d
TGACAGAAGAGAGTGA
0.86
3535




GCAC (1710)








aly-miR156e
TGACAGAAGAGAGTGA
0.86
3536




GCAC (1711)








aly-miR156f
TGACAGAAGAGAGTGA
0.86
3537




GCAC (1712)








aly-miR156g
CGACAGAAGAGAGTGA
0.81
3538




GCAC (1713)








aly-miR156h
TGACAGAAGAAAGAGA
0.9
3539




GCAC (1714)








aqc-miR156a
TGACAGAAGATAGAGA
0.95
3540




GCAC (1715)








aqc-miR156b
TGACAGAAGATAGAGA
0.95
3541




GCAC (1716)








ath-miR156a
TGACAGAAGAGAGTGA
0.86
3542




GCAC (1717)








ath-miR156b
TGACAGAAGAGAGTGA
0.86
3543




GCAC (1718)








ath-miR156c
TGACAGAAGAGAGTGA
0.86
3544




GCAC (1719)








ath-miR156d
TGACAGAAGAGAGTGA
0.86
3545




GCAC (1720)








ath-miR156e
TGACAGAAGAGAGTGA
0.86
3546




GCAC (1721)








ath-miR156f
TGACAGAAGAGAGTGA
0.86
3547




GCAC (1722)








ath-miR156g
CGACAGAAGAGAGTGA
0.81
3548




GCAC (1723)








ath-miR156h
TGACAGAAGAAAGAGA
0.9
3549




GCAC (1724)








ath-miR156m
TGACAGAAGAGAGAGA
0.9
3550




GCAC (1725)








ath-miR156o
TGACAGAAGAGAGAGA
0.9
3551




GCAC (1726)








ath-miR156p
TGACAGAAGAGAGAGA
0.9
3552




GCAC (1727)








ath-miR156q
TGACAGAAGAGAGAGA
0.9
3553




GCAC (1728)








ath-miR156r
TGACAGAAGAGAGAGA
0.9
3554




GCAC (1729)








ath-miR156s
TGACAGAAGAGAGAGA
0.9
3555




GCAC (1730)








bdi-miR156
TGACAGAAGAGAGAGA
0.9
3556




GCACA (1731)








bdi-miR156b
TGACAGAAGAGAGTGA
0.86
3557




GCAC (1732)








bdi-miR156c
TGACAGAAGAGAGTGA
0.86
3558




GCAC (1733)








bdi-miR156d
TGACAGAAGAGAGTGA
0.86
3559




GCAC (1734)








bna-miR156a
TGACAGAAGAGAGTGA
0.86
3560




GCACA (1735)








bna-miR156b
TTGACAGAAGATAGAG
0.95
3561




AGCAC (1736)








bna-miR156c
TTGACAGAAGATAGAG
0.95
3562




AGCAC (1737)








can-miR156a
TGACAGAAGAGAGAGA
0.9
3563




GCAC (1738)








can-miR156b
TGACAGAAGAGAGGGA
0.86
3564




GCAC (1739)








cpt-miR156a
TGACAGAAGAGAGTGA
0.86
3565




GCAC (1740)








cpt-miR156b
TGACAGAAGAGAGAGA
0.9
3566




GCAC (1741)








cru-miR156
TGACAGAAGAGAGAGA
0.9
3567




GCAC (1742)








csi-miR156
TGACAGAAGAGAGTGA
0.86
3568




GCAC (1743)








csi-miR156a
TGACAGAAGAGAGAGA
0.9
3569




GCAC (1744)








csi-miR156b
TGACAGAAGAGAGAGA
0.9
3570




GCAC (1745)








ctr-miR156
TGACAGAAGAGAGTGA
0.86
3571




GCAC (1746)








eca-miR156
TGACAGAAGAGAGAGA
0.9
3572




GCAC (1747)








far-miR156a
TGACAGAAGAGAGAGA
0.9
3573




GCACA (1748)








far-miR156b
TTGACAGAAGAGAGAG
0.9
3574




AGCAC (1749)








ghr-miR156a
TGACAGAAGAGAGTGA
0.86
3575




GCAC (1750)








ghr-miR156b
TGACAGAAGAGAGTGA
0.86
3576




GCAC (1751)








ghr-miR156c
TGTCAGAAGAGAGTGA
0.81
3577




GCAC (1752)








ghr-miR156d
TGACAGAAGAGAGTGA
0.86
3578




GCAC (1753)








gma-miR156a
TGACAGAAGAGAGTGA
0.86
3579




GCAC (1754)








gma-miR156b
TGACAGAAGAGAGAGA
0.9
3580




GCACA (1755)








gma-miR156c
TTGACAGAAGATAGAG
0.95
3581




AGCAC (1756)








gma-miR156d
TTGACAGAAGATAGAG
0.95
3582




AGCAC (1757)








gma-miR156e
TTGACAGAAGATAGAG
0.95
3583




AGCAC (1758)








gma-miR156f
TTGACAGAAGAGAGAG
0.9
3584




AGCACA (1759)








gma-miR156g
ACAGAAGATAGAGAGC
0.86
3585




ACAG (1760)








gma-miR156h
TGACAGAAGAGAGAGA
0.9
3586




GCAC (1761)








gma-miR156i
TGACAGAAGAGAGAGA
0.9
3587




GCAC (1762)








han-miR156
TGACAGAAGAGAGAGA
0.9
3588




GCAC (1763)








hvs-miR156
TGACAGAAGAGAGAGA
0.9
3589




GCAC (1764)








hvu-miR156
TGACAGAAGAGAGTGA
0.86
3590




GCACA (1765)








hvv-miR156a
TGACAGAAGAGAGTGA
0.86
3591




GCAC (1766)








hvv-miR156b
TGACAGAAGAGAGAGA
0.9
3592




GCAC (1767)








hvv-miR156c
TGACAGAAGAGAGAGA
0.9
3593




GCAC (1768)








hvv-miR156d
TGACAGAAGAGAGAGA
0.9
3594




GCAC (1769)








lja-miR156
TGACAGAAGAGAGAGA
0.9
3595




GCAC (1770)








lsa-miR156
TGACAGAAGAGAGAGA
0.9
3596




GCAC (1771)








mdo-miR156a
TGACAGAAGAGAGAGA
0.9
3597




GCAC (1772)








mdo-miR156b
TGACAGAAGAGAGAGA
0.9
3598




GCAC (1773)








mtr-miR156
TGACAGAAGAGAGAGA
0.9
3599




GCACA (1774)








mtr-miR156b
TGACAGAAGAGAGTGA
0.86
3600




GCAC (1775)








mtr-miR156c
TGACAGAAGAGAGTGA
0.86
3601




GCAC (1776)








mtr-miR156d
TGACAGAAGAGAGTGA
0.86
3602




GCAC (1777)








mtr-miR156e
TTGACAGAAGATAGAG
0.95
3603




AGCAC (1778)








mtr-miR156f
TTGACAGAAGATAGAG
0.95
3604




AGCAC (1779)








mtr-miR156g
TTGACAGAAGATAGAG
0.9
3605




GGCAC (1780)








mtr-miR156h
TTGACAGAAGATAGAG
0.95
3606




AGCAC (1781)








mtr-miR156i
TGACAGAAGAGAGTGA
0.86
3607




GCAC (1782)








nbe-miR156a
TGACAGAAGAGAGAGA
0.9
3608




GCAC (1783)








nbe-miR156b
TGACAGAAGAGAGAGA
0.9
3609




GCAC (1784)








oru-miR156
TGACAGAAGAGAGTGA
0.86
3610




GCAC (1785)








osa-miR156a
TGACAGAAGAGAGTGA
0.86
3611




GCAC (1786)








osa-miR156b
TGACAGAAGAGAGTGA
0.86
3612




GCAC (1787)








osa-miR156c
TGACAGAAGAGAGTGA
0.86
3613




GCAC (1788)








osa-miR156d
TGACAGAAGAGAGTGA
0.86
3614




GCAC (1789)








osa-miR156e
TGACAGAAGAGAGTGA
0.86
3615




GCAC (1790)








osa-miR156f
TGACAGAAGAGAGTGA
0.86
3616




GCAC (1791)








osa-miR156g
TGACAGAAGAGAGTGA
0.86
3617




GCAC (1792)








osa-miR156h
TGACAGAAGAGAGTGA
0.86
3618




GCAC (1793)








osa-miR156i
TGACAGAAGAGAGTGA
0.86
3619




GCAC (1794)








osa-miR156j
TGACAGAAGAGAGTGA
0.86
3620




GCAC (1795)








osa-miR156k
TGACAGAAGAGAGAGA
0.9
3621




GCACA (1796)








osa-miR156l
CGACAGAAGAGAGTGA
0.76
3622




GCATA (1797)








osa-miR156m
TGACAGAAGAGAGTGA
0.86
3623




GCAC (1798)








osa-miR156n
TGACAGAAGAGAGTGA
0.86
3624




GCAC (1799)








osa-miR156o
TGACAGAAGAGAGTGA
0.81
3625




GCAT (1800)








osa-miR156p
TGACAGAAGAGAGTGA
0.81
3626




GCTC (1801)








osa-miR156q
TGACAGAACAGAGTGA
0.81
3627




GCAC (1802)








osa-miR156r
TGACAGAAGAGAGAGA
0.9
3628




GCAC (1803)








par-miR156
TGACAGAAGAGAGAGA
0.9
3629




GCAC (1804)








ppd-miR156
TGACAGAAGAGAGAGA
0.9
3630




GCAC (1805)








ppr-miR156
TGACAGAAGAGAGTGA
0.86
3631




GCAC (1806)








ppt-miR156a
TGACAGAAGAGAGTGA
0.86
3632




GCAC (1807)








ppt-miR156b
TGACAGAAGAGAGTGA
0.86
3633




GCAC (1808)








ppt-miR156c
TGACAGAAGAGAGTGA
0.86
3634




GCAC (1809)








pta-miR156a
CAGAAGATAGAGAGCA
0.81
3635




CATC (1810)








pta-miR156b
CAGAAGATAGAGAGCA
0.81
3636




CAAC (1811)








ptc-miR156a
TGACAGAAGAGAGTGA
0.86
3637




GCAC (1812)








ptc-miR156b
TGACAGAAGAGAGTGA
0.86
3638




GCAC (1813)








ptc-miR156c
TGACAGAAGAGAGTGA
0.86
3639




GCAC (1814)








ptc-miR156d
TGACAGAAGAGAGTGA
0.86
3640




GCAC (1815)








ptc-miR156e
TGACAGAAGAGAGTGA
0.86
3641




GCAC (1816)








ptc-miR156f
TGACAGAAGAGAGTGA
0.86
3642




GCAC (1817)








ptc-miR156g
TTGACAGAAGATAGAG
0.95
3643




AGCAC (1818)








ptc-miR156h
TTGACAGAAGATAGAG
0.95
3644




AGCAC (1819)








ptc-miR156i
TTGACAGAAGATAGAG
0.95
3645




AGCAC (1820)








ptc-miR156j
TTGACAGAAGATAGAG
0.95
3646




AGCAC (1821)








ptc-miR156k
TGACAGAAGAGAGGGA
0.86
3647




GCAC (1822)








ptr-miR156
TGACAGAAGAGAGAGA
0.9
3648




GCAC (1823)








pts-miR156a
TGACAGAAGAGAGTGA
0.81
3649




GCGC (1824)








pts-miR156b
TGACAGAAGAGAGAGA
0.9
3650




GCAC (1825)








pts-miR156c
TGACAGAAGAGAGAGA
0.9
3651




GCAC (1826)








rco-miR156a
TGACAGAAGAGAGTGA
0.86
3652




GCACA (1827)








rco-miR156b
TGACAGAAGAGAGTGA
0.86
3653




GCACA (1828)








rco-miR156c
TGACAGAAGAGAGTGA
0.86
3654




GCACA (1829)








rco-miR156d
TGACAGAAGAGAGTGA
0.86
3655




GCACA (1830)








rco-miR156e
TGACAGAAGAGAGAGA
0.9
3656




GCACA (1831)








rco-miR156f
TTGACAGAAGATAGAG
0.95
3657




AGCAC (1832)








rco-miR156g
TTGACAGAAGATAGAG
0.95
3658




AGCAC (1833)








rco-miR156h
TTGACAGAAGATAGAG
0.95
3659




AGCAC (1834)








sbi-miR156a
TGACAGAAGAGAGTGA
0.86
3660




GCAC (1835)








sbi-miR156b
TGACAGAAGAGAGTGA
0.86
3661




GCAC (1836)








sbi-miR156c
TGACAGAAGAGAGTGA
0.86
3662




GCAC (1837)








sbi-miR156d
TGACAGAAGAGAGAGA
0.9
3663




GCACA (1838)








sbi-miR156e
TGACAGAAGAGAGCGA
0.86
3664




GCAC (1839)








sbi-miR156f
TGACAGAAGAGAGTGA
0.86
3665




GCAC (1840)








sbi-miR156g
TGACAGAAGAGAGTGA
0.86
3666




GCAC (1841)








sbi-miR156h
TGACAGAAGAGAGTGA
0.86
3667




GCAC (1842)








sbi-miR156i
TGACAGAAGAGAGTGA
0.86
3668




GCAC (1843)








sin-miR156
TGACAGAAGAGAGAGA
0.9
3669




GCAC (1844)








sly-miR156a
TTGACAGAAGATAGAG
0.95
3670




AGCAC (1845)








sly-miR156b
TTGACAGAAGATAGAG
0.95
3671




AGCAC (1846)








sly-miR156c
TTGACAGAAGATAGAG
0.95
3672




AGCAC (1847)








smo-miR156a
CGACAGAAGAGAGTGA
0.81
3673




GCAC (1848)








smo-miR156c
TTGACAGAAGAAAGAG
0.9
3674




AGCAC (1849)








smo-miR156d
TTGACAGAAGACAGGG
0.86
3675




AGCAC (1850)








sof-miR156
TGACAGAAGAGAGTGA
0.86
3676




GCAC (1851)








sof-miR156c
TGACAGAAGAGAGAGA
0.9
3677




GCAC (1852)








sof-miR156d
TGACAGAAGAGAGAGA
0.9
3678




GCAC (1853)








sof-miR156e
TGACAGAAGAGAGAGA
0.9
3679




GCAC (1854)








sof-miR156f
TGACAGAAGAGAGAGA
0.9
3680




GCAC (1855)








sof-miR156g
TGACAGAAGAGAGAGA
0.9
3681




GCAC (1856)








sof-miR156h
TGACAGAAGAGAGAGA
0.9
3682




GCAC (1857)








sof-miR156u
TGACAGAAGAGAGAGA
0.9
3683




GCAC (1858)








spr-miR156
TGACAGAAGAGAGAGA
0.9
3684




GCAC (1859)








ssp-miR156
TGACAGAAGAGAGTGA
0.86
3685




GCACA (1860)








stu-miR156a
TGACAGAAGAGAGTGA
0.86
3686




GCAC (1861)








stu-miR156b
TGACAGAAGAGAGAGA
0.9
3687




GCAC (1862)








stu-miR156c
TGACAGAAGAGAGAGA
0.9
3688




GCAC (1863)








stu-miR156d
TGACAGAAGAGAGAGA
0.9
3689




GCAC (1864)








stu-miR156e
TGACAGAAGAGAGAGA
0.9
3690




GCAC (1865)








tae-miR156
TGACAGAAGAGAGTGA
0.86
3691




GCACA (1866)








tae-miR156a
TGACAGAAGAGAGAGA
0.9
3692




GCAC (1867)








tae-miR156b
TGACAGAAGAGAGAGA
0.9
3693




GCAC (1868)








tcc-miR156a
TGACAGAAGAGAGAGA
0.9
3694




GCACA (1869)








tcc-miR156b
TGACAGAAGAGAGTGA
0.86
3695




GCAC (1870)








tcc-miR156c
TGACAGAAGAGAGTGA
0.86
3696




GCAC (1871)








tcc-miR156d
TGACAGAAGAGAGTGA
0.86
3697




GCAC (1872)








tcc-miR156e
TTGACAGAAGATAGAG
0.95
3698




AGCAC (1873)








tcc-miR156f
TTGACAGAAGATAGAG
0.95
3699




AGCAC (1874)








tcc-miR156g
TGACAGAAGAGAGTGA
0.86
3700




GCAC (1875)








tre-miR156
TGACAGAAGAGAGTGA
0.86
3701




GCAC (1876)








vvi-miR156a
TGACAGAAGAGAGGGA
0.86
3702




GCAC (1877)








vvi-miR156b
TGACAGAAGAGAGTGA
0.86
3703




GCAC (1878)








vvi-miR156c
TGACAGAAGAGAGTGA
0.86
3704




GCAC (1879)








vvi-miR156d
TGACAGAAGAGAGTGA
0.86
3705




GCAC (1880)








vvi-miR156e
TGACAGAGGAGAGTGA
0.81
3706




GCAC (1881)








vvi-miR156f
TTGACAGAAGATAGAG
0.95
3707




AGCAC (1882)








vvi-miR156g
TTGACAGAAGATAGAG
0.95
3708




AGCAC (1883)








vvi-miR156h
TGACAGAAGAGAGAGA
0.86
3709




GCAT (1884)








vvi-miR156i
TTGACAGAAGATAGAG
0.95
3710




AGCAC (1885)








zel-miR156
TGACAGAAGAGAGAGA
0.9
3711




GCAC (1886)








zma-miR156a
TGACAGAAGAGAGTGA
0.86
3712




GCAC (1887)








zma-miR156b
TGACAGAAGAGAGTGA
0.86
3713




GCAC (1888)








zma-miR156c
TGACAGAAGAGAGTGA
0.86
3714




GCAC (1889)








zma-miR156d
TGACAGAAGAGAGTGA
0.86
3715




GCAC (1890)








zma-miR156e
TGACAGAAGAGAGTGA
0.86
3716




GCAC (1891)








zma-miR156f
TGACAGAAGAGAGTGA
0.86
3717




GCAC (1892)








zma-miR156g
TGACAGAAGAGAGTGA
0.86
3718




GCAC (1893)








zma-miR156h
TGACAGAAGAGAGTGA
0.86
3719




GCAC (1894)








zma-miR156i
TGACAGAAGAGAGTGA
0.86
3720




GCAC (1895)








zma-miR156j
TGACAGAAGAGAGAGA
0.9
3721




GCACA (1896)








zma-miR156k
TGACAGAAGAGAGCGA
0.86
3722




GCAC (1897)








zma-miR156l
TGACAGAAGAGAGTGA
0.86
3723




GCAC (1898)








zma-miR156m
TGACAGAAGAGAGTGA
0.86
3724




GCAC (1899)








zma-miR156n
TGACAGAAGAGAGTGA
0.86
3725




GCAC (1900)








zma-miR156o
TGACAGAAGAGAGTGA
0.86
3726




GCAC (1901)








zma-miR156p
TGACAGAAGAGAGAGA
0.9
3727




GCAC (1902)








zma-miR156q
TGACAGAAGAGAGAGA
0.9
3728




GCAC (1903)








zma-miR156r
TGACAGAAGAGAGTGG
0.81
3729




GCAC (1904)







gma-
acb-miR159
TTGGACTGAAGGGAGCT
0.81
3730


miR159a-

CCCT (1905)




3p










aha-miR159
TTGGACTGAAGGGAGCT
0.81
3731




CCCT (1906)








ahi-miR159
TTGGACTGAAGGGAGCT
0.81
3732




CCCT (1907)








ahy-miR159
TTTGGATTGAAGGGAGC
1
3733




TCTA (1908)








aly-miR159a
TTTGGATTGAAGGGAGC
1
3734




TCTA (1909)








aly-miR159b
TTTGGATTGAAGGGAGC
0.95
3735




TCTT (1910)








aly-miR159c
TTTGGATTGAAGGGAGC
0.9
3736




TCCT (1911)








ape-miR159
TTGGACTGAAGGGAGCT
0.81
3737




CCCT (1912)








aqc-miR159
TTTGGACTGAAGGGAGC
0.95
3738




TCTA (1913)








ath-miR159a
TTTGGATTGAAGGGAGC
1
3739




TCTA (1914)








ath-miR159b
TTTGGATTGAAGGGAGC
0.95
3740




TCTT (1915)








ath-miR159c
TTTGGATTGAAGGGAGC
0.9
3741




TCCT (1916)








bdi-miR159
CTTGGATTGAAGGGAGC
0.9
3742




TCT (1917)








bna-miR159
TTTGGATTGAAGGGAGC
1
3743




TCTA (1918)








bra-miR159a
TTTGGATTGAAGGGAGC
1
3744




TCTA (1919)








bvl-miR159
TTGGACTGAAGGGAGCT
0.81
3745




CCCT (1920)








cmi-miR159
TTGGACTGAAGGGAGCT
0.81
3746




CCCT (1921)








cor-miR159
TTGGACTGAAGGGAGCT
0.81
3747




CCCT (1922)








crb-miR159
TTGGACTGAAGGGAGCT
0.81
3748




CCCT (1923)








csi-miR159
TTTGGATTGAAGGGAGC
1
3749




TCTA (1924)








dso-miR159
TTGGACTGAAGGGAGCT
0.81
3750




CCCT (1925)








ech-miR159
TTGGACTGAAGGGAGCT
0.81
3751




CCCT (1926)








fal-miR159
TTGGACTGAAGGGAGCT
0.81
3752




CCCT (1927)








far-miR159
TTTGGATTGAAGGGAGC
0.95
3753




TCTG (1928)








gma-miR159b
ATTGGAGTGAAGGGAG
0.86
3754




CTCCA (1929)








gma-miR159c
ATTGGAGTGAAGGGAG
0.81
3755




CTCCG (1930)








hvu-miR159a
TTTGGATTGAAGGGAGC
0.95
3756




TCTG (1931)








hvu-miR159b
TTTGGATTGAAGGGAGC
0.95
3757




TCTG (1932)








hvv-miR159a
TTTGGATTGAAGGGAGC
0.95
3758




TCTG (1933)








hvv-miR159b
TTTGGATTGAAGGGAGC
0.95
3759




TCTG (1934)








ltu-miR159
TTTGGATTGAAGGGAGC
1
3760




TCTA (1935)








mma-miR159
TTGGACTGAAGGGAGCT
0.81
3761




CCCT (1936)








mtr-miR159a
TTTGGATTGAAGGGAGC
1
3762




TCTA (1937)








mtr-miR159b
ATTGAATTGAAGGGAG
0.71
3763




CAACT (1938)








mtr-miR159c
TTTGGATTGAAGGGAGC
1
3764




TCTA (1939)








nof-miR159
TTGGACTGAAGGGAGCT
0.81
3765




CCCT (1940)








oru-miR159
TTTGGATTGAAGGGAGC
0.95
3766




TCTG (1941)








osa-miR159a
TTTGGATTGAAGGGAGC
0.95
3767




TCTG (1942)








osa-miR159a.1
TTTGGATTGAAGGGAGC
0.95
3768




TCTG (1943)








osa-miR159b
TTTGGATTGAAGGGAGC
0.95
3769




TCTG (1944)








osa-miR159c
ATTGGATTGAAGGGAG
0.9
3770




CTCCA (1945)








osa-miR159d
ATTGGATTGAAGGGAG
0.86
3771




CTCCG (1946)








osa-miR159e
ATTGGATTGAAGGGAG
0.86
3772




CTCCT (1947)








osa-miR159f
CTTGGATTGAAGGGAGC
0.95
3773




TCTA (1948)








osa-miR159m
TTTGGATTGAAGGGAGC
0.95
3774




TCTG (1949)








pgl-miR159
TTTGGATTGAAGGGAGC
0.95
3775




TCTG (1950)








psi-miR159
CTTGGATTGAAGGGAGC
0.9
3776




TCCA (1951)








pta-miR159a
TTGGATTGAAGGGAGCT
0.9
3777




CCA (1952)








pta-miR159b
TTGGATTGAAGAGAGCT
0.81
3778




CCC (1953)








pta-miR159c
CTTGGATTGAAGGGAGC
0.86
3779




TCCC (1954)








ptc-miR159a
TTTGGATTGAAGGGAGC
1
3780




TCTA (1955)








ptc-miR159b
TTTGGATTGAAGGGAGC
1
3781




TCTA (1956)








ptc-miR159c
TTTGGATTGAAGGGAGC
1
3782




TCTA (1957)








ptc-miR159d
CTTGGATTGAAGGGAGC
0.86
3783




TCCT (1958)








ptc-miR159e
CTTGGGGTGAAGGGAG
0.76
3784




CTCCT (1959)








ptc-miR159f
ATTGGAGTGAAGGGAG
0.86
3785




CTCGA (1960)








pvu-miR159
TTTGGATTGAAGGGAGC
1
3786




TCTA (1961)








pvu-miR159a.1
TTTGGATTGAAGGGAGC
1
3787




TCTA (1962)








rco-miR159
TTTGGATTGAAGGGAGC
1
3788




TCTA (1963)








rin-miR159
TTGGACTGAAGGGAGCT
0.81
3789




CCCT (1964)








sar-miR159
TTTGGATTGAAGGGAGC
0.95
3790




TCTG (1965)








sbi-miR159a
TTTGGATTGAAGGGAGC
0.95
3791




TCTG (1966)








sbi-miR159b
CTTGGATTGAAGGGAGC
0.86
3792




TCCT (1967)








sly-miR159
TTTGGATTGAAGGGAGC
1
3793




TCTA (1968)








smo-miR159
CTTGGATTGAAGGGAGC
0.86
3794




TCCC (1969)








sof-miR159a
TTTGGATTGAAGGGAGC
0.95
3795




TCTG (1970)








sof-miR159b
TTTGGATTGAAGGGAGC
0.95
3796




TCTG (1971)








sof-miR159c
CTTGGATTGAAGGGAGC
0.86
3797




TCCT (1972)








sof-miR159d
TTTGGATTGAAGGGAGC
0.95
3798




TCTG (1973)








sof-miR159e
TTTGGATTGAAAGGAGC
0.9
3799




TCTT (1974)








spr-miR159
TTTGGATTGAAGGGAGC
0.95
3800




TCTG (1975








ssp-miR159a
TTTGGATTGAAG)GGAGC
0.95
3801




TCTG (1976








svi-miR159
TTGGACTGAAG)GGAGCT
0.81
3802




CCCT (1977








tae-miR159a
TTTGGATTGAAGGGAGC
0.95
3803




TCTG (1978)








tae-miR159b
TTTGGATTGAAGGGAGC
0.95
3804




TCTG (1979)








tar-miR159
TTGGACTGAAGGGAGCT
0.81
3805




CCCT (1980)








vvi-miR159a
CTTGGAGTGAAGGGAG
0.86
3806




CTCTC (1981)








vvi-miR159b
CTTGGAGTGAAGGGAG
0.86
3807




CTCTC (1982)








vvi-miR159c
TTTGGATTGAAGGGAGC
1
3808




TCTA (1983)








zma-miR159a
TTTGGATTGAAGGGAGC
0.95
3809




TCTG (1984)








zma-miR159b
TTTGGATTGAAGGGAGC
0.95
3810




TCTG (1985)








zma-miR159c
CTTGGATTGAAGGGAGC
0.86
3811




TCCT (1986)








zma-miR159d
CTTGGATTGAAGGGAGC
0.86
3812




TCCT (1987)








zma-miR159e
ATTGGTTTGAAGGGAGC
0.86
3813




TCCA (1988)








zma-miR159f
TTTGGATTGAAGGGAGC
0.95
3814




TCTG (1989)








zma-miR159g
TTTGGAGTGAAGGGAGT
0.86
3815




TCTG (1990)








zma-miR159h
TTTGGAGTGAAGGGAG
0.9
3816




CTCTG (1991)








zma-miR159i
TTTGGAGTGAAGGGAG
0.9
3817




CTCTG (1992)








zma-miR159j
TTTGGATTGAAGGGAGC
0.95
3818




TCTG (1993)








zma-miR159k
TTTGGATTGAAGGGAGC
0.95
3819




TCTG (1994)








zma-miR159m
TTTGGATTGAAGGGAGC
0.95
3820




TCTG (1995)







sbi-
acb-miR159
TTGGACTGAAGGGAGCT
0.81
3821


miR159a

CCCT (1996)








aha-miR159
TTGGACTGAAGGGAGCT
0.81
3822




CCCT (1997)








ahi-miR159
TTGGACTGAAGGGAGCT
0.81
3823




CCCT (1998)








ahy-miR159
TTTGGATTGAAGGGAGC
0.95
3824




TCTA (1999)








aly-miR159a
TTTGGATTGAAGGGAGC
0.95
3825




TCTA (2000)








aly-miR159b
TTTGGATTGAAGGGAGC
0.95
3826




TCTT (2001)








aly-miR159c
TTTGGATTGAAGGGAGC
0.9
3827




TCCT (2002)








ape-miR159
TTGGACTGAAGGGAGCT
0.81
3828




CCCT (2003)








aqc-miR159
TTTGGACTGAAGGGAGC
0.9
3829




TCTA (2004)








ath-miR159a
TTTGGATTGAAGGGAGC
0.95
3830




TCTA (2005)








ath-miR159b
TTTGGATTGAAGGGAGC
0.95
3831




TCTT (2006)








ath-miR159c
TTTGGATTGAAGGGAGC
0.9
3832




TCCT (2007)








bdi-miR159
CTTGGATTGAAGGGAGC
0.9
3833




TCT (2008)








bna-miR159
TTTGGATTGAAGGGAGC
0.95
3834




TCTA (2009)








bra-miR159a
TTTGGATTGAAGGGAGC
0.95
3835




TCTA (2010)








bvl-miR159
TTGGACTGAAGGGAGCT
0.81
3836




CCCT (2011)








cmi-miR159
TTGGACTGAAGGGAGCT
0.81
3837




CCCT (2012)








cor-miR159
TTGGACTGAAGGGAGCT
0.81
3838




CCCT (2013)








crb-miR159
TTGGACTGAAGGGAGCT
0.81
3839




CCCT (2014)








csi-miR159
TTTGGATTGAAGGGAGC
0.95
3840




TCTA (2015)








dso-miR159
TTGGACTGAAGGGAGCT
0.81
3841




CCCT (2016)








ech-miR159
TTGGACTGAAGGGAGCT
0.81
3842




CCCT (2017)








fal-miR159
TTGGACTGAAGGGAGCT
0.81
3843




CCCT (2018)








far-miR159
TTTGGATTGAAGGGAGC
1
3844




TCTG (2019)








gma-miR159a-3p
TTTGGATTGAAGGGAGC
0.95
3845




TCTA (2020)








gma-miR159b
ATTGGAGTGAAGGGAG
0.81
3846




CTCCA (2021)








gma-miR159c
ATTGGAGTGAAGGGAG
0.86
3847




CTCCG (2022)








hvu-miR159a
TTTGGATTGAAGGGAGC
1
3848




TCTG (2023)








hvu-miR159b
TTTGGATTGAAGGGAGC
1
3849




TCTG (2024)








hvv-miR159a
TTTGGATTGAAGGGAGC
1
3850




TCTG (2025)








hvv-miR159b
TTTGGATTGAAGGGAGC
1
3851




TCTG (2026)








ltu-miR159
TTTGGATTGAAGGGAGC
0.95
3852




TCTA (2027)








mma-miR159
TTGGACTGAAGGGAGCT
0.81
3853




CCCT (2028)








mtr-miR159a
TTTGGATTGAAGGGAGC
0.95
3854




TCTA (2029)








mtr-miR159b
ATTGAATTGAAGGGAG
0.71
3855




CAACT (2030)








mtr-miR159c
TTTGGATTGAAGGGAGC
0.95
3856




TCTA (2031)








nof-miR159
TTGGACTGAAGGGAGCT
0.81
3857




CCCT (2032)








oru-miR159
TTTGGATTGAAGGGAGC
1
3858




TCTG (2033)








osa-miR159a
TTTGGATTGAAGGGAGC
1
3859




TCTG (2034)








osa-miR159a.1
TTTGGATTGAAGGGAGC
1
3860




TCTG (2035)








osa-miR159b
TTTGGATTGAAGGGAGC
1
3861




TCTG (2036)








osa-miR159c
ATTGGATTGAAGGGAG
0.86
3862




CTCCA (2037)








osa-miR159d
ATTGGATTGAAGGGAG
0.9
3863




CTCCG (2038)








osa-miR159e
ATTGGATTGAAGGGAG
0.86
3864




CTCCT (2039)








osa-miR159f
CTTGGATTGAAGGGAGC
0.9
3865




TCTA (2040)








osa-miR159m
TTTGGATTGAAGGGAGC
1
3866




TCTG (2041)








pgl-miR159
TTTGGATTGAAGGGAGC
1
3867




TCTG (2042)








psi-miR159
CTTGGATTGAAGGGAGC
0.86
3868




TCCA (2043)








pta-miR159a
TTGGATTGAAGGGAGCT
0.86
3869




CCA (2044)








pta-miR159b
TTGGATTGAAGAGAGCT
0.81
3870




CCC (2045)








pta-miR159c
CTTGGATTGAAGGGAGC
0.86
3871




TCCC (2046)








ptc-miR159a
TTTGGATTGAAGGGAGC
0.95
3872




TCTA (2047)








ptc-miR159b
TTTGGATTGAAGGGAGC
0.95
3873




TCTA (2048)








ptc-miR159c
TTTGGATTGAAGGGAGC
0.95
3874




TCTA (2049)








ptc-miR159d
CTTGGATTGAAGGGAGC
0.86
3875




TCCT (2050)








ptc-miR159e
CTTGGGGTGAAGGGAG
0.76
3876




CTCCT (2051)








ptc-miR159f
ATTGGAGTGAAGGGAG
0.81
3877




CTCGA (2052)








pvu-miR159
TTTGGATTGAAGGGAGC
0.95
3878




TCTA (2053)








pvu-miR159a.1
TTTGGATTGAAGGGAGC
0.95
3879




TCTA (2054)








rco-miR159
TTTGGATTGAAGGGAGC
0.95
3880




TCTA (2055)








rin-miR159
TTGGACTGAAGGGAGCT
0.81
3881




CCCT (2056)








sar-miR159
TTTGGATTGAAGGGAGC
1
3882




TCTG (2057)








sbi-miR159b
CTTGGATTGAAGGGAGC
0.86
3883




TCCT (2058)








sly-miR159
TTTGGATTGAAGGGAGC
0.95
3884




TCTA (2059)








smo-miR159
CTTGGATTGAAGGGAGC
0.86
3885




TCCC (2060)








sof-miR159a
TTTGGATTGAAGGGAGC
1
3886




TCTG (2061)








sof-miR159b
TTTGGATTGAAGGGAGC
1
3887




TCTG (2062)








sof-miR159c
CTTGGATTGAAGGGAGC
0.86
3888




TCCT (2063)








sof-miR159d
TTTGGATTGAAGGGAGC
1
3889




TCTG (2064)








sof-miR159e
TTTGGATTGAAAGGAGC
0.9
3890




TCTT (2065)








spr-miR159
TTTGGATTGAAGGGAGC
1
3891




TCTG (2066)








ssp-miR159a
TTTGGATTGAAGGGAGC
1
3892




TCTG (2067)








svi-miR159
TTGGACTGAAGGGAGCT
0.81
3893




CCCT (2068)








tae-miR159a
TTTGGATTGAAGGGAGC
1
3894




TCTG (2069)








tae-miR159b
TTTGGATTGAAGGGAGC
1
3895




TCTG (2070)








tar-miR159
TTGGACTGAAGGGAGCT
0.81
3896




CCCT (2071)








vvi-miR159a
CTTGGAGTGAAGGGAG
0.86
3897




CTCTC (2072)








vvi-miR159b
CTTGGAGTGAAGGGAG
0.86
3898




CTCTC (2073)








vvi-miR159c
TTTGGATTGAAGGGAGC
0.95
3899




TCTA (2074)








zma-miR159a
TTTGGATTGAAGGGAGC
1
3900




TCTG (2075)








zma-miR159b
TTTGGATTGAAGGGAGC
1
3901




TCTG (2076)








zma-miR159c
CTTGGATTGAAGGGAGC
0.86
3902




TCCT (2077)








zma-miR159d
CTTGGATTGAAGGGAGC
0.86
3903




TCCT (2078)








zma-miR159e
ATTGGTTTGAAGGGAGC
0.81
3904




TCCA (2079)








zma-miR159f
TTTGGATTGAAGGGAGC
1
3905




TCTG (2080)








zma-miR159g
TTTGGAGTGAAGGGAGT
0.9
3906




TCTG (2081)








zma-miR159h
TTTGGAGTGAAGGGAG
0.95
3907




CTCTG (2082)








zma-miR159i
TTTGGAGTGAAGGGAG
0.95
3908




CTCTG (2083)








zma-miR159j
TTTGGATTGAAGGGAGC
1
3909




TCTG (2084)








zma-miR159k
TTTGGATTGAAGGGAGC
1
3910




TCTG (2085)








zma-miR159m
TTTGGATTGAAGGGAGC
1
3911




TCTG (2086)
















TABLE 8







Summary of Homologs (Orthologs to Small RNAs which are down-


regulated in Abiotic Stress in Soybean Plants.












Homolog

%
Homolog Stem-loop


Mir Name
Name
Homolog Sequence (SEQ ID NO:)
Identity
Sequence














aly-miR396a-
aly-
GCTCAAGAAAGCTGTGGGAAA (3953)
0.86
5117


3p
miR396b-3p









csi-miR396c
TTCAAGAAATCTGTGGGAAG (3954)
0.86
5118






gma-
AAGAAAGCTGTGGGAGAATATGGC (3955)
0.67
5119



miR396d









osa-
GTTCAAGAAAGCCCATGGAAA (3956)
0.71
5120



miR396e*









osa-
ATGGTTCAAGAAAGCCCATGGAAA (3957)
0.71
5121



miR396e-3p









osa-
GTTCAAGAAAGTCCTTGGAAA (3958)
0.71
5122



miR396f*









osa-
ATAGTTCAAGAAAGTCCTTGGAAA 
0.71
5123



miR396f-3p
(3959)








zma-
GTTCAATAAAGCTGTGGGAAA (3960)
0.95
5124



miR396a*









zma-
GTTCAATAAAGCTGTGGGAAA (3961)
0.95
5125



miR396b-3p









zma-
GGTCAAGAAAGCCGTGGGAAG (3962)
0.86
5126



miR396e*









zma-
GGTCAAGAAAGCTGTGGGAAG (3963)
0.9
5127



miR396f*









zma-
GTTCAAGAAAGCTGTGGAAGA (3964)
0.81
5128



miR396g*








aly-miR396b-
aly-
GTTCAATAAAGCTGTGGGAAG (3965)
0.86
5129


3p
miR396a-3p









csi-miR396c
TTCAAGAAATCTGTGGGAAG (3966)
0.81
5130






gma-
AAGAAAGCTGTGGGAGAATATGGC (3967)
0.76
5131



miR396d









osa-
GTTCAAGAAAGCCCATGGAAA (3968)
0.76
5132



miR396e*









osa-
ATGGTTCAAGAAAGCCCATGGAAA (3969)
0.76
5133



miR396e-3p









osa-
GTTCAAGAAAGTCCTTGGAAA (3970)
0.76
5134



miR396f*









osa-
ATAGTTCAAGAAAGTCCTTGGAAA 
0.76
5135



miR396f-3p
(3971)








