Isolated power converter

Information

  • Patent Grant
  • 8502520
  • Patent Number
    8,502,520
  • Date Filed
    Monday, December 22, 2008
    15 years ago
  • Date Issued
    Tuesday, August 6, 2013
    11 years ago
Abstract
An isolated power converter that includes, in one embodiment, a first magnetic core having a primary winding and a secondary winding around the first magnetic core. The power converter includes a second magnetic core having a first leg, a second leg coupled to the first leg, and a third leg coupled to the first and second legs, wherein a part of the third leg is equidistant from the first leg and the second leg. The power converter also includes a first winding encircling the first leg, a first end of the first winding coupled to the secondary winding, a second winding encircling the second leg, a first end of the second winding coupled to the secondary winding, and a third winding encircling the third leg, a first end of the third winding coupled to a second end of the first winding and to a second end of the second winding.
Description
TECHNICAL FIELD

The present invention is directed, in general, to power electronics and, in particular, to isolated power converters and methods of operating and manufacturing the same.


BACKGROUND

Most people are aware that electrical devices generally require electrical power to operate. Electrical power requirements often vary greatly, however, between different types of electrical devices. For example, even though both a lamp and a computer plug into the same wall outlet, these two devices may operate at different electrical voltages. To make this possible, many electrical devices employ power converters that control, condition, or convert power between the source and the load. For example, a power converter in a computer may receive power from a wall outlet at one voltage level and convert that power to another voltage level suitable to power the computer. In this way, power converters enable a great variety of electrical devices to receive power from a single standardized power source (e.g., a wall outlet, a car engine, etc.). One type of power converter, known as an isolated power converter, employs a transformer (amongst other components) to perform this power conversion.


Accordingly, what is needed in the art is an isolated power converter topology that overcomes the deficiencies of the prior art.


SUMMARY OF THE INVENTION

Certain aspects commensurate in