zma-
GTTCAATAAAGCTGTGGGAAA (3972)
0.9
5136



miR396a*









zma-
GTTCAATAAAGCTGTGGGAAA (3973)
0.9
5137



miR396b-3p









zma-
GGTCAAGAAAGCCGTGGGAAG (3974)
0.86
5138



miR396e*









zma-
GGTCAAGAAAGCTGTGGGAAG (3975)
0.9
5139



miR396f*









zma-
GTTCAAGAAAGCTGTGGAAGA (3976)
0.86
5140



miR396g*








ath-
aly-
CCCGCCTTGCATCAACTGAAT (3977)
0.95
5141


miRf10239-
miR168a*





akr









bna-
aly-
TAATCTGCATCCTGAGGTTTA (3978)
1
5142


miR2111b-5p
miR2111a









aly-
TAATCTGCATCCTGAGGTTTA (3979)
1
5143



miR2111b









ath-
TAATCTGCATCCTGAGGTTTA (3980)
1
5144



miR2111a









ath-
TAATCTGCATCCTGAGGTTTA (3981)
1
5145



miR2111b









bna-
TAATCTGCATCCTGAGGTTTA (3982)
1
5146



miR2111a









bra-
TAATCTGCATCCTGAGGTTTA (3983)
1
5147



miR2111a









bra-
TAATCTGCATCCTGAGGTTTA (3984)
1
5148



miR2111b









lja-miR2111
TAATCTGCATCCTGAGGTTTA (3985)
1
5149






mtr-
TAATCTGCATCCTGAGGTTTA (3986)
1
5150



miR2111a









mtr-
TAATCTGCATCCTGAGGTTTA (3987)
1
5151



miR2111b









mtr-
TAATCTGCATCCTGAGGTTTA (3988)
1
5152



miR2111c









mtr-
TAATCTGCATCCTGAGGTTTA (3989)
1
5153



miR2111d









mtr-
TAATCTGCATCCTGAGGTTTA (3990)
1
5154



miR2111e









mtr-
TAATCTGCATCCTGAGGTTTA (3991)
1
5155



miR2111f









mtr-
TAATCTGCATCCTGAGGTTTA (3992)
1
5156



miR2111h









mtr-
TAATCTGCATCCTGAGGTTTA (3993)
1
5157



miR2111i









mtr-
TAATCTGCATCCTGAGGTTTA (3994)
1
5158



miR2111j









mtr-
TAATCTGCATCCTGAGGTTTA (3995)
1
5159



miR2111k









mtr-
TAATCTGCATCCTGAGGTTTA (3996)
1
5160



miR2111l









mtr-
TAATCTGCATCCTGAGGTTTA (3997)
1
5161



miR2111m









mtr-
TAATCTGCATCCTGAGGTTTA (3998)
1
5162



miR2111n









mtr-
TAATCTGCATCCTGAGGTTTA (3999)
1
5163



miR2111o









mtr-
TAATCTGCATCCTGAGGTTTA (4000)
1
5164



miR2111p









mtr-
TAATCTGCATCCTGAGGTTTA (4001)
1
5165



miR2111q









mtr-
TAATCTGCATCCTGAGGTTTA (4002)
1
5166



miR2111r









mtr-
TAATCTGCATCCTGAGGTTTA (4003)
1
5167



miR2111s









tcc-miR2111
TAATCTGCATCCTGAGGTTTA (4004)
1
5168






vvi-
TAATCTGCATCCTGAGGTCTA (4005)
0.95
5169



miR2111-5p








csi-miR162-
aly-
GGAGGCAGCGGTTCATCGATC (4006)
0.95
5170


5p
miR162a*









aly-
GGAGGCAGCGGTTCATCGATC (4007)
0.95
5171



miR162b*









zma-
GGGCGCAGTGGTTTATCGATC (4008)
0.77
5172



miR162*








gma-miR396d
aly-
GCTCAAGAAAGCTGTGGGAAA (4009)
0.67
5173



miR396b-3p









zma-
GTTCAATAAAGCTGTGGGAAA (4010)
0.63
5174



miR396a*









zma-
GTTCAATAAAGCTGTGGGAAA (4011)
0.63
5175



miR396b-3p









zma-
GGTCAAGAAAGCTGTGGGAAG (4012)
0.63
5176



miR396f*









zma-
GTTCAAGAAAGCTGTGGAAGA (4013)
0.67
5177



miR396g*








gma-
aqc-miR482a
TCTTGCCGACTCCTCCCATACC (4014)
0.71
5178


miR482a-3p










aqc-
TCTTGCCGACTCCTCCCATACC (4015)
0.71
5179



miR482b









aqc-miR482c
TCTTGCCGACTCCTCCCATACC (4016)
0.71
5180






csi-miR482a
TCTTCCCTATGCCTCCCATTCC (4017)
0.79
5181






csi-miR482b
TCTTGCCCACCCCTCCCATTCC (4018)
0.71
5182






csi-miR482c
TTCCCTAGTCCCCCTATTCCTA (4019)
0.75
5183






ghr-miR482a
TCTTTCCTACTCCTCCCATACC (4020)
0.71
5184






ghr-miR482b
TCTTGCCTACTCCACCCATGCC (4021)
0.71
5185






gma-miR482
TCTTCCCAATTCCGCCCATTCCTA (4022)
1
5186






gra-miR482
TCTTTCCAATTCCTCCCATTCC (4023)
0.83
5187






gso-miR482a
TCTTCCCTACACCTCCCATAC (4024)
0.67
5188






gso-
TCTTCCCTACACCTCCCATAC (4025)
0.67
5189



miR482b









mdm-
TCTTCCCAAGCCCGCCCATTCC (4026)
0.83
5190



miR482









mdo-miR482
TCTTCCCAAGCCCGCCCATTCC (4027)
0.83
5191






pab-
TCTTCCCTACTCCTCCCATTCC (4028)
0.79
5192



miR482a









pab-
TCTTCCCTATTCCTCCCATTCC (4029)
0.83
5193



miR482b









pab-
TCTTTCCTACTCCTCCCATTCC (4030)
0.75
5194



miR482c









pta-miR482a
TCTTCCCTACTCCTCCCATTCC (4031)
0.79
5195






pta-miR482b
TCTTCCCTACTCCTCCCATTCC (4032)
0.79
5196






pta-miR482c
TCTTCCCTATTCCTCCCATT (4033)
0.75
5197






pta-miR482d
TCCTCCCTACTCCTCCCATT (4034)
0.67
5198






ptc-
TCTTGCCTACTCCTCCCATT (4035)
0.67
5199



miR482.2









pvu-miR482
TCTTCCCAATTCCGCCCATTCC (4036)
0.92
5200






sly-miR482
TTTCCAATTCCACCCATTCCTA (4037)
0.83
5201






vvi-miR482
TCTTTCCTACTCCTCCCATTCC (4038)
0.75
5202






zma-miR482
TCTTCCTTGTTCCTCCCATT (4039)
0.67
5203





gma-
pvu-
GGAATGGGCTGATTGGGAAGCA (4040)
0.73
5204


miR482b-5p
miR482*








gso-
aly-
GGCAAGTTGTCCTTGGCTACA (4041)
0.85
5205


miR169g*
miR169a*









aly-
GGCAAGTTGTCCTTCGGCTACA (4042)
0.85
5206



miR169b*









aly-
GGCAAGTCATCTCTGGCTATG (4043)
0.65
5207



miR169c*









aly-
GCAAGTTGACCTTGGCTCTGT (4044)
0.8
5208



miR169d*









aly-
GCAAGTTGACCTTGGCTCTGT (4045)
0.8
5209



miR169e*









aly-
GCAAGTTGACCTTGGCTCTGC (4046)
0.8
5210



miR169f*









aly-
GCAAGTTGACCTTGGCTCTGT (4047)
0.8
5211



miR169g*









aly-miR169h
TAGCCAAGGATGACTTGCCTG (4048)
0.65
5212






aly-
GGCAGTCTCCTTGGCTATT (4049)
0.65
5213



miR169h*









aly-miR169i
TAGCCAAGGATGACTTGCCTG (4050)
0.65
5214






aly-
GGCAGTCTCCTTGGATATC (4051)
0.6
5215



miR169i*









aly-miR169j
TAGCCAAGGATGACTTGCCTG (4052)
0.65
5216






aly-
GGCAGTCTCCTTGGCTATC (4053)
0.65
5217



miR169j*









aly-miR169k
TAGCCAAGGATGACTTGCCTG (4054)
0.65
5218






aly-
GGCAGTCTCCTTGGCTATC (4055)
0.65
5219



miR169k*









aly-miR169l
TAGCCAAGGATGACTTGCCTG (4056)
0.65
5220






aly-
GGCAGTCTCCTTGGCTATC (4057)
0.65
5221



miR169l*









aly-
TAGCCAAGGATGACTTGCCTG (4058)
0.65
5222



miR169m









aly-
GGCAGTCTTCTTGGCTATC (4059)
0.6
5223



miR169m*









aly-miR169n
TAGCCAAAGATGACTTGCCTG (4060)
0.6
5224






aly-
GGCAGTCTCTTTGGCTATC (4061)
0.6
5225



miR169n*









aqc-miR169a
TAGCCAAGGATGACTTGCCTA (4062)
0.65
5226






aqc-
TAGCCAAGGATGACTTGCCTG (4063)
0.65
5227



miR169b









ath-
TCCGGCAAGTTGACCTTGGCT (4064)
0.9
5228



miR169g*









ath-miR169h
TAGCCAAGGATGACTTGCCTG (4065)
0.65
5229






ath-miR169i
TAGCCAAGGATGACTTGCCTG (4066)
0.65
5230






ath-miR169j
TAGCCAAGGATGACTTGCCTG (4067)
0.65
5231






ath-miR169k
TAGCCAAGGATGACTTGCCTG (4068)
0.65
5232






ath-miR169l
TAGCCAAGGATGACTTGCCTG (4069)
0.65
5233






ath-
TAGCCAAGGATGACTTGCCTG (4070)
0.65
5234



miR169m









ath-miR169n
TAGCCAAGGATGACTTGCCTG (4071)
0.65
5235






bdi-miR169b
TAGCCAAGGATGACTTGCCGG (4072)
0.6
5236






bdi-miR169d
TAGCCAAGAATGACTTGCCTA (4073)
0.65
5237






bdi-miR169e
TAGCCAAGGATGACTTGCCTG (4074)
0.65
5238






bdi-miR169g
TAGCCAAGGATGACTTGCCTG (4075)
0.65
5239






bdi-miR169h
TAGCCAAGGATGACTTGCCTA (4076)
0.65
5240






bdi-miR169i
CCAGCCAAGAATGGCTTGCCTA (4077)
0.6
5241






bdi-miR169j
TAGCCAGGAATGGCTTGCCTA (4078)
0.6
5242






bdi-miR169k
TAGCCAAGGATGATTTGCCTGT (4079)
0.6
5243






bna-
TAGCCAAGGATGACTTGCCTA (4080)
0.65
5244



miR169c









bna-
TAGCCAAGGATGACTTGCCTA (4081)
0.65
5245



miR169d









bna-
TAGCCAAGGATGACTTGCCTA (4082)
0.65
5246



miR169e









bna-miR169f
TAGCCAAGGATGACTTGCCTA (4083)
0.65
5247






bna-
TAGCCAAGGATGACTTGCCTGC (4084)
0.65
5248



miR169g









bna-
TAGCCAAGGATGACTTGCCTGC (4085)
0.65
5249



miR169h









bna-miR169i
TAGCCAAGGATGACTTGCCTGC (4086)
0.65
5250






bna-miR169j
TAGCCAAGGATGACTTGCCTGC (4087)
0.65
5251






bna-
TAGCCAAGGATGACTTGCCTGC (4088)
0.65
5252



miR169k









bna-miR169l
TAGCCAAGGATGACTTGCCTGC (4089)
0.65
5253






far-miR169
TAGCCAAGGATGACTTGCCTA (4090)
0.65
5254






ghb-
TAGCCAAGGATGACTTGCCTG (4091)
0.65
5255



miR169a









ghr-miR169
ACGCCAAGGATGTCTTGCGTC (4092)
0.6
5256






mtr-miR169f
AAGCCAAGGATGACTTGCCTA (4093)
0.6
5257






osa-miR169e
TAGCCAAGGATGACTTGCCGG (4094)
0.6
5258






osa-miR169f
TAGCCAAGGATGACTTGCCTA (4095)
0.65
5259






osa-miR169g
TAGCCAAGGATGACTTGCCTA (4096)
0.65
5260






osa-miR169h
TAGCCAAGGATGACTTGCCTG (4097)
0.65
5261






osa-miR169i
TAGCCAAGGATGACTTGCCTG (4098)
0.65
5262






osa-miR169j
TAGCCAAGGATGACTTGCCTG (4099)
0.65
5263






osa-miR169k
TAGCCAAGGATGACTTGCCTG (4100)
0.65
5264






osa-miR169l
TAGCCAAGGATGACTTGCCTG (4101)
0.65
5265






osa-
TAGCCAAGGATGACTTGCCTG (4102)
0.65
5266



miR169m









osa-miR169n
TAGCCAAGAATGACTTGCCTA (4103)
0.65
5267






osa-miR169o
TAGCCAAGAATGACTTGCCTA (4104)
0.65
5268






ptc-
TAGCCAAGGACGACTTGCCCA (4105)
0.6
5269



miR169ab









ptc-
TAGCCAAGGACGACTTGCCCA (4106)
0.6
5270



miR169ac









ptc-
TAGCCAAGGACGACTTGCCCA (4107)
0.6
5271



miR169ad









ptc-
TAGCCAAGGACGACTTGCCCA (4108)
0.6
5272



miR169ae









ptc-
TAGCCAAGGACGACTTGCCCA (4109)
0.6
5273



miR169af









ptc-miR169i
TAGCCAAGGATGACTTGCCTG (4110)
0.65
5274






ptc-miR169j
TAGCCAAGGATGACTTGCCTG (4111)
0.65
5275






ptc-miR169k
TAGCCAAGGATGACTTGCCTG (4112)
0.65
5276






ptc-miR169l
TAGCCAAGGATGACTTGCCTG (4113)
0.65
5277






ptc-
TAGCCAAGGATGACTTGCCTG (4114)
0.65
5278



miR169m









ptc-miR169o
AAGCCAAGGATGACTTGCCTG (4115)
0.6
5279






ptc-miR169p
AAGCCAAGGATGACTTGCCTG (4116)
0.6
5280






ptc-miR169q
TAGCCAAGGACGACTTGCCTG (4117)
0.65
5281






ptc-miR169r
TAGCCAAGGATGACTTGCCTA (4118)
0.65
5282






ptc-miR169s
TCAGCCAAGGATGACTTGCCG (4119)
0.65
5283






ptc-miR169u
TAGCCAAGGACGACTTGCCTA (4120)
0.65
5284






ptc-miR169v
TAGCCAAGGATGACTTGCCCA (4121)
0.6
5285






ptc-
TAGCCAAGGATGACTTGCCCA (4122)
0.6
5286



miR169w









sbi-miR169c
TAGCCAAGGATGACTTGCCTA (4123)
0.65
5287






sbi-miR169d
TAGCCAAGGATGACTTGCCTA (4124)
0.65
5288






sbi-miR169e
TAGCCAAGGATGACTTGCCGG (4125)
0.6
5289






sbi-miR169f
TAGCCAAGGATGACTTGCCTG (4126)
0.65
5290






sbi-miR169g
TAGCCAAGGATGACTTGCCTG (4127)
0.65
5291






sbi-miR169h
TAGCCAAGGATGACTTGCCTA (4128)
0.65
5292






sbi-miR169i
TAGCCAAGAATGACTTGCCTA (4129)
0.65
5293






sbi-miR169j
TAGCCAAGGATGACTTGCCGG (4130)
0.6
5294






sbi-miR169l
TAGCCAAGGATGACTTGCCTG (4131)
0.65
5295






sbi-
TAGCCAAGGATGACTTGCCTA (4132)
0.65
5296



miR169m









sbi-miR169n
TAGCCAAGGATGACTTGCCTA (4133)
0.65
5297






sbi-miR169o
TAGCCAAGGATGATTTGCCTG (4134)
0.6
5298






sbi-miR169p
TAGCCAAGAATGGCTTGCCTA (4135)
0.65
5299






sbi-miR169q
TAGCCAAGAATGGCTTGCCTA (4136)
0.65
5300






sly-miR169b
TAGCCAAGGATGACTTGCCTG (4137)
0.65
5301






sly-miR169d
TAGCCAAGGATGACTTGCCTA (4138)
0.65
5302






sof-miR169
TAGCCAAGGATGACTTGCCGG (4139)
0.6
5303






ssp-miR169
TAGCCAAGGATGACTTGCCGG (4140)
0.6
5304






tcc-miR169d
TAGCCAAGGATGACTTGCCTA (4141)
0.65
5305






tcc-miR169f
AAGCCAAGAATGACTTGCCTG (4142)
0.6
5306






tcc-miR169g
TAGCCAGGGATGACTTGCCTA (4143)
0.6
5307






tcc-miR169h
TAGCCAAGGATGACTTGCCTG (4144)
0.65
5308






tcc-miR169i
TAGCCAAGGATGAGTTGCCTG (4145)
0.6
5309






tcc-miR169j
TAGCCAAGGATGACTTGCCTG (4146)
0.65
5310






vvi-miR169e
TAGCCAAGGATGACTTGCCTGC (4147)
0.65
5311






vvi-miR169x
TAGCCAAGGATGACTTGCCTA (4148)
0.65
5312






vvi-miR169y
TAGCGAAGGATGACTTGCCTA (4149)
0.6
5313






zma-
GGCAAGTTGTTCTTGGCTACA (4150)
0.8
5314



miR169a*









zma-
GGCAAGTTGTTCTTGGCTACA (4151)
0.8
5315



miR169b*









zma-
GGCAAGTCTGTCCTTGGCTACA (4152)
0.85
5316



miR169c*









zma-
TAGCCAAGGATGACTTGCCTA (4153)
0.65
5317



miR169f









zma-
GGCATGTCTTCCTTGGCTACT (4154)
0.7
5318



miR169f*









zma-
TAGCCAAGGATGACTTGCCTA (4155)
0.65
5319



miR169g









zma-
TAGCCAAGGATGACTTGCCTA (4156)
0.65
5320



miR169h









zma-
TAGCCAAGGATGACTTGCCTG (4157)
0.65
5321



miR169i









zma-
GGCAGTCTCCTTGGCTAG (4158)
0.65
5322



miR169i*









zma-
TAGCCAAGGATGACTTGCCTG (4159)
0.65
5323



miR169j









zma-
GGCAGTCTCCTTGGCTAG (4160)
0.65
5324



miR169j*









zma-
TAGCCAAGGATGACTTGCCTG (4161)
0.65
5325



miR169k









zma-
GGCAGTCTCCTTGGCTAG (4162)
0.65
5326



miR169k*









zma-
TAGCCAAGAATGGCTTGCCTA (4163)
0.65
5327



miR169m









zma-
TAGCCAAGAATGGCTTGCCTA (4164)
0.65
5328



miR169n









zma-
GGCAGGCCTTCTTGGCTAAG (4165)
0.6
5329



miR169n*









zma-
TAGCCAAGAATGACTTGCCTA (4166)
0.65
5330



miR169o









zma-
GGCAGGTCTTCTTGGCTAGC (4167)
0.65
5331



miR169o*









zma-
TAGCCAAGGATGACTTGCCGG (4168)
0.6
5332



miR169p









zma-
GGCAAGTCATCTGGGGCTACG (4169)
0.6
5333



miR169p*









zma-
TAGCCAAGAATGGCTTGCCTA (4170)
0.65
5334



miR169q









zma-
GGCAAGTTGTCCTTGGCTACA (4171)
0.85
5335



miR169r*








ppt-miR533b-
ppt-
GAGCTGGCCAGGCTGTGAGGG (4172)
0.95
5336


5p
miR533a*








ptc-
aly-
TAATCTGCATCCTGAGGTTTA (4173)
0.95
5337


miRf11953-
miR2111a





akr










aly-
TAATCTGCATCCTGAGGTTTA (4174)
0.95
5338



miR2111b









ath-
TAATCTGCATCCTGAGGTTTA (4175)
0.95
5339



miR2111a









ath-
TAATCTGCATCCTGAGGTTTA (4176)
0.95
5340



miR2111b









bna-
TAATCTGCATCCTGAGGTTTA (4177)
0.95
5341



miR2111a









bna-
TAATCTGCATCCTGAGGTTTA (4178)
0.95
5342



miR2111b-






5p









bra-
TAATCTGCATCCTGAGGTTTA (4179)
0.95
5343



miR2111a









bra-
TAATCTGCATCCTGAGGTTTA (4180)
0.95
5344



miR2111b









lja-miR2111
TAATCTGCATCCTGAGGTTTA (4181)
0.95
5345






mtr-
TAATCTGCATCCTGAGGTTTA (4182)
0.95
5346



miR2111a









mtr-
TAATCTGCATCCTGAGGTTTA (4183)
0.95
5347



miR2111b









mtr-
TAATCTGCATCCTGAGGTTTA (4184)
0.95
5348



miR2111c









mtr-
TAATCTGCATCCTGAGGTTTA (4185)
0.95
5349



miR2111d









mtr-
TAATCTGCATCCTGAGGTTTA (4186)
0.95
5350



miR2111e









mtr-
TAATCTGCATCCTGAGGTTTA (4187)
0.95
5351



miR2111f









mtr-
TAATCTGCATCCTGAGGTTTA (4188)
0.95
5352



miR2111h









mtr-
TAATCTGCATCCTGAGGTTTA (4189)
0.95
5353



miR2111i









mtr-
TAATCTGCATCCTGAGGTTTA (4190)
0.95
5354



miR2111j









mtr-
TAATCTGCATCCTGAGGTTTA (4191)
0.95
5355



miR2111k









mtr-
TAATCTGCATCCTGAGGTTTA (4192)
0.95
5356



miR2111l









mtr-
TAATCTGCATCCTGAGGTTTA (4193)
0.95
5357



miR2111m









mtr-
TAATCTGCATCCTGAGGTTTA (4194)
0.95
5358



miR2111n









mtr-
TAATCTGCATCCTGAGGTTTA (4195)
0.95
5359



miR2111o









mtr-
TAATCTGCATCCTGAGGTTTA (4196)
0.95
5360



miR2111p









mtr-
TAATCTGCATCCTGAGGTTTA (4197)
0.95
5361



miR2111q









mtr-
TAATCTGCATCCTGAGGTTTA (4198)
0.95
5362



miR2111r









mtr-
TAATCTGCATCCTGAGGTTTA (4199)
0.95
5363



miR2111s









tcc-miR2111
TAATCTGCATCCTGAGGTTTA (4200)
0.95
5364






vvi-
TAATCTGCATCCTGAGGTCTA (4201)
0.9
5365



miR2111-5p








vvi-miR2111-
aly-
TAATCTGCATCCTGAGGTTTA (4202)
0.95
5366


5p
miR2111a









aly-
TAATCTGCATCCTGAGGTTTA (4203)
0.95
5367



miR2111b









ath-
TAATCTGCATCCTGAGGTTTA (4204)
0.95
5368



miR2111a









ath-
TAATCTGCATCCTGAGGTTTA (4205)
0.95
5369



miR2111b









bna-
TAATCTGCATCCTGAGGTTTA (4206)
0.95
5370



miR2111a









bna-
TAATCTGCATCCTGAGGTTTA (4207)
0.95
5371



miR2111b-






5p









bra-
TAATCTGCATCCTGAGGTTTA (4208)
0.95
5372



miR2111a









bra-
TAATCTGCATCCTGAGGTTTA (4209)
0.95
5373



miR2111b









lja-miR2111
TAATCTGCATCCTGAGGTTTA (4210)
0.95
5374






mtr-
TAATCTGCATCCTGAGGTTTA (4211)
0.95
5375



miR2111a









mtr-
TAATCTGCATCCTGAGGTTTA (4212)
0.95
5376



miR2111b









mtr-
TAATCTGCATCCTGAGGTTTA (4213)
0.95
5377



miR2111c









mtr-
TAATCTGCATCCTGAGGTTTA (4214)
0.95
5378



miR2111d









mtr-
TAATCTGCATCCTGAGGTTTA (4215)
0.95
5379



miR2111e









mtr-
TAATCTGCATCCTGAGGTTTA (4216)
0.95
5380



miR2111f









mtr-
TAATCTGCATCCTGAGGTTTA (4217)
0.95
5381



miR2111h









mtr-
TAATCTGCATCCTGAGGTTTA (4218)
0.95
5382



miR2111i









mtr-
TAATCTGCATCCTGAGGTTTA (4219)
0.95
5383



miR2111j









mtr-
TAATCTGCATCCTGAGGTTTA (4220)
0.95
5384



miR2111k









mtr-
TAATCTGCATCCTGAGGTTTA (4221)
0.95
5385



miR2111l









mtr-
TAATCTGCATCCTGAGGTTTA (4222)
0.95
5386



miR2111m









mtr-
TAATCTGCATCCTGAGGTTTA (4223)
0.95
5387



miR2111n









mtr-
TAATCTGCATCCTGAGGTTTA (4224)
0.95
5388



miR2111o









mtr-
TAATCTGCATCCTGAGGTTTA (4225)
0.95
5389



miR2111p









mtr-
TAATCTGCATCCTGAGGTTTA (4226)
0.95
5390



miR2111q









mtr-
TAATCTGCATCCTGAGGTTTA (4227)
0.95
5391



miR2111r









mtr-
TAATCTGCATCCTGAGGTTTA (4228)
0.95
5392



miR2111s









tcc-miR2111
TAATCTGCATCCTGAGGTTTA (4229)
0.95
5393





zma-
aly-
GTTCAATAAAGCTGTGGGAAG (4230)
0.95
5394


miR396b-3p
miR396a-3p









aly-
GCTCAAGAAAGCTGTGGGAAA (4231)
0.9
5395



miR396b-3p









csi-miR396c
TTCAAGAAATCTGTGGGAAG (4232)
0.81
5396






gma-
AAGAAAGCTGTGGGAGAATATGGC (4233)
0.71
5397



miR396d









osa-
GTTCAAGAAAGCCCATGGAAA (4234)
0.76
5398



miR396e*









osa-
ATGGTTCAAGAAAGCCCATGGAAA (4235)
0.76
5399



miR396e-3p









osa-
GTTCAAGAAAGTCCTTGGAAA (4236)
0.76
5400



miR396f*









osa-
ATAGTTCAAGAAAGTCCTTGGAAA
0.76
5401



miR396f-3p
(4237)








zma-
GTTCAATAAAGCTGTGGGAAA (4238)
1
5402



miR396a*









zma-
GGTCAAGAAAGCCGTGGGAAG (4239)
0.81
5403



miR396e*









zma-
GGTCAAGAAAGCTGTGGGAAG (4240)
0.86
5404



miR396f*









zma-
GTTCAAGAAAGCTGTGGAAGA (4241)
0.86
5405



miR396g*








ctr-miR171
aly-miR171a
TGATTGAGCCGCGCCAATATC (4242)
0.81
5406






aly-miR171b
TTGAGCCGTGCCAATATCACG (4243)
0.81
5407






aly-miR171c
TTGAGCCGTGCCAATATCACG (4244)
0.81
5408






aqc-miR171a
TGATTGAGCCGTGCCAATATC (4245)
0.76
5409






aqc-
TGATTGAGCCGTGCCAATATC (4246)
0.76
5410



miR171b









aqc-miR171c
TAATTGAACCGCACTAATATC (4247)
0.67
5411






aqc-
TGATTGAGCCGTGCCAATATC (4248)
0.76
5412



miR171d









aqc-miR171e
TGAATGAACCGAGCCAACATC (4249)
0.62
5413






aqc-miR171f
TAATTGAGCCGTGCCAATATC (4250)
0.76
5414






ath-miR171a
TGATTGAGCCGCGCCAATATC (4251)
0.81
5415






ath-miR171b
TTGAGCCGTGCCAATATCACG (4252)
0.81
5416






ath-miR171c
TTGAGCCGTGCCAATATCACG (4253)
0.81
5417






bdi-miR171a
TGATTGAGCCGCGCCAATATC (4254)
0.81
5418






bdi-miR171b
TGATTGAGCCGTGCCAATATC (4255)
0.76
5419






bdi-miR171c
TGATTGAGCCGTGCCAATATC (4256)
0.76
5420






bdi-miR171d
TGATTGAGCCGTGCCAATATC (4257)
0.76
5421






bna-
TTGAGCCGTGCCAATATCACG (4258)
0.81
5422



miR171a









bna-
TTGAGCCGTGCCAATATCACG (4259)
0.81
5423



miR171b









bna-
TTGAGCCGTGCCAATATCACG (4260)
0.81
5424



miR171c









bna-
TTGAGCCGTGCCAATATCACG (4261)
0.81
5425



miR171d









bna-
TTGAGCCGTGCCAATATCACG (4262)
0.81
5426



miR171e









bna-miR171f
TGATTGAGCCGCGCCAATATC (4263)
0.81
5427






bna-
TGATTGAGCCGCGCCAATATCT (4264)
0.86
5428



miR171g









bol-miR171a
TTGAGCCGTGCCAATATCACG (4265)
0.81
5429






bra-miR171a
TTGAGCCGTGCCAATATCACG (4266)
0.81
5430






bra-miR171b
TTGAGCCGTGCCAATATCACG (4267)
0.81
5431






bra-miR171c
TTGAGCCGTGCCAATATCACG (4268)
0.81
5432






bra-miR171d
TTGAGCCGTGCCAATATCACG (4269)
0.81
5433






bra-miR171e
TGATTGAGCCGCGCCAATATC (4270)
0.81
5434






ccl-miR171
TGATTGAGCCGCGCCAATATC (4271)
0.81
5435






crt-miR171
TGATTGAGCCGTGCCAATATC (4272)
0.76
5436






csi-miR171a
TTGAGCCGCGCCAATATCAC (4273)
0.86
5437






csi-miR171b
CGAGCCGAATCAATATCACTC (4274)
0.71
5438






ctr-miR171
TTGAGCCGCGTCAATATCTCC (4275)
1
5439






far-miR171
TGATTGAGCCGTGCCAATATC (4276)
0.76
5440






gma-
TGAGCCGTGCCAATATCACGA (4277)
0.76
5441



miR171a









gma-
CGAGCCGAATCAATATCACTC (4278)
0.71
5442



miR171b-3p









hvu-miR171
TGATTGAGCCGTGCCAATATC (4279)
0.76
5443






mtr-miR171
TGATTGAGTCGTGCCAATATC (4280)
0.71
5444






mtr-
TGATTGAGCCGCGTCAATATC (4281)
0.86
5445



miR171b









mtr-miR171c
TGATTGAGCCGTGCCAATATT (4282)
0.71
5446






mtr-
TGATTGAGCCGTGCCAATATC (4283)
0.76
5447



miR171d









mtr-miR171e
AGATTGAGCCGCGCCAATATC (4284)
0.81
5448






mtr-miR171f
TTGAGCCGTGCCAATATCACG (4285)
0.81
5449






mtr-
TGATTGAGCCGTGCCAATATC (4286)
0.76
5450



miR171g









osa-miR171a
TGATTGAGCCGCGCCAATATC (4287)
0.81
5451






osa-miR171b
TGATTGAGCCGTGCCAATATC (4288)
0.76
5452






osa-miR171c
TGATTGAGCCGTGCCAATATC (4289)
0.76
5453






osa-miR171d
TGATTGAGCCGTGCCAATATC (4290)
0.76
5454






osa-miR171e
TGATTGAGCCGTGCCAATATC (4291)
0.76
5455






osa-miR171f
TGATTGAGCCGTGCCAATATC (4292)
0.76
5456






osa-miR171g
GAGGTGAGCCGAGCCAATATC (4293)
0.71
5457






osa-miR171h
GTGAGCCGAACCAATATCACT (4294)
0.71
5458






osa-miR171i
GGATTGAGCCGCGTCAATATC (4295)
0.86
5459






ppt-miR171a
TGAGCCGCGCCAATATCACAT (4296)
0.81
5460






ppt-miR171b
TTGAGCCGCGCCAATATCACA (4297)
0.86
5461






pta-miR171
TGATTGAGACGAGTCCATATC (4298)
0.71
5462






ptc-miR171a
TTGAGCCGTGCCAATATCACG (4299)
0.81
5463






ptc-miR171b
TTGAGCCGTGCCAATATCACG (4300)
0.81
5464






ptc-miR171c
AGATTGAGCCGCGCCAATATC (4301)
0.81
5465






ptc-miR171d
AGATTGAGCCGCGCCAATATC (4302)
0.81
5466






ptc-miR171e
TGATTGAGCCGTGCCAATATC (4303)
0.76
5467






ptc-miR171f
TGATTGAGCCGTGCCAATATC (4304)
0.76
5468






ptc-miR171g
TGATTGAGCCGTGCCAATATC (4305)
0.76
5469






ptc-miR171h
TGATTGAGCCGTGCCAATATC (4306)
0.76
5470






ptc-miR171i
TGATTGAGCCGTGCCAATATC (4307)
0.76
5471






ptc-miR171j
GGATTGAGCCGCGCCAATACT (4308)
0.71
5472






ptc-miR171k
GGATTGAGCCGCGCCAATATC (4309)
0.81
5473






ptc-miR171l
CGAGCCGAATCAATATCACT (4310)
0.71
5474






ptc-
CGAGCCGAATCAATATCACT (4311)
0.71
5475



miR171m









ptc-miR171n
CGAGCCGAATCAATATCACT (4312)
0.71
5476






rco-miR171a
TTGAGCCGTGCCAATATCACG (4313)
0.81
5477






rco-miR171b
TTGAGCCGTGCCAATATCACG (4314)
0.81
5478






rco-miR171c
TGATTGAGCCGTGCCAATATC (4315)
0.76
5479






rco-miR171d
TGATTGAGCCGTGCCAATATC (4316)
0.76
5480






rco-miR171e
TGATTGAGCCGTGCCAATATC (4317)
0.76
5481






rco-miR171f
TGATTGAGCCGTGCCAATATC (4318)
0.76
5482






rco-miR171g
AGATTGAGCCGCGCCAATATC (4319)
0.81
5483






sbi-miR171a
TGATTGAGCCGTGCCAATATC (4320)
0.76
5484






sbi-miR171b
TGATTGAGCCGTGCCAATATC (4321)
0.76
5485






sbi-miR171c
GAGGTGAGCCGAGCCAATATC (4322)
0.71
5486






sbi-miR171d
TGATTGAGCCGTGCCAATATC (4323)
0.76
5487






sbi-miR171e
GTGAGCCGAACCAATATCACT (4324)
0.71
5488






sbi-miR171f
ATGAGCCGAACCAATATCACT (4325)
0.71
5489






sbi-miR171g
TGATTGAGCCGCGCCAATATC (4326)
0.81
5490






sbi-miR171h
GGATTGAGCCGCGTCAATATC (4327)
0.86
5491






sbi-miR171i
TGATTGAGCCGTGCCAATATC (4328)
0.76
5492






sbi-miR171j
TGATTGAGCCGCGCCAATATC (4329)
0.81
5493






sbi-miR171k
TGATTGAGCCGTGCCAATATC (4330)
0.76
5494






sly-miR171a
TGATTGAGCCGTGCCAATATC (4331)
0.76
5495






sly-miR171b
TTGAGCCGTGCCAATATCACG (4332)
0.81
5496






sly-miR171d
TTGAGCCGCGCCAATATCAC (4333)
0.86
5497






smo-
TTGAGCCGTGCCAATATCACT (4334)
0.81
5498



miR171a









smo-
TGAGCCGTGCCAATATCACAT (4335)
0.76
5499



miR171b









smo-
TTGAGTCGCGCCAATATCATG (4336)
0.76
5500



miR171c









smo-
TGAGCCGCGCCAATATCACAT (4337)
0.81
5501



miR171d









tae-miR171a
TGATTGAGCCGTGCCAATATC (4338)
0.76
5502






tae-miR171b
TTGAGCCGTGCCAATATCACG (4339)
0.81
5503






tcc-miR171a
TGATTGAGCCGCGCCAATATC (4340)
0.81
5504






tcc-miR171b
AGATTGAGCCGCGCCAATATC (4341)
0.81
5505






tcc-miR171c
AGATTGAGCCGCGCCAATATC (4342)
0.81
5506






tcc-miR171d
TGATTGAGCCGTGCCAATATC (4343)
0.76
5507






tcc-miR171e
TGATTGAGCCGTGCCAATATC (4344)
0.76
5508






tcc-miR171f
TGATTGAGCCGTGCCAATATC (4345)
0.76
5509






tcc-miR171g
TGATTGAGCCGTGCCAATATC (4346)
0.76
5510






tcc-miR171h
TGATTGAGCCGTGCCAATATC (4347)
0.76
5511






vvi-miR171a
TGATTGAGCCGTGCCAATATC (4348)
0.76
5512






vvi-miR171b
TGATTGAGCCGCGTCAATATC (4349)
0.86
5513






vvi-miR171c
TGATTGAGCCGTGCCAATATC (4350)
0.76
5514






vvi-miR171d
TGATTGAGCCGTGCCAATATC (4351)
0.76
5515






vvi-miR171e
TGATTGAGCCGCGCCAATATC (4352)
0.81
5516






vvi-miR171f
TTGAGCCGCGCCAATATCACT (4353)
0.86
5517






vvi-miR171g
TTGAGCCGAACCAATATCACC (4354)
0.81
5518






vvi-miR171h
TGGTTGAGCCGCGCCAATATC (4355)
0.81
5519






vvi-miR171i
TGATTGAGCCGTGCCAATATC (4356)
0.76
5520






zma-
TGATTGAGCCGCGCCAATAT (4357)
0.76
5521



miR171a









zma-
TTGAGCCGTGCCAATATCAC (4358)
0.81
5522



miR171b









zma-
TGACTGAGCCGTGCCAATATC (4359)
0.71
5523



miR171c









zma-
TGATTGAGCCGTGCCAATATC (4360)
0.76
5524



miR171d









zma-
TGATTGAGCCGTGCCAATATC (4361)
0.76
5525



miR171e









zma-
TTGAGCCGTGCCAATATCACA (4362)
0.81
5526



miR171f









zma-
GAGGTGAGCCGAGCCAATATC (4363)
0.71
5527



miR171g









zma-
GTGAGCCGAACCAATATCACT (4364)
0.71
5528



miR171h









zma-
TGATTGAGCCGTGCCAATATC (4365)
0.76
5529



miR171i









zma-
TGATTGAGCCGTGCCAATATC (4366)
0.76
5530



miR171j









zma-
GTGAGCCGAACCAATATCACT (4367)
0.71
5531



miR171k









zma-
GGATTGAGCCGCGTCAATATC (4368)
0.86
5532



miR171l









zma-
GGATTGAGCCGCGTCAATATC (4369)
0.86
5533



miR171m









zma-
TGATTGAGCCGCGCCAATATC (4370)
0.81
5534



miR171n








aly-miR160c-
ahy-miR160-
GCATGAAGGGAGTCACGCAGG (4371)
0.67
5535


3p
3p









aly-
GCGTATGAGGAGCCATGCATA (4372)
0.81
5536



miR160a*









aly-
GCGTACAGAGTAGTCAAGCATG (4373)
0.86
5537



miR160b*









bra-
GCGTATGAGGAGCCATGCATA (4374)
0.81
5538



miR160a-3p









zma-
GCGTGCAAGGGGCCAAGCATG (4375)
0.9
5539



miR160a*









zma-
GCGTGCAAGGAGCCAAGCATG (4376)
0.95
5540



miR160b*









zma-
GCGTGCATGGTGCCAAGCATA (4377)
0.81
5541



miR160c*









zma-
GCGTGCGTGGAGCCAAGCATG (4378)
0.86
5542



miR160d*









zma-
GCGTGCGAGGTGCCAGGCATG (4379)
0.81
5543



miR160f*









zma-
GCGTGCAAGGAGCCAAGCATG (4380)
0.95
5544



miR160g*








bra-miR160a-
aly-
GCGTATGAGGAGCCATGCATA (4381)
1
5545


3p
miR160a*









aly-
GCGTACAGAGTAGTCAAGCATG (4382)
0.76
5546



miR160b*









aly-
GCGTACAAGGAGCCAAGCATG (4383)
0.81
5547



miR160c-3p









zma-
GCGTGCAAGGGGCCAAGCATG (4384)
0.71
5548



miR160a*









zma-
GCGTGCAAGGAGCCAAGCATG (4385)
0.76
5549



miR160b*









zma-
GCGTGCATGGTGCCAAGCATA (4386)
0.71
5550



miR160c*









zma-
GCGTGCGTGGAGCCAAGCATG (4387)
0.76
5551



miR160d*









zma-
GCGTGCGAGGTGCCAGGCATG (4388)
0.76
5552



miR160f*









zma-
GCGTGCAAGGAGCCAAGCATG (4389)
0.76
5553



miR160g*








gma-
ahy-
CCTCGTTCCATACATCATCTA (4390)
0.77
5554


miR1507a
miR1507









gma-
TCTCATTCCATACATCGTCTG (4391)
0.95
5555



miR1507b









gso-
TCTCATTCCATACATCGTCTGA (4392)
1
5556



miR1507a









gso-
TCTCATTCCATACATCGTCTGA (4393)
1
5557



miR1507b









mtr-
CCTCGTTCCATACATCATCTAG (4394)
0.77
5558



miR1507









vun-
TCTCATTCCATACATCGTCTG (4395)
0.95
5559



miR1507a









vun-
TCTCATTCCATACATCGTCTG (4396)
0.95
5560



miR1507b








gma-
gma-
AAGTGATGACATGACAAGCGAAGT (4397)
0.75
5561


miR4371b
miR4371a








gso-miR482a
aqc-miR482a
TCTTGCCGACTCCTCCCATACC (4398)
0.86
5562






aqc-
TCTTGCCGACTCCTCCCATACC (4399)
0.86
5563



miR482b









aqc-miR482c
TCTTGCCGACTCCTCCCATACC (4400)
0.86
5564






csi-miR482a
TCTTCCCTATGCCTCCCATTCC (4401)
0.86
5565






csi-miR482b
TCTTGCCCACCCCTCCCATTCC (4402)
0.81
5566






csi-miR482c
TTCCCTAGTCCCCCTATTCCTA (4403)
0.67
5567






ghr-miR482a
TCTTTCCTACTCCTCCCATACC (4404)
0.9
5568






ghr-miR482b
TCTTGCCTACTCCACCCATGCC (4405)
0.81
5569






gma-miR482
TCTTCCCAATTCCGCCCATTCCTA (4406)
0.76
5570






gma-
TCTTCCCAATTCCGCCCATTCCTA (4407)
0.76
5571



miR482a-3p









gra-miR482
TCTTTCCAATTCCTCCCATTCC (4408)
0.76
5572






gso-
TCTTCCCTACACCTCCCATAC (4409)
1
5573



miR482b









mdm-
TCTTCCCAAGCCCGCCCATTCC (4410)
0.76
5574



miR482









mdo-miR482
TCTTCCCAAGCCCGCCCATTCC (4411)
0.76
5575






pab-
TCTTCCCTACTCCTCCCATTCC (4412)
0.9
5576



miR482a









pab-
TCTTCCCTATTCCTCCCATTCC (4413)
0.86
5577



miR482b









pab-
TCTTTCCTACTCCTCCCATTCC (4414)
0.86
5578



miR482c









pta-miR482a
TCTTCCCTACTCCTCCCATTCC (4415)
0.9
5579






pta-miR482b
TCTTCCCTACTCCTCCCATTCC (4416)
0.9
5580






pta-miR482c
TCTTCCCTATTCCTCCCATT (4417)
0.81
5581






pta-miR482d
TCCTCCCTACTCCTCCCATT (4418)
0.81
5582






ptc-
CCTACTCCTCCCATTCC (4419)
0.67
5583



miR482.1









ptc-
TCTTGCCTACTCCTCCCATT (4420)
0.81
5584



miR482.2









pvu-miR482
TCTTCCCAATTCCGCCCATTCC (4421)
0.76
5585






sly-miR482
TTTCCAATTCCACCCATTCCTA (4422)
0.62
5586






vvi-miR482
TCTTTCCTACTCCTCCCATTCC (4423)
0.86
5587






zma-miR482
TCTTCCTTGTTCCTCCCATT (4424)
0.71
5588





osa-
osa-
AGTGAGGAGGCCGGGGCCGCT (4425)
0.75
5589


miR1846e
miR1846a-






5p









osa-
AGTGAGGAGGCCGGGGCCGCT (4426)
0.75
5590



miR1846b-






5p









osa-
AGTGAGGAGGCCGGGGCCGCT (4427)
0.75
5591



miR1846c-






5p








ppt-miR166m
aly-miR166a
TCGGACCAGGCTTCATTCCCC (4428)
0.86
5592






aly-miR166b
TCGGACCAGGCTTCATTCCCC (4429)
0.86
5593






aly-miR166c
TCGGACCAGGCTTCATTCCCC (4430)
0.86
5594






aly-miR166d
TCGGACCAGGCTTCATTCCCC (4431)
0.86
5595






aly-miR166e
TCGGACCAGGCTTCATTCCCC (4432)
0.86
5596






aly-miR166f
TCGGACCAGGCTTCATTCCCC (4433)
0.86
5597






aly-miR166g
TCGGACCAGGCTTCATTCCCC (4434)
0.86
5598






aqc-miR166a
TCGGACCAGGCTTCATTCCTC (4435)
0.9
5599






aqc-
TCGGACCAGGCTTCATTCCCC (4436)
0.86
5600



miR166b









aqc-miR166c
TCGGACCAGGCTTCATTCCT (4437)
0.9
5601






aqc-
TCGGACCAGGCTTCATTCCTC (4438)
0.9
5602



miR166d









aqc-miR166e
TCGGACCAGGCTTCATTCCCC (4439)
0.86
5603






ath-miR166a
TCGGACCAGGCTTCATTCCCC (4440)
0.86
5604






ath-miR166b
TCGGACCAGGCTTCATTCCCC (4441)
0.86
5605






ath-miR166c
TCGGACCAGGCTTCATTCCCC (4442)
0.86
5606






ath-miR166d
TCGGACCAGGCTTCATTCCCC (4443)
0.86
5607






ath-miR166e
TCGGACCAGGCTTCATTCCCC (4444)
0.86
5608






ath-miR166f
TCGGACCAGGCTTCATTCCCC (4445)
0.86
5609






ath-miR166g
TCGGACCAGGCTTCATTCCCC (4446)
0.86
5610






bdi-miR166
TCGGACCAGGCTTCATTCCCC (4447)
0.86
5611






bdi-miR166a
TCGGACCAGGCTTCATTCCCC (4448)
0.86
5612






bdi-miR166b
TCGGACCAGGCTTCATTCCCC (4449)
0.86
5613






bdi-miR166c
TCGGACCAGGCTTCATTCCCC (4450)
0.86
5614






bdi-miR166d
TCGGACCAGGCTTCATTCCCC (4451)
0.86
5615






bdi-miR166e
CTCGGACCAGGCTTCATTCCC (4452)
0.86
5616






bdi-miR166f
TCTCGGACCAGGCTTCATTCC (4453)
0.86
5617






bna-
TCGGACCAGGCTTCATTCCCC (4454)
0.86
5618



miR166a









bna-
TCGGACCAGGCTTCATTCCCC (4455)
0.86
5619



miR166b









bna-
TCGGACCAGGCTTCATTCCCC (4456)
0.86
5620



miR166c









bna-
TCGGACCAGGCTTCATTCCCC (4457)
0.86
5621



miR166d









cpt-miR166
TCGGACCAGGCTTCATTCCC (4458)
0.86
5622






crt-miR166a
TCGGACCAGGCTTCATTCCCGT (4459)
0.86
5623






crt-miR166b
TCGGACCAGGCTTCATTCCCTT (4460)
0.9
5624






csi-miR166
TCGGACCAGGCTTCATTCCCC (4461)
0.86
5625






csi-miR166a
TCGGACCAGGCTTCATTCCCCC (4462)
0.86
5626






csi-miR166b
TCGGACCAGGCTTCATTCCCGT (4463)
0.86
5627






csi-miR166c
TCGGACCAGGCTTCATTCCC (4464)
0.86
5628






csi-miR166d
TCGGACCAGGCTTCATTCCCT (4465)
0.9
5629






csi-miR166e
TCGGACCAGGCTTCATTCCCC (4466)
0.86
5630






ctr-miR166
TCGGACCAGGCTTCATTCCCCC (4467)
0.86
5631






far-miR166
CCGGACCAGGCTTCATCCCAG (4468)
0.76
5632






flm-miR166
TCGGACCAGGCTTCATCCCCC (4469)
0.81
5633






ghr-miR166a
TCGGACCAGGCTTCATTCCCC (4470)
0.86
5634






ghr-miR166b
TCGGACCAGGCTTCATTCCCC (4471)
0.86
5635






gma-
TCGGACCAGGCTTCATTCCCC (4472)
0.86
5636



miR166a









gma-
TCGGACCAGGCTTCATTCCCC (4473)
0.86
5637



miR166b









gma-
TCGGACCAGGCTTCATTCCCC (4474)
0.86
5638



miR166n









gma-
TCGGACCAGGCTTCATTCCCC (4475)
0.86
5639



miR166o









gma-
TCGGACCAGGCTTCATTCCCG (4476)
0.86
5640



miR166q









gma-
TCGGACCAGGCTTCATTCCCT (4477)
0.9
5641



miR166r









hvu-miR166
TCGGACCAGGCTTCATTCCCC (4478)
0.86
5642






hvu-
TCGGACCAGGCTTCATTCCCC (4479)
0.86
5643



miR166b









hvu-
TCGGACCAGGCTTCATTCCCC (4480)
0.86
5644



miR166c









hvv-miR166
TCGGACCAGGCTTCATTCCCC (4481)
0.86
5645






ini-miR166
TCGGACCAGGCTTCATTCCTC (4482)
0.9
5646






mtr-miR166
TCGGACCAGGCTTCATTCCCC (4483)
0.86
5647






mtr-
TCGGACCAGGCTTCATTCCTA (4484)
0.9
5648



miR166b
(TCGGACCAGGCTTCATTCCCC (5115)








mtr-miR166c
TCGGACCAGGCTTCATTCCTC (4485)
0.9
5649






mtr-
TCGGGCCAGGCTTCATCCCCC (4486)
0.76
5650



miR166d









mtr-miR166e
TCGGACCAGGCTTCATTCCCC (4487)
0.86
5651






mtr-miR166f
TCGGACCAGGCTTCATTCCTC (4488)
0.9
5652






mtr-
TCGGACCAGGCTTCATTCCCC (4489)
0.86
5653



miR166g









mtr-
TCGGACCAGGCTTCATTCCCC (4490)
0.86
5654



miR166h









nsy-miR166
TCGGACCAGGCTTCATTCCCC (4491)
0.86
5655






osa-miR166a
TCGGACCAGGCTTCATTCCCC (4492)
0.86
5656






osa-miR166b
TCGGACCAGGCTTCATTCCCC (4493)
0.86
5657






osa-miR166c
TCGGACCAGGCTTCATTCCCC (4494)
0.86
5658






osa-miR166d
TCGGACCAGGCTTCATTCCCC (4495)
0.86
5659






osa-miR166e
TCGAACCAGGCTTCATTCCCC (4496)
0.81
5660






osa-miR166f
TCGGACCAGGCTTCATTCCCC (4497)
0.86
5661






osa-miR166g
TCGGACCAGGCTTCATTCCTC (4498)
0.9
5662






osa-miR166h
TCGGACCAGGCTTCATTCCTC (4499)
0.9
5663






osa-miR166i
TCGGATCAGGCTTCATTCCTC (4500)
0.86
5664






osa-miR166j
TCGGATCAGGCTTCATTCCTC (4501)
0.86
5665






osa-miR166k
TCGGACCAGGCTTCAATCCCT (4502)
0.86
5666






osa-miR166l
TCGGACCAGGCTTCAATCCCT (4503)
0.86
5667






osa-
TCGGACCAGGCTTCATTCCCT (4504)
0.9
5668



miR166m









osa-miR166n
TCGGACCAGGCTTCATTCCCC (4505)
0.86
5669






pab-
TCGGACCAGGCTTCATTCCTC (4506)
0.9
5670



miR166a









pab-
TCGGACCAGGCTTCATTCCTT (4507)
0.95
5671



miR166b









pga-miR166
TCGGACCAGGCTTCATTCCTT (4508)
0.95
5672






ppt-miR166a
TCGGACCAGGCTTCATTCCCC (4509)
0.86
5673






ppt-miR166b
TCGGACCAGGCTTCATTCCCC (4510)
0.86
5674






ppt-miR166c
TCGGACCAGGCTTCATTCCCC (4511)
0.86
5675






ppt-miR166d
TCGGACCAGGCTTCATTCCCC (4512)
0.86
5676






ppt-miR166e
TCGGACCAGGCTTCATTCCCC (4513)
0.86
5677






ppt-miR166f
TCGGACCAGGCTTCATTCCCC (4514)
0.86
5678






ppt-miR166g
TCGGACCAGGCTTCATTCCCC (4515)
0.86
5679






ppt-miR166h
TCGGACCAGGCTTCATTCCCC (4516)
0.86
5680






ppt-miR166i
TCGGACCAGGCTTCATTCCCC (4517)
0.86
5681






ppt-miR166j
TCCGGACCAGGCTTCATTCCC (4518)
0.81
5682






ppt-miR166k
TCCGGACCAGGCTTCATTCCC (4519)
0.81
5683






ppt-miR166l
TCCGGACCAGGCTTCATTCCC (4520)
0.81
5684






pta-miR166a
TCGGACCAGGCTTCATTCCCC (4521)
0.86
5685






pta-miR166b
TCGGACCAGGCTTCATTCCCC (4522)
0.86
5686






pta-miR166c
CCGGACCAGGCTTCATCCCAG (4523)
0.76
5687






ptc-miR166a
TCGGACCAGGCTTCATTCCCC (4524)
0.86
5688






ptc-miR166b
TCGGACCAGGCTTCATTCCCC (4525)
0.86
5689






ptc-miR166c
TCGGACCAGGCTTCATTCCCC (4526)
0.86
5690






ptc-miR166d
TCGGACCAGGCTTCATTCCCC (4527)
0.86
5691






ptc-miR166e
TCGGACCAGGCTTCATTCCCC (4528)
0.86
5692






ptc-miR166f
TCGGACCAGGCTTCATTCCCC (4529)
0.86
5693






ptc-miR166g
TCGGACCAGGCTTCATTCCCC (4530)
0.86
5694






ptc-miR166h
TCGGACCAGGCTTCATTCCCC (4531)
0.86
5695






ptc-miR166i
TCGGACCAGGCTTCATTCCCC (4532)
0.86
5696






ptc-miR166j
TCGGACCAGGCTTCATTCCCC (4533)
0.86
5697






ptc-miR166k
TCGGACCAGGCTTCATTCCCC (4534)
0.86
5698






ptc-miR166l
TCGGACCAGGCTTCATTCCCC (4535)
0.86
5699






ptc-
TCGGACCAGGCTTCATTCCCC (4536)
0.86
5700



miR166m









ptc-miR166n
TCGGACCAGGCTTCATTCCTT (4537)
0.95
5701






ptc-miR166o
TCGGACCAGGCTTCATTCCTT (4538)
0.95
5702






ptc-miR166p
TCGGACCAGGCTCCATTCCTT (4539)
0.9
5703






ptc-miR166q
TCGGACCAGGCTTCATTCCTT (4540)
0.95
5704






pvu-miR166
TCGGACCAGGCTTCATTCCCC (4541)
0.86
5705






pvu-
TCGGACCAGGCTTCATTCCCC (4542)
0.86
5706



miR166a









rco-miR166a
TCGGACCAGGCTTCATTCCCC (4543)
0.86
5707






rco-miR166b
TCGGACCAGGCTTCATTCCCC (4544)
0.86
5708






rco-miR166c
TCGGACCAGGCTTCATTCCCC (4545)
0.86
5709






rco-miR166d
TCGGACCAGGCTTCATTCCCC (4546)
0.86
5710






rco-miR166e
TCGGACCAGGCTTCATTCCCC (4547)
0.86
5711






sbi-miR166a
TCGGACCAGGCTTCATTCCC (4548)
0.86
5712






sbi-miR166b
TCGGACCAGGCTTCATTCCC (4549)
0.86
5713






sbi-miR166c
TCGGACCAGGCTTCATTCCC (4550)
0.86
5714






sbi-miR166d
TCGGACCAGGCTTCATTCCC (4551)
0.86
5715






sbi-miR166e
TCGGACCAGGCTTCAATCCCT (4552)
0.86
5716






sbi-miR166f
TCGGACCAGGCTTCATTCCTC (4553)
0.9
5717






sbi-miR166g
TCGGACCAGGCTTCAATCCCT (4554)
0.86
5718






sbi-miR166h
TCGGACCAGGCTTCATTCCC (4555)
0.86
5719






sbi-miR166i
TCGGACCAGGCTTCATTCCC (4556)
0.86
5720






sbi-miR166j
TCGGACCAGGCTTCATTCCC (4557)
0.86
5721






sbi-miR166k
TCGGACCAGGCTTCATTCCT (4558)
0.9
5722






sly-miR166a
TCGGACCAGGCTTCATTCCCC (4559)
0.86
5723






sly-miR166b
TCGGACCAGGCTTCATTCCCC (4560)
0.86
5724






smo-
TCGGACCAGGCTTCATTCCCC (4561)
0.86
5725



miR166a









smo-
TCGGACCAGGCTTCATTCCCC (4562)
0.86
5726



miR166b









smo-
TCGGACCAGGCTTCATTCCCC (4563)
0.86
5727



miR166c









sof-miR166
TCGGACCAGGCTTCATTCCCC (4564)
0.86
5728






tae-miR166
CCGGACCAGGCTTCATTCCCA (4565)
0.81
5729






tcc-miR166a
TCGGACCAGGCTTCATTCCCC (4566)
0.86
5730






tcc-miR166b
TCGGACCAGGCTTCATTCCC (4567)
0.86
5731






tcc-miR166c
TCGGACCAGGCTTCATTCCTC (4568)
0.9
5732






tcc-miR166d
TCGGACCAGGCTTCATTCCCC (4569)
0.86
5733






vvi-miR166a
TCGGACCAGGCTTCATTCC (4570)
0.86
5734






vvi-miR166b
TCGGACCAGGCTTCATTCC (4571)
0.86
5735






vvi-miR166c
TCGGACCAGGCTTCATTCCCC (4572)
0.86
5736






vvi-miR166d
TCGGACCAGGCTTCATTCCCC (4573)
0.86
5737






vvi-miR166e
TCGGACCAGGCTTCATTCCCC (4574)
0.86
5738






vvi-miR166f
TCGGACCAGGCTTCATTCCCC (4575)
0.86
5739






vvi-miR166g
TCGGACCAGGCTTCATTCCCC (4576)
0.86
5740






vvi-miR166h
TCGGACCAGGCTTCATTCCCC (4577)
0.86
5741






zma-
TCGGACCAGGCTTCATTCCCC (4578)
0.86
5742



miR166a









zma-
TCGGACCAGGCTTCATTCCC (4579)
0.86
5743



miR166b









zma-
TCGGACCAGGCTTCATTCCC (4580)
0.86
5744



miR166c









zma-
TCGGACCAGGCTTCATTCCC (4581)
0.86
5745



miR166d









zma-
TCGGACCAGGCTTCATTCCC (4582)
0.86
5746



miR166e









zma-
TCGGACCAGGCTTCATTCCC (4583)
0.86
5747



miR166f









zma-
TCGGACCAGGCTTCATTCCC (4584)
0.86
5748



miR166g









zma-
TCGGACCAGGCTTCATTCCC (4585)
0.86
5749



miR166h









zma-
TCGGACCAGGCTTCATTCCC (4586)
0.86
5750



miR166i









zma-
TCGGACCAGGCTTCAATCCCT (4587)
0.86
5751



miR166j









zma-
TCGGACCAGGCTTCAATCCCT (4588)
0.86
5752



miR166k









zma-
TCGGACCAGGCTTCATTCCTC (4589)
0.9
5753



miR166l









zma-
TCGGACCAGGCTTCATTCCTC (4590)
0.9
5754



miR166m









zma-
TCGGACCAGGCTTCAATCCCT (4591)
0.86
5755



miR166n









zma-
TCGGACCAGGCTTCATTCCCC (4592)
0.86
5756



miR166o









zma-
TCGGACCAGGCTTCATTCCCC (4593)
0.86
5757



miR166p









zma-
TCGGACCAGGCTTCATTCCCC (4594)
0.86
5758



miR166q









zma-
TCGGACCAGGCTTCATTCCCC (4595)
0.86
5759



miR166r









zma-
TCGGACCAGGCTTCATTCCCC (4596)
0.86
5760



miR166s









zma-
TCGGACCAGGCTTCATTCCCC (4597)
0.86
5761



miR166t









zma-
TCGGACCACGCTTCATTCCCC (4598)
0.81
5762



miR166u








pta-miR166c
aly-miR166a
TCGGACCAGGCTTCATTCCCC (4599)
0.81
5763






aly-miR166b
TCGGACCAGGCTTCATTCCCC (4600)
0.81
5764






aly-miR166c
TCGGACCAGGCTTCATTCCCC (4601)
0.81
5765






aly-miR166d
TCGGACCAGGCTTCATTCCCC (4602)
0.81
5766






aly-miR166e
TCGGACCAGGCTTCATTCCCC (4603)
0.81
5767






aly-miR166f
TCGGACCAGGCTTCATTCCCC (4604)
0.81
5768






aly-miR166g
TCGGACCAGGCTTCATTCCCC (4605)
0.81
5769






aqc-miR166a
TCGGACCAGGCTTCATTCCTC (4606)
0.81
5770






aqc-
TCGGACCAGGCTTCATTCCCC (4607)
0.81
5771



miR166b









aqc-miR166c
TCGGACCAGGCTTCATTCCT (4608)
0.81
5772






aqc-
TCGGACCAGGCTTCATTCCTC (4609)
0.81
5773



miR166d









aqc-miR166e
TCGGACCAGGCTTCATTCCCC (4610)
0.81
5774






ath-miR166a
TCGGACCAGGCTTCATTCCCC (4611)
0.81
5775






ath-miR166b
TCGGACCAGGCTTCATTCCCC (4612)
0.81
5776






ath-miR166c
TCGGACCAGGCTTCATTCCCC (4613)
0.81
5777






ath-miR166d
TCGGACCAGGCTTCATTCCCC (4614)
0.81
5778






ath-miR166e
TCGGACCAGGCTTCATTCCCC (4615)
0.81
5779






ath-miR166f
TCGGACCAGGCTTCATTCCCC (4616)
0.81
5780






ath-miR166g
TCGGACCAGGCTTCATTCCCC (4617)
0.81
5781






bdi-miR166
TCGGACCAGGCTTCATTCCCC (4618)
0.81
5782






bdi-miR166a
TCGGACCAGGCTTCATTCCCC (4619)
0.81
5783






bdi-miR166b
TCGGACCAGGCTTCATTCCCC (4620)
0.81
5784






bdi-miR166c
TCGGACCAGGCTTCATTCCCC (4621)
0.81
5785






bdi-miR166d
TCGGACCAGGCTTCATTCCCC (4622)
0.81
5786






bdi-miR166e
CTCGGACCAGGCTTCATTCCC (4623)
0.81
5787






bdi-miR166f
TCTCGGACCAGGCTTCATTCC (4624)
0.81
5788






bna-
TCGGACCAGGCTTCATTCCCC (4625)
0.81
5789



miR166a









bna-
TCGGACCAGGCTTCATTCCCC (4626)
0.81
5790



miR166b









bna-
TCGGACCAGGCTTCATTCCCC (4627)
0.81
5791



miR166c









bna-
TCGGACCAGGCTTCATTCCCC (4628)
0.81
5792



miR166d









cpt-miR166
TCGGACCAGGCTTCATTCCC (4629)
0.81
5793






crt-miR166a
TCGGACCAGGCTTCATTCCCGT (4630)
0.86
5794






crt-miR166b
TCGGACCAGGCTTCATTCCCTT (4631)
0.81
5795






csi-miR166
TCGGACCAGGCTTCATTCCCC (4632)
0.81
5796






csi-miR166a
TCGGACCAGGCTTCATTCCCCC (4633)
0.81
5797






csi-miR166b
TCGGACCAGGCTTCATTCCCGT (4634)
0.86
5798






csi-miR166c
TCGGACCAGGCTTCATTCCC (4635)
0.81
5799






csi-miR166d
TCGGACCAGGCTTCATTCCCT (4636)
0.81
5800






csi-miR166e
TCGGACCAGGCTTCATTCCCC (4637)
0.81
5801






ctr-miR166
TCGGACCAGGCTTCATTCCCCC (4638)
0.81
5802






far-miR166
CCGGACCAGGCTTCATCCCAG (4639)
1
5803






flm-miR166
TCGGACCAGGCTTCATCCCCC (4640)
0.86
5804






ghr-miR166a
TCGGACCAGGCTTCATTCCCC (4641)
0.81
5805






ghr-miR166b
TCGGACCAGGCTTCATTCCCC (4642)
0.81
5806






gma-
TCGGACCAGGCTTCATTCCCC (4643)
0.81
5807



miR166a









gma-
TCGGACCAGGCTTCATTCCCC (4644)
0.81
5808



miR166b









gma-
TCGGACCAGGCTTCATTCCCC (4645)
0.81
5809



miR166n









gma-
TCGGACCAGGCTTCATTCCCC (4646)
0.81
5810



miR166o









gma-
TCGGACCAGGCTTCATTCCCG (4647)
0.86
5811



miR166q









gma-
TCGGACCAGGCTTCATTCCCT (4648)
0.81
5812



miR166r









hvu-miR166
TCGGACCAGGCTTCATTCCCC (4649)
0.81
5813






hvu-
TCGGACCAGGCTTCATTCCCC (4650)
0.81
5814



miR166b









hvu-
TCGGACCAGGCTTCATTCCCC (4651)
0.81
5815



miR166c









hvv-miR166
TCGGACCAGGCTTCATTCCCC (4652)
0.81
5816






ini-miR166
TCGGACCAGGCTTCATTCCTC (4653)
0.81
5817






mtr-miR166
TCGGACCAGGCTTCATTCCCC (4654)
0.81
5818






mtr-
TCGGACCAGGCTTCATTCCTA (4655)
0.81
5819



miR166b









mtr-miR166c
TCGGACCAGGCTTCATTCCTC (4656)
0.81
5820






mtr-
TCGGGCCAGGCTTCATCCCCC (4657)
0.81
5821



miR166d









mtr-miR166e
TCGGACCAGGCTTCATTCCCC (4658)
0.81
5822






mtr-miR166f
TCGGACCAGGCTTCATTCCTC (4659)
0.81
5823






mtr-
TCGGACCAGGCTTCATTCCCC (4660)
0.81
5824



miR166g









mtr-
TCGGACCAGGCTTCATTCCCC (4661)
0.81
5825



miR166h









nsy-miR166
TCGGACCAGGCTTCATTCCCC (4662)
0.81
5826






osa-miR166a
TCGGACCAGGCTTCATTCCCC (4663)
0.81
5827






osa-miR166b
TCGGACCAGGCTTCATTCCCC (4664)
0.81
5828






osa-miR166c
TCGGACCAGGCTTCATTCCCC (4665)
0.81
5829






osa-miR166d
TCGGACCAGGCTTCATTCCCC (4666)
0.81
5830






osa-miR166e
TCGAACCAGGCTTCATTCCCC (4667)
0.76
5831






osa-miR166f
TCGGACCAGGCTTCATTCCCC (4668)
0.81
5832






osa-miR166g
TCGGACCAGGCTTCATTCCTC (4669)
0.81
5833






osa-miR166h
TCGGACCAGGCTTCATTCCTC (4670)
0.81
5834






osa-miR166i
TCGGATCAGGCTTCATTCCTC (4671)
0.76
5835






osa-miR166j
TCGGATCAGGCTTCATTCCTC (4672)
0.76
5836






osa-miR166k
TCGGACCAGGCTTCAATCCCT (4673)
0.76
5837






osa-miR166l
TCGGACCAGGCTTCAATCCCT (4674)
0.76
5838






osa-
TCGGACCAGGCTTCATTCCCT (4675)
0.81
5839



miR166m









osa-miR166n
TCGGACCAGGCTTCATTCCCC (4676)
0.81
5840






pab-
TCGGACCAGGCTTCATTCCTC (4677)
0.81
5841



miR166a









pab-
TCGGACCAGGCTTCATTCCTT (4678)
0.81
5842



miR166b









pga-miR166
TCGGACCAGGCTTCATTCCTT (4679)
0.81
5843






ppt-miR166a
TCGGACCAGGCTTCATTCCCC (4680)
0.81
5844






ppt-miR166b
TCGGACCAGGCTTCATTCCCC (4681)
0.81
5845






ppt-miR166c
TCGGACCAGGCTTCATTCCCC (4682)
0.81
5846






ppt-miR166d
TCGGACCAGGCTTCATTCCCC (4683)
0.81
5847






ppt-miR166e
TCGGACCAGGCTTCATTCCCC (4684)
0.81
5848






ppt-miR166f
TCGGACCAGGCTTCATTCCCC (4685)
0.81
5849






ppt-miR166g
TCGGACCAGGCTTCATTCCCC (4686)
0.81
5850






ppt-miR166h
TCGGACCAGGCTTCATTCCCC (4687)
0.81
5851






ppt-miR166i
TCGGACCAGGCTTCATTCCCC (4688)
0.81
5852






ppt-miR166j
TCCGGACCAGGCTTCATTCCC (4689)
0.86
5853






ppt-miR166k
TCCGGACCAGGCTTCATTCCC (4690)
0.86
5854






ppt-miR166l
TCCGGACCAGGCTTCATTCCC (4691)
0.86
5855






ppt-
TCGGACCAGGCATCATTCCTT (4692)
0.76
5856



miR166m









pta-miR166a
TCGGACCAGGCTTCATTCCCC (4693)
0.81
5857






pta-miR166b
TCGGACCAGGCTTCATTCCCC (4694)
0.81
5858






ptc-miR166a
TCGGACCAGGCTTCATTCCCC (4695)
0.81
5859






ptc-miR166b
TCGGACCAGGCTTCATTCCCC (4696)
0.81
5860






ptc-miR166c
TCGGACCAGGCTTCATTCCCC (4697)
0.81
5861






ptc-miR166d
TCGGACCAGGCTTCATTCCCC (4698)
0.81
5862






ptc-miR166e
TCGGACCAGGCTTCATTCCCC (4699)
0.81
5863






ptc-miR166f
TCGGACCAGGCTTCATTCCCC (4700)
0.81
5864






ptc-miR166g
TCGGACCAGGCTTCATTCCCC (4701)
0.81
5865






ptc-miR166h
TCGGACCAGGCTTCATTCCCC (4702)
0.81
5866






ptc-miR166i
TCGGACCAGGCTTCATTCCCC (4703)
0.81
5867






ptc-miR166j
TCGGACCAGGCTTCATTCCCC (4704)
0.81
5868






ptc-miR166k
TCGGACCAGGCTTCATTCCCC (4705)
0.81
5869






ptc-miR166l
TCGGACCAGGCTTCATTCCCC (4706)
0.81
5870






ptc-
TCGGACCAGGCTTCATTCCCC (4707)
0.81
5871



miR166m









ptc-miR166n
TCGGACCAGGCTTCATTCCTT (4708)
0.81
5872






ptc-miR166o
TCGGACCAGGCTTCATTCCTT (4709)
0.81
5873






ptc-miR166p
TCGGACCAGGCTCCATTCCTT (4710)
0.76
5874






ptc-miR166q
TCGGACCAGGCTTCATTCCTT (4711)
0.81
5875






pvu-miR166
TCGGACCAGGCTTCATTCCCC (4712)
0.81
5876






pvu-
TCGGACCAGGCTTCATTCCCC (4713)
0.81
5877



miR166a









rco-miR166a
TCGGACCAGGCTTCATTCCCC (4714)
0.81
5878






rco-miR166b
TCGGACCAGGCTTCATTCCCC (4715)
0.81
5879






rco-miR166c
TCGGACCAGGCTTCATTCCCC (4716)
0.81
5880






rco-miR166d
TCGGACCAGGCTTCATTCCCC (4717)
0.81
5881






rco-miR166e
TCGGACCAGGCTTCATTCCCC (4718)
0.81
5882






sbi-miR166a
TCGGACCAGGCTTCATTCCC (4719)
0.81
5883






sbi-miR166b
TCGGACCAGGCTTCATTCCC (4720)
0.81
5884






sbi-miR166c
TCGGACCAGGCTTCATTCCC (4721)
0.81
5885






sbi-miR166d
TCGGACCAGGCTTCATTCCC (4722)
0.81
5886






sbi-miR166e
TCGGACCAGGCTTCAATCCCT (4723)
0.76
5887






sbi-miR166f
TCGGACCAGGCTTCATTCCTC (4724)
0.81
5888






sbi-miR166g
TCGGACCAGGCTTCAATCCCT (4725)
0.76
5889






sbi-miR166h
TCGGACCAGGCTTCATTCCC (4726)
0.81
5890






sbi-miR166i
TCGGACCAGGCTTCATTCCC (4727)
0.81
5891






sbi-miR166j
TCGGACCAGGCTTCATTCCC (4728)
0.81
5892






sbi-miR166k
TCGGACCAGGCTTCATTCCT (4729)
0.81
5893






sly-miR166a
TCGGACCAGGCTTCATTCCCC (4730)
0.81
5894






sly-miR166b
TCGGACCAGGCTTCATTCCCC (4731)
0.81
5895






smo-
TCGGACCAGGCTTCATTCCCC (4732)
0.81
5896



miR166a









smo-
TCGGACCAGGCTTCATTCCCC (4733)
0.81
5897



miR166b









smo-
TCGGACCAGGCTTCATTCCCC (4734)
0.81
5898



miR166c









sof-miR166
TCGGACCAGGCTTCATTCCCC (4735)
0.81
5899






tae-miR166
CCGGACCAGGCTTCATTCCCA (4736)
0.86
5900






tcc-miR166a
TCGGACCAGGCTTCATTCCCC (4737)
0.81
5901






tcc-miR166b
TCGGACCAGGCTTCATTCCC (4738)
0.81
5902






tcc-miR166c
TCGGACCAGGCTTCATTCCTC (4739)
0.81
5903






tcc-miR166d
TCGGACCAGGCTTCATTCCCC (4740)
0.81
5904






vvi-miR166a
TCGGACCAGGCTTCATTCC (4741)
0.81
5905






vvi-miR166b
TCGGACCAGGCTTCATTCC (4742)
0.81
5906






vvi-miR166c
TCGGACCAGGCTTCATTCCCC (4743)
0.81
5907






vvi-miR166d
TCGGACCAGGCTTCATTCCCC (4744)
0.81
5908






vvi-miR166e
TCGGACCAGGCTTCATTCCCC (4745)
0.81
5909






vvi-miR166f
TCGGACCAGGCTTCATTCCCC (4746)
0.81
5910






vvi-miR166g
TCGGACCAGGCTTCATTCCCC (4747)
0.81
5911






vvi-miR166h
TCGGACCAGGCTTCATTCCCC (4748)
0.81
5912






zma-
TCGGACCAGGCTTCATTCCCC (4749)
0.81
5913



miR166a









zma-
TCGGACCAGGCTTCATTCCC (4750)
0.81
5914



miR166b









zma-
TCGGACCAGGCTTCATTCCC (4751)
0.81
5915



miR166c









zma-
TCGGACCAGGCTTCATTCCC (4752)
0.81
5916



miR166d









zma-
TCGGACCAGGCTTCATTCCC (4753)
0.81
5917



miR166e









zma-
TCGGACCAGGCTTCATTCCC (4754)
0.81
5918



miR166f









zma-
TCGGACCAGGCTTCATTCCC (4755)
0.81
5919



miR166g









zma-
TCGGACCAGGCTTCATTCCC (4756)
0.81
5920



miR166h









zma-
TCGGACCAGGCTTCATTCCC (4757)
0.81
5921



miR166i









zma-
TCGGACCAGGCTTCAATCCCT (4758)
0.76
5922



miR166j









zma-
TCGGACCAGGCTTCAATCCCT (4759)
0.76
5923



miR166k









zma-
TCGGACCAGGCTTCATTCCTC (4760)
0.81
5924



miR166l









zma-
TCGGACCAGGCTTCATTCCTC (4761)
0.81
5925



miR166m









zma-
TCGGACCAGGCTTCAATCCCT (4762)
0.76
5926



miR166n









zma-
TCGGACCAGGCTTCATTCCCC (4763)
0.81
5927



miR166o









zma-
TCGGACCAGGCTTCATTCCCC (4764)
0.81
5928



miR166p









zma-
TCGGACCAGGCTTCATTCCCC (4765)
0.81
5929



miR166q









zma-
TCGGACCAGGCTTCATTCCCC (4766)
0.81
5930



miR166r









zma-
TCGGACCAGGCTTCATTCCCC (4767)
0.81
5931



miR166s









zma-
TCGGACCAGGCTTCATTCCCC (4768)
0.81
5932



miR166t









zma-
TCGGACCACGCTTCATTCCCC (4769)
0.76
5933



miR166u








ptc-miR166p
aly-miR166a
TCGGACCAGGCTTCATTCCCC (4770)
0.86
5934






aly-miR166b
TCGGACCAGGCTTCATTCCCC (4771)
0.86
5935






aly-miR166c
TCGGACCAGGCTTCATTCCCC (4772)
0.86
5936






aly-miR166d
TCGGACCAGGCTTCATTCCCC (4773)
0.86
5937






aly-miR166e
TCGGACCAGGCTTCATTCCCC (4774)
0.86
5938






aly-miR166f
TCGGACCAGGCTTCATTCCCC (4775)
0.86
5939






aly-miR166g
TCGGACCAGGCTTCATTCCCC (4776)
0.86
5940






aqc-miR166a
TCGGACCAGGCTTCATTCCTC (4777)
0.9
5941






aqc-
TCGGACCAGGCTTCATTCCCC (4778)
0.86
5942



miR166b









aqc-miR166c
TCGGACCAGGCTTCATTCCT (4779)
0.9
5943






aqc-
TCGGACCAGGCTTCATTCCTC (4780)
0.9
5944



miR166d









aqc-miR166e
TCGGACCAGGCTTCATTCCCC (4781)
0.86
5945






ath-miR166a
TCGGACCAGGCTTCATTCCCC (4782)
0.86
5946






ath-miR166b
TCGGACCAGGCTTCATTCCCC (4783)
0.86
5947






ath-miR166c
TCGGACCAGGCTTCATTCCCC (4784)
0.86
5948






ath-miR166d
TCGGACCAGGCTTCATTCCCC (4785)
0.86
5949






ath-miR166e
TCGGACCAGGCTTCATTCCCC (4786)
0.86
5950






ath-miR166f
TCGGACCAGGCTTCATTCCCC (4787)
0.86
5951






ath-miR166g
TCGGACCAGGCTTCATTCCCC (4788)
0.86
5952






bdi-miR166
TCGGACCAGGCTTCATTCCCC (4789)
0.86
5953






bdi-miR166a
TCGGACCAGGCTTCATTCCCC (4790)
0.86
5954






bdi-miR166b
TCGGACCAGGCTTCATTCCCC (4791)
0.86
5955






bdi-miR166c
TCGGACCAGGCTTCATTCCCC (4792)
0.86
5956






bdi-miR166d
TCGGACCAGGCTTCATTCCCC (4793)
0.86
5957






bdi-miR166e
CTCGGACCAGGCTTCATTCCC (4794)
0.86
5958






bdi-miR166f
TCTCGGACCAGGCTTCATTCC (4795)
0.86
5959






bna-
TCGGACCAGGCTTCATTCCCC (4796)
0.86
5960



miR166a









bna-
TCGGACCAGGCTTCATTCCCC (4797)
0.86
5961



miR166b









bna-
TCGGACCAGGCTTCATTCCCC (4798)
0.86
5962



miR166c









bna-
TCGGACCAGGCTTCATTCCCC (4799)
0.86
5963



miR166d









cpt-miR166
TCGGACCAGGCTTCATTCCC (4800)
0.86
5964






crt-miR166a
TCGGACCAGGCTTCATTCCCGT (4801)
0.86
5965






crt-miR166b
TCGGACCAGGCTTCATTCCCTT (4802)
0.9
5966






csi-miR166
TCGGACCAGGCTTCATTCCCC (4803)
0.86
5967






csi-miR166a
TCGGACCAGGCTTCATTCCCCC (4804)
0.86
5968






csi-miR166b
TCGGACCAGGCTTCATTCCCGT (4805)
0.86
5969






csi-miR166c
TCGGACCAGGCTTCATTCCC (4806)
0.86
5970






csi-miR166d
TCGGACCAGGCTTCATTCCCT (4807)
0.9
5971






csi-miR166e
TCGGACCAGGCTTCATTCCCC (4808)
0.86
5972






ctr-miR166
TCGGACCAGGCTTCATTCCCCC (4809)
0.86
5973






far-miR166
CCGGACCAGGCTTCATCCCAG (4810)
0.76
5974






flm-miR166
TCGGACCAGGCTTCATCCCCC (4811)
0.81
5975






ghr-miR166a
TCGGACCAGGCTTCATTCCCC (4812)
0.86
5976






ghr-miR166b
TCGGACCAGGCTTCATTCCCC (4813)
0.86
5977






gma-
TCGGACCAGGCTTCATTCCCC (4814)
0.86
5978



miR166a









gma-
TCGGACCAGGCTTCATTCCCC (4815)
0.86
5979



miR166b









gma-
TCGGACCAGGCTTCATTCCCC (4816)
0.86
5980



miR166n









gma-
TCGGACCAGGCTTCATTCCCC (4817)
0.86
5981



miR166o









gma-
TCGGACCAGGCTTCATTCCCG (4818)
0.86
5982



miR166q









gma-
TCGGACCAGGCTTCATTCCCT (4819)
0.9
5983



miR166r









hvu-miR166
TCGGACCAGGCTTCATTCCCC (4820)
0.86
5984






hvu-
TCGGACCAGGCTTCATTCCCC (4821)
0.86
5985



miR166b









hvu-
TCGGACCAGGCTTCATTCCCC (4822)
0.86
5986



miR166c









hvv-miR166
TCGGACCAGGCTTCATTCCCC (4823)
0.86
5987






ini-miR166
TCGGACCAGGCTTCATTCCTC (4824)
0.9
5988






mtr-miR166
TCGGACCAGGCTTCATTCCCC (4825)
0.86
5989






mtr-
TCGGACCAGGCTTCATTCCTA (4826)
0.9
5990



miR166b
(TCGGACCAGGCTTCATTCCCC (5116)








mtr-miR166c
TCGGACCAGGCTTCATTCCTC (4827)
0.9
5991






mtr-
TCGGGCCAGGCTTCATCCCCC (4828)
0.76
5992



miR166d









mtr-miR166e
TCGGACCAGGCTTCATTCCCC (4829)
0.86
5993






mtr-miR166f
TCGGACCAGGCTTCATTCCTC (4830)
0.9
5994






mtr-
TCGGACCAGGCTTCATTCCCC (4831)
0.86
5995



miR166g









mtr-
TCGGACCAGGCTTCATTCCCC (4832)
0.86
5996



miR166h









nsy-miR166
TCGGACCAGGCTTCATTCCCC (4833)
0.86
5997






osa-miR166a
TCGGACCAGGCTTCATTCCCC (4834)
0.86
5998






osa-miR166b
TCGGACCAGGCTTCATTCCCC (4835)
0.86
5999






osa-miR166c
TCGGACCAGGCTTCATTCCCC (4836)
0.86
6000






osa-miR166d
TCGGACCAGGCTTCATTCCCC (4837)
0.86
6001






osa-miR166e
TCGAACCAGGCTTCATTCCCC (4838)
0.81
6002






osa-miR166f
TCGGACCAGGCTTCATTCCCC (4839)
0.86
6003






osa-miR166g
TCGGACCAGGCTTCATTCCTC (4840)
0.9
6004






osa-miR166h
TCGGACCAGGCTTCATTCCTC (4841)
0.9
6005






osa-miR166i
TCGGATCAGGCTTCATTCCTC (4842)
0.86
6006






osa-miR166j
TCGGATCAGGCTTCATTCCTC (4843)
0.86
6007






osa-miR166k
TCGGACCAGGCTTCAATCCCT (4844)
0.86
6008






osa-miR166l
TCGGACCAGGCTTCAATCCCT (4845)
0.86
6009






osa-
TCGGACCAGGCTTCATTCCCT (4846)
0.9
6010



miR166m









osa-miR166n
TCGGACCAGGCTTCATTCCCC (4847)
0.86
6011






pab-
TCGGACCAGGCTTCATTCCTC (4848)
0.9
6012



miR166a









pab-
TCGGACCAGGCTTCATTCCTT (4849)
0.95
6013



miR166b









pga-miR166
TCGGACCAGGCTTCATTCCTT (4850)
0.95
6014






ppt-miR166a
TCGGACCAGGCTTCATTCCCC (4851)
0.86
6015






ppt-miR166b
TCGGACCAGGCTTCATTCCCC (4852)
0.86
6016






ppt-miR166c
TCGGACCAGGCTTCATTCCCC (4853)
0.86
6017






ppt-miR166d
TCGGACCAGGCTTCATTCCCC (4854)
0.86
6018






ppt-miR166e
TCGGACCAGGCTTCATTCCCC (4855)
0.86
6019






ppt-miR166f
TCGGACCAGGCTTCATTCCCC (4856)
0.86
6020






ppt-miR166g
TCGGACCAGGCTTCATTCCCC (4857)
0.86
6021






ppt-miR166h
TCGGACCAGGCTTCATTCCCC (4858)
0.86
6022






ppt-miR166i
TCGGACCAGGCTTCATTCCCC (4859)
0.86
6023






ppt-miR166j
TCCGGACCAGGCTTCATTCCC (4860)
0.81
6024






ppt-miR166k
TCCGGACCAGGCTTCATTCCC (4861)
0.81
6025






ppt-miR166l
TCCGGACCAGGCTTCATTCCC (4862)
0.81
6026






ppt-
TCGGACCAGGCATCATTCCTT (4863)
0.9
6027



miR166m









pta-miR166a
TCGGACCAGGCTTCATTCCCC (4864)
0.86
6028






pta-miR166b
TCGGACCAGGCTTCATTCCCC (4865)
0.86
6029






pta-miR166c
CCGGACCAGGCTTCATCCCAG (4866)
0.76
6030






ptc-miR166a
TCGGACCAGGCTTCATTCCCC (4867)
0.86
6031






ptc-miR166b
TCGGACCAGGCTTCATTCCCC (4868)
0.86
6032






ptc-miR166c
TCGGACCAGGCTTCATTCCCC (4869)
0.86
6033






ptc-miR166d
TCGGACCAGGCTTCATTCCCC (4870)
0.86
6034






ptc-miR166e
TCGGACCAGGCTTCATTCCCC (4871)
0.86
6035






ptc-miR166f
TCGGACCAGGCTTCATTCCCC (4872)
0.86
6036






ptc-miR166g
TCGGACCAGGCTTCATTCCCC (4873)
0.86
6037






ptc-miR166h
TCGGACCAGGCTTCATTCCCC (4874)
0.86
6038






ptc-miR166i
TCGGACCAGGCTTCATTCCCC (4875)
0.86
6039






ptc-miR166j
TCGGACCAGGCTTCATTCCCC (4876)
0.86
6040






ptc-miR166k
TCGGACCAGGCTTCATTCCCC (4877)
0.86
6041






ptc-miR166l
TCGGACCAGGCTTCATTCCCC (4878)
0.86
6042






ptc-
TCGGACCAGGCTTCATTCCCC (4879)
0.86
6043



miR166m









ptc-miR166n
TCGGACCAGGCTTCATTCCTT (4880)
0.95
6044






ptc-miR166o
TCGGACCAGGCTTCATTCCTT (4881)
0.95
6045






ptc-miR166q
TCGGACCAGGCTTCATTCCTT (4882)
0.95
6046






pvu-miR166
TCGGACCAGGCTTCATTCCCC (4883)
0.86
6047






pvu-
TCGGACCAGGCTTCATTCCCC (4884)
0.86
6048



miR166a









rco-miR166a
TCGGACCAGGCTTCATTCCCC (4885)
0.86
6049






rco-miR166b
TCGGACCAGGCTTCATTCCCC (4886)
0.86
6050






rco-miR166c
TCGGACCAGGCTTCATTCCCC (4887)
0.86
6051






rco-miR166d
TCGGACCAGGCTTCATTCCCC (4888)
0.86
6052






rco-miR166e
TCGGACCAGGCTTCATTCCCC (4889)
0.86
6053






sbi-miR166a
TCGGACCAGGCTTCATTCCC (4890)
0.86
6054






sbi-miR166b
TCGGACCAGGCTTCATTCCC (4891)
0.86
6055






sbi-miR166c
TCGGACCAGGCTTCATTCCC (4892)
0.86
6056






sbi-miR166d
TCGGACCAGGCTTCATTCCC (4893)
0.86
6057






sbi-miR166e
TCGGACCAGGCTTCAATCCCT (4894)
0.86
6058






sbi-miR166f
TCGGACCAGGCTTCATTCCTC (4895)
0.9
6059






sbi-miR166g
TCGGACCAGGCTTCAATCCCT (4896)
0.86
6060






sbi-miR166h
TCGGACCAGGCTTCATTCCC (4897)
0.86
6061






sbi-miR166i
TCGGACCAGGCTTCATTCCC (4898)
0.86
6062






sbi-miR166j
TCGGACCAGGCTTCATTCCC (4899)
0.86
6063






sbi-miR166k
TCGGACCAGGCTTCATTCCT (4900)
0.9
6064






sly-miR166a
TCGGACCAGGCTTCATTCCCC (4901)
0.86
6065






sly-miR166b
TCGGACCAGGCTTCATTCCCC (4902)
0.86
6066






smo-
TCGGACCAGGCTTCATTCCCC (4903)
0.86
6067



miR166a









smo-
TCGGACCAGGCTTCATTCCCC (4904)
0.86
6068



miR166b









smo-
TCGGACCAGGCTTCATTCCCC (4905)
0.86
6069



miR166c









sof-miR166
TCGGACCAGGCTTCATTCCCC (4906)
0.86
6070






tae-miR166
CCGGACCAGGCTTCATTCCCA (4907)
0.81
6071






tcc-miR166a
TCGGACCAGGCTTCATTCCCC (4908)
0.86
6072






tcc-miR166b
TCGGACCAGGCTTCATTCCC (4909)
0.86
6073






tcc-miR166c
TCGGACCAGGCTTCATTCCTC (4910)
0.9
6074






tcc-miR166d
TCGGACCAGGCTTCATTCCCC (4911)
0.86
6075






vvi-miR166a
TCGGACCAGGCTTCATTCC (4912)
0.86
6076






vvi-miR166b
TCGGACCAGGCTTCATTCC (4913)
0.86
6077






vvi-miR166c
TCGGACCAGGCTTCATTCCCC (4914)
0.86
6078






vvi-miR166d
TCGGACCAGGCTTCATTCCCC (4915)
0.86
6079






vvi-miR166e
TCGGACCAGGCTTCATTCCCC (4916)
0.86
6080






vvi-miR166f
TCGGACCAGGCTTCATTCCCC (4917)
0.86
6081






vvi-miR166g
TCGGACCAGGCTTCATTCCCC (4918)
0.86
6082






vvi-miR166h
TCGGACCAGGCTTCATTCCCC (4919)
0.86
6083






zma-
TCGGACCAGGCTTCATTCCCC (4920)
0.86
6084



miR166a









zma-
TCGGACCAGGCTTCATTCCC (4921)
0.86
6085



miR166b









zma-
TCGGACCAGGCTTCATTCCC (4922)
0.86
6086



miR166c









zma-
TCGGACCAGGCTTCATTCCC (4923)
0.86
6087



miR166d









zma-
TCGGACCAGGCTTCATTCCC (4924)
0.86
6088



miR166e









zma-
TCGGACCAGGCTTCATTCCC (4925)
0.86
6089



miR166f









zma-
TCGGACCAGGCTTCATTCCC (4926)
0.86
6090



miR166g









zma-
TCGGACCAGGCTTCATTCCC (4927)
0.86
6091



miR166h









zma-
TCGGACCAGGCTTCATTCCC (4928)
0.86
6092



miR166i









zma-
TCGGACCAGGCTTCAATCCCT (4929)
0.86
6093



miR166j









zma-
TCGGACCAGGCTTCAATCCCT (4930)
0.86
6094



miR166k









zma-
TCGGACCAGGCTTCATTCCTC (4931)
0.9
6095



miR166l









zma-
TCGGACCAGGCTTCATTCCTC (4932)
0.9
6096



miR166m









zma-
TCGGACCAGGCTTCAATCCCT (4933)
0.86
6097



miR166n









zma-
TCGGACCAGGCTTCATTCCCC (4934)
0.86
6098



miR166o









zma-
TCGGACCAGGCTTCATTCCCC (4935)
0.86
6099



miR166p









zma-
TCGGACCAGGCTTCATTCCCC (4936)
0.86
6100



miR166q









zma-
TCGGACCAGGCTTCATTCCCC (4937)
0.86
6101



miR166r









zma-
TCGGACCAGGCTTCATTCCCC (4938)
0.86
6102



miR166s









zma-
TCGGACCAGGCTTCATTCCCC (4939)
0.86
6103



miR166t









zma-
TCGGACCACGCTTCATTCCCC (4940)
0.81
6104



miR166u








vvi-miR394b
ahy-miR394
TTGGCATTCTGTCCACCTCC (4941)
1
6105






aly-miR394a
TTGGCATTCTGTCCACCTCC (4942)
1
6106






aly-miR394b
TTGGCATTCTGTCCACCTCC (4943)
1
6107






ath-miR394a
TTGGCATTCTGTCCACCTCC (4944)
1
6108






ath-miR394b
TTGGCATTCTGTCCACCTCC (4945)
1
6109






bdi-miR394
TTGGCATTCTGTCCACCTCC (4946)
1
6110






csi-miR394
TTGGCATTCTGTCCACCTCC (4947)
1
6111






ghr-miR394
TTGGCATTCTGTCCACCTCC (4948)
1
6112






ghr-miR394a
TTGGCATTCTGTCCACCTCC (4949)
1
6113






ghr-miR394b
TTGGCATTCTGTCCACCTCC (4950)
1
6114






gma-
AGGTGGGCATACTGTCAACT (4951)
0.65
6115



miR394b









osa-miR394
TTGGCATTCTGTCCACCTCC (4952)
1
6116






ptc-
TTGGCATTCTGTCCACCTCC (4953)
1
6117



miR394a-5p









ptc-
TTGGCATTCTGTCCACCTCC (4954)
1
6118



miR394b-5p









sbi-miR394a
TTGGCATTCTGTCCACCTCC (4955)
1
6119






sbi-miR394b
TTGGCATTCTGTCCACCTCC (4956)
1
6120






tcc-miR394a
TTGGCATTCTGTCCACCTCC (4957)
1
6121






tcc-miR394b
TTGGCATTCTGTCCACCTCC (4958)
1
6122






vvi-miR394a
TTGGCATTCTGTCCACCTCCAT (4959)
1
6123






vvi-miR394c
TTGGCATTCTGTCCACCTCCAT (4960)
1
6124






zma-
TTGGCATTCTGTCCACCTCC (4961)
1
6125



miR394a









zma-
TTGGCATTCTGTCCACCTCC (4962)
1
6126



miR394b








zma-miR167u
ahy-miR167-
TGAAGCTGCCAGCATGATCTT (4963)
0.95
6127



5p









aly-miR167a
TGAAGCTGCCAGCATGATCTA (4964)
0.95
6128






aly-miR167b
TGAAGCTGCCAGCATGATCTA (4965)
0.95
6129






aly-
GGTCATGCTCTGACAGCCTCACT (4966)
0.5
6130



miR167b*









aly-miR167c
TAAGCTGCCAGCATGATCTTG (4967)
0.85
6131






aly-miR167d
TGAAGCTGCCAGCATGATCTGG (4968)
1
6132






aqc-miR167
TCAAGCTGCCAGCATGATCTA (4969)
0.9
6133






ath-miR167a
TGAAGCTGCCAGCATGATCTA (4970)
0.95
6134






ath-miR167b
TGAAGCTGCCAGCATGATCTA (4971)
0.95
6135






ath-miR167c
TAAGCTGCCAGCATGATCTTG (4972)
0.85
6136






ath-miR167d
TGAAGCTGCCAGCATGATCTGG (4973)
1
6137






ath-
TGAAGCTGCCAGCATGATCTG (4974)
1
6138



miR167m









bdi-miR167
TGAAGCTGCCAGCATGATCTA (4975)
0.95
6139






bdi-miR167a
TGAAGCTGCCAGCATGATCTA (4976)
0.95
6140






bdi-miR167b
TGAAGCTGCCAGCATGATCTA (4977)
0.95
6141






bdi-miR167c
TGAAGCTGCCAGCATGATCTGA (4978)
1
6142






bdi-miR167d
TGAAGCTGCCAGCATGATCTGA (4979)
1
6143






bna-
TGAAGCTGCCAGCATGATCTAA (4980)
0.95
6144



miR167a









bna-
TGAAGCTGCCAGCATGATCTAA (4981)
0.95
6145



miR167b









bna-
TGAAGCTGCCAGCATGATCTA (4982)
0.95
6146



miR167c









bra-miR167a
TGAAGCTGCCAGCATGATCTA (4983)
0.95
6147






bra-miR167b
TGAAGCTGCCAGCATGATCTA (4984)
0.95
6148






bra-miR167c
TGAAGCTGCCAGCATGATCTA (4985)
0.95
6149






bra-miR167d
TGAAGCTGCCAGCATGATCTA (4986)
0.95
6150






ccl-miR167a
TGAAGCTGCCAGCATGATCTGA (4987)
1
6151






ccl-miR167b
TGAAGCTGCCAGCATGATCTGA (4988)
1
6152






cle-miR167
TGAAGCTGCCAGCATGATCTG (4989)
1
6153






csi-miR167a
TGAAGCTGCCAGCATGATCTG (4990)
1
6154






csi-miR167b
TGAAGCTGCCAGCATGATCTT (4991)
0.95
6155






csi-miR167c
TGAAGCTGCCAGCATGATCTG (4992)
1
6156






ctr-miR167
TGAAGCTGCCAGCATGATCTGA (4993)
1
6157






ghr-miR167
TGAAGCTGCCAGCATGATCTA (4994)
0.95
6158






gma-
TGAAGCTGCCAGCATGATCTA (4995)
0.95
6159



miR167a









gma-
TGAAGCTGCCAGCATGATCTA (4996)
0.95
6160



miR167b









gma-
TGAAGCTGCCAGCATGATCTG (4997)
1
6161



miR167c









gma-
TGAAGCTGCCAGCATGATCTA (4998)
0.95
6162



miR167d









gma-
TGAAGCTGCCAGCATGATCTT (4999)
0.95
6163



miR167e









gma-
TGAAGCTGCCAGCATGATCTT (5000)
0.95
6164



miR167f









gma-
TGAAGCTGCCAGCATGATCTGA (5001)
1
6165



miR167g









gma-
TGAAGCTGCCAGCATGATCT (5002)
0.95
6166



miR167n









gma-
TGAAGCTGCCAGCATGATCTG (5003)
1
6167



miR167o









gso-miR167a
TGAAGCTGCCAGCATGATCTG (5004)
1
6168






ini-miR167
TGAAGCTGCCAGCATGATCTG (5005)
1
6169






lja-miR167
TGAAGCTGCCAGCATGATCTG (5006)
1
6170






mtr-miR167
TGAAGCTGCCAGCATGATCTA (5007)
0.95
6171






osa-miR167a
TGAAGCTGCCAGCATGATCTA (5008)
0.95
6172






osa-
ATCATGCATGACAGCCTCATTT (5009)
0.65
6173



miR167a*









osa-miR167b
TGAAGCTGCCAGCATGATCTA (5010)
0.95
6174






osa-miR167c
TGAAGCTGCCAGCATGATCTA (5011)
0.95
6175






osa-miR167d
TGAAGCTGCCAGCATGATCTG (5012)
1
6176






osa-miR167e
TGAAGCTGCCAGCATGATCTG (5013)
1
6177






osa-miR167f
TGAAGCTGCCAGCATGATCTG (5014)
1
6178






osa-miR167g
TGAAGCTGCCAGCATGATCTG (5015)
1
6179






osa-miR167h
TGAAGCTGCCAGCATGATCTG (5016)
1
6180






osa-miR167i
TGAAGCTGCCAGCATGATCTG (5017)
1
6181






osa-miR167j
TGAAGCTGCCAGCATGATCTG (5018)
1
6182






osa-
TGAAGCTGCCAGCATGATCTG (5019)
1
6183



miR167m









osa-miR167n
TGAAGCTGCCAGCATGATCTG (5020)
1
6184






pco-miR167
TGAAGCTGCCAGCATGATCTT (5021)
0.95
6185






ppl-miR167a
TGAAGCTGCCAGCATGATCTA (5022)
0.95
6186






ppl-miR167b
TGAAGCTGCCAGCATGATCTG (5023)
1
6187






ppt-miR167
GGAAGCTGCCAGCATGATCCT (5024)
0.85
6188






ptc-miR167a
TGAAGCTGCCAGCATGATCTA (5025)
0.95
6189






ptc-miR167b
TGAAGCTGCCAGCATGATCTA (5026)
0.95
6190






ptc-miR167c
TGAAGCTGCCAGCATGATCTA (5027)
0.95
6191






ptc-miR167d
TGAAGCTGCCAGCATGATCTA (5028)
0.95
6192






ptc-miR167e
TGAAGCTGCCAGCATGATCTG (5029)
1
6193






ptc-miR167f
TGAAGCTGCCAGCATGATCTT (5030)
0.95
6194






ptc-miR167g
TGAAGCTGCCAGCATGATCTT (5031)
0.95
6195






ptc-miR167h
TGAAGCTGCCAACATGATCTG (5032)
1
6196






pts-miR167
TGAAGCTGCCAGCATGATCTG (5033)
1
6197






rco-miR167a
TGAAGCTGCCAGCATGATCTA (5034)
0.95
6198






rco-miR167b
TGAAGCTGCCAGCATGATCTA (5035)
0.95
6199






rco-miR167c
TGAAGCTGCCAGCATGATCTGG (5036)
1
6200






sbi-miR167a
TGAAGCTGCCAGCATGATCTA (5037)
0.95
6201






sbi-miR167b
TGAAGCTGCCAGCATGATCTA (5038)
0.95
6202






sbi-miR167c
TGAAGCTGCCAGCATGATCTG (5039)
1
6203






sbi-miR167d
TGAAGCTGCCAGCATGATCTG (5040)
1
6204






sbi-miR167e
TGAAGCTGCCAGCATGATCTG (5041)
1
6205






sbi-miR167f
TGAAGCTGCCAGCATGATCTG (5042)
1
6206






sbi-miR167g
TGAAGCTGCCAGCATGATCTG (5043)
1
6207






sbi-miR167h
TGAAGCTGCCAGCATGATCTG (5044)
1
6208






sbi-miR167i
TGAAGCTGCCAGCATGATCTA (5045)
0.95
6209






sly-miR167
TGAAGCTGCCAGCATGATCTA (5046)
0.95
6210






sof-miR167a
TGAAGCTGCCAGCATGATCTG (5047)
1
6211






sof-miR167b
TGAAGCTGCCAGCATGATCTG (5048)
1
6212






ssp-miR167
TGAAGCTGCCAGCATGATCTG (5049)
1
6213






ssp-miR167b
TGAAGCTGCCAGCATGATCTG (5050)
1
6214






tae-miR167
TGAAGCTGCCAGCATGATCTA (5051)
0.95
6215






tae-miR167b
TGAAGCTGACAGCATGATCTA (5052)
0.9
6216






tcc-miR167a
TGAAGCTGCCAGCATGATCTA (5053)
0.95
6217






tcc-miR167b
TGAAGCTGCCAGCATGATCTA (5054)
0.95
6218






tcc-miR167c
TGAAGCTGCCAGCATGATCTT (5055)
0.95
6219






vvi-miR167a
TGAAGCTGCCAGCATGATCTG (5056)
1
6220






vvi-miR167b
TGAAGCTGCCAGCATGATCTA (5057)
0.95
6221






vvi-miR167c
TGAAGCTGCCAGCATGATCTC (5058)
0.95
6222






vvi-miR167d
TGAAGCTGCCAGCATGATCTA (5059)
0.95
6223






vvi-miR167e
TGAAGCTGCCAGCATGATCTA (5060)
0.95
6224






zma-
TGAAGCTGCCAGCATGATCTA (5061)
0.95
6225



miR167a









zma-
TGAAGCTGCCAGCATGATCTA (5062)
0.95
6226



miR167b









zma-
GATCATGCTGTGACAGTTTCACT (5063)
0.55
6227



miR167b*









zma-
TGAAGCTGCCAGCATGATCTA (5064)
0.95
6228



miR167c









zma-
TGAAGCTGCCAGCATGATCTA (5065)
0.95
6229



miR167d









zma-
TGAAGCTGCCAGCATGATCTG (5066)
1
6230



miR167e









zma-
TGAAGCTGCCAGCATGATCTG (5067)
1
6231



miR167f









zma-
TGAAGCTGCCAGCATGATCTG (5068)
1
6232



miR167g









zma-
TGAAGCTGCCAGCATGATCTG (5069)
1
6233



miR167h









zma-
TGAAGCTGCCAGCATGATCTG (5070)
1
6234



miR167i









zma-
TGAAGCTGCCAGCATGATCTG (5071)
1
6235



miR167j









zma-
TGAAGCTGCCAGCATGATCTG (5072)
1
6236



miR167k









zma-
TGAAGCTGCCAGCATGATCTG (5073)
1
6237



miR167l









zma-
TGAAGCTGCCAGCATGATCTG (5074)
1
6238



miR167m









zma-
TGAAGCTGCCAGCATGATCTA (5075)
0.95
6239



miR167n









zma-
TGAAGCTGCCAGCATGATCTA (5076)
0.95
6240



miR167o









zma-
TGAAGCTGCCAGCATGATCTA (5077)
0.95
6241



miR167p









zma-
TGAAGCTGCCAGCATGATCTA (5078)
0.95
6242



miR167q









zma-
TGAAGCTGCCAGCATGATCTA (5079)
0.95
6243



miR167r









zma-
TGAAGCTGCCAGCATGATCTA (5080)
0.95
6244



miR167s









zma-
TGAAGCTGCCAGCATGATCTA (5081)
0.95
6245



miR167t








gma-miR2119
mtr-
TCAAAGGGAGGTGTGGAGTAG (5082)
0.76
6246



miR2119









pvu-
TCAAAGGGAGTTGTAGGGGAA (5083)
1
6247



miR2119








osa-miR162a
aly-miR162a
TCGATAAACCTCTGCATCCAG (5084)
1
6248






aly-miR162b
TCGATAAACCTCTGCATCCAG (5085)
1
6249






ath-miR162a
TCGATAAACCTCTGCATCCAG (5086)
1
6250






ath-miR162b
TCGATAAACCTCTGCATCCAG (5087)
1
6251






bdi-miR162
TCGATAAACCTCTGCATCCGG (5088)
0.95
6252






cpa-miR162a
TCGATAAACCTCTGCATCCAG (5089)
1
6253






csi-miR162
TCGATAAACCTCTGCATCCAG (5090)
1
6254






csi-miR162.5
TCGATAAACCTCTGCATCCAG (5091)
1
6255






ghr-miR162a
TCGATAAACCTCTGCATCCAG (5092)
1
6256






gma-miR162
TCGATAAACCTCTGCATCCA (5093)
0.95
6257






gma-
TCGATAAACCTCTGCATCCAG (5094)
1
6258



miR162a









gma-
TCGATAAACCTCTGCATCCAG (5095)
1
6259



miR162m









llu-miR162
TCGATAAACCTCTGCATCCAG (5096)
1
6260






lsa-miR162
TCGATAAACCTCTGCATCCAG (5097)
1
6261






mdo-miR162
TCGATAAACCTTTGCATCCAG (5098)
0.95
6262






mtr-miR162
TCGATAAACCTCTGCATCCAG (5099)
1
6263






mtr-
TCGATAAACCTCTGCATCCA (5100)
0.95
6264



miR162b









mtr-miR162c
TCGATGAACCGCTGCATCCAG (5101)
0.9
6265






mtr-
TCGATAAACCTCTGCATCCAG (5102)
1
6266



miR162d









osa-miR162b
TCGATAAGCCTCTGCATCCAG (5103)
0.95
6267






osa-
TCGATAAGCCTCTGCATCCAG (5104)
0.95
6268



miR162m









ptc-miR162a
TCGATAAACCTCTGCATCCAG (5105)
1
6269






ptc-miR162b
TCGATAAACCTCTGCATCCAG (5106)
1
6270






ptc-miR162c
TCGATAAACCTCTGCATCCAG (5107)
1
6271






rco-miR162
TCGATAAACCTCTGCATCCAG (5108)
1
6272






sbi-miR162
TCGATAAACCTCTGCATCCAG (5109)
1
6273






sly-miR162
TCGATAAACCTCTGCATCCAG (5110)
1
6274






tcc-miR162
TCGATAAACCTCTGCATCCAG (5111)
1
6275






vvi-miR162
TCGATAAACCTCTGCATCCAG (5112)
1
6276






zma-miR162
TCGATAAACCTCTGCATCCA (5113)
0.95
6277






zma-
TCGATAAACCTCTGCATCCAG (5114)
1
6278



miR162b









Example 3
Identification of miRNAs Associated with Abiotic Stress and Target Prediction Using Bioinformatics Tools

Small RNAs that are potentially associated with improved abiotic or biotic stress tolerance can be identified by proprietary computational algorithms that analyze RNA expression profiles alongside publicly available gene and protein databases. A high throughput screening is performed on microarrays loaded with miRNAs that were found to be differential under multiple stress and optimal environmental conditions and in different plant tissues. The initial trait-associated miRNAs are later validated by quantitative Real Time PCR (qRT-PCR).


Target prediction—homologous or orthologous genes to the genes of interest in soybean and/or arabidopsis are found through a proprietary tool that analyzes publicly available genomic as well as expression and gene annotation databases from multiple plant species. Homologous and orthologous protein and nucleotide sequences of target genes of the small RNA sequences of the invention, were found using BLAST having at least 70% identity on at least 60% of the entire master gene length, and are summarized in Tables 9-10 below.









TABLE 9







Target Genes of upregulated Small RNA Molecules Associated with Abiotic Stress Tolerance in Soybean Plants.















Mir
Homolog
Nucleotide







Binding
NCBI
NCBI GI


Protein
Nucleotide


Mir Name
Position
Accession
number
Identity
Organism
Seq id no:
Seq id no:

















aqc-
305-325
XP_003551790
356567161
1

Glycine max

6315
8130


miR159
334-354
XP_003554567
356572827
1

Glycine max

6316
8131




XP_003521605
356505654
0.9723

Glycine max

6317
8132




XP_003521606
356505656
0.9723

Glycine max

6318
8133




XP_003626013
357511448
0.8949

Medicago truncatula

6319
8134




XP_002272575
225437676
0.8423

Vitis vinifera

6320
8135




CBI37003
270254427
0.8409

Vitis vinifera

6321
8136




XP_002515224
255761086
0.8382

Ricinus communis

6322




CAN71135
147786943
0.8354

Vitis vinifera

6323
8137




XP_002301535
255761085
0.8313

Populus trichocarpa

6324




ADF30190
294713705
0.8119

Brassica napus

6325
8138



124-144
XP_003543825
356550908
1

Glycine max

6326
8139



752-772
XP_003543825
356550908
1

Glycine max

6327
8140




XP_003556814
356577399
0.813

Glycine max

6328
8141



360-380
XP_003549039
356561539
1

Glycine max

6329
8142




XP_003533180
356529191
0.8282

Glycine max

6330
8143



614-634
XP_003541563
356546291
1

Glycine max

6331
8144




XP_003545791
356554924
0.805

Glycine max

6332
8145



905-925
XP_003556814
356577399
1

Glycine max

6333
8146




XP_003543825
356550908
0.8659

Glycine max

6334
8147



141-161
XP_003518351
356499037
1

Glycine max

6335
8148



2016-2036
XP_003538988
356541033
1

Glycine max

6336
8149




XP_003607189
357473808
0.7407

Medicago truncatula

6337
8150




XP_003604038
357467506
0.7035

Medicago truncatula

6338
8151



839-859
XP_003526354
356515330
1

Glycine max

6339
8152




XP_003523913
356510372
0.9333

Glycine max

6340
8153



842-862
XP_003523913
356510372
1

Glycine max

6341
8154




XP_003526354
356515330
0.9333

Glycine max

6342
8155



926-946
XP_003545791
356554924
1

Glycine max

6343
8156




XP_003541563
356546291
0.8662

Glycine max

6344
8157


ath-
334-354
XP_003554567
356572827
1

Glycine max

6345
8158


miR159b

XP_003521605
356505654
0.9723

Glycine max

6346
8159




XP_003521606
356505656
0.9723

Glycine max

6347
8160




XP_003626013
357511448
0.8949

Medicago truncatula

6348
8161




XP_002272575
225437676
0.8423

Vitis vinifera

6349
8162




CBI37003
270254427
0.8409

Vitis vinifera

6350
8163




XP_002515224
255761086
0.8382

Ricinus communis

6351




CAN71135
147786943
0.8354

Vitis vinifera

6352
8164




XP_002301535
255761085
0.8313

Populus trichocarpa

6353




ADF30190
294713705
0.8119

Brassica napus

6354
8165



405-425
XP_003542140
356547479
1

Glycine max

6355
8166




XP_003546908
356557204
0.8696

Glycine max

6356
8167



305-325
XP_003541823
356546825
1

Glycine max

6357
8168



124-144
XP_003543825
356550908
1

Glycine max

6358
8169




XP_003556814
356577399
0.813

Glycine max

6359
8170



839-859
XP_003526354
356515330
1

Glycine max

6360
8171




XP_003523913
356510372
0.9333

Glycine max

6361
8172



2079-2099
XP_003538988
356541033
1

Glycine max

6362
8173




XP_003607189
357473808
0.7407

Medicago truncatula

6363
8174




XP_003604038
357467506
0.7035

Medicago truncatula

6364
8175



614-634
XP_003541563
356546291
1

Glycine max

6365
8176




XP_003545791
356554924
0.805

Glycine max

6366
8177



905-925
XP_003556814
356577399
1

Glycine max

6367
8178




XP_003543825
356550908
0.8659

Glycine max

6368
8179



926-946
XP_003545791
356554924
1

Glycine max

6369
8180




XP_003541563
356546291
0.8662

Glycine max

6370
8181



842-862
XP_003523913
356510372
1

Glycine max

6371
8182




XP_003526354
356515330
0.9333

Glycine max

6372
8183


ath-
251-271
NP_001236122
351727005
1

Glycine max

6373
8184


miR159c

ACU21384
255642238
0.7676

Glycine max

6374
8185



46-66
XP_003519140
356500640
1

Glycine max

6375
8186




XP_003549552
356562588
0.8757

Glycine max

6376
8187




XP_003610353
357480134
0.9006

Medicago truncatula

6377
8188



817-837
XP_003525997
356514606
1

Glycine max

6378
8189




XP_003540066
356543230
0.8441

Glycine max

6379
8190



289-309
XP_003518627
356499601
1

Glycine max

6380
8191




XP_003542153
356547506
0.9478

Glycine max

6381
8192




ADN33938
307136081
0.7937

Cucumis melo

6382
8193







subsp. melo




XP_002518919
255761086
0.7755

Ricinus communis

6383




XP_002279642
225426567
0.7755

Vitis vinifera

6384
8194




XP_002870592
297853636
0.7664

Arabidopsis lyrata

6385







subsp. lyrata




NP_199024
30693991
0.7642

Arabidopsis thaliana

6386
8195




AAM63843
21405504
0.7596

Arabidopsis thaliana

6387
8196




XP_002299422
255761085
0.7528

Populus trichocarpa

6388




XP_002303695
255761085
0.7574

Populus trichocarpa

6389



124-144
XP_003543825
356550908
1

Glycine max

6390
8197




XP_003556814
356577399
0.813

Glycine max

6391
8198



461-481
XP_003542153
356547506
1

Glycine max

6392
8199




XP_003518627
356499601
0.9436

Glycine max

6393
8200



1162-1182
XP_003531162
356525093
1

Glycine max

6394
8201




XP_003524148
356510852
0.7692

Glycine max

6395
8202



839-859
XP_003526354
356515330
1

Glycine max

6396
8203




XP_003523913
356510372
0.9333

Glycine max

6397
8204



495-515
XP_003524148
356510852
1

Glycine max

6398
8205




XP_003531162
356525093
0.7762

Glycine max

6399
8206



949-969
XP_003547199
356557800
1

Glycine max

6400
8207




XP_003541668
356546507
0.8748

Glycine max

6401
8208



614-634
XP_003541563
356546291
1

Glycine max

6402
8209




XP_003545791
356554924
0.805

Glycine max

6403
8210



905-925
XP_003556814
356577399
1

Glycine max

6404
8211




XP_003543825
356550908
0.8659

Glycine max

6405
8212



2016-2036
XP_003538988
356541033
1

Glycine max

6406
8213




XP_003607189
357473808
0.7407

Medicago truncatula

6407
8214




XP_003604038
357467506
0.7035

Medicago truncatula

6408
8215



1330-1350
XP_003541668
356546507
1

Glycine max

6409
8216




XP_003547199
356557800
0.8383

Glycine max

6410
8217



842-862
XP_003523913
356510372
1

Glycine max

6411
8218




XP_003526354
356515330
0.9333

Glycine max

6412
8219



926-946
XP_003545791
356554924
1

Glycine max

6413
8220




XP_003541563
356546291
0.8662

Glycine max

6414
8221


ath-
288-307
AES96257
357486022
1

Medicago truncatula

6415
8222


miRf10240-

XP_003613299
357486022
1

Medicago truncatula

6416
8223


akr

XP_003517816
356497943
0.9446

Glycine max

6417
8224




XP_003519545
356501464
0.9418

Glycine max

6418
8225




XP_003517817
356497945
0.9446

Glycine max

6419
8226




XP_003530656
356524070
0.8809

Glycine max

6420
8227




XP_003551180
356565911
0.8753

Glycine max

6421
8228




XP_002531401
255761086
0.8421

Ricinus communis

6422




XP_003628672
357516766
0.8504

Medicago truncatula

6423
8229




XP_002266222
225424743
0.8393

Vitis vinifera

6424
8230




CAN76955
147776916
0.8338

Vitis vinifera

6425
8231



1503-1522
XP_003547951
356559326
1

Glycine max

6426
8232




ACU23369
255645751
0.998

Glycine max

6427
8233




XP_003547950
356559324
0.8408

Glycine max

6428
8234




ACU18289
255635883
0.8388

Glycine max

6429
8235




XP_003629354
357518130
0.7531

Medicago truncatula

6430
8236




XP_002531509
255761086
0.7204

Ricinus communis

6431




ABK95760
118487875
0.7245

Populus trichocarpa

6432
8237




XP_003612122
357483670
0.7327

Medicago truncatula

6433
8238




XP_002333330
255761085
0.7122

Populus trichocarpa

6434




XP_002310843
255761085
0.702

Populus trichocarpa

6435



115-134
AES78100
357503186
1

Medicago truncatula

6436
8239




XP_003621882
357503186
1

Medicago truncatula

6437
8240



 95-114
AET03830
357518130
1

Medicago truncatula

6438
8241




XP_003547951
356559326
0.811

Glycine max

6439
8242



487-506
NP_001238238
351721588
1

Glycine max

6440
8243




NP_001237618
351725834
0.9947

Glycine max

6441
8244




ACU16478
255632239
0.9679

Glycine max

6442
8245




XP_003519150
356500660
0.7968

Glycine max

6443
8246



149-168
XP_003531007
356524781
1

Glycine max

6444
8247




XP_003528405
356519488
0.9391

Glycine max

6445
8248




XP_003608343
357476114
0.8746

Medicago truncatula

6446
8249




XP_002264303
225429239
0.7885

Vitis vinifera

6447
8250




CBI35448
270252044
0.7885

Vitis vinifera

6448




XP_002518318
255761086
0.767

Ricinus communis

6449




NP_201251
145359643
0.7742

Arabidopsis thaliana

6450
8251




XP_002866616
297853636
0.7778

Arabidopsis lyrata

6451







subsp. lyrata




ABK95206
118486740
0.7527

Populus trichocarpa

6452
8252




XP_002313210
255761085
0.7491

Populus trichocarpa

6453



214-233
XP_003525932
356514476
1

Glycine max

6454
8253



700-719
XP_003523287
356509093
1

Glycine max

6455
8254




XP_003526789
356516210
0.9406

Glycine max

6456
8255




XP_003518282
356498893
0.7406

Glycine max

6457
8256




XP_003544853
356553012
0.7406

Glycine max

6458
8257


ath-
587-606
XP_003543893
356551052
1

Glycine max

6459
8258


miRf10368-

XP_003554723
356573142
0.9659

Glycine max

6460
8259


akr

ACJ85427
357496652
0.8447

Medicago truncatula

6461
8260




XP_003531841
356526470
0.8333

Glycine max

6462
8261




XP_003552550
356568703
0.8106

Glycine max

6463
8262




XP_002284521
225457306
0.7765

Vitis vinifera

6464
8263




XP_002323884
255761085
0.7765

Populus trichocarpa

6465




XP_002284184
225452935
0.7803

Vitis vinifera

6466
8264




XP_002306045
255761085
0.7424

Populus trichocarpa

6467




XP_002526069
255761086
0.7424

Ricinus communis

6468



456-475
XP_003539013
356541084
1

Glycine max

6469
8265




XP_003540676
356544475
0.8768

Glycine max

6470
8266




XP_003539012
356541082
0.7183

Glycine max

6471
8267



685-704
NP_001235161
351721419
1

Glycine max

6472
8268




XP_003548144
356559717
0.9705

Glycine max

6473
8269




XP_003548143
356559715
0.7785

Glycine max

6474
8270




BAB86923
19911192
0.711

Vigna angularis

6475
8271



685-704
NP_001235161
351721419
1

Glycine max

6476
8272



3330-3349
XP_003551446
356566453
1

Glycine max

6477



347-366
XP_003540896
356544921
1

Glycine max

6478
8273




XP_003533477
356529802
0.7278

Glycine max

6479
8274




XP_003607171
357473772
0.8086

Medicago truncatula

6480
8275




XP_002533189
255761086
0.7412

Ricinus communis

6481




XP_002279051
225428040
0.7305

Vitis vinifera

6482
8276




XP_003522637
356507769
0.7466

Glycine max

6483
8277




XP_003526942
356516520
0.7035

Glycine max

6484
8278



 88-107
XP_002533189
255761086
1

Ricinus communis

6485




XP_003540896
356544921
0.7035

Glycine max

6486
8279




XP_002270345
225457886
0.7008

Vitis vinifera

6487
8280



589-608
XP_003518505
356499351
1

Glycine max

6488
8281



75-94
XP_002312957
255761085
1

Populus trichocarpa

6489




XP_002306186
255761085
0.9181

Populus trichocarpa

6490




CAN67732
147790359
0.8836

Vitis vinifera

6491
8282



682-701
XP_003556840
356577453
1

Glycine max

6492
8283




XP_003519003
356500365
0.7261

Glycine max

6493
8284




XP_003542320
356547854
0.7261

Glycine max

6494
8285



220-239
XP_003527967
356518600
1

Glycine max

6495
8286




XP_003523399
356509321
0.7599

Glycine max

6496
8287



1834-1853
XP_003539709
356542508
1

Glycine max

6497
8288




XP_003538207
356539441
0.9136

Glycine max

6498
8289




XP_003606389
357472208
0.8066

Medicago truncatula

6499
8290




NP_001238028
351722912
0.7617

Glycine max

6500
8291




XP_003543464
356550174
0.7375

Glycine max

6501
8292




XP_003539710
356542510
0.8394

Glycine max

6502
8293




XP_002530284
255761086
0.7081

Ricinus communis

6503



 0-19
AES82704
357512394
1

Medicago truncatula

6504




XP_003521781
356506009
0.8339

Glycine max

6505




CBI28651
270241399
0.747

Vitis vinifera

6506




XP_002267871
225430630
0.7263

Vitis vinifera

6507




XP_003553769
356571203
0.8332

Glycine max

6508



1104-1123
XP_003518991
356500340
1

Glycine max

6509
8294




XP_003535145
356533178
0.8841

Glycine max

6510
8295




XP_003535146
356533180
0.8509

Glycine max

6511
8296



439-458
XP_003526441
356515505
1

Glycine max

6512
8297




XP_003522648
356507791
0.9351

Glycine max

6513
8298




XP_003522647
356507789
0.8643

Glycine max

6514
8299




XP_002284618
225430104
0.7935

Vitis vinifera

6515
8300




XP_003526440
356515503
0.8525

Glycine max

6516
8301




XP_002284775
225445329
0.7788

Vitis vinifera

6517
8302




XP_002515572
255761086
0.7699

Ricinus communis

6518




AES73734
357466396
0.7876

Medicago truncatula

6519
8303



1245-1264
NP_001238286
351722970
1

Glycine max

6520
8304




BAG72094
207367147
0.9584

Glycine max

6521
8305




ACE79196
190586158
0.9558

Glycine max

6522
8306




ACE79197
190586160
0.9019

Glycine max

6523
8307




XP_003555766
356575272
0.8983

Glycine max

6524
8308




P93673

0.8453

Lathyrus sativus

6525




P15001

0.8453

Pisum sativum

6526




AES61525
357441992
0.8426

Medicago truncatula

6527
8309




XP_002278610
225450404
0.7772

Vitis vinifera

6528
8310




ACC60969
183239021
0.7763

Vitis riparia

6529



177-196
XP_002306186
255761085
1

Populus trichocarpa

6530




XP_002312957
255761085
0.7553

Populus trichocarpa

6531



439-458
XP_003522648
356507791
1

Glycine max

6532
8311




XP_003526441
356515505
0.9351

Glycine max

6533
8312




NP_189078
42565156
0.7168

Arabidopsis thaliana

6534
8313



200-219
XP_003597608
357454654
1

Medicago truncatula

6535
8314




ABN08398
357454654
1

Medicago truncatula

6536
8315




XP_003546676
356556729
0.8954

Glycine max

6537
8316




XP_003543598
356550445
0.8942

Glycine max

6538
8317




XP_003531618
356526020
0.8609

Glycine max

6539
8318




XP_003529875
356522481
0.8537

Glycine max

6540
8319




CAA07236
316995680
0.849

Cicer arietinum

6541
8320




ABK96254
118488889
0.8121

Populus trichocarpa ×

6542
8321








Populus deltoides





CAC44500
14970838
0.8157

Fragaria × ananassa

6543
8322




XP_002327432
255761085
0.8109

Populus trichocarpa

6544




ABV32545
157313303
0.824

Prunus persica

6545
8323



20-39
XP_003538511
356540064
1

Glycine max

6546




XP_003540789
356544707
0.9546

Glycine max

6547




AES88424
357471884
0.8454

Medicago truncatula

6548




XP_002328167
255761085
0.78

Populus trichocarpa

6549




XP_002529065
255761086
0.7791

Ricinus communis

6550




XP_002269920
225436294
0.7732

Vitis vinifera

6551



1726-1745
XP_003538207
356539441
1

Glycine max

6552
8324




XP_003539709
356542508
0.901

Glycine max

6553
8325




AES88586
357472208
0.8038

Medicago truncatula

6554
8326




XP_003538208
356539443
0.8362

Glycine max

6555
8327


ath-
137-156
XP_003540953
356545038
1

Glycine max

6556
8328


miRf10763-

XP_003537828
356538677
0.9174

Glycine max

6557
8329


akr
246-265
ACU17625
255634523
1

Glycine max

6558
8330




XP_003520499
356503402
0.9227

Glycine max

6559
8331




XP_003554133
356571948
0.8886

Glycine max

6560
8332



448-467
XP_003555015
356573740
1

Glycine max

6561
8333



145-164
XP_002267145
225438252
1

Vitis vinifera

6562
8334




XP_003517356
356497006
0.8121

Glycine max

6563
8335




XP_003539260
356541595
0.8166

Glycine max

6564
8336




XP_003611551
357482528
0.7919

Medicago truncatula

6565
8337




NP_566927
42565786
0.7696

Arabidopsis thaliana

6566
8338




XP_002877705
297853636
0.774

Arabidopsis lyrata

6567







subsp. lyrata




XP_002285420
225458889
0.8076

Vitis vinifera

6568
8339




AAM61258
21403407
0.7673

Arabidopsis thaliana

6569
8340




NP_201393
30698164
0.7405

Arabidopsis thaliana

6570
8341




AAL32554
17064799
0.7383

Arabidopsis thaliana

6571
8342



523-542
XP_003524815
356512212
1

Glycine max

6572
8343





356528136
0.981

Glycine max

6573



136-155
XP_003520083
356502552
1

Glycine max

6574
8344




XP_003517797
356497905
0.8522

Glycine max

6575
8345



 993-1012
AET34792
356650815
1

Pisum sativum

6576
8346




AET34790
356650811
0.9979

Pisum sativum

6577
8347




AET34786
356650803
0.9358

Medicago truncatula

6578
8348




XP_003625012
357509446
0.9337

Medicago truncatula

6579
8349




AET34796
356650823
0.8654

Glycine max

6580
8350




XP_003521136
356504705
0.8551

Glycine max

6581
8351




AEM62768
343794555
0.8778

Lotus japonicus

6582
8352




XP_002275980
225441316
0.8282

Vitis vinifera

6583
8353




CAN80112
147852377
0.8282

Vitis vinifera

6584
8354




XP_002308905
255761085
0.824

Populus trichocarpa

6585



223-242
XP_003520499
356503402
1

Glycine max

6586
8355




ACU17625
255634523
0.9878

Glycine max

6587
8356



217-236
XP_003526336
356515293
1

Glycine max

6588
8357




XP_003540834
356544797
0.7611

Glycine max

6589
8358



241-260
XP_003519685
356501746
1

Glycine max

6590
8359




ACU23918
255646896
0.9948

Glycine max

6591
8360




XP_003545065
356553441
0.8093

Glycine max

6592
8361



26-45
CBI33098
270247736
1

Vitis vinifera

6593
8362



237-256
AAF73257
8132346
1

Pisum sativum

6594
8363




XP_003523778
356510099
0.9489

Glycine max

6595
8364




XP_003527981
356518628
0.9382

Glycine max

6596
8365




CAN70091
123701299
0.8817

Vitis vinifera

6597
8366




Q40517

0.8817

Nicotiana tabacum

6598




NP_001233761
350539780
0.8737

Solanum lycopersicum

6599
8367




Q40884

0.8737

Petunia × hybrida

6600




XP_002302017
255761085
0.871

Populus trichocarpa

6601




XP_002510434
255761086
0.8737

Ricinus communis

6602



360-379
XP_003539534
356542151
1

Glycine max

6603
8368




XP_003543335
356549913
0.8571

Glycine max

6604
8369



26-45
XP_003601902
357463240
1

Medicago truncatula

6605
8370




XP_003538598
356540240
0.8571

Glycine max

6606
8371




XP_003551994
356567575
0.8521

Glycine max

6607
8372




XP_003531333
356525440
0.8045

Glycine max

6608
8373




XP_003525038
356512665
0.797

Glycine max

6609
8374




XP_002530039
255761086
0.7845

Ricinus communis

6610




XP_002314593
255761085
0.7694

Populus trichocarpa

6611




XP_002282407
225424658
0.7669

Vitis vinifera

6612
8375




XP_002311761
255761085
0.7669

Populus trichocarpa

6613




CBI16790
270228074
0.7569

Vitis vinifera

6614



502-521
NP_001234991
351723886
1

Glycine max

6615
8376




XP_003552315
356568227
0.9954

Glycine max

6616
8377




XP_003543429
356550102
0.9815

Glycine max

6617
8378




NP_001236946
351721215
0.9769

Glycine max

6618
8379




XP_003596822
357453090
0.9444

Medicago truncatula

6619
8380




XP_003611340
357482108
0.9444

Medicago truncatula

6620
8381




XP_003600923
357461282
0.9444

Medicago truncatula

6621
8382




NP_001237030
351723638
0.9306

Glycine max

6622
8383




ACG24758
195605855
0.875

Zea mays

6623
8384




ACG33436
195623211
0.875

Zea mays

6624
8385



129-148
ACU17625
255634523
1

Glycine max

6625
8386



290-309
XP_003548849
356561151
1

Glycine max

6626
8387




XP_003519868
356502117
0.8445

Glycine max

6627
8388




XP_003629318
357518058
0.7456

Medicago truncatula

6628
8389



237-256
XP_003527981
356518628
1

Glycine max

6629
8390




AAF73257
8132346
0.9407

Pisum sativum

6630
8391




ABA00652
74231015
0.8814

Gossypium hirsutum

6631
8392



37-56
XP_003547100
356557592
1

Glycine max

6632
8393




XP_003541782
356546742
0.862

Glycine max

6633
8394




XP_003593272
357445988
0.7085

Medicago truncatula

6634
8395



248-267
ACU23918
255646896
1

Glycine max

6635
8396




XP_003519685
356501746
0.9948

Glycine max

6636
8397


ath-
757-777
XP_003629993
357519408
1

Medicago truncatula

6637
8398


miRf11042-

ACJ84083
217071445
0.9917

Medicago truncatula

6638
8399


akr

NP_001235375
351727608
0.8595

Glycine max

6639
8400




NP_001237170
351727706
0.8264

Glycine max

6640
8401




CAA10134
3860332
0.8347

Cicer arietinum

6641
8402




XP_002298184
255761085
0.719

Populus trichocarpa

6642




NP_001237531
351723330
0.7107

Glycine max

6643
8403




XP_003523409
356509341
0.7107

Glycine max

6644
8404





357519363
1

Medicago truncatula

6645



361-381
XP_003592180
357443804
1

Medicago truncatula

6646
8405




XP_003556131
356576015
0.7984

Glycine max

6647
8406




XP_003535589
356534086
0.8

Glycine max

6648
8407




XP_002329680
255761085
0.777

Populus trichocarpa

6649




XP_002276766
225464654
0.7475

Vitis vinifera

6650
8408




CBI22616
270233919
0.7213

Vitis vinifera

6651
8409



1042-1062
XP_003616507
357492436
1

Medicago truncatula

6652
8410




XP_003518398
356499134
0.8512

Glycine max

6653
8411




XP_003545247
356553814
0.8492

Glycine max

6654
8412




XP_003537472
356537955
0.7738

Glycine max

6655
8413




XP_003552860
356569339
0.7718

Glycine max

6656
8414




XP_002524242
255761086
0.7321

Ricinus communis

6657




XP_002277622
225449359
0.7063

Vitis vinifera

6658
8415



520-540
XP_003534554
356531980
1

Glycine max

6659




XP_003552402
356568406
0.9572

Glycine max

6660




XP_003548671
356560791
0.7736

Glycine max

6661




XP_003528847
356520393
0.7732

Glycine max

6662




XP_003623999
357507420
0.7898

Medicago truncatula

6663




XP_003627563
357514548
0.7385

Medicago truncatula

6664




XP_002276245
225454279
0.7367

Vitis vinifera

6665




XP_002511882
255761086
0.7349

Ricinus communis

6666




CAN74059
147789689
0.7228

Vitis vinifera

6667



1412-1432
XP_003556131
356576015
1

Glycine max

6668
8416




XP_003592180
357443804
0.8203

Medicago truncatula

6669
8417


csi-
43-66
XP_003547789
356558998
1

Glycine max

6670
8418


miR3948

XP_003531955
356526700
0.9164

Glycine max

6671
8419




ACU23577
255646183
0.9078

Glycine max

6672
8420



209-232
XP_003540784
356544697
1

Glycine max

6673
8421




XP_003539180
356541429
0.8869

Glycine max

6674
8422



40-63
XP_003556473
356576709
1

Glycine max

6675
8423




XP_003535369
356533638
0.8958

Glycine max

6676
8424



47-70
XP_003527776
356518214
1

Glycine max

6677
8425



 77-100
XP_003550061
356563623
1

Glycine max

6678
8426




XP_003525811
356514233
0.9621

Glycine max

6679
8427




XP_002310135
255761085
0.7098

Populus trichocarpa

6680




XP_002523601
255761086
0.7035

Ricinus communis

6681



173-196
XP_003525811
356514233
1

Glycine max

6682
8428




XP_003550061
356563623
0.9591

Glycine max

6683
8429



208-231
XP_003542594
356548408
1

Glycine max

6684
8430




XP_003537062
356537086
0.7495

Glycine max

6685
8431



179-202
XP_003539180
356541429
1

Glycine max

6686
8432




XP_003540784
356544697
0.8923

Glycine max

6687
8433



209-232
BAD18437
47077005
1

Homo sapiens

6688
8434




XP_003522605
356507705
1

Glycine max

6689
8435




XP_003526400
356515423
0.9316

Glycine max

6690
8436



232-255
XP_003537062
356537086
1

Glycine max

6691
8437




XP_003542594
356548408
0.7416

Glycine max

6692
8438


ghr-
37-57
XP_003518096
356498514
1

Glycine max

6693
8439


miR2950

XP_003537196
356537360
0.9379

Glycine max

6694
8440




XP_003516696
356495666
0.7495

Glycine max

6695
8441



909-929
XP_003529456
356521627
1

Glycine max

6696
8442




XP_003556690
356577148
0.8891

Glycine max

6697
8443




XP_003601600
357462636
0.8073

Medicago truncatula

6698
8444




XP_003601595
357462626
0.8073

Medicago truncatula

6699
8445




XP_003601599
357462634
0.8073

Medicago truncatula

6700
8446




XP_003601596
357462628
0.8036

Medicago truncatula

6701
8447




XP_003607816
357475060
0.7764

Medicago truncatula

6702
8448




XP_003601601
357462638
0.7982

Medicago truncatula

6703
8449




XP_003538519
356540080
0.7436

Glycine max

6704
8450




XP_002303974
255761085
0.7491

Populus trichocarpa

6705



1446-1466
BAG68945
197209811
1

Lotus japonicus

6706
8451




XP_003549436
356562352
0.881

Glycine max

6707
8452




AAC09468
6503252
0.8541

Pisum sativum

6708
8453




XP_003541616
356546403
0.8824

Glycine max

6709
8454




XP_003610109
357479646
0.8598

Medicago truncatula

6710
8455




XP_002270732
225446043
0.8116

Vitis vinifera

6711
8456




ACN54324
224551851
0.7805

Gossypium hirsutum

6712
8457




AAK15261
13183565
0.7748

Populus trichocarpa ×

6713
8458








Populus deltoides





CBI17838
270228824
0.7734

Vitis vinifera

6714




XP_002324469
255761085
0.7677

Populus trichocarpa

6715



177-197
XP_003554852
356573405
1

Glycine max

6716
8459




XP_003543493
356550234
0.8998

Glycine max

6717
8460



461-481
XP_003536297
356535528
1

Glycine max

6718
8461




XP_003556292
356576342
0.9205

Glycine max

6719
8462



238-258
XP_003518581
356499506
1

Glycine max

6720
8463




XP_003618091
357495604
0.7113

Medicago truncatula

6721
8464


gma-
75-94
XP_003520455
356503312
1

Glycine max

6722
8465


miR156g




XP_003530170
356523079
0.848

Glycine max

6723
8466



371-390
XP_003553428
356570509
1

Glycine max

6724
8467




XP_003520534
356503475
0.9081

Glycine max

6725
8468



759-778
XP_003520534
356503475
1

Glycine max

6726
8469




XP_003553428
356570509
0.9081

Glycine max

6727
8470



108-127
XP_003553944
356571558
1

Glycine max

6728
8471




XP_003549130
356561725
0.9452

Glycine max

6729
8472



237-256
XP_003551188
356565928
1

Glycine max

6730
8473




XP_003538544
356540131
0.9106

Glycine max

6731
8474




ACU18328
255635963
0.9083

Glycine max

6732
8475




XP_003601767
357462970
0.7064

Medicago truncatula

6733
8476



36-55
AAM12880
20149261
1

Helianthus annuus

6734
8477




CBI28152
270240501
0.991

Vitis vinifera

6735




XP_002284967
225430201
0.991

Vitis vinifera

6736
8478




CBI21000
270231236
0.991

Vitis vinifera

6737




CBI36254
270253379
0.9819

Vitis vinifera

6738
8479




NP_200330
145359269
0.9864

Arabidopsis thaliana

6739
8480




XP_003522628
356507751
0.9819

Glycine max

6740
8481




AEM97804
344189954
0.9864

Dimocarpus longan

6741
8482




XP_002864382
297853636
0.9864

Arabidopsis lyrata

6742







subsp. lyrata




XP_002285307
225442824
0.9819

Vitis vinifera

6743
8483



1020-1039
XP_003532399
356527605
1

Glycine max

6744
8484




XP_003525415
356513426
0.8914

Glycine max

6745
8485



114-133
ACU18105
255635506
1

Glycine max

6746
8486



756-775
XP_003518080
356498481
1

Glycine max

6747
8487




XP_003551421
356566402
0.8408

Glycine max

6748
8488



118-137
XP_003549130
356561725
1

Glycine max

6749
8489




XP_003553944
356571558
0.9452

Glycine max

6750
8490



662-681
XP_003550514
356564545
1

Glycine max

6751
8491




XP_003528668
356520027
0.9389

Glycine max

6752
8492




XP_003541638
356546447
0.8242

Glycine max

6753
8493




XP_003547234
356557871
0.808

Glycine max

6754
8494




XP_003594096
357447640
0.803

Medicago truncatula

6755
8495




XP_002279739
225432499
0.7382

Vitis vinifera

6756
8496




CAN70618
147801938
0.7406

Vitis vinifera

6757
8497




XP_002314424
255761085
0.7406

Populus trichocarpa

6758




XP_002516799
255761086
0.7219

Ricinus communis

6759




XP_002312735
255761085
0.7157

Populus trichocarpa

6760



691-710
XP_003525415
356513426
1

Glycine max

6761
8498




XP_003532399
356527605
0.9051

Glycine max

6762
8499



114-133
XP_003538544
356540131
1

Glycine max

6763
8500




XP_003551188
356565928
0.9097

Glycine max

6764
8501



1068-1087
XP_003525436
356513468
1

Glycine max

6765
8502




XP_003550708
356564947
0.9204

Glycine max

6766
8503




XP_003522278
356507037
0.7595

Glycine max

6767
8504



 999-1018
XP_003550708
356564947
1

Glycine max

6768
8505




XP_003525436
356513468
0.9373

Glycine max

6769
8506



1098-1117
XP_003520128
356502644
1

Glycine max

6770
8507




XP_003517860
356498034
0.9129

Glycine max

6771
8508



179-198
XP_003523155
356508826
1

Glycine max

6772
8509



711-730
XP_003551421
356566402
1

Glycine max

6773
8510




XP_003518080
356498481
0.7962

Glycine max

6774
8511


gma-
164-183
XP_003549130
356561725
1

Glycine max

6775
8512


miR157c

XP_003553944
356571558
0.9452

Glycine max

6776
8513



593-612
NP_001236309
351724988
1

Glycine max

6777
8514




XP_003529339
356521389
0.838

Glycine max

6778
8515


gma-
305-325
XP_003551790
356567161
1

Glycine max

6779
8516


miR159a-
305-325
XP_003541823
356546825
1

Glycine max

6780
8517


3p
124-144
XP_003543825
356550908
1

Glycine max

6781
8518




XP_003556814
356577399
0.813

Glycine max

6782
8519



405-425
XP_003542140
356547479
1

Glycine max

6783
8520




XP_003546908
356557204
0.8696

Glycine max

6784
8521



305-325
XP_003541823
356546825
1

Glycine max

6785
8522



124-144
XP_003543825
356550908
1

Glycine max

6786
8523



839-859
XP_003526354
356515330
1

Glycine max

6787
8524




XP_003523913
356510372
0.9333

Glycine max

6788
8525



73-93
XP_003535315
356533526
1

Glycine max

6789
8526




XP_003555178
356574075
0.9462

Glycine max

6790
8527




XP_003591226
357441896
0.7849

Medicago truncatula

6791
8528




XP_002512536
255761086
0.7465

Ricinus communis

6792




CBI39621
270257428
0.7465

Vitis vinifera

6793
8529




CAP59645
163913883
0.7558

Vitis vinifera

6794
8530




XP_002277312
225450534
0.7496

Vitis vinifera

6795
8531




XP_002280462
225432056
0.7404

Vitis vinifera

6796
8532




CAP59646
163913885
0.7512

Vitis vinifera

6797
8533




CAN63178
123711273
0.7373

Vitis vinifera

6798
8534



614-634
XP_003541563
356546291
1

Glycine max

6799
8535




XP_003545791
356554924
0.805

Glycine max

6800
8536



905-925
XP_003556814
356577399
1

Glycine max

6801
8537




XP_003543825
356550908
0.8659

Glycine max

6802
8538



2016-2036
XP_003538988
356541033
1

Glycine max

6803
8539




XP_003607189
357473808
0.7407

Medicago truncatula

6804
8540




XP_003604038
357467506
0.7035

Medicago truncatula

6805
8541



926-946
XP_003545791
356554924
1

Glycine max

6806
8542




XP_003541563
356546291
0.8662

Glycine max

6807
8543



842-862
XP_003523913
356510372
1

Glycine max

6808
8544




XP_003526354
356515330
0.9333

Glycine max

6809
8545


iba-
164-184
XP_003549130
356561725
1

Glycine max

6810
8546


miR157

XP_003553944
356571558
0.9452

Glycine max

6811
8547



238-258
XP_003551188
356565928
1

Glycine max

6812
8548




XP_003538544
356540131
0.9106

Glycine max

6813
8549




ACU18328
255635963
0.9083

Glycine max

6814
8550




XP_003601767
357462970
0.7064

Medicago truncatula

6815
8551



1129-1149
XP_003525415
356513426
1

Glycine max

6816
8552




XP_003532399
356527605
0.9051

Glycine max

6817
8553



898-918
XP_003540473
356544059
1

Glycine max

6818
8554




XP_003543233
356549706
0.9305

Glycine max

6819
8555




ACU24116
255647298
0.9251

Glycine max

6820
8556



118-138
XP_003525436
356513468
1

Glycine max

6821
8557




XP_003550708
356564947
0.9204

Glycine max

6822
8558




XP_003522278
356507037
0.7595

Glycine max

6823
8559



77-97
XP_003520455
356503312
1

Glycine max

6824
8560




XP_003530170
356523079
0.848

Glycine max

6825
8561



498-518
XP_003553428
356570509
1

Glycine max

6826
8562




XP_003520534
356503475
0.9081

Glycine max

6827
8563



50-70
XP_003550708
356564947
1

Glycine max

6828
8564




XP_003525436
356513468
0.9373

Glycine max

6829
8565



170-190
XP_003538544
356540131
1

Glycine max

6830
8566




XP_003551188
356565928
0.9097

Glycine max

6831
8567



593-613
NP_001236309
351724988
1

Glycine max

6832
8568




XP_003529339
356521389
0.838

Glycine max

6833
8569



144-164
XP_002275728
225446415
1

Vitis vinifera

6834
8570




AAY16440
62856978
0.7396

Betula platyphylla

6835
8571



112-132
XP_003522278
356507037
1

Glycine max

6836
8572



396-416
XP_003520128
356502644
1

Glycine max

6837
8573




XP_003517860
356498034
0.9129

Glycine max

6838
8574



181-201
XP_003523155
356508826
1

Glycine max

6839
8575



77-97
XP_003520455
356503312
1

Glycine max

6840
8576



373-393
XP_003553428
356570509
1

Glycine max

6841
8577



761-781
XP_003520534
356503475
1

Glycine max

6842
8578




XP_003553428
356570509
0.9081

Glycine max

6843
8579



110-130
XP_003553944
356571558
1

Glycine max

6844
8580



239-259
XP_003551188
356565928
1

Glycine max

6845
8581



1022-1042
XP_003532399
356527605
1

Glycine max

6846
8582




XP_003525415
356513426
0.8914

Glycine max

6847
8583



593-613
NP_001236309
351724988
1

Glycine max

6848
8584



116-136
ACU18105
255635506
1

Glycine max

6849
8585



758-778
XP_003518080
356498481
1

Glycine max

6850
8586




XP_003551421
356566402
0.8408

Glycine max

6851
8587



120-140
XP_003549130
356561725
1

Glycine max

6852
8588



693-713
XP_003525415
356513426
1

Glycine max

6853
8589



656-676
XP_003517558
356497418
1

Glycine max

6854
8590




XP_003537666
356538348
0.9182

Glycine max

6855
8591




XP_003539001
356541059
0.7453

Glycine max

6856
8592




XP_003540042
356543182
0.7421

Glycine max

6857
8593



116-136
XP_003538544
356540131
1

Glycine max

6858
8594



1070-1090
XP_003525436
356513468
1

Glycine max

6859
8595



404-424
XP_003526029
356514674
1

Glycine max

6860
8596




XP_003540122
356543345
0.8919

Glycine max

6861
8597



1100-1120
XP_003520128
356502644
1

Glycine max

6862
8598



1001-1021
XP_003550708
356564947
1

Glycine max

6863
8599



243-263
XP_003540122
356543345
1

Glycine max

6864
8600




XP_003526029
356514674
0.8684

Glycine max

6865
8601



555-575
XP_003524444
356511459
1

Glycine max

6866
8602




XP_003533073
356528975
0.7951

Glycine max

6867
8603



181-201
XP_003523155
356508826
1

Glycine max

6868
8604



713-733
XP_003551421
356566402
1

Glycine max

6869
8605




XP_003518080
356498481
0.7962

Glycine max

6870
8606


mdm-
517-537
XP_003528897
356520494
1

Glycine max

6871
8607


miR482a-

ACU19201
255637757
0.988

Glycine max

6872
8608


5p

XP_003529981
356522693
0.7784

Glycine max

6873
8609




XP_003521936
356506325
0.7695

Glycine max

6874
8610



626-646
XP_003554327
356572340
1

Glycine max

6875
8611




XP_003521338
356505115
0.984

Glycine max

6876
8612




XP_003554326
356572338
1

Glycine max

6877
8613




XP_003521337
356505113
0.984

Glycine max

6878
8614




AES81717
357510420
0.869

Medicago truncatula

6879
8615




ACJ84304
217071887
0.8658

Medicago truncatula

6880
8616




ABN05708
46063642
0.8594

Medicago truncatula

6881
8617




AES84650
339649035
0.8339

Medicago truncatula

6882
8618




XP_003542462
356548141
0.8115

Glycine max

6883
8619




XP_003542461
356548139
0.8115

Glycine max

6884
8620



204-224
XP_003625987
357511396
1

Medicago truncatula

6885
8621




AES82205
357511396
1

Medicago truncatula

6886
8622




XP_003520757
356503939
0.8043

Glycine max

6887
8623




XP_003554555
356572802
0.802

Glycine max

6888
8624



175-195
XP_003554555
356572802
1

Glycine max

6889
8625




XP_002271147
225437597
0.7397

Vitis vinifera

6890
8626




XP_002515261
255761086
0.7188

Ricinus communis

6891



716-736
XP_003539613
356542313
1

Glycine max

6892
8627




XP_003543221
356549682
0.8767

Glycine max

6893
8628



778-798
XP_003625499
357510420
1

Medicago truncatula

6894
8629




XP_003554327
356572340
0.8395

Glycine max

6895
8630




XP_003537175
356537316
0.8056

Glycine max

6896
8631


osa-
500-520
XP_003541668
356546507
1

Glycine max

6897
8632


miR159e

XP_003547199
356557800
0.8383

Glycine max

6898
8633



495-515
XP_003524148
356510852
1

Glycine max

6899
8634




XP_003531162
356525093
0.7762

Glycine max

6900
8635



26-46
XP_003547199
356557800
1

Glycine max

6901
8636



124-144
XP_003543825
356550908
1

Glycine max

6902
8637




XP_003556814
356577399
0.813

Glycine max

6903
8638



817-837
XP_003525997
356514606
1

Glycine max

6904
8639




XP_003540066
356543230
0.8441

Glycine max

6905
8640



289-309
XP_003518627
356499601
1

Glycine max

6906
8641




XP_003542153
356547506
0.9478

Glycine max

6907
8642




ADN33938
307136081
0.7937

Cucumis melo

6908
8643







subsp. melo




XP_002518919
255761086
0.7755

Ricinus communis

6909




XP_002279642
225426567
0.7755

Vitis vinifera

6910
8644




XP_002870592
297853636
0.7664

Arabidopsis lyrata

6911







subsp. lyrata




NP_199024
30693991
0.7642

Arabidopsis thaliana

6912
8645




AAM63843
21405504
0.7596

Arabidopsis thaliana

6913
8646




XP_002299422
255761085
0.7528

Populus trichocarpa

6914




XP_002303695
255761085
0.7574

Populus trichocarpa

6915



124-144
XP_003543825
356550908
1

Glycine max

6916
8647



461-481
XP_003542153
356547506
1

Glycine max

6917
8648




XP_003518627
356499601
0.9436

Glycine max

6918
8649



1162-1182
XP_003531162
356525093
1

Glycine max

6919
8650




XP_003524148
356510852
0.7692

Glycine max

6920
8651



839-859
XP_003526354
356515330
1

Glycine max

6921
8652




XP_003523913
356510372
0.9333

Glycine max

6922
8653



495-515
XP_003524148
356510852
1

Glycine max

6923
8654



949-969
XP_003547199
356557800
1

Glycine max

6924
8655



614-634
XP_003541563
356546291
1

Glycine max

6925
8656




XP_003545791
356554924
0.805

Glycine max

6926
8657



905-925
XP_003556814
356577399
1

Glycine max

6927
8658




XP_003543825
356550908
0.8659

Glycine max

6928
8659



2016-2036
XP_003538988
356541033
1

Glycine max

6929
8660




XP_003607189
357473808
0.7407

Medicago truncatula

6930
8661




XP_003604038
357467506
0.7035

Medicago truncatula

6931
8662



1330-1350
XP_003541668
356546507
1

Glycine max

6932
8663



842-862
XP_003523913
356510372
1

Glycine max

6933
8664




XP_003526354
356515330
0.9333

Glycine max

6934
8665



926-946
XP_003545791
356554924
1

Glycine max

6935
8666




XP_003541563
356546291
0.8662

Glycine max

6936
8667


osa-
124-144
XP_003543825
356550908
1

Glycine max

6937
8668


miR159f

XP_003556814
356577399
0.813

Glycine max

6938
8669



305-325
XP_003541823
356546825
1

Glycine max

6939
8670



124-144
XP_003543825
356550908
1

Glycine max

6940
8671



839-859
XP_003526354
356515330
1

Glycine max

6941
8672




XP_003523913
356510372
0.9333

Glycine max

6942
8673



614-634
XP_003541563
356546291
1

Glycine max

6943
8674




XP_003545791
356554924
0.805

Glycine max

6944
8675



905-925
XP_003556814
356577399
1

Glycine max

6945
8676



2016-2036
XP_003538988
356541033
1

Glycine max

6946
8677




XP_003607189
357473808
0.7407

Medicago truncatula

6947
8678




XP_003604038
357467506
0.7035

Medicago truncatula

6948
8679



842-862
XP_003523913
356510372
1

Glycine max

6949
8680




XP_003526354
356515330
0.9333

Glycine max

6950
8681



926-946
XP_003545791
356554924
1

Glycine max

6951
8682




XP_003541563
356546291
0.8662

Glycine max

6952
8683


osa-
796-816
ABC49719
84028520
1

Arachis hypogaea

6953
8684


miR1850.1

NP_001236448
351734389
0.9568

Glycine max

6954
8685




XP_003535034
356532953
0.9496

Glycine max

6955
8686




XP_003594440
357448328
0.8993

Medicago truncatula

6956
8687




ACJ84098
217071475
0.8921

Medicago truncatula

6957
8688




XP_003629907
357519236
0.8705

Medicago truncatula

6958
8689




ABD63906
89212811
0.8921

Gossypium hirsutum

6959
8690




ABD66505
89276296
0.8849

Gossypium hirsutum

6960
8691




ADN34239
307136431
0.8633

Cucumis melo

6961
8692







subsp. melo




ABD66508
89276302
0.8849

Gossypium hirsutum

6962
8693



746-766
XP_003535034
356532953
1

Glycine max

6963
8694




CAJ38384
106879600
0.8849

Plantago major

6964
8695




XP_002299887
255761085
0.9065

Populus trichocarpa

6965



17-37
XP_003534041
356530948
1

Glycine max

6966
8696



117-137
XP_003524950
356512486
1

Glycine max

6967
8697



243-263
XP_003548988
356561437
1

Glycine max

6968
8698




XP_003548995
356561451
0.7944

Glycine max

6969
8699




XP_003548992
356561445
0.728

Glycine max

6970
8700




XP_003548994
356561449
0.7846

Glycine max

6971
8701




XP_003548993
356561447
0.921

Glycine max

6972
8702




XP_003548986
356561433
0.8079

Glycine max

6973
8703




XP_003548991
356561443
0.807

Glycine max

6974
8704




XP_003617757
357494936
0.8241

Medicago truncatula

6975
8705




XP_003616414
357492250
0.7971

Medicago truncatula

6976
8706



53-73
XP_003552127
356567847
1

Glycine max

6977
8707




XP_003532277
356527355
0.9545

Glycine max

6978
8708




ADB79567
284156655
0.7995

Arachis hypogaea

6979
8709




XP_002262721
225470104
0.7433

Vitis vinifera

6980
8710




ABX82799
296916970
0.7219

Jatropha curcas

6981
8711




XP_002532744
255761086
0.7166

Ricinus communis

6982




XP_002863277
297853636
0.7112

Arabidopsis lyrata

6983







subsp. lyrata




AAC49002
595956
0.7059

Brassica rapa

6984
8712



141-161
XP_003555849
356575439
1

Glycine max

6985
8713




XP_003592693
357444830
0.8289

Medicago truncatula

6986
8714




XP_002529805
255761086
0.7425

Ricinus communis

6987




XP_002306206
255761085
0.7331

Populus trichocarpa

6988




XP_002264823
225467465
0.7221

Vitis vinifera

6989
8715




XP_002278507
225428128
0.719

Vitis vinifera

6990
8716




XP_002312937
255761085
0.7159

Populus trichocarpa

6991



2940-2960
XP_003550417
356564348
1

Glycine max

6992
8717




XP_003523561
356509653
0.7407

Glycine max

6993
8718




XP_003523562
356509655
0.7323

Glycine max

6994
8719


osa-
 90-110
XP_003520359
356503118
1

Glycine max

6995
8720


miR1858a

XP_003547751
356558921
0.94

Glycine max

6996
8721




AES83637
339648991
0.7389

Medicago truncatula

6997




XP_003522288
356507057
0.7176

Glycine max

6998
8722




XP_003604071
357467572
0.706

Medicago truncatula

6999
8723



24-44
XP_003553781
356571227
1

Glycine max

7000
8724




NP_001235053
351725668
0.8396

Glycine max

7001
8725




BAF49302
133874197
0.7167

Clitoria ternatea

7002
8726



364-384
XP_003554024
356571724
1

Glycine max

7003
8727




XP_003554025
356571726
0.9937

Glycine max

7004
8728




XP_003548728
356560906
0.9669

Glycine max

7005
8729




XP_003624635
357508692
0.8873

Medicago truncatula

7006
8730




XP_002285720
225435753
0.8202

Vitis vinifera

7007
8731




XP_002281591
225441588
0.8229

Vitis vinifera

7008
8732




XP_003531251
356525273
0.8157

Glycine max

7009
8733




XP_002304857
255761085
0.797

Populus trichocarpa

7010




XP_002299105
255761085
0.7898

Populus trichocarpa

7011




XP_003629733
357518888
0.7987

Medicago truncatula

7012
8734



345-365
XP_003548728
356560906
1

Glycine max

7013
8735




XP_003554024
356571724
0.9704

Glycine max

7014
8736



24-44
XP_003553781
356571227
1

Glycine max

7015
8737



56-76
XP_003521247
356504932
1

Glycine max

7016
8738




XP_003554255
356572193
0.9395

Glycine max

7017
8739




XP_002520726
255761086
0.7893

Ricinus communis

7018




XP_002278267
225437025
0.8136

Vitis vinifera

7019
8740




XP_002307588
255761085
0.7966

Populus trichocarpa

7020




XP_002892149
297853636
0.7215

Arabidopsis lyrata

7021







subsp. lyrata




NP_563676
30678481
0.7361

Arabidopsis thaliana

7022
8741



360-380
NP_001237118
351726189
1

Glycine max

7023
8742




XP_003556230
356576216
0.9243

Glycine max

7024
8743




XP_002529571
255761086
0.7775

Ricinus communis

7025




XP_002315301
255761085
0.7706

Populus trichocarpa

7026




XP_002275232
225449067
0.7752

Vitis vinifera

7027
8744




XP_002312018
255761085
0.7569

Populus trichocarpa

7028




ACM45079
222136858
0.7729

Vitis vinifera

7029
8745




XP_002894135
297853636
0.7729

Arabidopsis lyrata

7030







subsp. lyrata




ABA54870
76782199
0.7638

Fagus sylvatica

7031
8746




CAN73646
123693264
0.7706

Vitis vinifera

7032



277-297
XP_003591923
357443290
1

Medicago truncatula

7033
8747



180-200
XP_003524517
356511610
1

Glycine max

7034
8748




XP_003549799
356563090
0.9173

Glycine max

7035
8749



564-584
NP_001235053
351725668
1

Glycine max

7036
8750




XP_003553781
356571227
0.8319

Glycine max

7037
8751




XP_003626556
357512534
0.7059

Medicago truncatula

7038
8752




ACJ85806
217074891
0.7017

Medicago truncatula

7039
8753



369-389
XP_003530234
356523208
1

Glycine max

7040
8754




XP_003551508
356566578
0.9298

Glycine max

7041
8755



188-208
XP_002529571
255761086
1

Ricinus communis

7042




NP_564534
145336530
0.8046

Arabidopsis thaliana

7043
8756




AAG50662
12321108
0.8023

Arabidopsis thaliana

7044
8757



378-398
XP_003551508
356566578
1

Glycine max

7045
8758




XP_003530234
356523208
0.8745

Glycine max

7046
8759



231-251
XP_003528545
356519775
1

Glycine max

7047
8760




XP_003556667
356577102
0.9204

Glycine max

7048
8761




XP_003607899
357475226
0.7898

Medicago truncatula

7049
8762



156-176
XP_003547641
356558699
1

Glycine max

7050
8763




XP_003548802
356561057
0.9768

Glycine max

7051
8764



141-161
XP_003543554
356550357
1

Glycine max

7052
8765




XP_003554155
356571993
0.932

Glycine max

7053
8766



180-200
XP_003549799
356563090
1

Glycine max

7054
8767




XP_003524517
356511610
0.9176

Glycine max

7055
8768



192-212
XP_003531267
356525308
1

Glycine max

7056
8769




XP_003624841
357509104
0.7936

Medicago truncatula

7057
8770




XP_003522101
356506673
0.7277

Glycine max

7058
8771



132-152
XP_003556667
356577102
1

Glycine max

7059
8772




XP_003528545
356519775
0.9129

Glycine max

7060
8773


psi-
124-144
XP_003543825
356550908
1

Glycine max

7061
8774


miR159

XP_003556814
356577399
0.813

Glycine max

7062
8775



289-309
XP_003518627
356499601
1

Glycine max

7063
8776




XP_003542153
356547506
0.9478

Glycine max

7064
8777




ADN33938
307136081
0.7937

Cucumis melo

7065
8778







subsp. melo




XP_002518919
255761086
0.7755

Ricinus communis

7066




XP_002279642
225426567
0.7755

Vitis vinifera

7067
8779




XP_002870592
297853636
0.7664

Arabidopsis lyrata

7068







subsp. lyrata




NP_199024
30693991
0.7642

Arabidopsis thaliana

7069
8780




AAM63843
21405504
0.7596

Arabidopsis thaliana

7070
8781




XP_002299422
255761085
0.7528

Populus trichocarpa

7071




XP_002303695
255761085
0.7574

Populus trichocarpa

7072



124-144
XP_003543825
356550908
1

Glycine max

7073
8782



461-481
XP_003542153
356547506
1

Glycine max

7074
8783




XP_003518627
356499601
0.9436

Glycine max

7075
8784



839-859
XP_003526354
356515330
1

Glycine max

7076
8785




XP_003523913
356510372
0.9333

Glycine max

7077
8786



614-634
XP_003541563
356546291
1

Glycine max

7078
8787




XP_003545791
356554924
0.805

Glycine max

7079
8788



905-925
XP_003556814
356577399
1

Glycine max

7080
8789



19-39
NP_001236539
351724240
1

Glycine max

7081
8790




NP_001237767
351722762
0.9915

Glycine max

7082
8791




NP_001237736
351721871
0.7778

Glycine max

7083
8792




BAF50740
139005586
0.7436

Apios americana

7084
8793




XP_003623947
357507316
0.7094

Medicago truncatula

7085
8794



2016-2036
XP_003538988
356541033
1

Glycine max

7086
8795




XP_003607189
357473808
0.7407

Medicago truncatula

7087
8796




XP_003604038
357467506
0.7035

Medicago truncatula

7088
8797



926-946
XP_003545791
356554924
1

Glycine max

7089
8798




XP_003541563
356546291
0.8662

Glycine max

7090
8799



842-862
XP_003523913
356510372
1

Glycine max

7091
8800




XP_003526354
356515330
0.9333

Glycine max

7092
8801


pta-
161-180
XP_003549130
356561725
1

Glycine max

7093
8802


miR156a

XP_003553944
356571558
0.9452

Glycine max

7094
8803



106-125
XP_003520455
356503312
1

Glycine max

7095
8804




XP_003530170
356523079
0.848

Glycine max

7096
8805



115-134
XP_003525436
356513468
1

Glycine max

7097
8806




XP_003550708
356564947
0.9204

Glycine max

7098
8807




XP_003522278
356507037
0.7595

Glycine max

7099
8808



47-66
XP_003550708
356564947
1

Glycine max

7100
8809




XP_003525436
356513468
0.9373

Glycine max

7101
8810



495-514
XP_003553428
356570509
1

Glycine max

7102
8811




XP_003520534
356503475
0.9081

Glycine max

7103
8812



303-322
XP_003530747
356524258
1

Glycine max

7104




XP_003553084
356569799
0.9116

Glycine max

7105



393-412
XP_003520128
356502644
1

Glycine max

7106
8813




XP_003517860
356498034
0.9129

Glycine max

7107
8814



109-128
XP_003522278
356507037
1

Glycine max

7108
8815



178-197
XP_003523155
356508826
1

Glycine max

7109
8816



755-774
XP_003518080
356498481
1

Glycine max

7110
8817




XP_003551421
356566402
0.8408

Glycine max

7111
8818



117-136
XP_003549130
356561725
1

Glycine max

7112
8819



734-753
XP_003553428
356570509
1

Glycine max

7113
8820



815-834
XP_003553944
356571558
1

Glycine max

7114
8821



121-140
ACU18105
255635506
1

Glycine max

7115
8822



1067-1086
XP_003525436
356513468
1

Glycine max

7116
8823



106-125
XP_003520455
356503312
1

Glycine max

7117
8824



1097-1116
XP_003520128
356502644
1

Glycine max

7118
8825



 998-1017
XP_003550708
356564947
1

Glycine max

7119
8826



178-197
XP_003523155
356508826
1

Glycine max

7120
8827



590-609
NP_001236309
351724988
1

Glycine max

7121
8828




XP_003529339
356521389
0.838

Glycine max

7122
8829



710-729
XP_003551421
356566402
1

Glycine max

7123
8830




XP_003518080
356498481
0.7962

Glycine max

7124
8831


pta-
161-180
XP_003549130
356561725
1

Glycine max

7125
8832


miR156b

XP_003553944
356571558
0.9452

Glycine max

7126
8833



320-339
XP_003531511
356525799
1

Glycine max

7127
8834




XP_003546792
356556969
0.7324

Glycine max

7128
8835



115-134
XP_003525436
356513468
1

Glycine max

7129
8836




XP_003550708
356564947
0.9204

Glycine max

7130
8837




XP_003522278
356507037
0.7595

Glycine max

7131
8838



106-125
XP_003520455
356503312
1

Glycine max

7132
8839




XP_003530170
356523079
0.848

Glycine max

7133
8840



47-66
XP_003550708
356564947
1

Glycine max

7134
8841




XP_003525436
356513468
0.9373

Glycine max

7135
8842



495-514
XP_003553428
356570509
1

Glycine max

7136
8843




XP_003520534
356503475
0.9081

Glycine max

7137
8844



396-415
ABW03160
157922334
1

Pisum sativum

7138
8845




XP_003546545
356556463
0.9946
lipoamide
7139
8846




ACU19644
255638677
0.9919

Glycine max

7140
8847




XP_003533815
356530492
0.9621
lipoamide
7141
8848




CAG14980
45720177
0.8916

Cicer arietinum

7142
8849




ABW03161
157922336
0.8862

Pisum sativum

7143
8850




XP_003595440
357450326
0.878

Medicago truncatula

7144
8851




XP_002314330
255761085
0.8699

Populus trichocarpa

7145




XP_003621874
357503170
0.8564

Medicago truncatula

7146
8852




XP_002267959
225432170
0.8618

Vitis vinifera

7147
8853



1563-1582
XP_002526256
255761086
1

Ricinus communis

7148




XP_002318437
255761085
0.9495

Populus trichocarpa

7149




XP_002276600
225455335
0.946

Vitis vinifera

7150
8854




CBI23029
270234399
0.946

Vitis vinifera

7151
8855




XP_002515853
255761086
0.9414

Ricinus communis

7152




XP_003530452
356523654
0.8886

Glycine max

7153
8856




XP_003525330
356513256
0.884

Glycine max

7154
8857




XP_002864245
297853636
0.8794

Arabidopsis lyrata

7155







subsp. lyrata




NP_200160
42568511
0.876

Arabidopsis thaliana

7156
8858




BAJ93177
326526000
0.8324

Hordeum vulgare

7157
8859







subsp. vulgare



393-412
XP_003520128
356502644
1

Glycine max

7158
8860




XP_003517860
356498034
0.9129

Glycine max

7159
8861



109-128
XP_003522278
356507037
1

Glycine max

7160
8862



178-197
XP_003523155
356508826
1

Glycine max

7161
8863



203-222
XP_003551276
356566105
1

Glycine max

7162
8864




XP_003538548
356540139
0.9368

Glycine max

7163
8865




XP_003601783
357463002
0.8103

Medicago truncatula

7164
8866




XP_003524894
356512372
0.7615

Glycine max

7165
8867




XP_003531195
356525159
0.7759

Glycine max

7166
8868




XP_002514915
255761086
0.7557

Ricinus communis

7167




XP_002297844
255761085
0.7471

Populus trichocarpa

7168




XP_002304680
255761085
0.7414

Populus trichocarpa

7169




XP_002271442
225425417
0.7098

Vitis vinifera

7170
8869



74-93
XP_003520455
356503312
1

Glycine max

7171
8870



370-389
XP_003553428
356570509
1

Glycine max

7172
8871



758-777
XP_003520534
356503475
1

Glycine max

7173
8872




XP_003553428
356570509
0.9081

Glycine max

7174
8873



107-126
XP_003553944
356571558
1

Glycine max

7175
8874



35-54
AAM12880
20149261
1

Helianthus annuus

7176
8875




CBI28152
270240501
0.991

Vitis vinifera

7177




XP_002284967
225430201
0.991

Vitis vinifera

7178
8876




CBI21000
270231236
0.991

Vitis vinifera

7179




CBI36254
270253379
0.9819

Vitis vinifera

7180
8877




NP_200330
145359269
0.9864

Arabidopsis thaliana

7181
8878




XP_003522628
356507751
0.9819

Glycine max

7182
8879




AEM97804
344189954
0.9864

Dimocarpus longan

7183
8880




XP_002864382
297853636
0.9864

Arabidopsis lyrata

7184







subsp. lyrata




XP_002285307
225442824
0.9819

Vitis vinifera

7185
8881



1019-1038
XP_003532399
356527605
1

Glycine max

7186
8882




XP_003525415
356513426
0.8914

Glycine max

7187
8883



113-132
ACU18105
255635506
1

Glycine max

7188
8884



755-774
XP_003518080
356498481
1

Glycine max

7189
8885




XP_003551421
356566402
0.8408

Glycine max

7190
8886



117-136
XP_003549130
356561725
1

Glycine max

7191
8887



690-709
XP_003525415
356513426
1

Glycine max

7192
8888




XP_003532399
356527605
0.9051

Glycine max

7193
8889



1067-1086
XP_003525436
356513468
1

Glycine max

7194
8890



1097-1116
XP_003520128
356502644
1

Glycine max

7195
8891



 998-1017
XP_003550708
356564947
1

Glycine max

7196
8892



178-197
XP_003523155
356508826
1

Glycine max

7197
8893



467-486
XP_003610314
357480056
1

Medicago truncatula

7198
8894




XP_003549541
356562566
0.8796

Glycine max

7199
8895




XP_003519149
356500658
0.8728

Glycine max

7200
8896




XP_003540100
356543299
0.8605

Glycine max

7201
8897




XP_002278464
225445858
0.8098

Vitis vinifera

7202
8898




XP_002529385
255761086
0.8167

Ricinus communis

7203




XP_002325129
255761085
0.7852

Populus trichocarpa

7204




NP_851209
42570605
0.762

Arabidopsis thaliana

7205
8899




XP_002864540
297853636
0.7579

Arabidopsis lyrata

7206







subsp. lyrata




NP_974953
42573713
0.7565

Arabidopsis thaliana

7207
8900



710-729
XP_003551421
356566402
1

Glycine max

7208
8901




XP_003518080
356498481
0.7962

Glycine max

7209
8902


ptc-
312-334
XP_003547131
356557655
1

Glycine max

7210
8903


miRf10226-

XP_003541752
356546681
0.9148

Glycine max

7211
8904


akr
247-269
XP_003542817
356548860
1

Glycine max

7212
8905




XP_003546711
356556804
0.9141

Glycine max

7213
8906




AET02361
357515192
0.7607

Medicago truncatula

7214
8907



131-153
XP_003523607

1

Glycine max

7215




XP_003525906

0.9439

Glycine max

7216



106-128
XP_003549610
356562705
1

Glycine max

7217
8908




XP_003529657
356522038
0.8762

Glycine max

7218
8909



161-183
XP_003525906
356514424
1

Glycine max

7219
8910




XP_003523607
356509746
0.9381

Glycine max

7220
8911


ptc-
123-143
XP_003543825
356550908
1

Glycine max

7221
8912


miRf10271-

XP_003556814
356577399
0.813

Glycine max

7222
8913


akr
423-443
XP_002325684
255761085
1

Populus trichocarpa

7223




XP_002319934
255761085
0.9342

Populus trichocarpa

7224




ACU14088
255627486
0.8202

Glycine max

7225
8914




XP_003543368
356549979
0.8114

Glycine max

7226
8915




NP_001237648
351726723
0.7982

Glycine max

7227
8916




ACU20677
255640786
0.7807

Glycine max

7228
8917




XP_002284361
225461286
0.7719

Vitis vinifera

7229
8918




ADU05416
315364829
0.7851

Citrullus lanatus

7230
8919




XP_002265183
225465748
0.75

Vitis vinifera

7231
8920




XP_002513246
255761086
0.807

Ricinus communis

7232



544-564
ACU20677
255640786
1

Glycine max

7233
8921




P26291

0.7099

Pisum sativum

7234




XP_003597086
357453610
0.7023

Medicago truncatula

7235
8922



304-324
XP_003541823
356546825
1

Glycine max

7236
8923



288-308
XP_003518627
356499601
1

Glycine max

7237
8924




XP_003542153
356547506
0.9478

Glycine max

7238
8925




ADN33938
307136081
0.7937

Cucumis melo

7239
8926







subsp. melo




XP_002518919
255761086
0.7755

Ricinus communis

7240




XP_002279642
225426567
0.7755

Vitis vinifera

7241
8927




XP_002870592
297853636
0.7664

Arabidopsis lyrata

7242







subsp. lyrata




NP_199024
30693991
0.7642

Arabidopsis thaliana

7243
8928




AAM63843
21405504
0.7596

Arabidopsis thaliana

7244
8929




XP_002299422
255761085
0.7528

Populus trichocarpa

7245




XP_002303695
255761085
0.7574

Populus trichocarpa

7246



123-143
XP_003543825
356550908
1

Glycine max

7247
8930



460-480
XP_003542153
356547506
1

Glycine max

7248
8931




XP_003518627
356499601
0.9436

Glycine max

7249
8932



838-858
XP_003526354
356515330
1

Glycine max

7250
8933




XP_003523913
356510372
0.9333

Glycine max

7251
8934



72-92
XP_003535315
356533526
1

Glycine max

7252
8935




XP_003555178
356574075
0.9462

Glycine max

7253
8936




XP_003591226
357441896
0.7849

Medicago truncatula

7254
8937




XP_002512536
255761086
0.7465

Ricinus communis

7255




CBI39621
270257428
0.7465

Vitis vinifera

7256
8938




CAP59645
163913883
0.7558

Vitis vinifera

7257
8939




XP_002277312
225450534
0.7496

Vitis vinifera

7258
8940




XP_002280462
225432056
0.7404

Vitis vinifera

7259
8941




CAP59646
163913885
0.7512

Vitis vinifera

7260
8942




CAN63178
123711273
0.7373

Vitis vinifera

7261
8943



157-177
XP_003594856
357449158
1

Medicago truncatula

7262
8944




XP_003533661
356530178
0.913

Glycine max

7263
8945




ACU18911
255637160
0.9091

Glycine max

7264
8946




ACU19698
255638787
0.9051

Glycine max

7265
8947




XP_002273965
225423594
0.83

Vitis vinifera

7266
8948




NP_001058303
115469407
0.7984

Oryza sativa

7267
8949







Japonica Group




XP_002528147
255761086
0.8063

Ricinus communis

7268




AEL99129
343172851
0.8142

Silene latifolia

7269
8950




AEL99130
343172853
0.8103

Silene latifolia

7270
8951




XP_002438809
255761094
0.7787

Sorghum bicolor

7271



613-633
XP_003541563
356546291
1

Glycine max

7272
8952




XP_003545791
356554924
0.805

Glycine max

7273
8953



904-924
XP_003556814
356577399
1

Glycine max

7274
8954



2015-2035
XP_003538988
356541033
1

Glycine max

7275
8955




XP_003607189
357473808
0.7407

Medicago truncatula

7276
8956




XP_003604038
357467506
0.7035

Medicago truncatula

7277
8957



841-861
XP_003523913
356510372
1

Glycine max

7278
8958




XP_003526354
356515330
0.9333

Glycine max

7279
8959



925-945
XP_003545791
356554924
1

Glycine max

7280
8960




XP_003541563
356546291
0.8662

Glycine max

7281
8961


ptc-
371-391
XP_003518621
356499589
1

Glycine max

7282
8962


miRf10734-

XP_003529232
356521172
0.9575

Glycine max

7283
8963


akr

ABI48270
113911567
0.8826

Lotus japonicus

7284
8964




XP_003525213
356513021
0.8512

Glycine max

7285
8965




XP_003530935
356524637
0.8502

Glycine max

7286
8966




XP_003631014
357521450
0.836

Medicago truncatula

7287
8967




XP_002285117
225424439
0.8117

Vitis vinifera

7288
8968




ACE63259
190148352
0.8067

Betula pendula

7289
8969




ABI48271
113911569
0.8259

Lotus japonicus

7290
8970




XP_002314765
255761085
0.7783

Populus trichocarpa

7291



1151-1171
XP_003520774
356503973
1

Glycine max

7292
8971



1761-1781
XP_003523576
356509683
1

Glycine max

7293




XP_003527692
356518039
0.8899

Glycine max

7294



1929-1949
XP_003527692
356518039
1

Glycine max

7295




XP_003523576
356509683
0.8906

Glycine max

7296



1230-1250
XP_003538849
356540752
1

Glycine max

7297
8972




XP_003520774
356503973
0.7213

Glycine max

7298
8973


ptc-
161-180
XP_003549130
356561725
1

Glycine max

7299
8974


miRf10985-

XP_003553944
356571558
0.9452

Glycine max

7300
8975


akr
1659-1678
AAF67341
7682676
1

Vigna radiata

7301
8976




ACF22882
193850556
0.9362

Glycine max

7302




XP_003546457
356556285
0.9334

Glycine max

7303
8977




XP_003550633
356564793
0.8239

Glycine max

7304
8978




CAA09457
3641864
0.8017

Cicer arietinum

7305
8979




CAA06309
14274980
0.7961

Cicer arietinum

7306
8980




CAA09467
3860419
0.8058

Lupinus angustifolius

7307
8981




XP_002514108
255761086
0.7878

Ricinus communis

7308




XP_003595162
357449770
0.7906

Medicago truncatula

7309
8982




XP_002308268
255761085
0.7684

Populus trichocarpa

7310



235-254
BAF31130
114213453
1

Vicia faba

7311
8983




P48488

0.9751

Medicago sativa

7312







subsp. × varia




ACJ84258
217071795
0.972

Medicago truncatula

7313
8984




XP_003532976
356528780
0.9346

Glycine max

7314
8985




XP_003525372
356513340
0.9283

Glycine max

7315
8986




ACU20069
255639548
0.9252

Glycine max

7316
8987




XP_002509868
255761086
0.9034

Ricinus communis

7317




XP_002298008
255761085
0.8972

Populus trichocarpa

7318




XP_002277816
225426133
0.9034

Vitis vinifera

7319
8988




NP_176587
145337150
0.8442

Arabidopsis thaliana

7320
8989



235-254
XP_003551188
356565928
1

Glycine max

7321
8990




XP_003538544
356540131
0.9106

Glycine max

7322
8991




ACU18328
255635963
0.9083

Glycine max

7323
8992




XP_003601767
357462970
0.7064

Medicago truncatula

7324
8993



495-514
XP_003553428
356570509
1

Glycine max

7325
8994




XP_003520534
356503475
0.9081

Glycine max

7326
8995



51-70
XP_003545057
356553424
1

Glycine max

7327
8996




XP_003519693
356501762
0.9036

Glycine max

7328
8997




XP_002312804
255761085
0.7267

Populus trichocarpa

7329




XP_002279611
225428277
0.7199

Vitis vinifera

7330
8998



167-186
XP_003538544
356540131
1

Glycine max

7331
8999




XP_003551188
356565928
0.9097

Glycine max

7332
9000



109-128
XP_003522278
356507037
1

Glycine max

7333
9001




XP_003525436
356513468
0.7319

Glycine max

7334
9002




XP_003550708
356564947
0.7072

Glycine max

7335
9003



393-412
XP_003520128
356502644
1

Glycine max

7336
9004




XP_003517860
356498034
0.9129

Glycine max

7337
9005



217-236
AES84797
339649045
1

Medicago truncatula

7338
9006




XP_003518611
356499568
0.8041

Glycine max

7339
9007




XP_003529219
356521146
0.7947

Glycine max

7340
9008




XP_003525231
356513057
0.7665

Glycine max

7341
9009




XP_003630941
357521304
0.7834

Medicago truncatula

7342
9010




XP_003530877
356524520
0.7552

Glycine max

7343
9011




XP_002525995
255761086
0.7269

Ricinus communis

7344




XP_002315857
255761085
0.7213

Populus trichocarpa

7345




ABK94575
118485436
0.7213

Populus trichocarpa

7346
9012




XP_002311530
255761085
0.7175

Populus trichocarpa

7347



398-417
XP_003588450
357436348
1

Medicago truncatula

7348
9013




XP_003526513
356515652
0.8496

Glycine max

7349
9014




XP_003522729
356507956
0.8453

Glycine max

7350
9015




XP_003603665
357466760
0.839

Medicago truncatula

7351
9016




ACU21356
255642182
0.8432

Glycine max

7352
9017




XP_003550117
356563738
0.8305

Glycine max

7353
9018




CAD92450
31455392
0.7479

Brassica napus

7354
9019




ADB92670
284519839
0.75

Populus tremula ×

7355
9020








Populus alba





XP_002510013
255761086
0.7373

Ricinus communis

7356




XP_002301129
255761085
0.7373

Populus trichocarpa

7357



370-389
XP_003553428
356570509
1

Glycine max

7358
9021



758-777
XP_003520534
356503475
1

Glycine max

7359
9022




XP_003553428
356570509
0.9081

Glycine max

7360
9023



236-255
XP_003551188
356565928
1

Glycine max

7361
9024



35-54
AAM12880
20149261
1

Helianthus annuus

7362
9025




CBI28152
270240501
0.991

Vitis vinifera

7363




XP_002284967
225430201
0.991

Vitis vinifera

7364
9026




CBI21000
270231236
0.991

Vitis vinifera

7365




CBI36254
270253379
0.9819

Vitis vinifera

7366
9027




NP_200330
145359269
0.9864

Arabidopsis thaliana

7367
9028




XP_003522628
356507751
0.9819

Glycine max

7368
9029




AEM97804
344189954
0.9864

Dimocarpus longan

7369
9030




XP_002864382
297853636
0.9864

Arabidopsis lyrata

7370







subsp. lyrata




XP_002285307
225442824
0.9819

Vitis vinifera

7371
9031



755-774
XP_003518080
356498481
1

Glycine max

7372
9032




XP_003551421
356566402
0.8408

Glycine max

7373
9033



56-75
XP_003522398
356507283
1

Glycine max

7374
9034




XP_003526192
356515005
0.9095

Glycine max

7375
9035




XP_003526191
356515003
0.9128

Glycine max

7376
9036




XP_003527777
356518217
0.7966

Glycine max

7377
9037



113-132
XP_003538544
356540131
1

Glycine max

7378
9038



1097-1116
XP_003520128
356502644
1

Glycine max

7379
9039



1482-1501
XP_003546504
356556379
1

Glycine max

7380
9040




XP_003550617
356564761
0.7923

Glycine max

7381
9041




XP_003542359
356547932
0.7889

Glycine max

7382
9042




XP_002279041
225444747
0.7337

Vitis vinifera

7383
9043




XP_002870435
297853636
0.7119

Arabidopsis lyrata

7384







subsp. lyrata




XP_002516284
255761086
0.7102

Ricinus communis

7385




NP_568528
22327353
0.7018

Arabidopsis thaliana

7386
9044




XP_002326282
255761085
0.7002

Populus trichocarpa

7387


ptc-
264-283
XP_003518840
356500034
1

Glycine max

7388
9045


miRf11315-

XP_003529395
356521503
0.9171

Glycine max

7389
9046


akr

XP_003607985
357475398
0.8275

Medicago truncatula

7390
9047




XP_002518769
255761086
0.7579

Ricinus communis

7391




XP_002313117
255761085
0.7496

Populus trichocarpa

7392




AAQ90244
37223341
0.7446

Solanum lycopersicum

7393
9048




NP_001234399
350534489
0.7446

Solanum lycopersicum

7394
9049




NP_188555
30685246
0.7247

Arabidopsis thaliana

7395
9050




XP_002883169
297853636
0.7164

Arabidopsis lyrata

7396







subsp. lyrata




CBI32416
270245997
0.7313

Vitis vinifera

7397
9051



324-343
XP_003550774
356565082
1

Glycine max

7398
9052




XP_003525472
356513541
0.8489

Glycine max

7399
9053



324-343
XP_003550774
356565082
1

Glycine max

7400
9054



680-699
XP_003554964
356573636
1

Glycine max

7401
9055


ptc-
404-426
XP_003612685
357484794
1

Medicago truncatula

7402
9056


miRf11757-

XP_003516858
356495999
0.8914

Glycine max

7403
9057


akr

XP_003534304
356531476
0.8801

Glycine max

7404
9058




BAH03477
218744535
0.8015

Nicotiana tabacum

7405
9059




XP_002519001
255761086
0.824

Ricinus communis

7406




XP_002303454
255761085
0.8127

Populus trichocarpa

7407




ABK93338
118482845
0.8052

Populus trichocarpa

7408
9060




XP_002326571
255761085
0.8015

Populus trichocarpa

7409




XP_002274060
225427054
0.764

Vitis vinifera

7410
9061




XP_002890966
297853636
0.7603

Arabidopsis lyrata

7411







subsp. lyrata


ath-
164-184
XP_003549130
356561725
1

Glycine max

7412
9062


miR157a

XP_003553944
356571558
0.9452

Glycine max

7413
9063



238-258
XP_003551188
356565928
1

Glycine max

7414
9064




XP_003538544
356540131
0.9106

Glycine max

7415
9065




ACU18328
255635963
0.9083

Glycine max

7416
9066




XP_003601767
357462970
0.7064

Medicago truncatula

7417
9067



1129-1149
XP_003525415
356513426
1

Glycine max

7418
9068




XP_003532399
356527605
0.9051

Glycine max

7419
9069



898-918
XP_003540473
356544059
1

Glycine max

7420
9070




XP_003543233
356549706
0.9305

Glycine max

7421
9071




ACU24116
255647298
0.9251

Glycine max

7422
9072



118-138
XP_003525436
356513468
1

Glycine max

7423
9073




XP_003550708
356564947
0.9204

Glycine max

7424
9074




XP_003522278
356507037
0.7595

Glycine max

7425
9075



77-97
XP_003520455
356503312
1

Glycine max

7426
9076




XP_003530170
356523079
0.848

Glycine max

7427
9077



498-518
XP_003553428
356570509
1

Glycine max

7428
9078




XP_003520534
356503475
0.9081

Glycine max

7429
9079



50-70
XP_003550708
356564947
1

Glycine max

7430
9080




XP_003525436
356513468
0.9373

Glycine max

7431
9081



854-875
XP_003555667
356575073
1

Glycine max

7432
9082



170-190
XP_003538544
356540131
1

Glycine max

7433
9083




XP_003551188
356565928
0.9097

Glycine max

7434
9084



593-613
NP_001236309
351724988
1

Glycine max

7435
9085




XP_003529339
356521389
0.838

Glycine max

7436
9086



144-164
XP_002275728
225446415
1

Vitis vinifera

7437
9087




AAY16440
62856978
0.7396

Betula platyphylla

7438
9088



112-132
XP_003522278
356507037
1

Glycine max

7439
9089



396-416
XP_003520128
356502644
1

Glycine max

7440
9090




XP_003517860
356498034
0.9129

Glycine max

7441
9091



181-201
XP_003523155
356508826
1

Glycine max

7442
9092



593-613
NP_001236309
351724988
1

Glycine max

7443
9093



116-136
ACU18105
255635506
1

Glycine max

7444
9094



758-778
XP_003518080
356498481
1

Glycine max

7445
9095




XP_003551421
356566402
0.8408

Glycine max

7446
9096



120-140
XP_003549130
356561725
1

Glycine max

7447



693-713
XP_003525415
356513426
1

Glycine max

7448
9097



737-757
XP_003553428
356570509
1

Glycine max

7449
9098



116-136
XP_003538544
356540131
1

Glycine max

7450
9099



818-838
XP_003553944
356571558
1

Glycine max

7451
9100



238-258
XP_003551188
356565928
1

Glycine max

7452
9101



1070-1090
XP_003525436
356513468
1

Glycine max

7453
9102



109-129
XP_003520455
356503312
1

Glycine max

7454
9103



404-424
XP_003526029
356514674
1

Glycine max

7455
9104




XP_003540122
356543345
0.8919

Glycine max

7456
9105



181-201
XP_003523155
356508826
1

Glycine max

7457
9106



713-733
XP_003551421
356566402
1

Glycine max

7458
9107




XP_003518080
356498481
0.7962

Glycine max

7459
9108


sbi-
305-325
XP_003541823
356546825
1

Glycine max

7460
9109


miR159a
305-325
XP_003541823
356546825
1

Glycine max

7461
9110



289-309
XP_003518627
356499601
1

Glycine max

7462
9111




XP_003542153
356547506
0.9478

Glycine max

7463
9112




ADN33938
307136081
0.7937

Cucumis melo

7464
9113







subsp. melo




XP_002518919
255761086
0.7755

Ricinus communis

7465




XP_002279642
225426567
0.7755

Vitis vinifera

7466
9114




XP_002870592
297853636
0.7664

Arabidopsis lyrata

7467







subsp. lyrata




NP_199024
30693991
0.7642

Arabidopsis thaliana

7468
9115




AAM63843
21405504
0.7596

Arabidopsis thaliana

7469
9116




XP_002299422
255761085
0.7528

Populus trichocarpa

7470




XP_002303695
255761085
0.7574

Populus trichocarpa

7471



124-144
XP_003543825
356550908
1

Glycine max

7472
9117




XP_003556814
356577399
0.813

Glycine max

7473
9118



461-481
XP_003542153
356547506
1

Glycine max

7474
9119




XP_003518627
356499601
0.9436

Glycine max

7475
9120



839-859
XP_003526354
356515330
1

Glycine max

7476
9121




XP_003523913
356510372
0.9333

Glycine max

7477
9122



73-93
XP_003535315
356533526
1

Glycine max

7478
9123




XP_003555178
356574075
0.9462

Glycine max

7479
9124




XP_003591226
357441896
0.7849

Medicago truncatula

7480
9125




XP_002512536
255761086
0.7465

Ricinus communis

7481




CBI39621
270257428
0.7465

Vitis vinifera

7482
9126




CAP59645
163913883
0.7558

Vitis vinifera

7483
9127




XP_002277312
225450534
0.7496

Vitis vinifera

7484
9128




XP_002280462
225432056
0.7404

Vitis vinifera

7485
9129




CAP59646
163913885
0.7512

Vitis vinifera

7486
9130




CAN63178
123711273
0.7373

Vitis vinifera

7487
9131



614-634
XP_003541563
356546291
1

Glycine max

7488
9132




XP_003545791
356554924
0.805

Glycine max

7489
9133



905-925
XP_003556814
356577399
1

Glycine max

7490
9134




XP_003543825
356550908
0.8659

Glycine max

7491
9135


smo-
164-184
XP_003549130
356561725
1

Glycine max

7492
9136


miR156b

XP_003553944
356571558
0.9452

Glycine max

7493
9137



238-258
XP_003551188
356565928
1

Glycine max

7494
9138




XP_003538544
356540131
0.9106

Glycine max

7495
9139




ACU18328
255635963
0.9083

Glycine max

7496
9140




XP_003601767
357462970
0.7064

Medicago truncatula

7497
9141



1129-1149
XP_003525415
356513426
1

Glycine max

7498
9142




XP_003532399
356527605
0.9051

Glycine max

7499
9143



118-138
XP_003525436
356513468
1

Glycine max

7500
9144




XP_003550708
356564947
0.9204

Glycine max

7501
9145




XP_003522278
356507037
0.7595

Glycine max

7502
9146



77-97
XP_003520455
356503312
1

Glycine max

7503
9147




XP_003530170
356523079
0.848

Glycine max

7504
9148



50-70
XP_003550708
356564947
1

Glycine max

7505
9149




XP_003525436
356513468
0.9373

Glycine max

7506
9150



498-518
XP_003553428
356570509
1

Glycine max

7507
9151




XP_003520534
356503475
0.9081

Glycine max

7508
9152



170-190
XP_003538544
356540131
1

Glycine max

7509
9153




XP_003551188
356565928
0.9097

Glycine max

7510
9154



593-613
NP_001236309
351724988
1

Glycine max

7511
9155




XP_003529339
356521389
0.838

Glycine max

7512
9156



475-495
XP_003528960
356520620
1

Glycine max

7513
9157




NP_001235425
351721650
0.9279

Glycine max

7514
9158



144-164
XP_002275728
225446415
1

Vitis vinifera

7515
9159




AAY16440
62856978
0.7396

Betula platyphylla

7516
9160



112-132
XP_003522278
356507037
1

Glycine max

7517
9161



396-416
XP_003520128
356502644
1

Glycine max

7518
9162




XP_003517860
356498034
0.9129

Glycine max

7519
9163



243-263
XP_003540122
356543345
1

Glycine max

7520
9164




XP_003526029
356514674
0.8684

Glycine max

7521
9165



181-201
XP_003523155
356508826
1

Glycine max

7522
9166



77-97
XP_003520455
356503312
1

Glycine max

7523
9167



373-393
XP_003553428
356570509
1

Glycine max

7524
9168



761-781
XP_003520534
356503475
1

Glycine max

7525
9169




XP_003553428
356570509
0.9081

Glycine max

7526
9170



110-130
XP_003553944
356571558
1

Glycine max

7527
9171



239-259
XP_003551188
356565928
1

Glycine max

7528
9172



1022-1042
XP_003532399
356527605
1

Glycine max

7529
9173




XP_003525415
356513426
0.8914

Glycine max

7530
9174



593-613
NP_001236309
351724988
1

Glycine max

7531
9175



116-136
ACU18105
255635506
1

Glycine max

7532
9176



758-778
XP_003518080
356498481
1

Glycine max

7533
9177




XP_003551421
356566402
0.8408

Glycine max

7534
9178



1231-1251
XP_003525415
356513426
1

Glycine max

7535
9179



20-40
XP_003549130
356561725
1

Glycine max

7536
9180



1070-1090
XP_003525436
356513468
1

Glycine max

7537
9181



404-424
XP_003526029
356514674
1

Glycine max

7538
9182




XP_003540122
356543345
0.8919

Glycine max

7539
9183



185-205
XP_003538544
356540131
1

Glycine max

7540
9184



713-733
XP_003551421
356566402
1

Glycine max

7541
9185




XP_003518080
356498481
0.7962

Glycine max

7542
9186


osa-
32-52
AAM97011
22531013
1

Arabidopsis thaliana

7543
9187


miRf10839-

NP_563815
145335272
0.9929

Arabidopsis thaliana

7544
9188


akr

XP_002892455
297853636
0.9786

Arabidopsis lyrata

7545







subsp. lyrata




BAJ33638
312281544
0.9429

Thellungiella halophila

7546
9189




XP_002523852
255761086
0.7714

Ricinus communis

7547




AEL99169
343172931
0.75

Silene latifolia

7548
9190




XP_002313603
255761085
0.7429

Populus trichocarpa

7549




ACJ86143
217075565
0.7214

Medicago truncatula

7550
9191




ADI45844
297525844
0.7429

Silene vulgaris

7551
9192




XP_002328107
255761085
0.75

Populus trichocarpa

7552


ptc-
35-54
ACJ37435
212717187
1

Glycine max

7553
9193


miRf10300-

ACU23160
255645326
0.9948

Glycine max

7554
9194


akr

ACJ37436
212717189
0.933

Glycine max

7555
9195



537-556
NP_001235206
351722714
1

Glycine max

7556
9196




NP_001236569
351725110
0.9581

Glycine max

7557
9197




XP_002866588
297853636
0.7126

Arabidopsis lyrata

7558







subsp. lyrata




XP_002309915
255761085
0.7665

Populus trichocarpa

7559




NP_201209
145359627
0.7066

Arabidopsis thaliana

7560
9198




ABK96256
118488893
0.7605

Populus trichocarpa ×

7561
9199








Populus deltoides





XP_002526638
255761086
0.7485

Ricinus communis

7562




XP_002306249
255761085
0.7784

Populus trichocarpa

7563




2WSC_N

0.7844

Phaseolus vulgaris

7564




BAJ33864
312281996
0.7066

Thellungiella halophila

7565
9200



39-58
XP_002283864
225429937
1

Vitis vinifera

7566
9201


ptc-
318-339
BAG09382
167961874
1

Glycine max

7567
9202


miRf10619-

NP_001238412
351726609
0.9838

Glycine max

7568
9203


akr

ACU19205
255637765
0.9704

Glycine max

7569
9204




CAN67413
123711204
0.9272

Vitis vinifera

7570
9205




ACD93720
223987377
0.903

Mikania micrantha

7571
9206




XP_002862992
297853636
0.9191

Arabidopsis lyrata

7572







subsp. lyrata




XP_002277249
225462095
0.9299

Vitis vinifera

7573
9207




XP_002317470
255761085
0.9218

Populus trichocarpa

7574




1803516A

0.9191

Lens culinaris

7575




XP_002519658
255761086
0.9084

Ricinus communis

7576



32-53
ACU18791
255636916
1

Glycine max

7577
9208



1512-1532
ACQ44234
228485370
1

Glycine max

7578
9209



55-75
XP_002512977
255761086
1

Ricinus communis

7579


ptc-
418-438
ACU17540
255634349
1

Glycine max

7580
9210


miRf11847-


akr


ath-
293-314
ACU18306
255635917
1

Glycine max

7581
9211


miRf10701-
918-939
NP_001237102
351725712
1

Glycine max

7582
9212


akr

XP_002284425
225445231
0.7562

Vitis vinifera

7583
9213



348-369
NP_001236604
351726125
1

Glycine max

7584
9214



1178-1199
ACU21144
255641746
1

Glycine max

7585
9215




XP_002277008
225444658
0.7859

Vitis vinifera

7586
9216




XP_002276983
225444660
0.7859

Vitis vinifera

7587
9217




CAB75429
6996559
0.7204

Nicotiana plumbaginifolia

7588
9218




XP_002331184
255761085
0.733

Populus trichocarpa

7589




XP_002529199
255761086
0.7355

Ricinus communis

7590




XP_002516242
255761086
0.7179

Ricinus communis

7591




XP_002270823
225442060
0.7254

Vitis vinifera

7592
9219




CBI35841
270253379
0.7179

Vitis vinifera

7593




CAN65009
147797980
0.7229

Vitis vinifera

7594
9220


osa-
321-339
ABB02162
77744234
1

Medicago sativa

7595
9221


miRf11595-

ABB02161
77744232
0.975

Medicago sativa

7596
9222


akr

ACJ85732
217074743
0.9711

Medicago truncatula

7597
9223




AEO21428
346229108
0.8227

Glycine max

7598
9224




ABC59101
84514184
0.8073

Medicago truncatula

7599
9225




ABC68398
85001688
0.7842

Glycine max

7600
9226




ABS53040
153869430
0.8073

Leucaena leucocephala

7601
9227




AAT39511
47933889
0.7553

Camptotheca acuminata

7602
9228




XP_002327769
255761085
0.7572

Populus trichocarpa

7603




XP_002327770
255761085
0.7437

Populus trichocarpa

7604



107-125
NP_001236740
351722666
1

Glycine max

7605
9229



56-74
CAE02645
34495198
1

Lotus japonicus

7606
9230




CAA65585
2347053
0.7513

Vitis vinifera

7607
9231




AAP36992
46371994
0.753

Cucumis sativus

7608
9232




BAE71301
84468435
0.7598

Trifolium pratense

7609
9233




XP_002269030
225427781
0.7445

Vitis vinifera

7610
9234




BAE71251
84468335
0.7581

Trifolium pratense

7611
9235




BAG68575
195976672
0.7496

Prunus persica

7612
9236




BAD06581
40645471
0.7394

Nicotiana tabacum

7613
9237




CAN65288
147782233
0.7291

Vitis vinifera

7614
9238




CAB64599
6646839
0.7359

Datura stramonium

7615
9239



311-329
ACU18654
255636632
1

Glycine max

7616
9240



515-533
NP_001235161
351721419
1

Glycine max

7617
9241




BAB86923
19911192
0.711

Vigna angularis

7618
9242



22-40
NP_001237655
351726929
1

Glycine max

7619
9243



421-439
ACU22898
255644792
1

Glycine max

7620
9244


osa-
407-428
NP_001237033
351723724
1

Glycine max

7621
9245


miRf11013-
32-53
ABY84658
166203235
1

Glycine max

7622
9246


akr

NP_001236902
351727360
0.9715

Glycine max

7623
9247




AAL32033
18158618
0.7967

Retama raetam

7624
9248



597-618
ACU23333
255645678
1

Glycine max

7625
9249



29-50
NP_001236902
351727360
1

Glycine max

7626
9250




ABY84658
166203235
0.9696

Glycine max

7627
9251


ptc-
679-698
NP_001238384
351725780
1

Glycine max

7628
9252


miRf10148-
547-566
XP_002283799
225435835
1

Vitis vinifera

7629
9253


akr

CAN72395
147774368
0.9606

Vitis vinifera

7630




ACU20767
255640974
0.9462

Glycine max

7631
9254




XP_002304844
255761085
1.0896

Populus trichocarpa

7632




CBI16575
270227042
0.9176

Vitis vinifera

7633




XP_002523383
255761086
0.8746

Ricinus communis

7634




XP_002299088
255761085
0.8853

Populus trichocarpa

7635




NP_850182
42570348
0.81

Arabidopsis thaliana

7636
9255




NP_565736
42569548
0.8065

Arabidopsis thaliana

7637
9256




XP_002862885
297853636
0.8029

Arabidopsis lyrata

7638







subsp. lyrata



135-154
ACU17996
255635284
1

Glycine max

7639
9257




ACU23482
255645988
0.8725

Glycine max

7640
9258




XP_002307595
255761085
0.8406

Populus trichocarpa

7641




XP_002524761
255761086
0.8319

Ricinus communis

7642




XP_002300832
255761085
0.8261

Populus trichocarpa

7643




XP_002279156
225437057
0.8029

Vitis vinifera

7644
9259




XP_002878504
297853636
0.7072

Arabidopsis lyrata

7645







subsp. lyrata



141-160
XP_002283799
225435835
1

Vitis vinifera

7646
9260



367-386
ACU17970
255635230
1

Glycine max

7647
9261




ACU18145
255635589
0.9494

Glycine max

7648
9262




XP_002510492
255761086
0.7946

Ricinus communis

7649




XP_002278539
225458064
0.7798

Vitis vinifera

7650
9263




XP_002306908
255761085
0.7619

Populus trichocarpa

7651




ABL10371
118723367
0.75

Medicago truncatula

7652
9264




XP_002301996
255761085
0.7738

Populus trichocarpa

7653




NP_568605
145358761
0.7024

Arabidopsis thaliana

7654
9265



110-129
ACU17996
255635284
1

Glycine max

7655
9266


zma-
122-140
ACU21375
255642220
1

Glycine max

7656
9267


miR482-5p
128-146
XP_002314999
255761085
1

Populus trichocarpa

7657




XP_002312287
255761085
0.9432

Populus trichocarpa

7658




XP_002285502
225424638
0.8428

Vitis vinifera

7659
9268




XP_002520520
255761086
0.8341

Ricinus communis

7660




XP_002876891
297853636
0.8035

Arabidopsis lyrata

7661







subsp. lyrata




NP_178465
30678070
0.7948

Arabidopsis thaliana

7662
9269




NP_001149451
226506925
0.7773

Zea mays

7663
9270




XP_002875224
297853636
0.7904

Arabidopsis lyrata

7664







subsp. lyrata




NP_001054237
115461273
0.7686

Oryza sativa

7665
9271







Japonica Group




CAH68184
90399185
0.7642

Oryza sativa

7666
9272







Indica Group



745-763
NP_001235027
351724922
1

Glycine max

7667
9273




NP_001238461
351728042
0.9389

Glycine max

7668
9274




NP_001235888
351727642
0.9389

Glycine max

7669
9275




NP_001235511
351724120
0.9313

Glycine max

7670
9276




ADD11814
289586041
0.8244

Cajanus cajan

7671
9277




AAC49369
1420884
0.7939

Phaseolus vulgaris

7672
9278



40-58
ACU20629
255640688
1

Glycine max

7673
9279



27-45
ACU20555
255640539
1

Glycine max

7674
9280



19-37
ACU23548
255646123
1

Glycine max

7675
9281




Q96452

0.9922

Glycine max

7676




NP_001235679
351721598
1

Glycine max

7677
9282




ACU19187
255637728
0.9457

Glycine max

7678
9283




ACU17765
255634808
0.8876

Glycine max

7679
9284




XP_002523376
255761086
0.8411

Ricinus communis

7680




ACQ45020
228552591
0.845

Cicer arietinum

7681
9285




XP_002285427
225461653
0.8256

Vitis vinifera

7682
9286




P42654

0.8372

Vicia faba

7683




XP_002316863
255761085
0.8333

Populus trichocarpa

7684



59-77
ACU24228
255647528
1

Glycine max

7685
9287




ACU18882
255637100
0.7652

Glycine max

7686
9288




XP_002276186
225429425
0.7652

Vitis vinifera

7687
9289




XP_002516481
255761086
0.7391

Ricinus communis

7688




XP_002324746
255761085
0.7304

Populus trichocarpa

7689




NP_565612
145360329
0.7217

Arabidopsis thaliana

7690
9290




XP_002880724
297853636
0.7275

Arabidopsis lyrata

7691







subsp. lyrata




XP_002281479
225442372
0.7362

Vitis vinifera

7692
9291




ABB86253
82621129
0.7014

Solanum tuberosum

7693
9292




CBI35995
270253379
0.7362

Vitis vinifera

7694



296-314
NP_001237978
351721473
1

Glycine max

7695
9293



59-77
ACU18882
255637100
1

Glycine max

7696
9294




ACU24228
255647528
0.9209

Glycine max

7697
9295




NP_001031418
79323070
0.723

Arabidopsis thaliana

7698
9296



204-222
ACU20859
255641163
1

Glycine max

7699
9297



 91-109
ACU15870
255631011
1

Glycine max

7700
9298



390-408
CAI43251
57283984
1

Phaseolus vulgaris

7701
9299







var. nanus




ABA86966
77540215
0.937

Glycine max

7702
9300




NP_001237472
351721637
0.937

Glycine max

7703
9301




ACU23435
255645890
0.9213

Glycine max

7704
9302




XP_002283671
225434934
0.8228

Vitis vinifera

7705
9303




ACJ11723
211906459
0.8386

Gossypium hirsutum

7706
9304




ABA46792
76573374
0.8228

Solanum tuberosum

7707
9305




XP_002299871
255761085
0.815

Populus trichocarpa

7708




CAN67342
147772559
0.815

Vitis vinifera

7709




XP_002876302
297853636
0.811

Arabidopsis lyrata

7710







subsp. lyrata



61-79
ACU17423
255634119
1

Glycine max

7711
9306



140-158
ABA86966
77540215
1

Glycine max

7712
9307




CAI43251
57283984
0.9407

Phaseolus vulgaris

7713
9308







var. nanus




XP_002283693
225449540
0.8261

Vitis vinifera

7714
9309



309-327
AAV87173
56404220
1

Phaseolus vulgaris

7715
9310




BAD97829
63002633
0.7487

Prunus persica

7716
9311


ptc-
79-98
ACU20325
255640067
1

Glycine max

7717
9312


miRf10522-
321-340
ADM32504
304421409
1

Glycine max

7718
9313


akr

CAD12837
18075959
0.8679

Lupinus luteus

7719
9314




CBI27290
270239516
0.7896

Vitis vinifera

7720




XP_002316086
255761085
0.7847

Populus trichocarpa

7721




XP_002512077
255761086
0.7765

Ricinus communis

7722




CAD12836
18075957
0.7471

Lupinus luteus

7723
9315




XP_002311341
255761085
0.7553

Populus trichocarpa

7724




NP_172830
145335664
0.7259

Arabidopsis thaliana

7725
9316




XP_002892769
297853636
0.7243

Arabidopsis lyrata

7726







subsp. lyrata



1811-1830
NP_001237605
351725462
1

Glycine max

7727
9317




NP_001235120
351727636
0.7738

Glycine max

7728
9318


osa-
663-683
ACU20209
255639831
1

Glycine max

7729
9319


miRf10362-
309-329
XP_002531192
255761086
1

Ricinus communis

7730


akr

XP_002298817
255761085
0.7018

Populus trichocarpa

7731



415-435
NP_001238595
351724492
1

Glycine max

7732
9320


ath-
261-280
ACU23703
255646448
1

Glycine max

7733
9321


miRf10702-
328-347
ABD28727
49405947
1

Medicago truncatula

7734


akr

NP_001236252
351723348
0.9592

Glycine max

7735
9322




NP_001236882
351726775
0.9456

Glycine max

7736
9323




CAG14986
45720189
0.9184

Cicer arietinum

7737
9324




XP_002268544
225442984
0.8844

Vitis vinifera

7738
9325




XP_002517623
255761086
0.8912

Ricinus communis

7739




XP_002298252
255761085
0.8707

Populus trichocarpa

7740




NP_172989
145335736
0.8639

Arabidopsis thaliana

7741
9326




EEC76567
54362548
0.8571

Oryza sativa

7742







Indica Group




BAJ92153
326514005
0.8435

Hordeum vulgare

7743
9327







subsp. vulgare



690-709
ACU24052
255647167
1

Glycine max

7744
9328




NP_001237955
351720763
0.8561

Glycine max

7745
9329


ath-
343-362
NP_001234975
351723428
1

Glycine max

7746
9330


miRf10148-

XP_002314377
255761085
0.8174

Populus trichocarpa

7747


akr

XP_002270067
225431754
0.8119

Vitis vinifera

7748
9331




CBI22983
270234210
0.8119

Vitis vinifera

7749




XP_002328602
255761085
0.7953

Populus trichocarpa

7750




BAG16526
171854672
0.7898

Capsicum chinense

7751
9332




Q39659

0.7621

Cucumis sativus

7752




NP_187342
145338207
0.7759

Arabidopsis thaliana

7753
9333




XP_002882497
297853636
0.7718

Arabidopsis lyrata

7754







subsp. lyrata




O49809

0.7552

Brassica napus

7755



176-195
NP_001235442
351722139
1

Glycine max

7756
9334




NP_001236219
351722401
0.9712

Glycine max

7757
9335




ABC46708
83776785
0.8417

Arachis hypogaea

7758
9336




Q40519

0.8201

Nicotiana tabacum

7759




NP_001234042
350537546
0.8273

Solanum lycopersicum

7760
9337




P06183

0.8201

Solanum tuberosum

7761




ADB93062
284520973
0.8273

Jatropha curcas

7762
9338




CAA27989
21490
0.8058

Solanum tuberosum

7763
9339




XP_002332206
255761085
0.7914

Populus trichocarpa

7764




ABK96223
118488825
0.7914

Populus trichocarpa ×

7765
9340








Populus deltoides




80-99
ACJ85304
217073887
1

Medicago truncatula

7766
9341




ABF66654
120650107
0.9086

Ammopiptanthus mongolicus

7767
9342




ACU19677
255638744
0.9213

Glycine max

7768
9343




CBI18248
270229319
0.8807

Vitis vinifera

7769




XP_002530504
255761086
0.8858

Ricinus communis

7770




XP_002308228
255761085
0.8756

Populus trichocarpa

7771




XP_002262986
225439379
0.8807

Vitis vinifera

7772
9344




ACU23134
255645273
0.8858

Glycine max

7773
9345




ABJ97690
116292767
0.8503

Solanum tuberosum

7774
9346




XP_002322994
255761085
0.7995

Populus trichocarpa

7775



488-507
ACU23010
255645020
1

Glycine max

7776
9347



 989-1008
XP_002314377
255761085
1

Populus trichocarpa

7777




NP_001234975
351723428
0.814

Glycine max

7778
9348



 82-101
ABF66654
120650107
1

Ammopiptanthus mongolicus

7779
9349




ACJ85304
217073887
0.9266

Medicago truncatula

7780
9350



 91-110
ACU22749
255644490
1

Glycine max

7781
9351


ath-
256-277
NP_001238139
351726107
1

Glycine max

7782
9352


miRf10451-

NP_001237827
351724486
0.9394

Glycine max

7783
9353


akr

NP_001237200
351721157
0.8838

Glycine max

7784
9354




NP_001236083
351725850
0.8333

Glycine max

7785
9355



143-164
NP_001238139
351726107
1

Glycine max

7786
9356


ath-
188-207
ACU18963
255637265
1

Glycine max

7787
9357


miRf10751-

ACU21242
255641949
0.7764

Glycine max

7788
9358


akr
23-42
ACU20965
255641375
1

Glycine max

7789
9359




XP_002301406
255761085
0.8099

Populus trichocarpa

7790




XP_002320196
255761085
0.7851

Populus trichocarpa

7791




XP_002281449
225454509
0.7879

Vitis vinifera

7792
9360




NP_566074
145361064
0.7245

Arabidopsis thaliana

7793
9361




XP_002880239
297853636
0.7245

Arabidopsis lyrata

7794







subsp. lyrata




AAU93592
53793715
0.7135

Solanum demissum

7795
9362




XP_002876635
297853636
0.719

Arabidopsis lyrata

7796







subsp. lyrata




NP_191729
145339747
0.7107

Arabidopsis thaliana

7797
9363



1857-1876
XP_002525341
255761086
1

Ricinus communis

7798




XP_002326656
255761085
0.8901

Populus trichocarpa

7799




CAN79431
147866563
0.8524

Vitis vinifera

7800




NP_001235564
351725644
0.8599

Glycine max

7801
9364




ADW84019
321438026
0.8419

Gossypium hirsutum

7802
9365




XP_002303363
255761085
0.8584

Populus trichocarpa

7803




2FON_A

0.8238

Solanum lycopersicum

7804




NP_001234198
350535510
0.8238

Solanum lycopersicum

7805
9366




AAW78691
58531951
0.8223

Solanum cheesmaniae

7806




XP_002868103
297853636
0.8313

Arabidopsis lyrata

7807







subsp. lyrata



738-757
CAD31838
21068663
1

Cicer arietinum

7808
9367




NP_001237954
351720733
0.9412

Glycine max

7809
9368




ACU19740
255638874
0.9314

Glycine max

7810
9369




NP_001237941
351727802
0.9118

Glycine max

7811
9370




XP_002518592
255761086
0.8824

Ricinus communis

7812




XP_002534445
255761086
0.8873

Ricinus communis

7813




AAD38143
5031274
0.8676

Prunus armeniaca

7814
9371




XP_002283286
225461208
0.8627

Vitis vinifera

7815
9372




ABN12320
124488471
0.848

Gossypium hirsutum

7816
9373




XP_002867516
297853636
0.8578

Arabidopsis lyrata

7817







subsp. lyrata



188-207
ACU18963
255637265
1

Glycine max

7818
9374



 87-106
ACU21242
255641949
1

Glycine max

7819
9375




XP_002285386
225430399
0.7263

Vitis vinifera

7820
9376




CBI21096
270231236
0.7263

Vitis vinifera

7821



387-406
ABP88240
145652370
1

Glycine max

7822
9377


ppt-
182-202
ACU23202
255645411
1

Glycine max

7823
9378


miR1220a

BAG06274
318612463
0.8691

Vigna unguiculata

7824
9379




CBI31552
270244444
0.7404

Vitis vinifera

7825




XP_002280217
225449239
0.7404

Vitis vinifera

7826
9380




XP_002316242
255761085
0.7652

Populus trichocarpa

7827




NP_181518
30688068
0.7111

Arabidopsis thaliana

7828
9381




XP_002879830
297853636
0.7133

Arabidopsis lyrata

7829







subsp. lyrata




AAM65420
21406633
0.7088

Arabidopsis thaliana

7830
9382




NP_191133
42565959
0.7314

Arabidopsis thaliana

7831
9383




XP_002876330
297853636
0.7246

Arabidopsis lyrata

7832







subsp. lyrata



539-559
NP_001234951
351722740
1

Glycine max

7833
9384



182-202
ACU23202
255645411
1

Glycine max

7834
9385



233-253
ACU22926
255644851
1

Glycine max

7835
9386




ACU23107
255645218
0.8212

Glycine max

7836
9387




ABU93486
156739649
0.7848

Vigna angularis

7837
9388




ABK30788
116871383
0.745

Litchi chinensis

7838
9389




AAK51119
14029148
0.7152

Carica papaya

7839
9390




XP_002523709
255761086
0.7053

Ricinus communis

7840




CAA48324
311834
0.7119

Tropaeolum majus

7841
9391




XP_002275862
225436483
0.7219

Vitis vinifera

7842
9392



125-145
BAG06274
318612463
1

Vigna unguiculata

7843
9393


ath-
17-36
ABY78023
166014266
1

Glycine max

7844
9394


miRf10068-

XP_002310310
255761085
0.815

Populus trichocarpa

7845


akr

XP_002269295
225467972
0.7974

Vitis vinifera

7846
9395




AAX47170
61611670
0.7665

Pisum sativum

7847
9396




ACY82403
267850662
0.793

Petunia × hybrida

7848
9397




CAG27846
83999599
0.7665

Antirrhinum majus

7849
9398




CAL36572
113207064
0.7621

Misopates orontium

7850
9399




ABD66219
122056646
0.7665

Malus × domestica

7851
9400




AAF22455
6652755
0.7709

Paulownia kawakamii

7852
9401




AAP40641
30983947
0.7533

Eucalyptus occidentalis

7853
9402



816-835
AEH04452
334813894
1

Arachis hypogaea

7854
9403




XP_002512790
255761086
0.9358

Ricinus communis

7855




ACU21011
255641470
0.9309

Glycine max

7856
9404




NP_001238484
351721287
0.9309

Glycine max

7857
9405




P12858

0.9185

Pisum sativum

7858




CAA33264
20728
0.916

Pisum sativum

7859
9406




ACV32597
256862073
0.9185

Medicago sativa

7860
9407




BAJ34149
312282566
0.8938

Thellungiella halophila

7861
9408




ACT21568
251831337
0.8963

Bruguiera gymnorhiza

7862
9409




ADX97321
323650480
0.9185

Mangifera indica

7863
9410



898-917
AEH04452
334813894
1

Arachis hypogaea

7864
9411



121-140
ABC68403
85001696
1

Glycine max

7865
9412




XP_002275806
225426452
0.7992

Vitis vinifera

7866
9413




CAN80040
147844259
0.7992

Vitis vinifera

7867
9414




XP_002509820
255761086
0.803

Ricinus communis

7868




XP_002304502
255761085
0.7765

Populus trichocarpa

7869




AAZ39642
71726941
0.7708

Petunia × hybrida

7870
9415




XP_002320802
255761085
0.7557

Populus trichocarpa

7871




XP_002275115
225454267
0.7614

Vitis vinifera

7872
9416




CAN80156
147852118
0.7557

Vitis vinifera

7873
9417




XP_002882043
297853636
0.75

Arabidopsis lyrata

7874







subsp. lyrata



621-640
NP_001238484
351721287
1

Glycine max

7875
9418




AEH04452
334813894
0.9355

Arachis hypogaea

7876
9419




ABK96233
118488846
0.8958

Populus trichocarpa ×

7877
9420








Populus deltoides




419-438
ACU19391
255638154
1

Glycine max

7878
9421



511-530
CAC80373
18072796
1

Capsicum annuum

7879
9422




CAC80372
18072794
0.9583

Capsicum annuum

7880
9423




P09043

0.9263

Nicotiana tabacum

7881


osa-
56-78
ACU19975
255639357
1

Glycine max

7882
9424


miRf11352-

ACU19227
255637811
0.9593

Glycine max

7883
9425


akr

ACU19215
255637786
0.7647

Glycine max

7884
9426




XP_002513621
255761086
0.7059

Ricinus communis

7885




XP_002318354
255761085
0.724

Populus trichocarpa

7886


ath-
134-154
NP_001236767
351723442
1

Glycine max

7887
9427


miRf11021-
18-38
ACJ84983
217073247
1

Medicago truncatula

7888
9428


akr

O48905

0.991

Medicago sativa

7889




CAC10208
10334492
0.9639

Cicer arietinum

7890
9429




NP_001236661
351727792
0.9518

Glycine max

7891
9430




XP_002332745
255761085
0.9428

Populus trichocarpa

7892




XP_002533463
255761086
0.9398

Ricinus communis

7893




AEB60994
328908588
0.9488

Lupinus angustifolius

7894
9431




XP_002312583
255761085
0.9367

Populus trichocarpa

7895




CAH58641
52851185
0.9247

Plantago major

7896
9432




ABC01890
83283964
0.9337

Solanum tuberosum

7897
9433


aly-
234-256
XP_002513787
255761086
1

Ricinus communis

7898


miR831-5p

XP_002337051
255761085
0.7

Populus trichocarpa

7899




XP_002300997
255761085
0.7174

Populus trichocarpa

7900


far-
222-245
ACF22880
193850552
1

Glycine max

7901
9434


miR1134

XP_002325840
255761085
0.7248

Populus trichocarpa

7902




XP_002281809
225441606
0.7202

Vitis vinifera

7903
9435




ABK95741
118487835
0.7294

Populus trichocarpa

7904
9436




XP_002319160
255761085
0.7248

Populus trichocarpa

7905




XP_002525421
255761086
0.7018

Ricinus communis

7906



48-71
CAD31838
21068663
1

Cicer arietinum

7907
9437




NP_001237954
351720733
0.9412

Glycine max

7908
9438




ACU19740
255638874
0.9314

Glycine max

7909
9439




NP_001237941
351727802
0.9118

Glycine max

7910
9440




XP_002518592
255761086
0.8824

Ricinus communis

7911




XP_002534445
255761086
0.8873

Ricinus communis

7912




AAD38143
5031274
0.8676

Prunus armeniaca

7913
9441




XP_002283286
225461208
0.8627

Vitis vinifera

7914
9442




ABN12320
124488471
0.848

Gossypium hirsutum

7915
9443




XP_002867516
297853636
0.8578

Arabidopsis lyrata

7916







subsp. lyrata



39-62
AAD49742
5733805
1

Pisum sativum

7917
9444




AAM97354
22476945
0.9894

Pisum sativum

7918
9445




AAD33959
4929351
0.9814

Pisum sativum

7919
9446




ACU21225
255641912
0.9204

Glycine max

7920
9447




XP_002313052
255761085
0.9072

Populus trichocarpa

7921




XP_002284375
225428500
0.8992

Vitis vinifera

7922
9448




XP_002509478
255761086
0.8992

Ricinus communis

7923




XP_002306098
255761085
0.8992

Populus trichocarpa

7924




P93563

0.8674

Solanum tuberosum

7925




P93397

0.87

Nicotiana tabacum

7926



180-203
ACC85689
186477889
1

Medicago truncatula

7927
9449




NP_001235733
351734425
0.8957

Glycine max

7928
9450




XP_002318640
255761085
0.872

Populus trichocarpa

7929




XP_002322155
255761085
0.8768

Populus trichocarpa

7930




AEQ62558
352740725
0.8815

Aquilaria microcarpa

7931
9451




NP_001048088
115448616
0.8483

Oryza sativa

7932
9452







Japonica Group




NP_201093
186532680
0.8531

Arabidopsis thaliana

7933
9453




NP_566897
30692961
0.8483

Arabidopsis thaliana

7934
9454




CAD42725
27527522
0.8436

Nicotiana tabacum

7935
9455




XP_002511439
255761086
0.8578

Ricinus communis

7936



819-842
NP_001235100
351727055
1

Glycine max

7937
9456




CBZ41765
323669526
0.8864

Glycine max

7938
9457




CCD42020
347630190
0.8701

Glycine max

7939
9458



180-203
ACC85689
186477889
1

Medicago truncatula

7940
9459



429-452
NP_001238108
351725208
1

Glycine max

7941
9460




NP_001238275
351722648
0.9264

Glycine max

7942
9461


ath-
1224-1244
ACO48252
226320261
1

Arachis hypogaea

7943
9462


miRf10687-

NP_001237378
351726308
0.889

Glycine max

7944
9463


akr

ABR29877
149789411
0.8301

Ricinus communis

7945
9464




XP_002280842
225423836
0.8205

Vitis vinifera

7946
9465




CAN62388
147809569
0.8127

Vitis vinifera

7947




XP_002893416
297853636
0.7954

Arabidopsis lyrata

7948







subsp. lyrata




XP_002888679
297853636
0.7597

Arabidopsis lyrata

7949







subsp. lyrata




NP_177043
42563058
0.7558

Arabidopsis thaliana

7950
9466




ACT54615
254032061
0.779

Brassica napus

7951
9467




ACN39927
224284384
0.7413

Picea sitchensis

7952
9468



735-755
ACU24612
255648320
1

Glycine max

7953
9469




ACU19270
255637904
0.771

Glycine max

7954
9470




XP_002311695
255761085
0.7252

Populus trichocarpa

7955



585-605
ACU18495
255636311
1

Glycine max

7956
9471



1116-1136
ACJ85683
217074645
1

Medicago truncatula

7957
9472




NP_001235116
351727520
0.8244

Glycine max

7958
9473




BAD81043
56744206
0.8189

Glycine max

7959
9474




O82709

0.8743

Pisum sativum

7960




AAK84429
31321895
0.7301

Brassica napus

7961
9475




XP_002866454
297853636
0.7227

Arabidopsis lyrata

7962







subsp. lyrata




NP_200987
145359541
0.7246

Arabidopsis thaliana

7963
9476




XP_002511066
255761086
0.7301

Ricinus communis

7964




XP_002277666
225447724
0.7227

Vitis vinifera

7965
9477




CAN83091
147858622
0.7227

Vitis vinifera

7966
9478



363-383
NP_001238368
351734499
1

Glycine max

7967
9479



291-311
NP_001237352
351734505
1

Glycine max

7968
9480




AAC32262
3426303
0.7348

Pisum sativum

7969
9481




NP_001238058
351723760
0.7652

Glycine max

7970
9482




AAV28488
54042994
0.7099

Populus tremula ×

7971
9483








Populus alba





XP_002518420
255761086
0.7155

Ricinus communis

7972




AAV49801
55276119
0.7127

Populus trichocarpa ×

7973
9484








Populus deltoides





ABO33478
132424650
0.732

Medicago truncatula

7974
9485




ADC35600
285804238
0.7155

Prunus persica

7975
9486




AAG27464
11037019
0.7293

Medicago truncatula

7976
9487




XP_002271944
225444459
0.7182

Vitis vinifera

7977
9488



24-44
XP_002509851
255761086
1

Ricinus communis

7978




XP_002304516
255761085
0.863

Populus trichocarpa

7979




XP_002298015
255761085
0.8527

Populus trichocarpa

7980




XP_002278860
225426165
0.8424

Vitis vinifera

7981
9489




AAN65180
25052803
0.8346

Petroselinum crispum

7982
9490




XP_002302599
255761085
0.832

Populus trichocarpa

7983




XP_002277669
225454333
0.8269

Vitis vinifera

7984
9491




XP_002511904
255761086
0.8217

Ricinus communis

7985




ACU20804
255641048
0.8191

Glycine max

7986
9492




Q40353

0.801

Medicago sativa

7987


ath-
 93-113
AEA92304
327505552
1

Hevea brasiliensis

7988
9493


miRf11037-

ADL59582
302595186
0.9815

Hevea brasiliensis

7989
9494


akr

XP_002284365
225435057
0.9213

Vitis vinifera

7990
9495




CAN64127
147783306
0.9213

Vitis vinifera

7991
9496




XP_002534292
255761086
0.9259

Ricinus communis

7992




BAB84326
18447920
0.9491

Nicotiana tabacum

7993
9497




AEA92307
327505558
0.9213

Hevea brasiliensis

7994
9498




BAB84324
18447916
0.912

Nicotiana tabacum

7995
9499




XP_002284071
225449602
0.9167

Vitis vinifera

7996
9500




ACU20932
255641309
0.9213

Glycine max

7997
9501


mtr-
498-518
ACJ84572
217072423
1

Medicago truncatula

7998
9502


miR2119

ACU20200
255639813
0.8895

Glycine max

7999
9503




XP_002520842
255761086
0.8226

Ricinus communis

8000




CBI25388
270236032
0.8072

Vitis vinifera

8001
9504




XP_002325811
255761085
0.8046

Populus trichocarpa

8002




Q42967

0.7841

Nicotiana tabacum

8003




1J93_A

0.7738

Nicotiana tabacum

8004




XP_002274385
225448634
0.7584

Vitis vinifera

8005
9505




XP_002879873
297853636
0.7661

Arabidopsis lyrata

8006







subsp. lyrata




NP_001050049
115452896
0.7506

Oryza sativa

8007
9506







Japonica Group



153-173
CAA80691
452768
1

Phaseolus acutifolius

8008
9507




CAA80692
452766
0.9974

Phaseolus acutifolius

8009
9508




AAO72531
29373060
0.9421

Lotus corniculatus

8010
9509




CAG30579
51587337
0.9395

Lotus japonicus

8011
9510




P13603

0.9237

Trifolium repens

8012




P12886

0.9184

Pisum sativum

8013




XP_002309899
255761085
0.8868

Populus trichocarpa

8014




XP_002328464
255761085
0.8737

Populus trichocarpa

8015




ABK95643
118487635
0.8789

Populus trichocarpa

8016
9511




XP_002309900
255761085
0.8763

Populus trichocarpa

8017


osa-
514-534
ACU20018
255639446
1

Glycine max

8018
9512


miR2055


ptc-
129-151
XP_003527653
356517960
1

Glycine max

8019
9513


miRf10132-

XP_003523542
356509614
0.7828

Glycine max

8020
9514


akr


tae-
 89-110
ABC47858
83853825
1

Glycine max

8021
9515


miR2003
1828-1849
ABC47841
83853806
1

Glycine max

8022
9516




XP_002283105
225438780
0.7143

Vitis vinifera

8023
9517




BAJ53195
317106690
0.7032

Jatropha curcas

8024




XP_002284923
225458677
0.746

Vitis vinifera

8025
9518




BAJ53194
317106690
0.7095

Jatropha curcas

8026




XP_002301171
255761085
0.7524

Populus trichocarpa

8027




XP_002327166
255761085
0.746

Populus trichocarpa

8028




CBI19489
270252251
0.7397

Vitis vinifera

8029




XP_002510185
255761086
0.7111

Ricinus communis

8030




AAK30205
13560782
0.7016

Daucus carota

8031
9519


osa-
166-186
AAA74456
500752
1

Phaseolus vulgaris

8032
9520


miRf11829-

XP_003529397
356521507
0.933

Glycine max

8033
9521


akr

XP_003518837
356500028
0.9175

Glycine max

8034
9522




XP_003607969
357475366
0.8763

Medicago truncatula

8035
9523




AAB50233
1906001
0.9021

Glycine max

8036
9524




CAC06095
9968472
0.8797

Lotus japonicus

8037
9525




ADJ68001
300119951
0.8488

Gossypium hirsutum

8038
9526




XP_002518763
255761086
0.8265

Ricinus communis

8039




XP_002330328
255761085
0.8196

Populus trichocarpa

8040




ABK95605
118487556
0.8179

Populus trichocarpa

8041
9527



134-154
CBI32147
270260094
1

Vitis vinifera

8042
9528




XP_002315592
255761085
0.8512

Populus trichocarpa

8043




XP_003556331
356576422
0.8095

Glycine max

8044
9529




XP_002262666
225424668
0.9683

Vitis vinifera

8045
9530




XP_002312609
255761085
0.8333

Populus trichocarpa

8046




XP_003536266
356535465
0.8036

Glycine max

8047
9531




XP_003590703
357440850
0.8472

Medicago truncatula

8048
9532




ADN33838
307135962
0.871

Cucumis melo

8049
9533







subsp. melo




ACF86937
194705705
0.756

Zea mays

8050
9534




NP_001152185
226494944
0.7421

Zea mays

8051
9535



345-365
XP_003522862
356508229
1

Glycine max

8052
9536




XP_003533465
356529778
0.9262

Glycine max

8053
9537



302-322
XP_003546711
356556804
1

Glycine max

8054
9538




XP_003542817
356548860
0.9169

Glycine max

8055
9539




XP_003627885
357515192
0.7569

Medicago truncatula

8056
9540



236-256
XP_003526444
356515512
1

Glycine max

8057




CBI20954
270231236
0.7572

Vitis vinifera

8058




XP_003603503
357466436
0.758

Medicago truncatula

8059




XP_002516594
255761086
0.7337

Ricinus communis

8060




XP_002308627
255761085
0.7281

Populus trichocarpa

8061




XP_002282016
225430126
0.756

Vitis vinifera

8062



564-584
XP_002509464
255761086
1

Ricinus communis

8063




XP_002329785
255761085
0.8641

Populus trichocarpa

8064




XP_003543041
356549318
0.8345

Glycine max

8065
9541




XP_002305792
255761085
0.8746

Populus trichocarpa

8066




XP_003545990
356555337
0.8537

Glycine max

8067
9542




NP_193830
30685267
0.8084

Arabidopsis thaliana

8068
9543




AAL38704
17528987
0.8066

Arabidopsis thaliana

8069
9544




XP_002869916
297853636
0.8049

Arabidopsis lyrata

8070







subsp. lyrata




ABF69959
102139737
0.7787

Musa acuminata

8071
9545




XP_002863589
297853636
0.7805

Arabidopsis lyrata

8072







subsp. lyrata



 92-112
AAT35563
47558925
1

Phaseolus vulgaris

8073
9546




NP_001237920
351727189
0.8889

Glycine max

8074
9547




XP_003556188
356576132
0.8468

Glycine max

8075
9548




CAA06615
3413499
0.7387

Pisum sativum

8076
9549



30-50
XP_003530858
356524482
1

Glycine max

8077
9550



123-143
XP_003629209
357517840
1

Medicago truncatula

8078
9551




XP_003520082
356502550
0.8531

Glycine max

8079
9552




XP_003547906
356559235
0.8431

Glycine max

8080
9553




CBI20672
270231236
0.7496

Vitis vinifera

8081




XP_002279909
225429561
0.7613

Vitis vinifera

8082
9554




XP_002516094
255761086
0.7963

Ricinus communis

8083




BAK61816
343887266
0.7947

Citrus unshiu

8084
9555




XP_002308543
255761085
0.7813

Populus trichocarpa

8085




XP_002873542
297853636
0.7496

Arabidopsis lyrata

8086







subsp. lyrata




NP_568256
18416731
0.7379

Arabidopsis thaliana

8087
9556



427-447
ACI23460
207113464
1

Glycine soja

8088
9557




XP_003544485
356552257
0.9828

Glycine max

8089
9558




NP_001235613
351727089
0.8798

Glycine max

8090
9559




ACU20715
255640864
0.8197

Glycine max

8091
9560



212-232
NP_001236871
351726450
1

Glycine max

8092
9561




XP_003523441
356509406
0.9197

Glycine max

8093
9562




ACS94038
242877144
0.8294

Cicer arietinum

8094
9563




XP_003602038
357463512
0.8261

Medicago truncatula

8095
9564




ACD39411
187940570
0.7759

Arachis hypogaea

8096
9565




AER45736
354992034
0.786

Medicago sativa

8097
9566




XP_002520341
255761086
0.7425

Ricinus communis

8098




AEF80001
333696915
0.7258

Corylus heterophylla

8099
9567




ACI15342
206584338
0.7324

Gossypium hirsutum

8100
9568




ADL36795
302399000
0.7492

Malus × domestica

8101
9569



616-636
XP_003534059
356530984
1

Glycine max

8102
9570




XP_003548267
356559966
0.8665

Glycine max

8103
9571




XP_003619718
357498858
0.7211

Medicago truncatula

8104
9572



118-138
XP_003589961
357439368
1

Medicago truncatula

8105
9573




XP_003535239
356533372
0.8081

Glycine max

8106
9574




XP_003519713
356501802
0.8046

Glycine max

8107
9575




XP_002514955
255761086
0.7729

Ricinus communis

8108




XP_002315622
255761085
0.7817

Populus trichocarpa

8109




CAA58823
639833
0.7676

Solanum tuberosum

8110
9576




NP_001148767
226532264
0.7588

Zea mays

8111
9577




XP_003557368
357111130
0.7588

Brachypodium distachyon

8112
9578




BAJ94094
326490040
0.7711

Hordeum vulgare

8113
9579







subsp. vulgare




NP_196470
145357793
0.7835

Arabidopsis thaliana

8114
9580



 92-112
XP_003597553
357454544
1

Medicago truncatula

8115
9581




XP_003542066
356547327
0.8553

Glycine max

8116
9582




XP_003546745
356556873
0.8496

Glycine max

8117
9583




XP_002514088
255761086
0.8177

Ricinus communis

8118




Q9MT28

0.7857

Solanum tuberosum

8119




XP_002285366
225430389
0.8233

Vitis vinifera

8120
9584




NP_194713
145349228
0.7989

Arabidopsis thaliana

8121
9585




AAB04607
1448916
0.7989

Arabidopsis thaliana

8122
9586




XP_002867385
297853636
0.7989

Arabidopsis lyrata

8123







subsp. lyrata




2C2B_A

0.7763

Arabidopsis thaliana

8124



135-155
XP_003541398
356545954
1

Glycine max

8125
9587



142-162
AAB50233
1906001
1

Glycine max

8126
9588




P38500

0.8037

Betula pendula

8127



123-143
XP_003547906
356559235
1

Glycine max

8128
9589




XP_003629209
357517840
0.8837

Medicago truncatula

8129
9590
















TABLE 10







Target Genes of down-regulated Small RNA Molecules Associated with Abiotic Stress Tolerance in Soybean Plants.















Mir
Homolog
Nucleotide







Binding
NCBI
NCBI GI


Protein
Nucleotide


Mir Name
Position
Accession
number
Identity
Organism
Seq id no:
Seq id no:

















aly-
116-136
XP_003531153
356525075
1

Glycine max

9591
10365


miR160c-

XP_003524859
356512301
0.936170213

Glycine max

9592
10366


3p

ABO61516
134142361
0.932301741

Glycine max

9593
10367




BAF62636
148189857
0.868471954

Phaseolus vulgaris

9594
10368




ABI34432
113206403
0.785299807

Pisum sativum

9595
10369




XP_002312450
255761085
0.767891683

Populus trichocarpa

9596




XP_002284648
225424290
0.735009671

Vitis vinifera

9597
10370




BAG16374
171702836
0.721470019

Brassica oleracea

9598
10371







var. italica




AEK06229
339779228
0.733075435

Vitis vinifera

9599
10372


bdi-
699-720
XP_003600994
357461424
1

Medicago truncatula

9600
10373


miR2508

XP_003538485
356540010
0.862608696

Glycine max

9601
10374




NP_001236616
351726477
0.850434783

Glycine max

9602
10375




XP_003519418
356501206
0.810434783

Glycine max

9603
10376




XP_003544045
356551362
0.812173913

Glycine max

9604
10377




XP_003616702
357492826
0.803478261

Medicago truncatula

9605
10378




XP_002520796
255761086
0.76

Ricinus communis

9606




XP_002315131
255761085
0.766956522

Populus trichocarpa

9607




ABK92474
118481040
0.768695652

Populus trichocarpa

9608
10379




XP_002312186
255761085
0.765217391

Populus trichocarpa

9609



719-740
XP_003520941
356504312
1

Glycine max

9610
10380




XP_003520942
356504314
0.820557491

Glycine max

9611
10381




XP_003516921
356496125
0.740418118

Glycine max

9612
10382



73-94
XP_003540719
356544563
1

Glycine max

9613
10383




XP_003539077
356541217
0.940068493

Glycine max

9614
10384




XP_003606701
357472832
0.821917808

Medicago truncatula

9615
10385




CBI16224
270227042
0.741438356

Vitis vinifera

9616




CAN60348
147789065
0.731164384

Vitis vinifera

9617
10386




XP_002313424
255761085
0.75

Populus trichocarpa

9618




XP_002284473
225435091
0.729452055

Vitis vinifera

9619
10387




XP_002278215
225449449
0.731164384

Vitis vinifera

9620
10388




CBI16199
270227042
0.724315068

Vitis vinifera

9621



651-672
XP_003516921
356496125
1

Glycine max

9622
10389




XP_003520941
356504312
0.75308642

Glycine max

9623
10390



77-98
XP_003522150
356506771
1

Glycine max

9624
10391




XP_003516941
356496165
0.967684022

Glycine max

9625
10392




XP_003604619
357468668
0.845601436

Medicago truncatula

9626
10393




XP_002322961
255761085
0.782764811

Populus trichocarpa

9627




XP_002533894
255761086
0.763016158

Ricinus communis

9628




XP_002278638
225440625
0.782764811

Vitis vinifera

9629
10394




XP_002322962
255761085
0.777378815

Populus trichocarpa

9630




XP_002308209
255761085
0.771992819

Populus trichocarpa

9631




XP_003552227
356568050
0.822262118

Glycine max

9632
10395




AAC49536
1685086
0.755834829

Nicotiana tabacum

9633
10396



 86-107
CAN73336
147800866
1

Vitis vinifera

9634




XP_002282815
225449411
0.990859232

Vitis vinifera

9635
10397




XP_002282823
225449413
0.946983547

Vitis vinifera

9636
10398




XP_002278232
225449451
0.936014625

Vitis vinifera

9637
10399




CAN60069
147779995
0.92321755

Vitis vinifera

9638




CAN72263
147821463
0.92321755

Vitis vinifera

9639
10400




XP_002278275
225449453
0.91773309

Vitis vinifera

9640
10401



585-606
XP_003516921
356496125
1

Glycine max

9641
10402



549-570
XP_003606701
357472832
1

Medicago truncatula

9642
10403




XP_003540719
356544563
0.839316239

Glycine max

9643
10404




XP_003623041
357505504
0.733333333

Medicago truncatula

9644
10405




XP_003551448
356566457
0.714529915

Glycine max

9645
10406




XP_003532315
356527432
0.712820513

Glycine max

9646
10407



164-185
XP_003529133
356520972
1

Glycine max

9647
10408




XP_003552215
356568025
0.954385965

Glycine max

9648
10409




XP_003529131
356520968
0.722807018

Glycine max

9649
10410




ABC59623
84626065
0.721052632

Pisum sativum

9650
10411



3846-3867
XP_003551446
356566453
1

Glycine max

9651



699-720
XP_003600994
357461424
1

Medicago truncatula

9652
10412



261-282
XP_003520941
356504312
1

Glycine max

9653
10413



576-597
XP_003604619
357468668
1

Medicago truncatula

9654
10414




XP_003522150
356506771
0.845601436

Glycine max

9655
10415




XP_002308208
255761085
0.777378815

Populus trichocarpa

9656



 0-21
XP_003516941
356496165
1

Glycine max

9657
10416



645-666
CBI16199
270227042
1

Vitis vinifera

9658




CAN80346
147858024
0.924028269

Vitis vinifera

9659
10417




XP_003552160
356567914
0.85335689

Glycine max

9660
10418




XP_002329138
255761085
0.846289753

Populus trichocarpa

9661




XP_002299296
255761085
0.85335689

Populus trichocarpa

9662




XP_002531824
255761086
0.848056537

Ricinus communis

9663



690-711
XP_003530212
356523164
1

Glycine max

9664
10419




XP_003551482
356566526
0.955094991

Glycine max

9665
10420




XP_002308164
255761085
0.778929188

Populus trichocarpa

9666




XP_002531565
255761086
0.772020725

Ricinus communis

9667




CAA74105
3805963
0.773747841

Populus trichocarpa

9668
10421




XP_002300066
255761085
0.730569948

Populus trichocarpa

9669



681-702
XP_003530213
356523166
1

Glycine max

9670
10422




XP_003552179
356567952
0.915447154

Glycine max

9671
10423




XP_003532290
356527381
0.765853659

Glycine max

9672
10424




XP_002309069
255761085
0.733333333

Populus trichocarpa

9673




XP_002531562
255761086
0.726829268

Ricinus communis

9674




XP_002271006
225440401
0.713821138

Vitis vinifera

9675
10425




XP_002268628
225440403
0.713821138

Vitis vinifera

9676
10426




XP_002269038
225440405
0.707317073

Vitis vinifera

9677
10427




CBI30529
270242856
0.704065041

Vitis vinifera

9678



651-672
XP_003551482
356566526
1

Glycine max

9679
10428




XP_003530212
356523164
0.960069444

Glycine max

9680
10429



666-687
XP_003539958
356543013
1

Glycine max

9681
10430




XP_003551299
356566152
0.941605839

Glycine max

9682
10431




XP_003518300
356498931
0.879562044

Glycine max

9683
10432




XP_003544873
356553053
0.881386861

Glycine max

9684
10433




XP_003615575
357490574
0.855839416

Medicago truncatula

9685
10434




XP_002520425
255761086
0.822992701

Ricinus communis

9686




XP_002314124
255761085
0.812043796

Populus trichocarpa

9687




XP_002299828
255761085
0.813868613

Populus trichocarpa

9688




XP_002280416
225434677
0.79379562

Vitis vinifera

9689
10435



 86-107
CAN73336
147800866
1

Vitis vinifera

9690



121-142
XP_003615575
357490574
1

Medicago truncatula

9691
10436




XP_003539958
356543013
0.777403035

Glycine max

9692
10437



1113-1134
XP_003548937
356561332
1

Glycine max

9693
10438




XP_003519950
356502284
0.814741036

Glycine max

9694
10439




XP_002319173
255761085
0.802788845

Populus trichocarpa

9695




XP_002325825
255761085
0.794820717

Populus trichocarpa

9696




CAN70030
147821579
0.790836653

Vitis vinifera

9697
10440




XP_002525455
255761086
0.778884462

Ricinus communis

9698




XP_002304847
255761085
0.780876494

Populus trichocarpa

9699




XP_003625586
357510594
0.784860558

Medicago truncatula

9700
10441




XP_003607828
357475084
0.778884462

Medicago truncatula

9701
10442




XP_002523396
255761086
0.782868526

Ricinus communis

9702



633-654
XP_003551299
356566152
1

Glycine max

9703
10443



1051-1072
XP_003520176
356502743
1

Glycine max

9704
10444




XP_003528495
356519673
0.93444227

Glycine max

9705
10445




XP_003608057
357475542
0.777886497

Medicago truncatula

9706
10446



636-657
XP_003552213
356568021
1

Glycine max

9707
10447




XP_003529132
356520970
0.732517483

Glycine max

9708
10448




XP_003552214
356568023
0.723776224

Glycine max

9709
10449




XP_003529133
356520972
0.708041958

Glycine max

9710
10450



666-687
XP_003544873
356553053
1

Glycine max

9711
10451



666-687
XP_003552227
356568050
1

Glycine max

9712
10452



777-798
XP_003529132
356520970
1

Glycine max

9713
10453




XP_003552213
356568021
0.708551483

Glycine max

9714
10454



654-675
XP_003552215
356568025
1

Glycine max

9715
10455



660-681
XP_003529131
356520968
1

Glycine max

9716
10456



636-657
XP_003539077
356541217
1

Glycine max

9717
10457




XP_003551449
356566459
0.712328767

Glycine max

9718
10458



693-714
XP_003538485
356540010
1

Glycine max

9719
10459




CBI25418
270236032
0.785349233

Vitis vinifera

9720
10460



567-588
XP_003552179
356567952
1

Glycine max

9721
10461




XP_003530213
356523166
0.964041096

Glycine max

9722
10462


gma-
138-158
XP_003527195
356517033
1

Glycine max

9723
10463


miR2119

XP_003527162
356516966
0.885620915

Glycine max

9724
10464




XP_003527196
356517035
0.866013072

Glycine max

9725
10465




XP_003522929
356508367
0.81372549

Glycine max

9726
10466




XP_003522930
356508369
0.839869281

Glycine max

9727
10467




ACU24029
255647121
0.833333333

Glycine max

9728
10468



157-177
XP_003542005
356547201
1

Glycine max

9729
10469




ACU18712
255636755
0.994722955

Glycine max

9730
10470




XP_003545664
356554663
0.939313984

Glycine max

9731
10471




AAN03476
22597177
0.936675462

Glycine max

9732
10472




XP_003544738
356552774
0.802110818

Glycine max

9733
10473




AAO72531
29373060
0.807387863

Lotus corniculatus

9734
10474




CAA80691
452768
0.799472296

Phaseolus acutifolius

9735
10475




CAG30579
51587337
0.80474934

Lotus japonicus

9736
10476




AET21261
356582741
0.802110818

Lotus japonicus

9737
10477




P13603

0.799472296

Trifolium repens

9738



526-546
XP_003521584
356505611
1

Glycine max

9739
10478




XP_003554536
356572764
0.971098266

Glycine max

9740
10479




XP_003536003
356534928
0.809248555

Glycine max

9741
10480




XP_003518934
356500225
0.800578035

Glycine max

9742
10481




XP_002302739
255761085
0.789017341

Populus trichocarpa

9743




XP_002320324
255761085
0.777456647

Populus trichocarpa

9744




NP_191825
145339785
0.757225434

Arabidopsis thaliana

9745
10482




XP_002876684
297853636
0.757225434

Arabidopsis lyrata

9746







subsp. lyrata




XP_002872855
297853636
0.760115607

Arabidopsis lyrata

9747







subsp. lyrata




CAB83116
7362737
0.748554913

Arabidopsis thaliana

9748
10483



2061-2081
XP_003524240
356511040
1

Glycine max

9749
10484




XP_003532800
356528417
0.955097087

Glycine max

9750
10485




XP_003630005
357519432
0.82038835

Medicago truncatula

9751
10486




XP_002317684
255761085
0.770631068

Populus trichocarpa

9752




XP_002332198
255761085
0.766990291

Populus trichocarpa

9753




XP_003533825
356530512
0.769417476

Glycine max

9754
10487




XP_003547559
356558531
0.764563107

Glycine max

9755
10488




XP_002271023
225444212
0.751213592

Vitis vinifera

9756
10489



399-419
XP_003539263
356541601
1

Glycine max

9757
10490




XP_003517354
356497002
0.913716814

Glycine max

9758
10491




XP_003611556
357482538
0.767699115

Medicago truncatula

9759
10492




CAI79403
62700758
0.71460177

Senna occidentalis

9760
10493



265-285
XP_003554536
356572764
1

Glycine max

9761
10494




XP_003521584
356505611
0.971098266

Glycine max

9762
10495




XP_003625940
357511302
0.75433526

Medicago truncatula

9763
10496



159-179
XP_003545664
356554663
1

Glycine max

9764
10497




XP_003542005
356547201
0.959568733

Glycine max

9765
10498




P12886

0.789757412

Pisum sativum

9766



360-380
AAO83155
29365515
1

Phaseolus vulgaris

9767
10499




XP_003534097
356531061
0.870201097

Glycine max

9768
10500




XP_003548308
356560048
0.886654479

Glycine max

9769
10501



2055-2075
XP_003532800
356528417
1

Glycine max

9770
10502




XP_003524240
356511040
0.955097087

Glycine max

9771
10503



2157-2177
XP_003547559
356558531
1

Glycine max

9772
10504



174-194
XP_003517354
356497002
1

Glycine max

9773
10505




XP_003539263
356541601
0.919821826

Glycine max

9774
10506


gso-
22-42
AAU95080
53830374
1

Glycine max

9775
10507


miR482a
22-42
AAF44087
7263110
1

Glycine max

9776
10508




AAX81296
62361234
0.714285714

Arachis hypogaea

9777
10509



1195-1215
NP_001237600
351725318
1

Glycine max

9778
10510




XP_003556265
356576288
0.891737892

Glycine max

9779
10511




XP_003591822
357443088
0.811965812

Medicago truncatula

9780
10512




ACI46678
209419748
0.811965812

Galega orientalis

9781
10513




XP_003518682
356499714
0.740740741

Glycine max

9782
10514




XP_003516851
356495985
0.752136752

Glycine max

9783
10515




XP_003614455
357488334
0.732193732

Medicago truncatula

9784
10516



503-523
XP_003533606
356530067
1

Glycine max

9785
10517



59-79
XP_003518623
356499593
1

Glycine max

9786
10518




XP_003591325
357442094
0.832673267

Medicago truncatula

9787
10519




XP_003626036
357511494
0.751485149

Medicago truncatula

9788
10520




XP_002515202
255761086
0.7

Ricinus communis

9789



22-42
AAF44087
7263110
1

Glycine max

9790
10521


osa-
342-362
XP_003590416
357440276
1

Medicago truncatula

9791
10522


miR162a

XP_003554409
356572505
0.775075988

Glycine max

9792
10523




XP_003521428
356505296
0.767477204

Glycine max

9793
10524




XP_003625731
357510884
0.770516717

Medicago truncatula

9794
10525




XP_002264567
225441081
0.734042553

Vitis vinifera

9795
10526




XP_003541439
356546037
0.759878419

Glycine max

9796
10527




CAN74141
147838148
0.705167173

Vitis vinifera

9797




XP_002519415
255761086
0.703647416

Ricinus communis

9798



619-639
XP_003528812
356520321
1

Glycine max

9799
10528




XP_003528810
356520317
0.979865772

Glycine max

9800
10529




XP_003548576
356560594
0.976510067

Glycine max

9801
10530




XP_003543259
356549760
0.963087248

Glycine max

9802
10531




XP_003543258
356549758
0.959731544

Glycine max

9803
10532




ACU23594
255646218
0.966442953

Glycine max

9804
10533




ACJ85054
217073389
0.89261745

Medicago truncatula

9805
10534




XP_002329431
255761085
0.879194631

Populus trichocarpa

9806




XP_003604056
357467542
0.848993289

Medicago truncatula

9807
10535




XP_002524558
255761086
0.82885906

Ricinus communis

9808



585-605
XP_003543259
356549760
1

Glycine max

9809
10536




XP_003528812
356520321
0.963087248

Glycine max

9810
10537




XP_002330691
255761085
0.859060403

Populus trichocarpa

9811



1037-1057
XP_002311013
255761085
1

Populus trichocarpa

9812




XP_002315438
255761085
0.935779817

Populus trichocarpa

9813




XP_002521182
255761086
0.862385321

Ricinus communis

9814




XP_003536707
356536360
0.834862385

Glycine max

9815
10538




XP_003555872
356575487
0.830275229

Glycine max

9816
10539




XP_002268975
225450253
0.811926606

Vitis vinifera

9817
10540



144-164
XP_003548576
356560594
1

Glycine max

9818
10541



63-83
XP_003528812
356520321
1

Glycine max

9819
10542



217-237
NP_001237819
351724250
1

Glycine max

9820
10543




NP_001238239
351721616
0.964285714

Glycine max

9821
10544




ACF06595
192912973
0.898809524

Elaeis guineensis

9822
10545




Q5J907

0.892857143

Elaeis guineensis

9823




ACF06596
192912975
0.904761905

Elaeis guineensis

9824
10546




ACF06557
192910897
0.875

Elaeis guineensis

9825
10547




XP_003577266
357155873
0.845238095

Brachypodium distachyon

9826
10548




XP_002516930
255761086
0.857142857

Ricinus communis

9827




AEH05972
334854631
0.863095238

Hevea brasiliensis

9828
10549




NP_001235906
351720717
0.851190476

Glycine max

9829
10550


osa-
615-634
XP_003531377
356525528
1

Glycine max

9830
10551


miR1846e

XP_003525073
356512737
0.958823529

Glycine max

9831
10552




XP_002310600
255761085
0.785294118

Populus trichocarpa

9832




XP_002307126
255761085
0.8

Populus trichocarpa

9833




XP_002280295
225438578
0.808823529

Vitis vinifera

9834
10553




XP_003523264
356509047
0.826470588

Glycine max

9835
10554




AAZ66923
37694873
0.708823529

Brassica rapa

9836
10555




ACK44524
217426787
0.708823529

Arabidopsis arenosa

9837
10556




XP_002871399
297853636
0.7

Arabidopsis lyrata

9838







subsp. lyrata




NP_196563
145357839
0.702941176

Arabidopsis thaliana

9839
10557



379-398
XP_003531668
356526120
1

Glycine max

9840
10558




XP_003529761
356522251
0.915980231

Glycine max

9841
10559




XP_003530142
356523023
0.756177924

Glycine max

9842
10560




XP_003546477
356556325
0.73476112

Glycine max

9843
10561




XP_003531667
356526118
0.731466227

Glycine max

9844
10562



114-133
XP_003529761
356522251
1

Glycine max

9845
10563




XP_003531668
356526120
0.917491749

Glycine max

9846
10564




XP_003597728
357454894
0.724422442

Medicago truncatula

9847
10565



367-386
XP_003530142
356523023
1

Glycine max

9848
10566




XP_003597726
357454890
0.700490998

Medicago truncatula

9849
10567


osa-
256-277
NP_001105847
162464254
1

Zea mays

9850


miR2104

ABA42672
76443928
0.881188119

Zea mays

9851




Q2N2K2

0.927392739

Glycine max

9852




XP_002447301
255761094
0.907590759

Sorghum bicolor

9853




ACG23902
195604143
0.811881188

Zea mays

9854
10568



256-277
NP_001105847
162464254
1

Zea mays

9855
10569


osa-
103-122
ABU94631
156754274
1

Phaseolus vulgaris

9856
10570


miRf11415-

XP_003536353
356535640
0.944250871

Glycine max

9857
10571


akr

XP_003556232
356576220
0.951219512

Glycine max

9858
10572




ACU24483
255648054
0.947735192

Glycine max

9859
10573




AAC17529
3158475
0.919860627

Samanea saman

9860
10574




ACJ85173
217073625
0.905923345

Medicago truncatula

9861
10575




XP_003548070
356559566
0.891986063

Glycine max

9862
10576




BAB40143
13486941
0.888501742

Pyrus communis

9863
10577




ACU20229
255639872
0.891986063

Glycine max

9864
10578




BAD90699
60498688
0.898954704

Mimosa pudica

9865
10579


ctr-miR171
477-497
XP_003538071
356539165
1

Glycine max

9866
10580




XP_003517966
356498249
0.849056604

Glycine max

9867
10581


pta-
17-37
XP_003627005
357513432
1

Medicago truncatula

9868
10582


miR166c

XP_003531652
356526088
0.921875

Glycine max

9869
10583




XP_003530109
356522957
0.923076923

Glycine max

9870
10584




XP_003530112
356522963
0.913461538

Glycine max

9871
10585




ACI13685
206572104
0.889423077

Malus × domestica

9872
10586




XP_003597690
357454818
0.894230769

Medicago truncatula

9873
10587




XP_002515977
255761086
0.887019231

Ricinus communis

9874




XP_002284003
225442500
0.890625

Vitis vinifera

9875
10588




CBI36079
270253379
0.890625

Vitis vinifera

9876




XP_003531653
356526090
0.900240385

Glycine max

9877
10589



 87-107
CAN73584
147820217
1

Vitis vinifera

9878




XP_002281868
225444032
1

Vitis vinifera

9879
10590




XP_002298892
255761085
0.918343195

Populus trichocarpa

9880




XP_002332526
255761085
0.90887574

Populus trichocarpa

9881




XP_003535078
356533042
0.880473373

Glycine max

9882
10591




XP_003546255
356555874
0.882840237

Glycine max

9883
10592




AAS66760
45479745
0.878106509

Nicotiana sylvestris

9884
10593




XP_003532788
356528393
0.852071006

Glycine max

9885
10594




XP_003524993
356512573
0.840236686

Glycine max

9886
10595




ACI13683
206572100
0.820118343

Malus × domestica

9887
10596



40-60
AAS10176
41745611
1

Antirrhinum majus

9888
10597



1228-1248
XP_002285176
225435326
1

Vitis vinifera

9889
10598




CAN61612
147783603
0.981042654

Vitis vinifera

9890




XP_002529946
255761086
0.918246445

Ricinus communis

9891




XP_003538150
356539326
0.892180095

Glycine max

9892
10599




XP_003539764
356542618
0.895734597

Glycine max

9893
10600




ACI13684
206572102
0.888625592

Malus × domestica

9894
10601




XP_003539765
356542620
0.890995261

Glycine max

9895
10602




AAX19050
60327620
0.881516588

Populus trichocarpa

9896
10603




DAA05766
109729904
0.853080569

Lotus japonicus

9897




AAY33856
63115353
0.8507109

Gossypium barbadense

9898
10604



557-577
XP_002298892
255761085
1

Populus trichocarpa

9899




CAN73584
147820217
0.91943128

Vitis vinifera

9900



515-535
XP_003597690
357454818
1

Medicago truncatula

9901
10605




XP_002284014
225442502
0.897129187

Vitis vinifera

9902
10606




XP_002304217
255761085
0.888755981

Populus trichocarpa

9903



560-580
XP_002285176
225435326
1

Vitis vinifera

9904
10607



554-574
XP_003603630
357466690
1

Medicago truncatula

9905
10608




XP_003522716
356507930
0.943645084

Glycine max

9906
10609




XP_003526496
356515618
0.940047962

Glycine max

9907
10610




ACI13686
206572106
0.872901679

Malus × domestica

9908
10611




ADL36609
302398628
0.863309353

Malus × domestica

9909
10612




CBI20838
270231236
0.862110312

Vitis vinifera

9910




XP_002283717
225429913
0.862110312

Vitis vinifera

9911
10613




ACL51017
219879369
0.858513189

Citrus trifoliata

9912
10614




XP_002309538
255761085
0.868105516

Populus trichocarpa

9913




XP_002324794
255761085
0.857314149

Populus trichocarpa

9914



40-60
AAS10176
41745611
1

Antirrhinum majus

9915
10615



554-574
XP_003530109
356522957
1

Glycine max

9916
10616



590-610
XP_003524993
356512573
1

Glycine max

9917
10617




XP_003594520
357448488
0.781946073

Medicago truncatula

9918
10618



25-45
XP_003522716
356507930
1

Glycine max

9919
10619




XP_003603630
357466690
0.932464455

Medicago truncatula

9920
10620



560-580
XP_003530112
356522963
1

Glycine max

9921
10621



530-550
XP_003532788
356528393
1

Glycine max

9922
10622



 87-107
CAN73584
147820217
1

Vitis vinifera

9923



566-586
XP_003531653
356526090
1

Glycine max

9924
10623



560-580
XP_003539764
356542618
1

Glycine max

9925
10624




XP_002285176
225435326
0.894674556

Vitis vinifera

9926
10625




CAC84906
18076735
0.829585799

Zinnia violacea

9927
10626



828-848
XP_003539765
356542620
1

Glycine max

9928
10627


ptc-
 81-100
XP_003548151
356559731
1

Glycine max

9929
10628


miRf10976-

XP_003529873
356522477
0.888

Glycine max

9930
10629


akr

XP_003548400
356560236
0.849333333

Glycine max

9931
10630



249-268
NP_001238468
351720798
1

Glycine max

9932
10631



242-261
XP_003520705
356503828
1

Glycine max

9933
10632




XP_003553607
356570870
0.874626866

Glycine max

9934
10633



295-314
XP_003533044
356528917
1

Glycine max

9935
10634




XP_003529756
356522241
0.905759162

Glycine max

9936
10635




XP_003543627
356550505
0.732984293

Glycine max

9937
10636




XP_003546548
356556469
0.722513089

Glycine max

9938
10637




XP_003597684
357454806
0.712041885

Medicago truncatula

9939
10638




XP_003597685
357454808
0.701570681

Medicago truncatula

9940
10639



268-287
XP_003528486
356519654
1

Glycine max

9941
10640




XP_003520183
356502757
0.899071926

Glycine max

9942
10641


ptc-
66-85
XP_003524954
356512494
1

Glycine max

9943
10642


miRf11018-

XP_003531241
356525252
0.920604915

Glycine max

9944
10643


akr

AET04202
357518874
0.797731569

Medicago truncatula

9945
10644




AET04197
357518864
0.752362949

Medicago truncatula

9946
10645




AET04200
357518870
0.756143667

Medicago truncatula

9947
10646


ptc-
1236-1255
XP_002275990
225451234
1

Vitis vinifera

9948
10647


miRf11669-

XP_002512253
255761086
0.916923077

Ricinus communis

9949


akr

XP_003554689
356573071
0.895384615

Glycine max

9950
10648




XP_002319618
255761085
0.916923077

Populus trichocarpa

9951




XP_002336146
255761085
0.895384615

Populus trichocarpa

9952




XP_002328363
255761085
0.895384615

Populus trichocarpa

9953




ACU22789
255644572
0.886153846

Glycine max

9954
10649




ADN33908
307136046
0.898461538

Cucumis melo

9955
10650







subsp. melo




Q43317

0.898461538

Citrullus lanatus

9956







subsp. vulgaris




XP_002311629
255761085
0.901538462

Populus trichocarpa

9957



259-278
XP_003624868
357509158
1

Medicago truncatula

9958
10651




ACJ85972
217075223
0.995098039

Medicago truncatula

9959
10652




XP_003608106
357475640
0.965686275

Medicago truncatula

9960
10653




NP_001237278
351723416
0.965686275

Glycine max

9961
10654




NP_564149
30687501
0.931372549

Arabidopsis thaliana

9962
10655




NP_001237990
351721817
0.941176471

Glycine max

9963
10656




XP_002890456
297853636
0.926470588

Arabidopsis lyrata

9964







subsp. lyrata




NP_565156
186496015
0.93627451

Arabidopsis thaliana

9965
10657




XP_002887683
297853636
0.931372549

Arabidopsis lyrata

9966







subsp. lyrata




AAM62756
21404242
0.926470588

Arabidopsis thaliana

9967
10658



170-189
XP_003535921
356534761
1

Glycine max

9968
10659




XP_003519071
356500502
0.968379447

Glycine max

9969
10660




XP_002284060
225441833
0.773386034

Vitis vinifera

9970
10661




CAN82225
147852313
0.770750988

Vitis vinifera

9971
10662




XP_002532077
255761086
0.744400527

Ricinus communis

9972




XP_002323318
255761085
0.737812912

Populus trichocarpa

9973




XP_002308029
255761085
0.749670619

Populus trichocarpa

9974




CBI29841
270242856
0.753623188

Vitis vinifera

9975
10663




NP_565960
18405800
0.723320158

Arabidopsis thaliana

9976
10664




XP_002878149
297853636
0.72859025

Arabidopsis lyrata

9977







subsp. lyrata



120-139
AAQ57205
34099832
1

Populus tremula ×

9978
10665








Populus alba




877-896
XP_003526542
356515711
1

Glycine max

9979
10666




XP_003523783
356510109
0.846153846

Glycine max

9980
10667



588-607
XP_002264051
225429233
1

Vitis vinifera

9981
10668




CAN64867
123673833
0.996763754

Vitis vinifera

9982




XP_002513130
255761086
0.877022654

Ricinus communis

9983




XP_003525216
356513027
0.83171521

Glycine max

9984
10669




XP_003530931
356524629
0.828478964

Glycine max

9985
10670




ACU18834
255637002
0.828478964

Glycine max

9986
10671




XP_002319995
255761085
0.834951456

Populus trichocarpa

9987




BAH79622
240846167
0.822006472

Glycine max

9988




XP_002310364
255761085
0.805825243

Populus trichocarpa

9989




XP_003631000
357521422
0.812297735

Medicago truncatula

9990
10672



917-936
XP_003548812
356561077
1

Glycine max

9991
10673




XP_003525850
356514311
0.700787402

Glycine max

9992
10674



1246-1265
XP_003555457
356574646
1

Glycine max

9993
10675




XP_003543286
356549814
0.955497382

Glycine max

9994
10676




XP_003617150
357493722
0.756544503

Medicago truncatula

9995
10677




XP_002272310
225435984
0.712041885

Vitis vinifera

9996
10678




CBI24343
270235077
0.712041885

Vitis vinifera

9997



1320-1339
XP_003519686
356501748
1

Glycine max

9998
10679




XP_003547896
356559215
0.95412844

Glycine max

9999
10680




XP_003547897
356559217
0.95412844

Glycine max

10000
10681




XP_003517138
356496566
0.812844037

Glycine max

10001
10682




XP_003612325
357484076
0.783486239

Medicago truncatula

10002
10683




XP_003629155
357517732
0.798165138

Medicago truncatula

10003
10684




XP_003537681
356538378
0.8

Glycine max

10004
10685



602-621
XP_003520116
356502619
1

Glycine max

10005
10686




XP_002280702
225438602
0.856050955

Vitis vinifera

10006
10687




EAZ28751
54398660
0.829299363

Oryza sativa

10007







Japonica Group



214-233
XP_003554103
356571887
1

Glycine max

10008
10688




XP_003521108
356504648
0.923076923

Glycine max

10009
10689




ACU18694
255636716
0.919230769

Glycine max

10010
10690




XP_003624904
357509230
0.807692308

Medicago truncatula

10011
10691




XP_002526199
255761086
0.734615385

Ricinus communis

10012




XP_002283307
225440154
0.761538462

Vitis vinifera

10013
10692




XP_002307956
255761085
0.726923077

Populus trichocarpa

10014




XP_002876377
297853636
0.703846154

Arabidopsis lyrata

10015







subsp. lyrata



329-348
XP_003547896
356559215
1

Glycine max

10016
10693




XP_003519686
356501748
0.961182994

Glycine max

10017
10694




XP_002521706
255761086
0.715341959

Ricinus communis

10018




XP_002306425
255761085
0.71349353

Populus trichocarpa

10019


vvi-
209-228
XP_003601765
357462966
1

Medicago truncatula

10020
10695


miR394b

XP_003538543
356540129
0.843010753

Glycine max

10021
10696




XP_003551172
356565895
0.868817204

Glycine max

10022
10697




ACU23751
255646552
0.864516129

Glycine max

10023
10698




ACL51019
219879373
0.767741935

Citrus trifoliata

10024
10699




ACI13687
206572108
0.761290323

Malus × domestica

10025
10700




XP_002514903
255761086
0.746236559

Ricinus communis

10026




XP_002271194
225425399
0.739784946

Vitis vinifera

10027
10701




XP_002297845
255761085
0.750537634

Populus trichocarpa

10028




XP_003531199
356525167
0.735483871

Glycine max

10029
10702



1188-1207
XP_003551172
356565895
1

Glycine max

10030
10703



256-275
XP_003593155
357445754
1

Medicago truncatula

10031
10704




XP_003547599
356558613
0.890145396

Glycine max

10032
10705




XP_003547600
356558615
0.890145396

Glycine max

10033
10706




XP_003593158
357445760
0.843295638

Medicago truncatula

10034
10707




NP_567920
186515898
0.81098546

Arabidopsis thaliana

10035
10708




AEG25668
333952413
0.814216478

Gossypium hirsutum

10036
10709




AAK68074
14573458
0.809369952

Arabidopsis thaliana

10037
10710




ADE22249
292385867
0.822294023

Ageratina adenophora

10038
10711




XP_002867182
297853636
0.809369952

Arabidopsis lyrata

10039







subsp. lyrata




AEA76434
327422166
0.81098546

Gossypium hirsutum

10040
10712



268-287
XP_003524786
356512154
1

Glycine max

10041
10713




XP_002331852
255761085
0.762032086

Populus trichocarpa

10042




XP_002316738
255761085
0.751336898

Populus trichocarpa

10043




XP_002519740
255761086
0.748663102

Ricinus communis

10044




XP_003532647
356528107
0.71657754

Glycine max

10045
10714




CAN63784
147790991
0.703208556

Vitis vinifera

10046
10715




XP_002273992
225463405
0.703208556

Vitis vinifera

10047
10716



435-454
XP_003556143
356576040
1

Glycine max

10048
10717




XP_003556144
356576042
0.964285714

Glycine max

10049
10718




XP_003536435
356535807
0.932539683

Glycine max

10050
10719




XP_003536434
356535805
0.924603175

Glycine max

10051
10720




ACU19073
255637492
0.920634921

Glycine max

10052
10721




XP_003556145
356576044
0.94047619

Glycine max

10053
10722




XP_003536436
356535809
0.900793651

Glycine max

10054
10723




XP_003556146
356576046
0.912698413

Glycine max

10055
10724




XP_003592142
357443728
0.793650794

Medicago truncatula

10056
10725




ACU23298
255645607
0.777777778

Glycine max

10057
10726



475-494
XP_003531199
356525167
1

Glycine max

10058
10727




XP_003524898
356512380
0.911699779

Glycine max

10059
10728




ACU17886
255635055
0.905077263

Glycine max

10060
10729



1104-1123
XP_003538543
356540129
1

Glycine max

10061
10730



123-142
XP_003553643
356570944
1

Glycine max

10062
10731




XP_003521540
356505523
0.763779528

Glycine max

10063
10732



29-48
NP_001058751
115470304
1

Oryza sativa

10064
10733







Japonica Group




EAZ02551
54362548
0.987012987

Oryza sativa

10065







Indica Group




ACG30543
195617425
0.896103896

Zea mays

10066
10734




BAJ93722
326533897
0.896103896

Hordeum vulgare

10067
10735







subsp. vulgare




XP_002459234
255761094
0.883116883

Sorghum bicolor

10068




XP_003557668
357111736
0.896103896

Brachypodium distachyon

10069
10736




ACG28009
195612357
0.883116883

Zea mays

10070
10737




ACG24589
195605517
0.844155844

Zea mays

10071
10738




XP_003555981
356575711
0.87012987

Glycine max

10072
10739




XP_002284176
225438945
0.87012987

Vitis vinifera

10073
10740



1029-1048
XP_003524898
356512380
1

Glycine max

10074
10741



1245-1264
XP_003601765
357462966
1

Medicago truncatula

10075
10742


zma-
68-87
XP_002519732
255761086
1

Ricinus communis

10076


miR167u

XP_002298511
255761085
0.8183391

Populus trichocarpa

10077




XP_002317300
255761085
0.801038062

Populus trichocarpa

10078




XP_002272126
225463413
0.788927336

Vitis vinifera

10079
10743




XP_003524790
356512162
0.780276817

Glycine max

10080
10744




NP_180988
145360605
0.761245675

Arabidopsis thaliana

10081
10745




XP_003532649
356528111
0.780276817

Glycine max

10082
10746




XP_002879497
297853636
0.757785467

Arabidopsis lyrata

10083







subsp. lyrata




NP_568662
30694937
0.742214533

Arabidopsis thaliana

10084
10747




AAL11600
15983463
0.740484429

Arabidopsis thaliana

10085
10748



503-522
XP_003556422
356576607
1

Glycine max

10086
10749




XP_003556421
356576605
1

Glycine max

10087
10750




XP_003536179
356535285
0.754266212

Glycine max

10088
10751



109-128
XP_003533248
356529329
1

Glycine max

10089
10752




XP_003547372
356558152
0.944690265

Glycine max

10090
10753




XP_003550546
356564612
0.778761062

Glycine max

10091
10754




XP_003528627
356519941
0.783185841

Glycine max

10092
10755




XP_003609706
357478840
0.765486726

Medicago truncatula

10093
10756




XP_002273305
225431819
0.727876106

Vitis vinifera

10094
10757




CBI22951
270234210
0.727876106

Vitis vinifera

10095



1585-1604
XP_003550723
356564979
1

Glycine max

10096
10758




XP_003550724
356564981
0.985380117

Glycine max

10097
10759




XP_003529499
356521718
0.956140351

Glycine max

10098
10760




XP_003529500
356521720
0.946393762

Glycine max

10099
10761




XP_003546300
356555968
0.819688109

Glycine max

10100
10762




XP_002314972
255761085
0.726120858

Populus trichocarpa

10101




CBI22841
270234210
0.730994152

Vitis vinifera

10102




XP_002519280
255761086
0.717348928

Ricinus communis

10103



335-354
XP_003516798
356495878
1

Glycine max

10104
10763



29-48
XP_003525532
356513666
1

Glycine max

10105
10764



24-43
XP_003529500
356521720
1

Glycine max

10106
10765




XP_003550723
356564979
0.959486166

Glycine max

10107
10766




XP_002883053
297853636
0.707509881

Arabidopsis lyrata

10108







subsp. lyrata




NP_001118648
186510162
0.70256917

Arabidopsis thaliana

10109
10767



671-690
XP_003533338
356529518
1

Glycine max

10110
10768



314-333
XP_003529470
356521656
1

Glycine max

10111
10769




XP_003556768
356577305
0.95687885

Glycine max

10112
10770




Q43088

0.80698152
Ribulose-bisphosphate
10113







carboxylase




1MLV_A

0.747433265

Pisum sativum

10114




2H21_A

0.743326489

Pisum sativum

10115


zma-
330-350
ABE91847
61675805
1

Medicago truncatula

10116
10771


miR396b-
330-350
ABE91847
61675805
1

Medicago truncatula

10117
10772


3p


aly-
330-350
ABE91847
61675805
1

Medicago truncatula

10118
10773


miR396a-
330-350
ABE91847
61675805
1

Medicago truncatula

10119
10774


3p


gma-
224-244
NP_001235045
351725442
1

Glycine max

10120
10775


miR4412-

XP_002274402
225425717
0.733905579

Vitis vinifera

10121
10776


3p

XP_002315800
255761085
0.703862661

Populus trichocarpa

10122



1796-1816
NP_001235618
351727227
1

Glycine max

10123
10777


gma-
177-198
AAX13306
60100357
1

Lotus japonicus

10124
10778


miR482b-

NP_001236130
351727233
0.959641256

Glycine max

10125
10779


5p

AAN15183
23194452
0.865470852

Gossypium hirsutum

10126
10780




AAY30856
63094568
0.874439462

Prunus dulcis

10127
10781




ABV60385
157674586
0.874439462

Carica papaya

10128




ABM69043
122938394
0.860986547

Gossypium hirsutum

10129
10782




ADD91578
291278193
0.878923767

Prunus serrulata

10130
10783







var. lannesiana




AAO20104
27763669
0.860986547

Momordica charantia

10131
10784




AAD01742
4103341
0.869955157

Cucumis sativus

10132
10785




ABQ85556
148535235
0.874439462

Prunus persica

10133
10786



339-360
BAG06679
166788446
1

Phaseolus vulgaris

10134
10787




ACU20774
255640988
0.995575221

Glycine max

10135
10788




ACU24523
255648136
0.977876106

Glycine max

10136
10789




AAM91028
57472398
0.977876106

Pisum sativum

10137
10790




XP_002272971
225462010
0.96460177

Vitis vinifera

10138
10791




ABW06389
157955930
0.938053097

Gossypium hirsutum

10139
10792




ABW06392
157955936
0.933628319

Gossypium hirsutum

10140
10793




ACJ86177
217075633
0.938053097

Medicago truncatula

10141
10794




XP_002532178
255761086
0.951327434

Ricinus communis

10142




ABW06390
157955932
0.938053097

Gossypium hirsutum

10143
10795



35-56
CAN81115
147863854
1

Vitis vinifera

10144
10796


ptc-
753-772
XP_002271271
225468315
1

Vitis vinifera

10145
10797


miRf11953-

XP_002532424
255761086
0.945652174

Ricinus communis

10146


akr

ACU20760
255640960
0.945652174

Glycine max

10147
10798




XP_002877709
297853636
0.940217391

Arabidopsis lyrata

10148







subsp. lyrata




NP_001235421
351721538
0.934782609

Glycine max

10149
10799




NP_001236131
351727263
0.940217391

Glycine max

10150
10800




NP_190556
145339306
0.934782609

Arabidopsis thaliana

10151
10801




ACU14878
255629066
0.940217391

Glycine max

10152
10802




XP_002866698
297853636
0.923913043

Arabidopsis lyrata

10153







subsp. lyrata




NP_569051
186532841
0.918478261

Arabidopsis thaliana

10154
10803



309-328
ACU18943
255637224
1

Glycine max

10155
10804




ACU23146
255645298
0.953405018

Glycine max

10156
10805




ACJ84492
217072263
0.810035842

Medicago truncatula

10157
10806




ABK94686
118485671
0.784946237

Populus trichocarpa

10158
10807




XP_002528545
255761086
0.76702509

Ricinus communis

10159




XP_002326541
255761085
0.741935484

Populus trichocarpa

10160




XP_002278543
225427135
0.752688172

Vitis vinifera

10161
10808




XP_002274164
225454758
0.734767025

Vitis vinifera

10162
10809




XP_002303431
255761085
0.749103943

Populus trichocarpa

10163



218-237
ACU18943
255637224
1

Glycine max

10164
10810



1421-1440
P08926

1

Pisum sativum

10165




BAE71311
84468455
0.957410562

Trifolium pratense

10166
10811




BAE71231
84468295
0.955706985

Trifolium pratense

10167
10812




BAE71302
84468437
0.954003407

Trifolium pratense

10168
10813




BAE71227
84468287
0.93867121

Trifolium pratense

10169
10814




ACJ85785
217074849
0.94548552

Medicago truncatula

10170
10815




AEO21430
346229112
0.906303237

Glycine max

10171
10816




XP_002313525
255761085
0.877342419

Populus trichocarpa

10172




AAC68501
3790440
0.889267462

Canavalia lineata

10173
10817




XP_002328161
255761085
0.865417376

Populus trichocarpa

10174



165-184
ACU23935
255646930
1

Glycine max

10175
10818



60-79
BAE71304
84468441
1

Trifolium pratense

10176
10819




P08926

0.947939262

Pisum sativum

10177


bna-
163-183
ACU23935
255646930
1

Glycine max

10178
10820


miR2111b-
1419-1439
P08926

1

Pisum sativum

10179


5p

BAE71311
84468455
0.957410562

Trifolium pratense

10180
10821




BAE71231
84468295
0.955706985

Trifolium pratense

10181
10822




BAE71302
84468437
0.954003407

Trifolium pratense

10182
10823




BAE71227
84468287
0.93867121

Trifolium pratense

10183
10824




ACJ85785
217074849
0.94548552

Medicago truncatula

10184
10825




AEO21430
346229112
0.906303237

Glycine max

10185
10826




XP_002313525
255761085
0.877342419

Populus trichocarpa

10186




AAC68501
3790440
0.889267462

Canavalia lineata

10187
10827




XP_002328161
255761085
0.865417376

Populus trichocarpa

10188



153-173
ACU23159
255645324
1

Glycine max

10189
10828




CAF04055
119391878
0.745098039

Nicotiana benthamiana

10190
10829




CAF25317
119391874
0.735294118

Capsicum annuum

10191
10830




XP_002306360
255761085
0.715686275

Populus trichocarpa

10192




XP_002279217
225438516
0.732026144

Vitis vinifera

10193
10831




XP_002530256
255761086
0.715686275

Ricinus communis

10194




CBI22773
270234152
0.722222222

Vitis vinifera

10195




CBI21530
270232045
0.732026144

Vitis vinifera

10196



163-183
ACU23935
255646930
1

Glycine max

10197
10832



58-78
BAE71304
84468441
1

Trifolium pratense

10198
10833




P08926

0.947939262

Pisum sativum

10199


ptc-
720-743
ACU24381
255647842
1

Glycine max

10200
10834


miRf11079-

NP_001238255
351722074
0.996688742

Glycine max

10201
10835


akr

NP_001235901
351728022
0.943708609

Glycine max

10202
10836




AAK84883
15148911
0.917218543

Phaseolus vulgaris

10203
10837




AEE99077
332739375
0.870860927

Medicago truncatula

10204
10838




XP_002529954
255761086
0.768211921

Ricinus communis

10205




XP_002310688
255761085
0.771523179

Populus trichocarpa

10206




XP_002307195
255761085
0.741721854

Populus trichocarpa

10207



69-92
AAK84883
15148911
1

Phaseolus vulgaris

10208
10839



603-626
AAK84883
15148911
1

Phaseolus vulgaris

10209
10840



720-743
NP_001235901
351728022
1

Glycine max

10210
10841



721-744
ACU24381
255647842
1

Glycine max

10211
10842


bra-
 989-1009
XP_003530952
356524671
1

Glycine max

10212
10843


miR160a-

XP_003525194
356512983
0.970842333

Glycine max

10213
10844


3p

XP_003521511
356505464
0.904967603

Glycine max

10214
10845




XP_003592908
357445260
0.792656587

Medicago truncatula

10215
10846




ABE91931
61675804
0.792656587

Medicago truncatula

10216
10847




XP_003626539
357512500
0.795896328

Medicago truncatula

10217
10848




XP_002281426
225441572
0.791576674

Vitis vinifera

10218
10849




Q9XHM1

0.789416847

Medicago truncatula

10219




XP_003589347
357438142
0.782937365

Medicago truncatula

10220
10850




CAN81874
147860525
0.761339093

Vitis vinifera

10221
10851


gma-
328-349
XP_003521176
356504786
1

Glycine max

10222
10852


miR1507a


gma-
507-527
XP_003554498
356572687
1

Glycine max

10223
10853


miR1524

XP_003521507
356505456
0.941358025

Glycine max

10224
10854




XP_003535834
356534585
0.712962963

Glycine max

10225
10855




XP_003519022
356500404
0.712962963

Glycine max

10226
10856


ppt-
189-209
XP_003553029
356569688
1

Glycine max

10227
10857


miR166m

XP_003537529
356538072
0.931216931

Glycine max

10228
10858




XP_003601737
357462910
0.727513228

Medicago truncatula

10229
10859



557-577
XP_002298892
255761085
1

Populus trichocarpa

10230




CAN73584
147820217
0.91943128

Vitis vinifera

10231




XP_002332526
255761085
0.94549763

Populus trichocarpa

10232




XP_002281868
225444032
0.91943128

Vitis vinifera

10233
10860




XP_003535078
356533042
0.892180095

Glycine max

10234
10861




XP_003546255
356555874
0.893364929

Glycine max

10235
10862




AAS66760
45479745
0.86492891

Nicotiana sylvestris

10236
10863




XP_003532788
356528393
0.849526066

Glycine max

10237
10864




XP_003524993
356512573
0.845971564

Glycine max

10238
10865




ACI13683
206572100
0.816350711

Malus × domestica

10239
10866



515-535
XP_003597690
357454818
1

Medicago truncatula

10240
10867




XP_003531652
356526088
0.918660287

Glycine max

10241
10868




XP_003530109
356522957
0.921052632

Glycine max

10242
10869




XP_002284003
225442500
0.897129187

Vitis vinifera

10243
10870




CBI36079
270253379
0.897129187

Vitis vinifera

10244




XP_002515977
255761086
0.901913876

Ricinus communis

10245




XP_003530112
356522963
0.916267943

Glycine max

10246
10871




XP_002284014
225442502
0.897129187

Vitis vinifera

10247
10872




ACI13685
206572104
0.89354067

Malus × domestica

10248
10873




XP_002304217
255761085
0.888755981

Populus trichocarpa

10249



560-580
XP_002285176
225435326
1

Vitis vinifera

10250
10874




CAN61612
147783603
0.981042654

Vitis vinifera

10251




XP_002529946
255761086
0.918246445

Ricinus communis

10252




XP_003538150
356539326
0.892180095

Glycine max

10253
10875




XP_003539764
356542618
0.895734597

Glycine max

10254
10876




ACI13684
206572102
0.888625592

Malus × domestica

10255
10877




XP_003539765
356542620
0.890995261

Glycine max

10256
10878




AAX19050
60327620
0.881516588

Populus trichocarpa

10257
10879




DAA05766
109729904
0.853080569

Lotus japonicus

10258




AAY33856
63115353
0.8507109

Gossypium barbadense

10259
10880



554-574
XP_003603630
357466690
1

Medicago truncatula

10260
10881




XP_003522716
356507930
0.943645084

Glycine max

10261
10882




XP_003526496
356515618
0.940047962

Glycine max

10262
10883




ACI13686
206572106
0.872901679

Malus × domestica

10263
10884




ADL36609
302398628
0.863309353

Malus × domestica

10264
10885




CBI20838
270231236
0.862110312

Vitis vinifera

10265




XP_002283717
225429913
0.862110312

Vitis vinifera

10266
10886




ACL51017
219879369
0.858513189

Citrus trifoliata

10267
10887




XP_002309538
255761085
0.868105516

Populus trichocarpa

10268




XP_002324794
255761085
0.857314149

Populus trichocarpa

10269



40-60
AAS10176
41745611
1

Antirrhinum majus

10270
10888



554-574
XP_003530109
356522957
1

Glycine max

10271
10889




XP_003531653
356526090
0.95823389

Glycine max

10272
10890




XP_003627005
357513432
0.91646778

Medicago truncatula

10273
10891




XP_003597690
357454818
0.918854415

Medicago truncatula

10274
10892



590-610
XP_003524993
356512573
1

Glycine max

10275
10893




XP_002298892
255761085
0.832356389

Populus trichocarpa

10276




XP_003594520
357448488
0.781946073

Medicago truncatula

10277
10894



25-45
XP_003522716
356507930
1

Glycine max

10278
10895




XP_003603630
357466690
0.932464455

Medicago truncatula

10279
10896



560-580
XP_003530112
356522963
1

Glycine max

10280
10897



572-592
P00965

1

Phaseolus vulgaris

10281




XP_003544980
356553268
0.935393258

Glycine max

10282
10898




XP_003519325
356501016
0.935393258

Glycine max

10283
10899




ACU19484
255638343
0.926966292

Glycine max

10284
10900




XP_003519326
356501018
0.935393258

Glycine max

10285
10901




AAB61597
2213876
0.901685393

Hevea brasiliensis

10286
10902




P32289

0.901685393

Vigna aconitifolia

10287




ABW89460
159138920
0.904494382

Gossypium herbaceum

10288
10903




P04770

0.896067416

Phaseolus vulgaris

10289




ABW89461
159138922
0.901685393

Gossypium hirsutum

10290
10904



 87-107
CAN73584
147820217
1

Vitis vinifera

10291



530-550
XP_003532788
356528393
1

Glycine max

10292
10905



516-536
XP_003537529
356538072
1

Glycine max

10293
10906



566-586
XP_003531653
356526090
1

Glycine max

10294
10907



560-580
XP_003539764
356542618
1

Glycine max

10295
10908




XP_002285176
225435326
0.894674556

Vitis vinifera

10296
10909




CAC84906
18076735
0.829585799

Zinnia violacea

10297
10910



828-848
XP_003539765
356542620
1

Glycine max

10298
10911


ptc-
557-577
XP_002298892
255761085
1

Populus trichocarpa

10299


miR166p

CAN73584
147820217
0.91943128

Vitis vinifera

10300




XP_002332526
255761085
0.94549763

Populus trichocarpa

10301




XP_002281868
225444032
0.91943128

Vitis vinifera

10302
10912




XP_003535078
356533042
0.892180095

Glycine max

10303
10913




XP_003546255
356555874
0.893364929

Glycine max

10304
10914




AAS66760
45479745
0.86492891

Nicotiana sylvestris

10305
10915




XP_003532788
356528393
0.849526066

Glycine max

10306
10916




XP_003524993
356512573
0.845971564

Glycine max

10307
10917




ACI13683
206572100
0.816350711

Malus × domestica

10308
10918



515-535
XP_003597690
357454818
1

Medicago truncatula

10309
10919




XP_003531652
356526088
0.918660287

Glycine max

10310
10920




XP_003530109
356522957
0.921052632

Glycine max

10311
10921




XP_002284003
225442500
0.897129187

Vitis vinifera

10312
10922




CBI36079
270253379
0.897129187

Vitis vinifera

10313




XP_002515977
255761086
0.901913876

Ricinus communis

10314




XP_003530112
356522963
0.916267943

Glycine max

10315
10923




XP_002284014
225442502
0.897129187

Vitis vinifera

10316
10924




ACI13685
206572104
0.89354067

Malus × domestica

10317
10925




XP_002304217
255761085
0.888755981

Populus trichocarpa

10318



560-580
XP_002285176
225435326
1

Vitis vinifera

10319
10926




CAN61612
147783603
0.981042654

Vitis vinifera

10320




XP_002529946
255761086
0.918246445

Ricinus communis

10321




XP_003538150
356539326
0.892180095

Glycine max

10322
10927




XP_003539764
356542618
0.895734597

Glycine max

10323
10928




ACI13684
206572102
0.888625592

Malus × domestica

10324
10929




XP_003539765
356542620
0.890995261

Glycine max

10325
10930




AAX19050
60327620
0.881516588

Populus trichocarpa

10326
10931




DAA05766
109729904
0.853080569

Lotus japonicus

10327




AAY33856
63115353
0.8507109

Gossypium barbadense

10328
10932



554-574
XP_003603630
357466690
1

Medicago truncatula

10329
10933




XP_003522716
356507930
0.943645084

Glycine max

10330
10934




XP_003526496
356515618
0.940047962

Glycine max

10331
10935




ACI13686
206572106
0.872901679

Malus × domestica

10332
10936




ADL36609
302398628
0.863309353

Malus × domestica

10333
10937




CBI20838
270231236
0.862110312

Vitis vinifera

10334




XP_002283717
225429913
0.862110312

Vitis vinifera

10335
10938




ACL51017
219879369
0.858513189

Citrus trifoliata

10336
10939




XP_002309538
255761085
0.868105516

Populus trichocarpa

10337




XP_002324794
255761085
0.857314149

Populus trichocarpa

10338



40-60
AAS10176
41745611
1

Antirrhinum majus

10339
10940



554-574
XP_003530109
356522957
1

Glycine max

10340
10941




XP_003531653
356526090
0.95823389

Glycine max

10341
10942




XP_003627005
357513432
0.91646778

Medicago truncatula

10342
10943




XP_003597690
357454818
0.918854415

Medicago truncatula

10343
10944



590-610
XP_003524993
356512573
1

Glycine max

10344
10945




XP_003594520
357448488
0.781946073

Medicago truncatula

10345
10946



25-45
XP_003522716
356507930
1

Glycine max

10346
10947




XP_003603630
357466690
0.932464455

Medicago truncatula

10347
10948



560-580
XP_003530112
356522963
1

Glycine max

10348
10949



530-550
XP_003532788
356528393
1

Glycine max

10349
10950



 87-107
CAN73584
147820217
1

Vitis vinifera

10350



113-133
XP_003516553
356495373
1

Glycine max

10351
10951




XP_003537620
356538255
0.909756098

Glycine max

10352
10952



566-586
XP_003531653
356526090
1

Glycine max

10353
10953



560-580
XP_003539764
356542618
1

Glycine max

10354
10954




XP_002285176
225435326
0.894674556

Vitis vinifera

10355
10955




CAC84906
18076735
0.829585799

Zinnia violacea

10356
10956



828-848
XP_003539765
356542620
1

Glycine max

10357
10957


ptc-
368-388
XP_003550796
356565126
1

Glycine max

10358
10958


miRf10007-

XP_003528595
356519875
0.931982634

Glycine max

10359
10959


akr

XP_003609844
357479116
0.714905933

Medicago truncatula

10360
10960


ptc-
600-621
XP_003520116
356502619
1

Glycine max

10361
10961


miRf11396-

XP_002280702
225438602
0.856050955

Vitis vinifera

10362
10962


akr

EAZ28751
54398660
0.829299363

Oryza sativa

10363







Japonica Group


ptc-
 88-108
NP_001236364
351726593
1

Glycine max

10364
10963


miRf12069-


akr









Example 4
Verification of Expression of miRNA Molecules Associated with Abiotic Stress

Following identification of small RNA molecules potentially involved in improvement of soybean abiotic stress tolerance and their target genes (mRNAs) using bioinformatics tools, as described in Example 4 above, the actual mRNA levels in an experiment are determined using reverse transcription assay followed by quantitative Real-Time PCR (qRT-PCR) analysis. RNA levels are compared between different tissues, developmental stages, growing conditions and/or genetic backgrounds incorporated in each experiment. A correlation analysis between mRNA levels in different experimental conditions/genetic backgrounds is applied and used as evidence for the role of the gene in the plant.


Methods


Root and leaf samples are freshly excised from soybean plants grown as described above on Murashige-Skoog (Duchefa). Experimental plants are grown either under optimal irrigation conditions, salt levels or temperatures to be used as a control group, or under stressful conditions of prolonged water deprivation, high salt concentrations and a heat shock treatment at a temperature higher than 34° C. to be used as stress-induced groups to assess the drought, salinity and heat shock tolerance, respectively, of control versus transgenic plants. Total RNA is extracted from the different tissues, using mirVana™ commercial kit (Ambion) following the protocol provided by the manufacturer. For measurement and verification of messenger RNA (mRNA) expression level of all genes, reverse transcription followed by quantitative real time PCR (qRT-PCR) is performed on total RNA extracted from each plant tissue (i.e., roots and leaves) from each experimental group as described above. To elaborate, reverse transcription is performed on 1 μg total RNA, using a miScript Reverse Transcriptase kit (Qiagen), following the protocol suggested by the manufacturer. Quantitative RT-PCR is performed on cDNA (0.1 ng/μl final concentration), using a miScript SYBR GREEN PCR (Qiagen) forward (based on the miR sequence itself) and reverse primers (supplied with the kit). All qRT-PCR reactions are performed in triplicates using an ABI7500 real-time PCR machine, following the recommended protocol for the machine. To normalize the expression level of miRNAs associated with enhanced abiotic stress tolerance between the different tissues and growing conditions of the soybean plants, normalizer miRNAs are selected and used for comparison. Normalizer miRNAs, which are miRNAs with unchanged expression level between tissues and growing conditions, are custom selected for each experiment. The normalization procedure consists of second-degree polynomial fitting to a reference data (which is the median vector of all the data—excluding outliers) as described by Rosenfeld et al (2008, Nat Biotechnol, 26(4):462-469). A summary of primers for the differential small RNA molecules that will be used in the qRT-PCR validation and analysis is presented in Table 11a below.









TABLE 11a







Primers of Differential miRNA Molecules for qRT-PCR Validation


Step.












Primer



Mir Name
Primer Sequence (SEQ ID NO:)
Length
Tm





ahy-miR3514-5p
TGGCAGGATTCTGTATTAACGGTGGA (10964)
26
59.6





aly-miR160c-3p
GCGTACAAGGAGCCAAGCATG (10965)
21
58.5





aly-miR396a-3p
GGCGTTCAATAAAGCTGTGGGAAG (10966)
24
58.7





aly-miR396b-3p
GCGCTCAAGAAAGCTGTGGGAAA (10967)
23
60.3





aly-miR831-5p
GGCAGAAGAGGTACAAGGAGATGAGA (10968)
26
59.2





aqc-miR159
GGCTTTGGACTGAAGGGAGCTCTA (10969)
24
59.8





ath-miR157a
TTTGGCTTGACAGAAGATAGAGAGCAC (10970)
27
58.8





ath-miR159b
GGCTTTGGATTGAAGGGAGCTCTT (10971)
24
59.0





ath-miR159c
GCTTTGGATTGAAGGGAGCTCCT (10972)
23
58.7





ath-miRf10068-akr
CACCGGTGGAGGAGTGAGAG (10973)
20
58.0





ath-miRf10148-akr
GGCGGTGGTGGAAAGATCAAGAT (10974)
23
59.1





ath-miRf10197-akr
CACTCGACCAAGGGGGTCGAGTGA (10975)
24
63.6





ath-miRf10209-akr
ATGGTGGTACTCGGCCAGGTGGT (10976)
23
63.5





ath-miRf10239-akr
GCCGCCTTGCATCAACTGAATC (10977)
22
59.2





ath-miRf10240-akr
GCATCGAAGGAGATGGAGGACG (10978)
22
59.0





ath-miRf10279-akr
ACTCAGCCTGGGGGTCGAG (10979)
19
59.7





ath-miRf10368-akr
GGCACTTGGGTGGTGCTGATTAT (10980)
23
59.3





ath-miRf10451-akr
GGCAAGAAGGAGGAACAACCTGTTG (10981)
25
60.0





ath-miRf10633-akr
TGGCGGTGGATACTTCTTGATCGG (10982)
24
60.5





ath-miRf10687-akr
GGCTTAGCTGAAGAAGCAGAGGAG (10983)
24
58.9





ath-miRf10701-akr
TGCAGTTCCTGGAGGTGGAGG (10984)
21
60.0





ath-miRf10702-akr
CGTGGGAGGACTCCAAGTGTG (10985)
21
58.9





ath-miRf10751-akr
GCCTTGTGGAGAGGAAGCAAGA (10986)
22
58.6





ath-miRf10763-akr
GCGGTGGTGAAGAAGCATGGTT (10987)
22
60.1





ath-miRf10924-akr
GCTGAGGCGTATCAGGAGGTAGT (10988)
23
59.4





ath-miRf11021-akr
GGCGAGGTTTGCGATGAGAAAGAG (10989)
24
60.2





ath-miRf11037-akr
GCTCATCGGAGAAACAGAGGAGC (10990)
23
59.2





ath-miRf11042-akr
GGAAGAGGCAGTGCATGGGTA (10991)
21
58.3





ath-miRf11045-akr
GGCTTTCTTGTGGAGGAAGCAAGAT (10992)
25
59.3





bdi-miR2508
GCATTGAGTGCAGCGTTGATGAAC (10993)
24
59.7





bna-miR2111b-5p
CATTTGGCTAATCTGCATCCTGAGGTTTA (10994)
29
59.1





bra-miR160a-3p
CGCGTATGAGGAGCCATGCATA (10995)
22
59.0





csi-miR162-5p
TGGAGGCAGCGGTTCATCGATC (10996)
22
61.1





csi-miR3946
GGCTTGTAGAGAAAGAGAAGAGAGCAC (10997)
27
58.8





csi-miR3948
TGGAGTGGGAGTGGGAGTAGGGTG (10998)
24
62.6





ctr-miR171
GCTTGAGCCGCGTCAATATCTCC (10999)
23
60.1





far-miR1134
GCCGACAACAACAACAAGAAGAAGAG (11000)
26
58.9





ghr-miR2950
TGGTGTGCAGGGGGTGGAATA (11001)
21
59.6





gma-miR1507a
TGGCTCTCATTCCATACATCGTCTGA (11002)
26
59.2





gma-miR1524
CGAGTCCGAGGAAGGAACTCC (11003)
21
58.2





gma-miR156g
TTTGGCACAGAAGATAGAGAGCACAG (11004)
26
58.7





gma-miR157c
TGGCTGACAGAAGACTAGAGAGCAC (11005)
25
59.6





gma-miR159a-3p
TGGCTTTGGATTGAAGGGAGCTCTA (11006)
25
59.5





gma-miR159d
GCAGCTGCTTAGCTATGGATCCC (11007)
23
59.3





gma-miR2119
GGCTCAAAGGGAGTTGTAGGGGAA (11008)
24
60.0





gma-miR396d
GCAAGAAAGCTGTGGGAGAATATGGC (11009)
26
60.2





gma-miR4371b
AAGTGATGACGTGGTAGACGGAGT (11010)
24
59.3





gma-miR4376-5p
TACGCAGGAGAGATGACGCTGT (11011)
22
59.6





gma-miR4412-3p
AGTGGCGTAGATCCCCACAAC (11012)
21
58.4





gma-miR4416a
ACGGGTCGCTCTCACCTAGG (11013)
20
59.5





gma-miR482a-3p
TCTTCCCAATTCCGCCCATTCCTA (11014)
24
59.6





gma-miR482b-5p
GCTATGGGGGGATTGGGAAGGAAT (11015)
24
59.9





gso-miR169g*
TCGGCAAGTTGGCCTTGGCT (11016)
20
61.5





gso-miR482a
GGCTCTTCCCTACACCTCCCATAC (11017)
24
59.7





iba-miR157
CATTTGGCTTGACAGAAGATAGAGAGCAT (11018)
29
58.9





mdm-miR482a-5p
CGGAATGGGCTGTTTGGGAACA (11019)
22
59.7





mtr-miR2119
GCTCAAAGGGAGGTGTGGAGTAG (11020)
23
58.5





osa-miR159e
GCATTGGATTGAAGGGAGCTCCT (11021)
23
58.8





osa-miR159f
GGCCTTGGATTGAAGGGAGCTCTA (11022)
24
59.9





osa-miR162a
GGCTCGATAAACCTCTGCATCCAG (11023)
24
59.3





osa-miR1846e
CAACGAGGAGGCCGGGACCA (11024)
20
62.8





osa-miR1850.1
GCTGGAAAGTTGGGAGATTGGGG (11025)
23
59.6





osa-miR1858a
GAGAGGAGGACGGAGTGGGGC (11026)
21
62.2





osa-miR1869
GCTGAGAACAATAGGCATGGGAGGTA (11027)
26
60.0





osa-miR1874-3p
GCTATGGATGGAGGTGTAACCCGATG (11028)
26
60.6





osa-miR1879
CGTGTTTGGTTTAGGGATGAGGTGG (11029)
25
59.6





osa-miR1881
GCAATGTTATTGTAGCGTGGTGGTGT (11030)
26
60.1





osa-miR2055
GGCTTTCCTTGGGAAGGTGGTTTC (11031)
24
60.0





osa-miR2104
GCGGCGAGGGGATGCGAGCG (11032)
20
67.4





osa-miRf10105-akr
TTGGCCTCGTCGAAGAAGGAGA (11033)
22
59.5





osa-miRf10151-akr
GGCTGGCTATATTTTGGGACGGAG (11034)
24
59.3





osa-miRf10362-akr
GCTGGAGGATGCGACGGTGCT (11035)
21
63.6





osa-miRf10839-akr
CCCTGTGACGTTGGTGAAGGTG (11036)
22
59.7





osa-miRf10849-akr
TGGACTGTTTGGGGGAGCTTCT (11037)
22
59.6





osa-miRf11013-akr
GGTTTGCCGGAGTTGGAGGAGA (11038)
22
60.6





osa-miRf11341-akr
CGCGCCGACGATGACGGTGGAGT (11039)
23
67.4





osa-miRf11352-akr
GCAGGGATTTTGGAAGGAGGTGACA (11040)
25
60.8





osa-miRf11355-akr
GGTGGAGGTGGAGCTGTGCCAAA (11041)
23
63.2





osa-miRf11415-akr
GAGAGCAGGATGCAGCCAAGG (11042)
21
59.6





osa-miRf11595-akr
CCATCGGTGTTGGAGGTGGC (11043)
20
59.8





osa-miRf11649-akr
AAACCGTGCAAAGGAGGTCCC (11044)
21
59.4





osa-miRf11829-akr
ACGCGGAGGAGGTGGTGTTCT (11045)
21
62.0





osa-miRf11996-akr
GCGTCTTATAACCTGAAACGGGGG (11046)
24
59.5





pab-miR3711
TGGCGCTAGAAGGAGGGCCT (11047)
20
61.6





ppt-miR1220a
GCTTCCGGTGGTGAGGAAGATAG (11048)
23
58.6





ppt-miR166m
GCTCGGACCAGGCATCATTCCTT (11049)
23
61.0





ppt-miR533b-5p
GAGCTGTCCAGGCTGTGAGGG (11050)
21
61.0





ppt-miR895
GCGTAGCTTAGCGAGGTGTTGGTA (11051)
24
60.7





psi-miR159
GCCTTGGATTGAAGGGAGCTCCA (11052)
23
60.6





pta-miR156a
TTTGGCCAGAAGATAGAGAGCACATC (11053)
26
58.5





pta-miR156b
TTGGCCAGAAGATAGAGAGCACAAC (11054)
25
58.6





pta-miR166c
CCGGACCAGGCTTCATCCCAG (11055)
21
61.1





ptc-miR166p
TCGGACCAGGCTCCATTCCTT (11056)
21
59.4





ptc-miRf10007-akr
GCCATTGACAGGGAAACTCACCA (11057)
23
59.2





ptc-miRf10132-akr
TTGGCGGTGATTGAACGGAGGGT (11058)
23
62.7





ptc-miRf10148-akr
TGGTGCACCTGGTGGTGGAG (11059)
20
60.8





ptc-miRf10226-akr
TCCTTTGGGGAGATGGAGAGCTT (11060)
23
58.9





ptc-miRf10271-akr
TGGCTTGGATTGAAGGGAGCTCTAA (11061)
25
59.5





ptc-miRf10300-akr
GGCTTTGGAAAGCAAGTGAGGTG (11062)
23
58.7





ptc-miRf10522-akr
TTGGGGAGCTGGACTCTGGA (11063)
20
58.6





ptc-miRf10619-akr
GTTGGGCTTGCTGCTGGAGGA (11064)
21
61.5





ptc-miRf10734-akr
GCCATCTAGGTGGTGGTCCAGTG (11065)
23
60.7





ptc-miRf10976-akr
TGGGAACGTGGCTGTGGCTA (11066)
20
60.3





ptc-miRf10985-akr
TGGCCAGAAGATAGAGAGCACTGA (11067)
24
58.8





ptc-miRf11018-akr
CCTGCAAACCTAAGGGAGCGG (11068)
21
59.6





ptc-miRf11079-akr
AAGATGGAGAAGCAGGGCACGTGC (11069)
24
63.4





ptc-miRf11315-akr
GCCAACTTAGAGTTGGGGGTGG (11070)
22
59.2





ptc-miRf11324-akr
CTTGTCGCAGGAGAGATGGCGCT (11071)
23
63.1





ptc-miRf11396-akr
GCCAAGGCTCTGATACCATGTCAA (11072)
24
58.9





ptc-miRf11669-akr
GGCCAAGGCTCTGATACCATGTT (11073)
23
58.8





ptc-miRf11757-akr
CCTTGGTGAATGGTTGGGAGGAAT (11074)
24
58.7





ptc-miRf11844-akr
CCCAACTTGGAGGTGGGTGTGG (11075)
22
61.4





ptc-miRf11847-akr
GCGAAAGTGTGGAGAAGGTTGCC (11076)
23
60.6





ptc-miRf11855-akr
GGCAGAGCATGGATGGAGCTA (11077)
21
58.2





ptc-miRf11953-akr
GGCGTAATCTGCATCCTGAGGTT (11078)
23
58.9





ptc-miRf12069-akr
GGAGGGGCTGCAAGACCCAAG (11079)
21
61.5





ptc-miRf12389-akr
GTCGACCTGGCGAGTCAACCGGG (11080)
23
65.3





sbi-miR159a
GGCTTTGGATTGAAGGGAGCTCTG (11081)
24
59.6





smo-miR1103-3p
GCTGGAAAAAGGAGGTGCATTCTTGT (11082)
26
60.0





smo-miR156b
TGGCCTGACAGAAGATAGAGAGCAC (11083)
25
59.7





tae-miR2003
CGGTTGGGCTGTATGATGGCGA (11084)
22
61.3





vvi-miR2111-5p
TGGCTAATCTGCATCCTGAGGTCTA (11085)
25
58.7





vvi-miR394b
GCTTGGCATTCTGTCCACCTCC (11086)
22
59.9





zma-miR167u
GGCTGAAGCTGCCACATGATCTG (11087)
23
60.2





zma-miR396b-3p
GGCTTCCACAGCTTTCTTGAACTG (11088)
24
58.5





zma-miR398a-5p
TGTGTTCTCAGGTCGCCCCCG (11089)
21
62.9





zma-miR482-5p
TGGCTCTTCCTTGTTCCTCCCATT (11090)
24
59.7










Alternative RT-PCR Validation Method of Selected microRNAs of the Invention


A novel microRNA quantification method has been applied using stem-loop RT followed by PCR analysis (Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. 2005, Nucleic Acids Res 33(20):e179; Varkonyi-Gasic E, Wu R, Wood M, Walton E F, Hellens R P. 2007, Plant Methods 3:12). This highly accurate method allows the detection of less abundant miRNAs. In this method, stem-loop RT primers are used, which provide higher specificity and efficiency to the reverse transcription process. While the conventional method relies on polyadenylated (poly (A)) tail and thus becomes sensitive to methylation because of the susceptibility of the enzymes involved, in this novel method the reverse transcription step is transcript-specific and insensitive to methylation. Reverse transcriptase reactions contained RNA samples including purified total RNA, 50 nM stem-loop RT primer (50-51 nucleotide long, see Table 11b, synthesized by Sigma), and using the SuperScript II reverse transcriptase (Invitrogen). A mix of up to 12 stem-loop RT primers may be used in each reaction, and the forward primers are such that the last 6 nucleotides are replaced with a GC rich sequence. For the PCR step, each miRNA has a custom forward primer (18-24 nucleotide long) and a universal stem loop reverse primer (5′-GTGCAGGGTCCGAGGT-3′-SEQ ID NO: 11617). Table 11b below lists the primers used for PCR validation using this method. Note, SL-RT stands for stem loop reverse transcription primer, and SL-F stands for stem loop forward primer.









TABLE 11b







Stem Loop Reverse Transcriptase Primers for RT-PCR Validation of


Differential Mirs under Abiotic Stress.













Forward




Forward Primer
Primer


Mir Name
Stem Loop Primer (SEQ ID NO:)
(SEQ ID NO:)
Length





ahy-miR3514-5p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGAGGATTCTGTAT
22



GCACTGGATACGACTCCACC (11618)
TAAC (11619)






aly-miR396a-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGGTTCAATAAAG
21



GCACTGGATACGACCTTCCC (11620)
CTGT (11621)






aly-miR396b-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGGCTCAAGAAAG
21



GCACTGGATACGACTTTCCC (11622)
CTGT (11623)






aly-miR831-5p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGAGAAGAGGTAC
23



GCACTGGATACGACTCTCAT (11624)
AAGGAG (11625)






ath-miRf10197-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCTCACTCGACCAAGG
21


akr
GCACTGGATACGACTCACTCG (11626)
GGGT (11627)






ath-miRf10279-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
TTCCACTCAGCCTGGGGG
21


akr
GCACTGGATACGACATCACT (11628)
TCG (11629)






ath-miRf10687-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTAGCTGAAGA
21


akr
GCACTGGATACGACCTCCTC (11630)
AGCA (11631)






gma-miRf10687-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GAGCTTAGCCGCAGAGG
19


akr-homolog
GCACTGGATACGACCTCCTC (11632)
CA (11633)






ath-miRf11021-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGAGGTTTGCGATG
19


akr
GCACTGGATACGACCTCTTT (11634)
AG (11635)






ath-miRf11045-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTTCTTGTGGAG
22


akr
GCACTGGATACGACATCTTG (11636)
GAAG (11637)






csi-miR162-5p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCTGGAGGCAGCGGTT
20



GCACTGGATACGACGATCGA (11638)
CA (11639)






far-miR1134
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCCGACAACAACAA
23



GCACTGGATACGACCTCTTC (11640)
CAAGAA (11641)






gma-miR159d
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGAGCTGCTTAGCT
21



GCACTGGATACGACGGGATC (11642)
ATG (11643)






gma-miR396d
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCAAGAAAGCTGTG
23



GCACTGGATACGACGCCATA (11644)
GGAGAA (11645)






gma-miR4376-5p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GGCCGGTACGCAGGAGA
22



GCACTGGATACGACACAGCG (11646)
GATGA (11647)






gma-miR4412-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
TTCCAGTGGCGTAGATCC
19



GCACTGGATACGACGTTGTG (11648)
C (11649)






gma-miR4416a
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCACGGGTCGCTCTCA
18



GCACTGGATACGACCCTAGG (11650)
(11651)






gma-miR482a-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCTCTTCCCAATTCCG
22



GCACTGGATACGACTAGGAA (11652)
CCCA (11653)






gso-miR169g*
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GTTACTCGGCAAGTTGGC
18



GCACTGGATACGACAGCCAAG (11654)
(11655)






mtr-miR2119
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTCAAAGGGAGG
21



GCACTGGATACGACCTACTC (11656)
TGTG (11657)






osa-miR1874-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTATGGATGGAG
24



GCACTGGATACGACCATCGG (11658)
GTGTAAC (11659)






osa-miRf10105-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CCGGTTGGCCTCGTCGAA
20


akr
GCACTGGATACGACTCTCCT (11660)
GA (11661)






osa-miRf10151-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTGGCTATATTTT
21


akr
GCACTGGATACGACCTCCGT (11662)
GGG (11663)






osa-miRf10362-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGATGCTGGAGGATGCG
19


akr
GCACTGGATACGACAGCACC (11664)
AC (11665)






osa-miRf10839-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCCCTGTGACGTTGGT
19


akr
GCACTGGATACGACCACCTT (11666)
G (11667)






osa-miRf11649-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GCGCAAACCGTGCAAAG
19


akr
GCACTGGATACGACGGGACC (11668)
GA (11669)






pab-miR3711
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GGCCCTGGCGCTAGAAG
19



GCACTGGATACGACAGGCCC (11670)
GA (11671)






ppt-miR533b-5p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGAGCTGTCCAGGCT
19



GCACTGGATACGACCCCTCA (11672)
G (11673)






ppt-miR895
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGGTAGCTTAGCG
22



GCACTGGATACGACTACCAA (11674)
AGGTG (11675)






ptc-miRf10300-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTTGGAAAGCA
20


akr
GCACTGGATACGACCACCTC (11676)
AGT (11677)






ptc-miRf10522-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCTTGGGGAGCTGG
19


akr
GCACTGGATACGACTCCAGA (11678)
AC (11679)






ptc-miRf10619-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGTTGGGCTTGCTGC
19


akr
GCACTGGATACGACTCCTCC (11680)
T (11681)






ptc-miRf11855-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCAGAGCATGGA
19


akr
GCACTGGATACGACTAGCTC (11682)
TG (11683)






ptc-miRf12069-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCGGAGGGGCTGCAA
19


akr
GCACTGGATACGACCTTGGG (11684)
GA (11685)






smo-miR1103-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCTGGAAAAAGGAGG
22



GCACTGGATACGACACAAGA (11686)
TGCAT (11687)






zma-miR396b-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGGTTCAATAAAG
21



GCACTGGATACGACTTTCCC (11688)
CTGT (11689)






zma-miR482-5p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTGGGAGATGAA
19



GCACTGGATACGACAAGGCT (11690)
GG (11691)






aly-miR160c-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GAATCGCGTACAAGGAG
20



GCACTGGATACGACCATGCT (11692)
CCA (11693)






aqc-miR159
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTTGGACTGAA
21



GCACTGGATACGACTAGAGC (11694)
GGGA (11695)






ath-miR157a
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTGACAGAAGA
21



GCACTGGATACGACGTGCTC (11696)
TAGA (11697)






ath-miR159b
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTTGGATTGAAG
21



GCACTGGATACGACAAGAGC (11698)
GGA (11699)






ath-miR159c
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTTGGATTGAAG
21



GCACTGGATACGACAGGAGC (11700)
GGA (11701)






ath-miRf10068-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GGCCCACCGGTGGAGGA
18


akr
GCACTGGATACGACCTCTCA (11702)
G (11703)






ath-miRf10148-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGGGTGGTGGAAA
20


akr
GCACTGGATACGACATCTTG (11704)
GAT (11705)






ath-miRf10209-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCATGGTGGTACTCGG
21


akr
GCACTGGATACGACACCACC (11706)
CCA (11707)






ath-miRf10239-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCCGCCTTGCATCAAC (
18


akr
GCACTGGATACGACGATTCA (11708)
11709)






ath-miRf10240-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGATCGAAGGAGA
20


akr
GCACTGGATACGACCGTCCT (11710)
TGG (11711)






ath-miRf10368-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
AAGGCCTACTTGGGTGGT
21


akr
GCACTGGATACGACATAATC (11712)
GCT (11713)






ath-miRf10451-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGAAGAAGGAGGA
22


akr
GCACTGGATACGACCAACAG (11714)
ACAAC (11715)






ath-miRf10633-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCTGGCGGTGGATACT
22


akr
GCACTGGATACGACCCGATC (11716)
TCTT (11717)






ath-miRf10701-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCTGCAGTTCCTGGA
21


akr
GCACTGGATACGACTCCTCC (11718)
GGT (11719)






ath-miRf10702-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGTGGGAGGACTCC
18


akr
GCACTGGATACGACCACACT (11720)
A (11721)






ath-miRf10751-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCTTGTGGAGAG
20


akr
GCACTGGATACGACTCTTGC (11722)
GAA (11723)






ath-miRf10763-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCGGTGGTGAAGAA
19


akr
GCACTGGATACGACAACCAT (11724)
GC (11725)






ath-miRf10924-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTAGGTGAGGCGTATC
21


akr
GCACTGGATACGACACTACC (11726)
AGGA (11727)






ath-miRf11037-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTCATCGGAGAA
21


akr
GCACTGGATACGACGCTCCT (11728)
ACAG (11729)






ath-miRf11042-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
AATCCTGGAAGAGGCAG
20


akr
GCACTGGATACGACTACCCAT (11730)
TGC (11731)






bdi-miR2508
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCATTGAGTGCAGCGT
20



GCACTGGATACGACGTTCAT (11732)
TG (11733)






bna-miR2111b-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTAATCTGCATCC
21


5p
GCACTGGATACGACTAAACC (11734)
TGA (11735)






bra-miR160a-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GAATCGCGTATGAGGAG
20



GCACTGGATACGACTATGCA (11736)
CCA (11737)






csi-miR3946
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTGTAGAGAAA
24



GCACTGGATACGACGTGCTC (11738)
GAGAAGA (11739)






csi-miR3948
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCTGGAGTGGGAGTG
22



GCACTGGATACGACCACCCT (11740)
GGAGT (11741)






ctr-miR171
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
AATCCTTTGAGCCGCGTC
21



GCACTGGATACGACGGAGAT (11742)
AAT (11743)






ghr-miR2950
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCTGGTGTGCAGGGG
19



GCACTGGATACGACTATTCC (11744)
GT (11745)






gma-miR1507a
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTCTCATTCCATA
22



GCACTGGATACGACTCAGAC (11746)
CATC (11747)






gma-miR1524
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GCGCCGAGTCCGAGGAA
19



GCACTGGATACGACGGAGTT (11748)
GG (11749)






gma-miR156g
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GCGGCGGACAGAAGATA
21



GCACTGGATACGACCTGTGC (11750)
GAGA (11751)






gma-miR157c
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTGACAGAAGAC
21



GCACTGGATACGACGTGCTC (11752)
TAGA (11753)






gma-miR159a-3p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTTGGATTGAAG
21



GCACTGGATACGACTAGAGC (11754)
GGA (11755)






gma-miR2119
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTCAAAGGGAGT
21



GCACTGGATACGACTTCCCC (11756)
TGTA (11757)






gma-miR4371b
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGAAGTGATGACG
24



GCACTGGATACGACACTCCG (11758)
TGGTAGA (11759)






gma-miR482b-5p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCTATGGGGGGATTG
20



GCACTGGATACGACATTCCT (11760)
GGA (11761)






gso-miR482a
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTCTTCCCTACAC
21



GCACTGGATACGACGTATGG (11762)
CTC (11763)






iba-miR157
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTGACAGAAGA
21



GCACTGGATACGACATGCTC (11764)
TAGA (11765)






mdm-miR482a-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGAATGGGCTGTTT
19


5p
GCACTGGATACGACTGTTCC (11766)
G (11767)






osa-miR159e
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGATTGGATTGAA
21



GCACTGGATACGACAGGAGC (11768)
GGGA (11769)






osa-miR159f
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
AAGGCCTCTTGGATTGAA
22



GCACTGGATACGACTAGAGC (11770)
GGGA (11771)






osa-miR162a
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTCGATAAACCTC
21



GCACTGGATACGACCTGGAT (11772)
TGC (11773)






osa-miR1846e
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCCAACGAGGAGGCC
18



GCACTGGATACGACTGGTCC (11774)
G (11775)






osa-miR1850.1
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTGGAAAGTTGG
21



GCACTGGATACGACCCCCAA (11776)
GAGA (11777)






osa-miR1858a
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGAGAGGAGGACGG
19



GCACTGGATACGACGCCCCA (11778)
AG (11779)






osa-miR1869
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCTGAGAACAATAG
23



GCACTGGATACGACTACCTC (11780)
GCATGG (11781)






osa-miR1879
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCGTGTTTGGTTTAG
23



GCACTGGATACGACCCACCT (11782)
GGATG (11783)






osa-miR1881
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGAATGTTATTGTA
24



GCACTGGATACGACACACCA (11784)
GCGTGG (11785)






osa-miR2055
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
AAGGCCTTTTCCTTGGGA
22



GCACTGGATACGACGAAACC (11786)
AGGT (11787)






osa-miR2104
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
TTAGCGGCGAGGGGATG
19



GCACTGGATACGACCACGCT (11788)
CG (11789)






osa-miRf10849-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCTGGACTGTTTGGGG
20


akr
GCACTGGATACGACAGAAGC (11790)
GA (11791)






osa-miRf11013-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
TAGGGTTTGCCGGAGTTG
19


akr
GCACTGGATACGACTCTCCT (11792)
G (11793)






osa-miRf11341-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
TAGCGCGCCGACGATGA
19


akr
GCACTGGATACGACACTCCAC (11794)
CG (11795)






osa-miRf11352-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCAGGGATTTTGGA
22


akr
GCACTGGATACGACTGTCAC (11796)
AGGAG (11797)






osa-miRf11355-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCGGTGGAGGTGGAG
21


akr
GCACTGGATACGACTTTGGC (11798
CTGT (11799)






osa-miRf11415-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGAGAGCAGGATGC
19


akr
GCACTGGATACGACCCTTGG (11800)
AG (11801)






osa-miRf11595-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCCATCGGTGTTGGA
18


akr
GCACTGGATACGACGCCACC (11802)
(11803)






osa-miRf11829-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCACGCGGAGGAGGT
19


akr
GCACTGGATACGACAGAACA (11804)
GG (11805)






osa-miRf11996-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGGTCTTATAACCT
22


akr
GCACTGGATACGACCCCCCG (11806)
GAAA (11807)






ppt-miR1220a
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GCGCTTCCGGTGGTGAGG
19



GCACTGGATACGACCTATCT (11808)
A (11809)






ppt-miR166m
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCTCGGACCAGGCAT
19



GCACTGGATACGACAAGGAA (11810)
CA (11811)






psi-miR159
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
AAGGCCTCTTGGATTGAA
22



GCACTGGATACGACTGGAGC (11812)
GGGA (11813)






pta-miR156a
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCAGAAGATAGA
20



GCACTGGATACGACGATGTG (11814)
GAG (11815)






pta-miR156b
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCAGAAGATAGA
20



GCACTGGATACGACGTTGTG (11816)
GAG (11817)






pta-miR166c
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCCCGGACCAGGCTTC
19



GCACTGGATACGACCTGGGA (11818)
A (11819)






ptc-miR166p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCTCGGACCAGGCTCC
19



GCACTGGATACGACAAGGAA (11820)
A (11821)






ptc-miRf10007-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCATTGACAGGG
21


akr
GCACTGGATACGACTGGTGA (11822)
AAAC (11823)






ptc-miRf10132-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGTCTTGGCGGTGATTGA
21


akr
GCACTGGATACGACACCCTC (11824)
ACG (11825)






ptc-miRf10148-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCTGGTGCACCTGGTG
18


akr
GCACTGGATACGACCTCCAC (11826)
(11827)






ptc-miRf10226-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
AATCCTTCCTTTGGGGAG
23


akr
GCACTGGATACGACAAGCTC (11828)
ATGGA (11829)






ptc-miRf10271-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTGGATTGAAG
21


akr
GCACTGGATACGACTTAGAG (11830)
GGAG (11831)






ptc-miRf10734-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCATCTAGGTGGT
21


akr
GCACTGGATACGACCACTGG (11832)
GGT (11833)






ptc-miRf10976-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCTGGGAACGTGGCT
18


akr
GCACTGGATACGACTAGCCA (11834)
G (11835)






ptc-miRf10985-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCAGAAGATAGA
20


akr
GCACTGGATACGACTCAGTG (11836)
GAG (11837)






ptc-miRf11018-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCTGCAAACCTA
20


akr
GCACTGGATACGACCCGCTC (11838)
AGG (11839)






ptc-miRf11079-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCAAGATGGAGAAGC
22


akr
GCACTGGATACGACGCACGT (11840)
AGGGC (11841)






ptc-miRf11315-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCCGATCAACTTAGAGT
21


akr
GCACTGGATACGACCCACCC (11842)
TGG (11843)






ptc-miRf11324-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCCTTGTCGCAGGAG
21


akr
GCACTGGATACGACAGCGCC (11844)
AGAT (11845)






ptc-miRf11396-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGCGCCAAGGCTCTGATA
21


akr
GCACTGGATACGACTTGACA (11846)
CCA (11847)






ptc-miRf11669-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCAAGGCTCTGA
20


akr
GCACTGGATACGACAACATG (11848)
TAC (11849)






ptc-miRf11757-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCCTTGGTGAATGGTT
21


akr
GCACTGGATACGACATTCCT (11850)
GGG (11851)






ptc-miRf11844-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCCCCAACTTGGAGGT
20


akr
GCACTGGATACGACCCACAC (11852)
GG (11853)






ptc-miRf11847-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGGAAAGTGTGGA
21


akr
GCACTGGATACGACGGCAAC (11854)
GAAG (11855)






ptc-miRf11953-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGGTAATCTGCATC
20


akr
GCACTGGATACGACAACCTC (11856)
CT (11857)






ptc-miRf12389-
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
TTCCGTCGACCTGGCGAG
21


akr
GCACTGGATACGACCCCGGT (11858)
TCA (11859)






sbi-miR159a
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTTGGATTGAAG
21



GCACTGGATACGACCAGAGC (11860)
GGA (11861)






smo-miR156b
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGCTGACAGAAGA
21



GCACTGGATACGACGTGCTC (11862)
TAGA (11863)






tae-miR2003
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
AACCGGTTGGGCTGTATG
19



GCACTGGATACGACTCGCCA (11864)
A (11865)






vvi-miR2111-5p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTAATCTGCATCC
21



GCACTGGATACGACTAGACC (11866)
TGA (11867)






vvi-miR394b
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGTTGGCATTCTGT
20



GCACTGGATACGACGGAGGT (11868)
CC (11869)






zma-miR167u
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CCGGGGTGAAGCTGCCA
20



GCACTGGATACGACCAGATC (11870)
CAT (11871)






zma-miR398a-5p
GTCGTATCCAGTGCAGGGTCCGAGGTATTC
CGGCGGGGCGAACTGAG
19



GCACTGGATACGACCATGTG (11872)
AA (11873)









Example 5
Results of RT-PCR Validation of Selected miRNAs of the Invention

An RT-PCR analysis was run on selected microRNAs of the invention, using the stem-loop RT primers as described in Table 11b in Example 4 above. Total RNA was extracted from leaf tissues of soybean plants grown as described above, and was used as a template for RT-PCR analysis. Expression level and directionality of several up-regulated and down-regulated microRNAs that were found to be differential on the microarray analysis were verified. Results are summarized in Table 12 below.









TABLE 12







Summary of RT-PCR Verification Results on Selected miRNAs using


Stem Loop RT (Alternative) Method










Trait
Mir Name
p-Value
Fold Change





Drought
gma-miR4376-5p
8.50E−03
2.38 (−)



zma-miR396b-3p
4.60E−03
1.41 (−)



aly-miR396b-3p
3.80E−06
3.48 (−)



gma-miR156g
5.40E−02
1.48 (+)



gma-miRf10687-akr-homolog
7.80E−02
1.95 (+)


Salt
gma-miR159d
5.60E−05
3.35 (−)



aly-miR396b-3p
3.80E−07
5.45 (−)



gma-miR4416a
5.20E−04
2.58 (−)



aly-miR396a-3p
1.20E−08
13.50 (−) 



zma-miR396b-3p
4.90E−05
9.58 (−)


Heat Shock
gma-miR4412-3p
1.50E−03
2.31 (−)



csi-miR162-5p
2.60E−03
1.86 (−)



ath-miRf10279-akr
2.40E−02
1.40 (−)









Example 6
Generation of Transgenic Plants

Gene Cloning Strategies for miRNA Molecules and Creation of Binary Vectors for Expression in Plants


The best validated miRNA sequences are cloned into pORE-E1 binary vectors (FIG. 1) for the generation of transgenic plants. The full-length precursor sequence comprising of the hairpin sequence of each selected miRNA, is synthesized by Genscript (USA). The resulting clone is digested with appropriate restriction enzymes and inserted into the Multi Cloning Site (MCS) of a similarly digested binary vector through ligation using T4 DNA ligase enzyme (Promega, Madison, Wis., USA).


Example 7
Generation of Transgenic Model Plants Expressing Abiotic Stress Associated miRNAs


Arabidopsis thaliana Transformation Protocol



Arabidoposis thaliana transformation is performed using the floral dip procedure following a slightly modified version of the published protocol (Clough and Bent, 1998, Plant J 16(6): 735-43; and Desfeux et al., 2000, Plant Physiol 123(3): 895-904). Briefly, T0 Plants are planted in small pots filled with soil. The pots are covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 24° C. under 16 hr light:8 hr dark cycles. A week prior to transformation all individual flowering stems are removed to allow for growth of multiple flowering stems instead. A single colony of Agrobacterium (GV3101) carrying the binary vectors (pORE-E1 or pORE-E3, see FIGS. 1 and 3, respectively), harboring the selected miRNA hairpin sequences with additional flanking sequences both upstream and downstream of it, is cultured in LB medium supplemented with kanamycin (50 mg/L) and gentamycin (25 mg/L). Three days prior to transformation, each culture is incubated at 28° C. for 48 hrs, shaking at 180 rpm. The starter culture is split the day before transformation into two cultures, which are allowed to grow further at 28° C. for 24 hours at 180 rpm. Pellets containing the agrobacterium cells are obtained by centrifugation of the cultures at 5000 rpm for 15 minutes. The pellets are re-suspended in an infiltration medium (10 mM MgCl2, 5% sucrose, 0.044 μM BAP (Sigma) and 0.03% Tween 20) prepared with double-distilled water.


Transformation of T0 plants is performed by inverting each plant into the agrobacterium suspension, keeping the flowering stem submerged for 5 minutes. Following inoculation, each plant is blotted dry for 5 minutes on both sides, and placed sideways on a fresh covered tray for 24 hours at 22° C. Transformed (transgenic) plants are then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants are grown in the greenhouse for 3-5 weeks until the seeds are ready, which are then harvested from plants and kept at room temperature until sowing.


Tomato (Solanum lycopersicum) Transformation Protocol


M82 tomato (Solanum lycopersicum) transformation is performed using a slightly modified protocol described previously (McCormick 1991, Plant Tissue Culture Manual, Vol. B6, Lindsey, K., ed. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 1-9). Briefly, seeds are surface-sterilized 10 days prior to transformation by soaking and shaking in 70% ethanol followed by a 3% bleach solution. After washing, seeds are sown and allowed to grow into seedlings. Cotyledons are cut and treated with an agrobacterium (GV3101, carrying the binary vector pORE-E2, see FIG. 2) solution using a gentle agitation, dried and left on feeder medium for two days in the dark. Then, cotyledons are transferred to a first selection medium (Jones I) for two weeks, followed by a two-week incubation in a second selection medium (Jones II) for callus initiation. Cotyledons are transferred every two weeks to a fresh selection medium (Jones II) until plantlet forms. Plantlets with active meristems are separated from the callus and transferred to a third selection medium (Jones III), and transferred into a rooting medium. Once roots form, the plantlets are planted in soil.


Transgenic Arabidopsis Plants Over-Expressing Selected microRNA Sequences


Several microRNAs of the invention were selected for over-expression in both Arabidopsis. Transformation protocols are followed as described above for each plant, and agrobacterium is utilized, carrying one of three binary vectors: pORE-E1, pORE-E2, or pORE-E3.



Arabidopsis transgenic plants were created with osa-miRf11996-akr of the invention. This miRNA was downregulated under drought and salinity stresses compared to optimal conditions. Thus, the researchers tested the effects of modifying its expression level in model Arabidopsis plants. Four transgenic plants over-expressing osa-miRf11996-akr (in binary vector pORE-E3) were created and compared to control Columbia plants. Transgenic and control plants were grown under 16 h light:8 h dark regime at 22° C. in controlled growth rooms until seedlings were four weeks old. Next, plants were divided into two groups: control plants were irrigated with tap water twice a week and treated plants were either subjected to drought and received no irrigation for 5 days, or irrigated with 300 mM NaCl solution for 10 days for salinity stress induction. At the end of each treatment, plants were harvested and dry weight was recorded.


An ANOVA test was applied for statistical analysis of the data and results are summarized in Table 13 below. Control plants' dry weight was averaged and recorded as 100%, to be used as a reference for comparison to the average of each treated strain for each condition. Interestingly, the dry weight of all transgenic strains over-expressing osa-miRf11996-akr was significantly (p<1.0E-6) decreased compared to wild type control plants under all conditions. These results correlate with the fact that osa-miRf11996-akr was shown to be down-regulated under various abiotic stresses (e.g., Tables 2 and 4), thus indicating that its expression level needs to be decreased to improve a plant's tolerance to abiotic stress. Accordingly, the researchers also down-regulate osa-miRf11996-akr in Arabidopsis plants by using target mimic, as described and explained in Example 12 below.









TABLE 13







Dry Weight Results of Control and Transgenic (Over-expressing


osa-miRf11996-akr) Arabidopsis Plants.














Number of
Dry Weight %


Treatment
Strain
Dry weight +− SD
Plants
of Control





No
Control
 483.353 +− 113.070
17



treatment
11996-2
305.909 +− 88.033
22
63.29%



11996-3
231.500 +− 72.002
26
47.90%



11996-5
179.194 +− 71.185
31
37.07%



11996-7
 285.158 +− 101.236
19
59.00%


Drought
Control
225.478 +− 99.687
23



11996-2
170.000 +− 60.393
21
75.40%



11996-3
157.269 +− 63.415
26
69.75%



11996-5
186.353 +− 92.723
20
82.65%



11996-7
179.818 +− 68.019
22
79.75%


Salinity
Control
210.895 +− 76.991
19



11996-2
 77.143 +− 41.214
21
36.58%



11996-3
109.130 +− 60.144
23
51.75%



11996-5
103.480 +− 44.930
25
49.07%



11996-7
116.789 +− 64.514
19
55.38%









Example 8
Selection of Transgenic Arabidopsis Plants Expressing Abiotic Stress Genes According to Expression Level


Arabidopsis seeds are sown and Basta is sprayed for the first time on 1-2 weeks old seedlings, at least twice every few days. Only resistant plants, which are heterozygous for the transgene, survive. PCR on the genomic gene sequence is performed on the surviving seedlings using primers pORE-F2 (fwd, 5′-TTTAGCGATGAACTTCACTC-3′, SEQ ID NO: 11614) and a custom designed reverse primer based on each small RNA sequence.


Example 9
Evaluating Changes in Root Architecture of Transgenic Plants

Many key traits in modern agriculture can be explained by changes in the root architecture of the plant. Root size and depth have been shown to logically correlate with drought tolerance and fertilizer use efficiency, since deeper and more branched root systems provide better coverage of the soil and can access water and nutrients stored in deeper soil layers.


To test whether the transgenic plants produce a modified root structure, plants can be grown in agar plates placed vertically. A digital picture of the plates is taken every few days and the maximal length and total area covered by the plant roots are assessed. From every construct created, several independent transformation events are checked in replicates. To assess significant differences between root features, statistical test, such as a Student's t-test, is employed in order to identify enhanced root features and to provide a statistical value to the findings.


Example 10
Abiotic Stress Tolerance Assessments of Control and Transgenic Plants

Transgenic plants expressing the polynucleotides of some embodiments of the invention exhibit tolerance to abiotic stress in the form of extreme deficiency in water, high salt concentrations, or heat shock and exhibit better overall survival and growth compared to control non-transgenic plants.


Quantitative parameters of tolerance measured include, but are not limited to, the average wet and dry weight, growth rate, leaf size, leaf coverage (overall leaf area), the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Under normal conditions (non-stress, optimal growth conditions), transgenic plants exhibit a phenotype equivalent or superior to that of the wild type plants. Following stress induction, transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as abiotic stress tolerant plants. Following are a number of screens aimed at identifying the transgenic plants which exhibit abiotic stress tolerance according to some embodiments of the invention.


Soil-Based Drought Tolerance Assay


Screens are performed with plants over-expressing the differential small RNAs detailed above. Briefly, seeds from control Arabidopsis plants, or other transgenic plants over-expressing the small RNA molecule of the invention are germinated and transferred to pots. Drought stress is obtained when irrigation is ceased and the two plant types (transgenic and control plants) are compared when most control plants develop severe wilting, at which point rehydration of the plants is initiated. Transgenic plants are ranked on two levels compared to controls: (1) tolerance to drought conditions, and (2) recovery (survival) following re-watering.


To illustrate and elaborate on the above drought tolerance assays of any given wild type plant compared to a corresponding transgenic plant (in which a drought-associated miRNA has been over-expressed), two different approaches are taken as follows:


Lethal drought stress—whereby wild type (used as a control) and transgenic plants (1-3 weeks old) are grown under prolonged extreme drought conditions (duration varies in accordance with plant species). Next, a recovery attempt is implemented during which plants are regularly irrigated and survival level is estimated in the two plant groups 1-2 days post irrigation initiation. While the control (wild type) plant is not expected to survive this extreme stress, the transgenic plant is expected to demonstrate some improved drought tolerance, usually within hours of re-hydration.


Non-lethal drought stress—whereby wild type (used as a control) and transgenic plants (1-3 weeks old) are grown under regular short-term cycles of drought and re-hydration steps, such that re-hydration is applied when general visible drought symptoms (e.g., evident decrease in turgor pressure of lower leaves) emerge in the experimental plants. This drought/irrigation alternating treatment continues until the flowering stage of the plants is reached, followed by an evaluation of dry matter weight. Both wild type and transgenic plants are expected to survive this non-lethal stress, however, measurable differences in drought tolerance are demonstrated by increased yield of the transgenic compared with the wild type plants.


Drought Tolerance Assay Using Sorbitol


Another assay designed to assess whether transgenic plants are more tolerant to drought or severe water deprivation compared to control plants, involves induction of an osmotic stress by the non-ionic osmolyte sorbitol. Control and transgenic plants are germinated and grown in plant-agar plates for 4 days, after which they are transferred to plates containing 500 mM sorbitol, to cause delayed growth. Following the stress treatment, control and transgenic plants are compared by measuring plant weight (wet and dry), yield, and growth rate measured as time to flowering.


Methods for Salinity Tolerance Assessment


Osmotic stress assays, such as chloride and mannitol assays, are aimed to determine whether an osmotic stress phenotype is sodium chloride-specific or a result of a general osmotic stress. Plants which are tolerant to osmotic stress may also exhibit tolerance to drought and/or freezing. For salt and osmotic stress germination experiments, the medium is supplemented with 50, 100, or 200 mM NaCl or 100 mM, 200 mM NaCl, 400 mM mannitol.


Methods for Heat Stress Tolerance Assessment


Heat stress tolerance is achieved by exposing the plants to temperatures above 34° C. for a certain period. Plant tolerance is examined after transferring the plants back to 22° C. for recovery and evaluation after 5 days relative to internal controls (non-transgenic plants) or plants not exposed to neither cold nor heat stress.


Methods for Cold Stress Tolerance Assessment


To analyze cold stress, mature (25 day old) plants are transferred to 4° C. chambers for 1 or 2 weeks, with constitutive light. Next, plants are moved back to the greenhouse for 2 weeks to recover. Following the recovery period, chilling damages such as growth retardation are determined based on measurements of plant weight (wet and dry) and growth rates (e.g. time to flowering, plant size, yield, etc) taken on control and transgenic plants.


Example 11
Testing Morphologic Parameters in Transgenic Plants

To analyze whether the transgenic Arabidopsis plants are more tolerant to abiotic stresses, plants are grown under optimal versus stress conditions, i.e either drought for five days without irrigation, or high salt conditions for ten days, or a one-hour heat shock. Plants are allowed to grow until seed production, followed by an analysis of their overall size, time to flowering, yield, and protein content of shoot and/or grain. Additional parameters checked can be the overall size of the plant, wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher measured parameters levels compared to wild-type plants, are identified as abiotic stress tolerant plants.


Example 12
Method for Generating Transgenic Plants with Enhanced or Reduced miRNA Regulation of Target Genes

Target prediction enables two contrasting strategies; an enhancement (positive) or a reduction (negative) of small RNA regulation. Both these strategies have been used in plants and have resulted in significant phenotype alterations. For complete in-vivo assessment of the phenotypic effects of the differential small RNAs of this invention, the inventors plan to implement both over-expression and down-regulation methods on the small RNA molecules found to associate with abiotic stress tolerance as listed in Tables 1-6. In the case of small RNAs that were up-regulated under abiotic stress conditions, an enhancement in abiotic stress tolerance can theoretically be achieved by maintaining their directionality, i.e. over-expressing them. Conversely, in the case of small RNAs that were down-regulated under abiotic stress conditions, enhancement in tolerance can be achieved by reducing their regulation. Regulation reduction of small RNA target genes can be accomplished in one of two approaches:


Expressing a miRNA-Resistant Target


In this method, silent mutations are introduced in the miRNA binding site of the target gene so that the DNA and resulting RNA sequences are changed to prevent miRNA binding, but the amino acid sequence of the protein is unchanged.


For design of miRNA-resistant target sequences for the small RNA molecules of the invention, optimization of the nucleic acid sequence in accordance with the preferred codon usage for a particular plant species is required. Tables such as those provided on-line at the Codon Usage Database through the NCBI (National Center for Biotechnology Information) webpage (Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/Taxonomy/Utils/wprintgc (dot) cgi) were used. The Genbank database contains codon usage tables for a number of different species, with its Table 11 (The Bacterial, Archaeal and Plant Plastid Code) being the most relevant for plant species of this invention. Mir-resistant target examples for unregulated and downregulated miRs of the invention are presented in Tables 14-15 below.









TABLE 14







miRNA-Resistant Target Examples for Selected upregulated miRNAs


of the Invention.












NCBI
mutated




Mir
nucleotide


Mir

Binding
sequence/SEQ


name
Homolog NCBI Accession
Site
ID NO:













aqc-
XP_003543825

0


miR159




958-978
11091




958-978
11092



XP_003541563

0




1111-1131
11093




1111-1131
11094



XP_003556814

0




952-972
11095




952-972
11096



XP_003526354

0




928-948
11097




928-948
11098



XP_003523913

0




931-951
11099




931-951
11100



XP_003545791

0




934-954
11101




934-954
11102


ath-
XP_003542140

0


miR159b




404-424
11103




404-424
11104


ath-
XP_003519140

0


miR159c




143-163
11105




143-163
11106



XP_003531162

0




2030-2050
11107




2030-2050
11108



XP_003524148

0




1188-1208
11109




1188-1208
11110



XP_003547199

0




1263-1283
11111




1263-1283
11112



XP_003541668

0




1329-1349
11113




1329-1349
11114


ath-
XP_003525932

0


miRf10240-


akr




357-376
11115




357-376
11116



XP_003523287

0




864-883
11117




864-883
11118



XP_003547951

0




1451-1470
11119




1451-1470
11120



XP_003629354

0




1224-1243
11121




1224-1243
11122


ath-
XP_003543893

0


miRf10368-


akr




584-603
11123




584-603
11124



XP_003539013

0




599-618
11125




599-618
11126



XP_003556840

0




727-746
11127




727-746
11128



XP_003538207

0




1733-1752
11129




1733-1752
11130


ath-
XP_003520499

0


miRf10763-


akr




245-264
11131




245-264
11132



XP_003519685

0




240-259
11133




240-259
11134



ACU17625

0




176-195
11135




176-195
11136



XP_003527981

0




558-577
11137




558-577
11138



XP_003547100

0




1686-1705
11139




1686-1705
11140



XP_003524815

0




524-543
11141




524-543
11142


csi-
XP_003547789

0


miR3948




31-54
11143




31-54
11144



XP_003527776

0




46-69
11145




46-69
11146



XP_003550061

0




178-201
11147




178-201
11148



XP_003525811

0




178-201
11149




178-201
11150



XP_003539180

0




283-306
11151




283-306
11152



BAD18437

0




278-301
11153




278-301
11154


ghr-
XP_003529456

0


miR2950




1017-1037
11155




1017-1037
11156



XP_003554852

0




380-400
11157




380-400
11158


gma-
XP_003520455

0


miR156g




737-756
11159




737-756
11160



XP_003553428

0




734-753
11161




734-753
11162



XP_003520534

0




734-753
11163




734-753
11164



XP_003553944

0




1089-1108
11165




1089-1108
11166



XP_003551188

0




1046-1065
11167




1046-1065
11168



XP_003532399

0




941-960
11169




941-960
11170



XP_003549130

0




1034-1053
11171




1034-1053
11172



XP_003550514

0




706-725
11173




706-725
11174



XP_003525415

0




1214-1233
11175




1214-1233
11176



XP_003538544

0




1269-1288
11177




1269-1288
11178



XP_003525436

0




1333-1352
11179




1333-1352
11180



XP_003550708

0




1184-1203
11181




1184-1203
11182



XP_003520128

0




1007-1026
11183




1007-1026
11184



XP_003523155

0




959-978
11185




959-978
11186



XP_003551421

0




758-777
11187




758-777
11188



XP_003522278

0




1262-1281
11189




1262-1281
11190


gma-
Redundant target XP_003549130

0


miR157c


gma-
Redundant targets: XP_003542140, XP_003543825,


miR159a-
XP_003526354, XP_003541563, XP_003556814, XP_003545791,


3p
XP_003523913.


iba-
Redundant targets: XP_003520455, XP_003553428,


miR157
XP_003520534, XP_003553944, XP_003551188, XP_003532399,



XP_003549130, XP_003525415, XP_003538544, XP_003525436,



XP_003520128, XP_003551421, XP_003523155, XP_003550708,



XP_003522278


mdm-
XP_003528897


miR482a-


5p




940-960
11191




940-960
11192




940-960
11193




940-960
11194


osa-
Redundant targets: XP_003543825, XP_003531162,


miR159e
XP_003526354, XP_003524148, XP_003547199, XP_003541563,



XP_003556814, XP_003541668, XP_003523913, XP_003545791.


osa-
Redundant targets: XP_003543825, XP_003526354,


miR159f
XP_003541563, XP_003556814, XP_003523913, XP_003545791.


osa-
XP_003555849


miR1850.1




147-167
11195




147-167
11196



XP_003534041

0




29-49
11197




29-49
11198



XP_003548988

0




451-471
11199




451-471
11200


osa-
XP_003521247

0


miR1858a




287-307
11201




287-307
11202



NP_001235053

0




281-301
11203




281-301
11204



XP_003530234

0




368-388
11205




368-388
11206



XP_003551508

0




377-397
11207




377-397
11208



XP_003528545

0




131-151
11209




131-151
11210



XP_003547641

0




155-175
11211




155-175
11212



XP_003543554

0




185-205
11213




185-205
11214



XP_003556667

0




131-151
11215




131-151
11216


osa-
XP_003546711

0


miRf11829-


akr




346-366
11217




346-366
11218



ACI23460

0




334-354
11219




334-354
11220



XP_003541398

0




365-385
11221




365-385
11222


psi-
Redundant targets: XP_003543825, XP_003526354,


miR159
XP_003541563, XP_003556814, XP_003545791, XP_003523913.


pta-
Redundant targets: XP_003549130, XP_003553428,


miR156a
XP_003553944, XP_003525436, XP_003520455, XP_003520128,



XP_003550708, XP_003523155, XP_003551421, XP_003522278.


pta-
XP_003551276


miR156b




202-221
11223




202-221
11224




202-221
11225




202-221
11226


ptc-
XP_003527653


miRf10132-


akr




128-150
11227




128-150
11228




128-150
11229


ptc-
XP_003549610

0


miRf10226-


akr




123-145
11230




123-145
11231



XP_003525906

0




174-196
11232




174-196
11233



XP_003547131

0




2282-2304
11234




2282-2304
11235



XP_003542817

0




240-262
11236




240-262
11237


ptc-
Redundant targets: XP_003543825, XP_003526354,


miRf10271-
XP_003541563, XP_003556814, XP_003523913, XP_003545791.


akr


ptc-
XP_003520774

0


miRf10734-


akr




1439-1459
11238




1439-1459
11239



XP_003538849

0




1187-1207
11240




1187-1207
11241


ptc-
XP_003546504

0


miRf10985-


akr




1472-1491
11242




1472-1491
11243



XP_003545057

0




3399-3418
11244




3399-3418
11245


ptc-
XP_003550774

0


miRf11315-


akr




311-330
11246




311-330
11247



XP_003518840

0




255-274
11248




255-274
11249


ptc-
XP_003612685

0


miRf11757-


akr




388-410
11250




388-410
11251




388-410
11252




388-410
11253


ath-
Redundant targets: XP_003525415, XP_003553428,


miR157a
XP_003538544, XP_003553944, XP_003551188, XP_003525436,



XP_003520455, XP_003523155, XP_003551421, XP_003549130,



XP_003522278.


sbi-
Redundant targets: XP_003543825, XP_003526354,


miR159a
XP_003541563, XP_003556814.


smo-
XP_003528960


miR156b




462-482
11254




462-482
11255




462-482
11256




462-482
11257
















TABLE 15







miRNA-Resistant Target Examples for Selected down-regulated


miRNAs of the Invention.












NCBI Mir
Mutated Nucleotide



Homolog NCBI
Binding
Sequence/


Mir name
Accession
Site
SEQ ID NO:













bdi-miR2508
XP_003530212






689-710
11258




689-710
11259



XP_003530213

0




794-815
11260




794-815
11261



XP_003551482

0




689-710
11262




689-710
11263



XP_003548937

0




1148-1169
11264




1148-1169
11265



XP_003551299

0




733-754
11266




733-754
11267



XP_003520176

0




2159-2180
11268




2159-2180
11269



XP_003544873

0




656-677
11270




656-677
11271



XP_003552227

0




665-686
11272




665-686
11273



XP_003539077

0




713-734
11274




713-734
11275



XP_003552179

0




701-722
11276




701-722
11277



NP_001236616

0




698-719
11278




698-719
11279



XP_003540719

0




707-728
11280




707-728
11281



XP_003522150

0




662-683
11282




662-683
11283


bra-miR160a-3p
XP_003530952

0




1283-1303
11284




1283-1303
11285


gma-miR2119
XP_003542005

0




212-232
11286




212-232
11287



XP_003521584

0




421-441
11288




421-441
11289



XP_003524240

0




1982-2002
11290




1982-2002
11291



XP_003545664

0




96-116
11292




96-116
11293



XP_003532800

0




1982-2002
11294




1982-2002
11295



XP_003547559

0




2084-2104
11296




2084-2104
11297


gso-miR482a
NP_001237600

0




1153-1173
11298




1153-1173
11299



XP_003533606

0




523-543
11300




523-543
11301



XP_003518623

0




444-464
11302




444-464
11303



AAF44087

0




Jan-21
11304




Jan-21
11305


osa-miR162a
XP_003528812




612-632
11306




612-632
11307




612-632
11308




612-632
11309


osa-miR1846e
XP_003531668

0




471-490
11310




471-490
11311



XP_003529761

0




363-382
11312




363-382
11313



XP_003530142

0




366-385
11314




366-385
11315


ppt-miR166m
XP_003553029

0




530-550
11316




530-550
11317



XP_003597690

0




875-895
11318




875-895
11319



XP_002285176

0




562-582
11320




562-582
11321



XP_003530109

0




906-926
11322




906-926
11323



XP_003524993

0




1030-1050
11324




1030-1050
11325



XP_003522716

0




825-845
11326




825-845
11327



XP_003530112

0




606-626
11328




606-626
11329



XP_003532788

0




577-597
11330




577-597
11331



XP_003537529

0




515-535
11332




515-535
11333



XP_003531653

0




777-797
11334




777-797
11335



XP_003539764

0




1227-1247
11336




1227-1247
11337



XP_003539765

0




1227-1247
11338




1227-1247
11339


ptc-miRf10007-akr
XP_003550796




1378-1398
11340




1378-1398
11341




1378-1398
11342




1378-1398
11343


ptc-miRf10976-akr
XP_003533044

0




318-337
11344




318-337
11345



XP_003528486

0




267-286
11346




267-286
11347



XP_003548151

0




885-904
11348




885-904
11349



NP_001238468

0




245-264
11350




245-264
11351


ptc-miRf11396-akr
XP_003520116




764-785
11352




764-785
11353




764-785
11354




764-785
11355


ptc-miRf11669-akr
XP_003554103




208-227
11356




208-227
11357




208-227
11358




208-227
11359









Expressing a Target-Mimic Sequence


Plant miRNAs usually lead to cleavage of their targeted gene, with this cleavage typically occurring between bases 10 and 11 of the miRNA. This position is therefore especially sensitive to mismatches between the miRNA and the target. It was found that expressing a DNA sequence that could potentially be targeted by a miRNA, but contains three extra nucleotides (ATC), and thus creating a bulge in a key position (between the two nucleotides that are predicted to hybridize with bases 10-11 of the miRNA), can inhibit the regulation of that miRNA on its native targets (Franco-Zorilla et al., 2007, Nat Genet 39(8):1033-1037).


This type of sequence is referred to as a “target-mimic”. Inhibition of the miRNA regulation is presumed to occur through physically capturing the miRNA by the target-mimic sequence and titering-out the miRNA, thereby reducing its abundance. This method was used to reduce the amount and, consequentially, the regulation of miRNA 399 in Arabidopsis. Target mimic examples for upregulated and downregulated miRs of the invention are presented in Tables 16-17 below.









TABLE 16







Target Mimic Examples for Selected upregulated miRNAs of the


Invention.










Mimic Reverse
Full Target Mimic



Complement Mir/SEQ ID
Nucleotide Sequence/


Mir Name
NO:
SEQ ID NO:





ahy-miR3514-
11360
11437


5p


aly-miR831-
11361
11438


5p


aqc-miR159
11362
11439


ath-miR157a
11363
11440


ath-miR159b
11364
11441


ath-miR159c
11365
11442


ath-
11366
11443


miRf10068-


akr


ath-
11367
11444


miRf10148-


akr


ath-
11368
11445


miRf10209-


akr


ath-
11369
11446


miRf10240-


akr


ath-
11370
11447


miRf10368-


akr


ath-
11371
11448


miRf10451-


akr


ath-
11372
11449


miRf10633-


akr


ath-
11373
11450


miRf10687-


akr


ath-
11374
11451


miRf10701-


akr


ath-
11375
11452


miRf10702-


akr


ath-
11376
11453


miRf10751-


akr


ath-
11377
11454


miRf10763-


akr


ath-
11378
11455


miRf10924-


akr


ath-
11379
11456


miRf11021-


akr


ath-
11380
11457


miRf11037-


akr


ath-
11381
11458


miRf11042-


akr


ath-
11382
11459


miRf11045-


akr


csi-miR3946
11383
11460


csi-miR3948
11384
11461


far-miR1134
11385
11462


ghr-miR2950
11386
11463


gma-miR156g
11387
11464


gma-miR157c
11388
11465


gma-
11389
11466


miR159a-3p


iba-miR157
11390
11467


mdm-
11391
11468


miR482a-5p


mtr-miR2119
11392
11469


osa-miR159e
11393
11470


osa-miR159f
11394
11471


osa-
11395
11472


miR1850.1


osa-miR1858a
11396
11473


osa-miR1869
11397
11474


osa-miR1874-
11398
11475


3p


osa-miR1879
11399
11476


osa-miR1881
11400
11477


osa-miR2055
11401
11478


osa-
11402
11479


miRf10105-


akr


osa-
11403
11480


miRf10362-


akr


osa-
11404
11481


miRf10839-


akr


osa-
11405
11482


miRf11013-


akr


osa-
11406
11483


miRf11341-


akr


osa-
11407
11484


miRf11352-


akr


osa-
11408
11485


miRf11355-


akr


osa-
11409
11486


miRf11595-


akr


osa-
11410
11487


miRf11649-


akr


osa-
11411
11488


miRf11829-


akr


pab-miR3711
11412
11489


ppt-miR1220a
11413
11490


ppt-miR895
11414
11491


psi-miR159
11415
11492


pta-miR156a
11416
11493


pta-miR156b
11417
11494


ptc-
11418
11495


miRf10132-


akr


ptc-
11419
11496


miRf10148-


akr


ptc-
11420
11497


miRf10226-


akr


ptc-
11421
11498


miRf10271-


akr


ptc-
11422
11499


miRf10300-


akr


ptc-
11423
11500


miRf10522-


akr


ptc-
11424
11501


miRf10619-


akr


ptc-
11425
11502


miRf10734-


akr


ptc-
11426
11503


miRf10985-


akr


ptc-
11427
11504


miRf11315-


akr


ptc-
11428
11505


miRf11757-


akr


ptc-
11429
11506


miRf11844-


akr


ptc-
11430
11507


miRf11847-


akr


ptc-
11431
11508


miRf11855-


akr


sbi-miR159a
11432
11509


smo-
11433
11510


miR1103-3p


smo-miR156b
11434
11511


tae-miR2003
11435
11512


zma-miR482-
11436
11513


5p
















TABLE 17







Target Mimic Examples for Selected downregulated miRNAs of the


Invention.











Full




Target Mimic




Nucleotide



Mimic Reverse
Sequence/SEQ ID


Mir Name
Complement Mir/SEQ ID NO:
NO:





aly-miR160c-3p
11514
11564


aly-miR396a-3p
11515
11565


aly-miR396b-3p
11516
11566


ath-miRf10197-akr
11517
11567


ath-miRf10239-akr
11518
11568


ath-miRf10279-akr
11519
11569


bdi-miR2508
11520
11570


bna-miR2111b-5p
11521
11571


bra-miR160a-3p
11522
11572


csi-miR162-5p
11523
11573


ctr-miR171
11524
11574


gma-miR1507a
11525
11575


gma-miR1524
11526
11576


gma-miR159d
11527
11577


gma-miR2119
11528
11578


gma-miR396d
11529
11579


gma-miR4371b
11530
11580


gma-miR4376-5p
11531
11581


gma-miR4412-3p
11532
11582


gma-miR4416a
11533
11583


gma-miR482a-3p
11534
11584


gma-miR482b-5p
11535
11585


gso-miR169g*
11536
11586


gso-miR482a
11537
11587


osa-miR162a
11538
11588


osa-miR1846e
11539
11589


osa-miR2104
11540
11590


osa-miRf10151-akr
11541
11591


osa-miRf10849-akr
11542
11592


osa-miRf11415-akr
11543
11593


osa-miRf11996-akr
11544
11594


ppt-miR166m
11545
11595


ppt-miR533b-5p
11546
11596


pta-miR166c
11547
11597


ptc-miR166p
11548
11598


ptc-miRf10007-akr
11549
11599


ptc-miRf10976-akr
11550
11600


ptc-miRf11018-akr
11551
11601


ptc-miRf11079-akr
11552
11602


ptc-miRf11324-akr
11553
11603


ptc-miRf11396-akr
11554
11604


ptc-miRf11669-akr
11555
11605


ptc-miRf11953-akr
11556
11606


ptc-miRf12069-akr
11557
11607


ptc-miRf12389-akr
11558
11608


vvi-miR2111-5p
11559
11609


vvi-miR394b
11560
11610


zma-miR167u
11561
11611


zma-miR396b-3p
11562
11612


zma-miR398a-5p
11563
11613
















TABLE 18







Abbreviations of plant species









Common Name
Organism Name
Abbreviation





Peanut
Arachis hypogaea
ahy



Arabidopsis lyrata


Arabidopsis lyrata

aly


Rocky Mountain Columbine

Aquilegia coerulea

aqc


Tausch's goatgrass

Aegilops taushii

ata



Arabidopsis thaliana


Arabidopsis thaliana

ath


Grass

Brachypodium distachyon

bdi



Brassica napus canola (“liftit”)


Brassica napus

bna



Brassica oleracea wild cabbage


Brassica oleracea

bol



Brassica rapa yellow mustard


Brassica rapa

bra


Clementine

Citrus clementine

ccl


Orange

Citrus sinensis

csi


Trifoliate orange

Citrus trifoliata

ctr



Glycine max


Glycine max

gma


Wild soybean

Glycine soja

gso


Barley

Hordeum vulgare

hvu



Lotus japonicus


Lotus japonicus

lja



Medicago truncatula - Barrel Clover (“tiltan”)


Medicago truncatula

mtr



Oryza sativa


Oryza sativa

osa


European spruce

Picea abies

pab



Physcomitrella patens (moss)


Physcomitrella patens

ppt



Pinus taeda - Loblolly Pine


Pinus taeda

pta



Populus trichocarpa - black cotton wood


Populus trichocarpa

ptc


Castor bean (“kikayon”)

Ricinus communis

rco



Sorghum bicolor Dura


Sorghum bicolor

sbi


tomato microtom

Solanum lycopersicum

sly



Selaginella moellendorffii


Selaginella moellendorffii

smo


Sugarcane

Saccharum officinarum

sof


Sugarcane

Saccharum spp

ssp



Triticum aestivum


Triticum aestivum

tae



cacao tree and cocoa tree


Theobroma cacao

tcc



Vitis vinifera Grapes


Vitis vinifera

vvi


corn

Zea mays

zma









Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.


All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.

Claims
  • 1. A method of improving drought or salt tolerance of a soybean plant, the method comprising: transforming a soybean plant with an exogenous DNA construct comprising a plant-expressible promoter operably linked to the miRNA precursor polynucleotide having the nucleic acid sequence as set forth in SEQ ID NO: 11889 which encodes the mature miRNA sequence as set forth in SEQ ID NO: 33, growing the transformed plant under drought or salt stress conditions, and wherein over-expression of said miRNA precursor polynucleotide encoding said miRNA sequence in said transformed soybean plant improves drought or salt tolerance of the transformed soybean plant as compared to a control soybean plant lacking said exogenous DNA construct and grown under the same growth and said stress conditions.
RELATED APPLICATIONS

This application is a National Phase of PCT Patent Application No. PCT/IL2013/050122 having International filing date of Feb. 6, 2013, which claims the benefit of priority under 35 USC § 119(e) of U.S. Provisional Patent Application No. 61/595,213 filed on Feb. 6, 2012. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/IL2013/050112 2/6/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2013/118120 8/15/2013 WO A
US Referenced Citations (47)
Number Name Date Kind
3791932 Schuurs et al. Feb 1974 A
3839153 Schuurs et al. Oct 1974 A
3850578 McConnell Nov 1974 A
3850752 Schuurs et al. Nov 1974 A
3853987 Dreyer Dec 1974 A
3867517 Ling Feb 1975 A
3879262 Schuurs et al. Apr 1975 A
3901654 Gross Aug 1975 A
3935074 Rubenstein et al. Jan 1976 A
3984533 Uzgiris Oct 1976 A
3996345 Ullman et al. Dec 1976 A
4034074 Miles Jul 1977 A
4098876 Piasio et al. Jul 1978 A
4666828 Gusella May 1987 A
4683202 Mullis Jul 1987 A
4801531 Frossard Jan 1989 A
4855237 Morinaga et al. Aug 1989 A
4879219 Wands et al. Nov 1989 A
4945050 Sanford Jul 1990 A
5011771 Bellet et al. Apr 1991 A
5035323 Daniels et al. Jul 1991 A
5192659 Simons Mar 1993 A
5268463 Jefferson Dec 1993 A
5272057 Smulson et al. Dec 1993 A
5281521 Trojanowski et al. Jan 1994 A
5283185 Epand et al. Feb 1994 A
5316931 Donson et al. May 1994 A
5399680 Zhu et al. Mar 1995 A
5464765 Coffee et al. Nov 1995 A
5466785 de Framond Nov 1995 A
5569597 Grimsley et al. Oct 1996 A
5604121 Hilder et al. Feb 1997 A
5608142 Barton et al. Mar 1997 A
5608144 Baden et al. Mar 1997 A
5608149 Barry et al. Mar 1997 A
5659026 Baszczynski et al. Aug 1997 A
5693507 Daniell et al. Dec 1997 A
5759829 Shewmaker et al. Jun 1998 A
5952657 Alexander et al. Sep 1999 A
5987071 Iwamatsu et al. Nov 1999 A
6656805 Kamath et al. Dec 2003 B2
20020058815 Liu et al. May 2002 A1
20030175965 Lowe et al. Sep 2003 A1
20030180955 Ozasa et al. Sep 2003 A1
20070089192 Huang et al. Apr 2007 A1
20080311659 Huynh et al. Dec 2008 A1
20110099667 Aukerman et al. Apr 2011 A1
Foreign Referenced Citations (11)
Number Date Country
WO 8706261 Oct 1987 WO
WO 9307278 Apr 1993 WO
WO 9953050 Oct 1999 WO
WO 9959029 Nov 1999 WO
WO 9961631 Dec 1999 WO
WO 0059035 Oct 2000 WO
WO 0200905 Jan 2002 WO
WO 2004081173 Sep 2004 WO
WO 2011132127 Oct 2011 WO
WO 2011132127 Oct 2011 WO
WO 2013118120 Aug 2013 WO
Non-Patent Literature Citations (115)
Entry
Emery et al. (Current Biology 13:1768-1774, 2003).
Cheng et al. (Plant Mol. Biol. Rep. 28:41-48, 2010).
International Preliminary Report on Patentability dated Aug. 21, 2014 From the International Bureau of WIPO Re. Application No. PCT/IL2013/050112.
International Search Report and the Written Opinion dated Aug. 2, 2013 From the International Searching Authority Re. Application No. PCT/IL2013/050112.
International Search Report and the Written Opinion dated Oct. 21, 2013 From the International Searching Authority Re. Application No. PCT/IL2013/050112.
Invitation to Pay Additional Fees dated May 30, 2013 From the International Searching Authority Re. Application No. PCT/IL2013/050112.
Lindow et al. “Intragenomic Matching Reveals a Huge Potential for MiRNA-Mediated Regulation in Plants”, PLoS Computational Biology, 3(11/e238): 2379-2390, Nov. 2007. Abstract.
Lindow et al. “Oeyza Sativa. Osa-MRIfI 1996-Akr. Stem-Loop Information. Stem Loop Structure Computed Using [Vienna RNA Package]”, The miRNA Database [Online], 3 p., 2007.
Zhao et al. “Deep Sequencing Identifies Novel and Conserved MicroRNAs in Peanuts (Arachis hypogaea L.)”, BMC Plant Biology, 10(3): 1-12, 2010. Abstract, p. 4-5, Table 1, 2.
Bartel, “MicroRNAs: Genomics, Biogenesis, Mechanism, and Function,” Cell, 116:281-297 (2004).
Boutros et al., “Genome-Wide RNAi Analysis of Growth and Viability in Drosophila Cells,” Science, 303:832-835 (2004).
Dietzl et al., “A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila,” Nature, 448:151-156 (2007).
Kuromori et al., “A trial of phenome analysis using 4000 Ds-insertional mutants in gene-coding regions of Arabidopsis,” Plant Journal, 47:640-651 (2006).
Lee et al., “A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity,” Nature Genetics, 33:40-48 (2002).
Ni et al., “Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana,” Biochem Biophys Res Commun, 427:330-335 (2012).
Schwab et al., “Specific Effects of MicroRNAs on the Plant Transcriptome,” Developmental Cell, 8:517-527 (2005).
Covarrubias et al., “Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs,” Plant, Cell & Environment, 33:481-489 (2010).
Ochman et al., “Genetic Applications of an Inverse Polymerase Chain Reaction,” Genetics, 120:621-623 (1988).
Rhoades et al., “Prediction of Plant MicroRNA Targets,” Cell, 110:513-520 (2002).
Schmutz et al., “Genome sequence of the palaeopolyploid soybean,” Nature, 463:178-183 (2010).
Zhang, “miRU: an automated plant miRNA target prediction server,” Nucleic Acids Research, 33:W701-W704 (2005).
Albani et al., “The Wheat Transcriptional Activator Spa: A Seed-Specific bZIP Protein That Recgnizes the GCN4-Like Motif in the Bifactorial Endosperm Box of Prolamin Genes,” The Plant Cell, 9(2):171-184 (1997).
Altenbach et al., “Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine,” Plant Molecular Biology, 18:235-245 (1992).
An et al., “Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues,” The Plant Journal, 10(1):107-121 (1996).
Anderson et al., “Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of a hexaploid bread wheat, Triticum aestivum L. cv Cheyenne,” Nucleic Acids Research, 17(1):461-461 (1989).
Angell et al ., “Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA,” EMBO J., 16(12):3675-3684 (1997).
Angell et al., “Potato virus X amplicon-mediated silencing of nuclear genes,” The Plant Journal, 20(3):357-362 (1999).
Aufsatz et al., “RNA-directed DNA methylation in Arabidopsis,” PNAS, 99(4):1699-16506 (2002).
Baszczynski et al., “Isolation and nucleotide sequence of a genomic clone encoding a new Brassica napus napin gene,” Plant Molecular Biology, 14:633-635 (1990).
Broin et al., “The Plastidic 2-Cysteine Peroxiredoxin Is a Target for a Thioredoxin Involved in the Protection of the Photosynthetic Apparatus against Oxidative Damage,” The Plant Cell, 14:1417-1432 (2002).
Buchholz et al., “Cyclophilins are encoded by a small gene family in rice,” Plant Molecular Biology, 25:837-843 (1994).
Chen et al., “Real-time quantification of microRNAs by stem-loop RT-PCR,” Nucleic Acids Research, 33(20):e179 (2005).
Cho et al., “Inheritance of tissue-specific expression of barley hordein promoter-uidA fusions in transgenic barley plants,” Theor Appl Genet, 98:1253-1262 (1999).
Christensen et al., “Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation,” Plant Molecular Biology, 18:675-689 (1992).
Chuang et al., “Specific and heritable genetic interference by double-stranded RNA in Arabidopsis,” PNAS, 97(9):4985-4990 (2000).
Clough et al., “Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana,” The Plant Journal, 16(6):735-743 (1998).
Colot et al., “Molecular Characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes,” Mol Gen Genet, 216:81-90 (1989).
Cummins et al., “cDNA sequence of a sunflower oleosin and transcript tissue specificity,” Plant Molecular Biology, 19:873-876 (1992).
Dawson et al., “A Tobacco Mosaic Virus-Hybrid Expresses and Loses an Added Gene,” Virology, 172:285-292 (1989).
De Pater et al., “The promoter of the rice gene GOS2 is active in various different monocot tissues and binds rice nuclear factor ASF-1,” The Plant Journal, 2(6):837-844 (1992).
DeRose et al., “Analysis of kafirin promoter activity in transgenic tobacco seeds,” Plant Molecular Biology, 32:1029-1035 (1996).
Desfeux et al., “Female Reproductive Tissues Are the Primary Target of Agrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method,” Plant Physiology, 123(3):895-904 (2000).
Ellis et al., “Tissue-specific expression of a pea legumin gene in seeds of Nicotiana plumbaginifolia,” Plant Molecular Biology, 10:203-214 (1988).
French et al., “Bacterial Gene Inserted in an Engineered RNA Virus: Efficient Expression in Monocotyledonous Plant Cells,” Science, 231(4743):1294-1297 (1986).
Gotor et al., “Analysis of three tissue-specific elements from the wheat Cab-1 enhancer,” The Plant Journal, 3(4):509-518 (1993).
Fromm et al., “Stable transformation of maize after gene transfer by electroporation,” Nature, 319:791-793 (1986).
Han et al., “Molecular Basis for the Recognition of Primary microRNAs by the DROSHA-DGCR8 Complex,” Cell 125:887-901 (2006).
Helliwell et al., “Constructs and methods for high-throughput gene silencing in plants,” Methods, 30:289-295 (2003).
Johansen et al., “Silencing on the Spot. Induction and Suppression of RNA Silencing in the Agrobacterium-Mediated Transient Expression System,” Plant Physiol, 126:930-938 (2001).
Jorgensen et al., “Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences,” Plant Mol Biol, 31(5):957-973 (1996).
Klee et al., “Agrobacterium-Mediated Plant Transformation and Its Further Applications to Plant Biology,” Ann Rev Plant Physiol, 38:467-486 (1987).
Klein et al., “Factors Influencing Gene Delivery Into Zea mays Cells by High-Velocity Microprojectiles,” Nature, 6:559-563 (1988).
Kurihara et al., “Cross-protection in Arabidopsis against crucifer tobamovirus Cg by an attenuated strain of the virus,” Molecular Plant Pathology, 4(4):259-269 (2003).
Kwon et al., “Identification of a Light-Responsive Region of the Nuclear Gene Encoding of the B Subunit of Chloroplast Glyceraldehyde 3-Phosphate Dehydrogenase from Arabidopsis thaliana,” Plant Physiol., 105:357-367 (1994).
Last et al., “pEmu: an improved promoter for gene expression in cereal cells,” Theor Appl Genet, 81:581-588 (1991).
Lepetit et al., “A plant histone gene promoter can direct both replication-dependent and -independent gene expression in transgenic plants,” Mol Gen Genet, 231:276-285 (1992).
Matsuoka et al., “Tissue-specific light-regulated expression directed by the promoter of a C4 gene, maize pyruvate, orthophosphate dikinase, in a C3 plant, rice,” PNAS USA, 90:9586-9590 (1993).
Matzke et al., “Deletion analysis of a zein gene promoter in transgenic tobacco plants,” Plant Molecular Biology, 14:323-332 (1990).
McCabe et al., “Stable Transformation of Soybean (Glycine max) by Particle Acceleration,” Bio/Technology, 6:923-926 (1988).
McElroy et al., “Isolation of an Efficient Actin Promoter for Use in Rice Transformation,” The Plant Cell, 2:163-171 (1990).
Mena et al., “An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm,” The Plant Journal, 16(1):53-62 (1998).
Mette et al., “Transcriptional silencing and promoter methylation triggered by double-stranded RNA,” EMBO J., 19(19):5194-5201 (2000).
Miiller et al., “The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box,” The Plant Journal, 4(2):343-355 (1993).
Murray et al., “Codon usage in plant genes,” Nucleic Acids Research, 17(2):477-498 (1989).
Nakase et al., “Characterization of a novel bZIP protein which binds to the α-globulin promoter,” Plant Molecular Biology, 33:513-522 (1997).
Neuhaus et al., “Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids,” Theor Appl Genet, 75:30-36 (1987).
Neuhaus et al., “Plant transformation by microinjection techniques,” Physiologia Plantarum, 79(1):213-217 (1990).
Ni et al., “Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes,” The Plant Journal, 7(4):661-676 (1995).
Nilsson et al., “The Agrobacterium rhizogenes rolB and rolC promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen,” Physiologia Plantarum, 100(3):456-462 (1997).
Odell et al., “Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter,” Nature, 313:810-812 (1985).
Ohta, Y. “High-efficiency transformation of maize by a mixture of pollen and exogenous DNA,” PNAS, 83:715-719 (1986).
Opsahl-Ferstad et al., “ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo,” The Plant Journal, 12(1):235-246 (1997).
Orozco et al., “Localization of light-inducible and tissue-specific regions of the spinach ribulose bisphosphate carboxylase/oxygenase (rubisco) activase promoter in transgenic tobacco plants,” Plant Molecular Biology, 23:1129-1138 (1993).
Pandolfini et al., “Expression of self-complementary hairpin RNA under the control of the rolCpromoter confers systemic disease resistance to plum pox virus without preventing local infection,” BMC Biotechnology, 3:7 (2003).
Panstruga et al., “Testing the efficiency of dsRNAi constructs in vivo: A transient expression assay based on two fluorescent proteins,” Molecular Biology Reports, 30:135-140 (2003).
Postma-Haarsma et al., “Characterization of the KNOX class homeobox genes Oskn2 and Oskn3 identified in a collection of cDNA libraries covering the early stages of rice embryogenesis,” Plant Molecular Biology, 39(2):257-271 (1999).
Potiykus, I., “Gene Transfer to Plants: Assessment of Published Approaches and Results,” Annu Rev Plant Physiol Plant Mol Biol, 42:205-225 (1991).
Purcell et al. “Total Nitrogen Determination in Plant Material by Persulfate Digestion,” Agronomy Journal, 88(1):111-113 (1996).
Quesada et al., “Genetic Architecture of NaCl Tolerance in Arabidopsis,” Plant Physiology, 130:951-963 (2002).
Rafalski et al., “Developmentally regulated plant genes: the nucleotide sequence of a wheat gliadin genomic clone,” The EMBO Journal, 3(6):1409-1415 (1984).
Rosenfeld et al., “MicroRNAs accurately identify cancer tissue origin,” Nature Biotechnology, 26:462-469 (2008).
Russell et al., “Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice,” Transgenic Research, 6:157-168 (1997).
Samonte et al., “Nitrogen utilization efficiency: Relationships with grain yield, grain protein, and yield-related traits in rice,” Agron J, 98:168-176 (2006).
Sanford, J., “Biolistic plant transformation,” Physiologia Plantarum, 79(1):206-209 (1990).
Sardana et al., “Construction and rapid testing of synthetic and modified toxin gene sequences CryIA (b&c) by expression in maize endosperm culture,” Plant Cell Reports, 15(9):677-681 (1996).
Sato et al., “A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis,” PNAS, 93:8117-8122 (1996).
Scofield et al., “Nucleotide Sequence of a Member of the Napin Storage Protein Family from Brassica napus,” J Biol. Chem., 262(25):12202-12208 (1987).
Shimamoto et al., “Fertile transgenic rice plants regenerated from transformed protoplasts,” Nature, 338:274-276 (1989).
Simon et al., “Nucleotide sequence of a cDNA clone of Brassica napus 12S storage protein shows homology with legumin from Pisum sativum,” Plant Molecular Biology, 5:191-201 (1985).
Smith et al., “Total silencing by intron-spliced hairpin RNAs,” Nature, 407:319-320 (2000).
Sorensen et al., “Hordein promoter methylation and transcriptional activity in wild-type and mutant barley endosperm,” Mol Gen Genet, 250:750-760 (1996).
Stålberg et al., “Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds,” Planta, 199:515-519 (1996).
Stoutjesdijk et al., “hpRNA-Mediated Targeting of the Arabidopsis FAD2 Gene Gives Highly Efficient and Stable Silencing,” Plant Physiol, 129:1723-1731 (2002).
Takaiwa et al., “A rice glutelin gene family—A major type of glutelin mRNAs can be divided into two classes,” Mol Gen Genet, 208:15-22 (1987).
Takaiwa et al., “Nucleotide sequence of a rice glutelin gene,” FEBS Letters, 221:43-47 (1987).
Takamatsu et al., “Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA,” The EMBO Journal, 6(2):307-311 (1987).
Takamatsu et al., “Production of encephalin in tobacco protoplasts using tobacco mosaic virus RNA vector,” FEBS Letters, 269(1):73-76 (1990).
Toriyama et al., “Transgenic Rice Plants After Direct Gene Transfer Into Protoplasts,” Bio/Technology, 6:1072-1074 (1988).
Twell et al., “Isolation and expression of an anther-specific gene from tomato,” Mol Gen Genet, 217:240-245 (1989).
Van der Meer et al., “Promoter analysis of the chalcone synthase (chsA) gene of Petunia hybrid: a 67 bp promoter region directs flower-specific expression,” Plant Molecular Biology, 15:95-109 (1990).
Vissenberg et al., “Differential Expression of AtXTH17, AtXTH18, AtXTH19, and AtXTH20 Genes in Arabidopsis Roots. Physiological Roles in Specification in Cell Wall Construction,” Plant Cell Physiol, 46(1):192-200 (2005).
Yamamoto et al., “Light-responsive elements of the tobacco PSI-D gene are located both upstream and within the transcribed region,” The Plant Journal, 12(2):255-265 (1997).
Yamamoto et al., “The Promoter of a Pine Photosynthetic Gene Allows Expression of a β-Glucuronidase Reporter Gene in Transgenic Rice Plants in a Light-Independent but Tissue-Specific Manner,” Plant Cell Physiol., 35(5):773-778 (1994).
Yanagisawa et al., “Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions,” PNAS 101(20):7833-7838 (2004).
Yu et al., “Metabolic engineering to increase isoflavone biosynthesis in soybean seed,” Phytochemistry, 63:753-763 (2003).
Varkonyi-Gasic et al., “Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs,” Plant Methods, 3:12 (2007).
Vicente-Carbajosa et al., “Barley BLZ1: a bZIP transcriptional activator that interacts with endosperm-specific gene promoters,” The Plant Journal, 13(5):629-640 (1998).
Vodovotz, Y. “Modified microassay for serum nitrite and nitrate,” Biotechniques, 20(3):390-392 (1996).
Wang et al., “Application of gene silencing in plants,” Current Opinion in Plant Biology, 5:146-150 (2001).
Waterhouse et al., “Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA,” PNAS, 95:13959-13964 (1998).
Waterhouse et al., “Exploring Plant Genomes by RNA-Induced Gene Silencing,” Nature Reviews—Genetics, 4:29-38 (2003).
Wesley et al., “Construct design for efficient, effective and high-throughput gene silencing in plants,” The Plant Journal, 27(6):581-590 (2001).
Wu et al., “Genomic Cloning of 18 kDa Oleosin and Detection of Triacylglycerols and Oleosin Isoforms in Maturing Rice and Postgerminative Seedlings,” J. Biochem, 123:386-391 (1998).
Wu et al., “Promoters of Rice Seed Storage Protein Genes Direct Endosperm-Specific Gene Expression in Transgenic Rice,” Plant Cell Physiol, 39(8):885-889 (1998).
Zhang et al., “Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts,” Plant Cell Reports, 7:379-384 (1988).
Related Publications (1)
Number Date Country
20150007364 A1 Jan 2015 US
Provisional Applications (1)
Number Date Country
61595213 Feb 2012 US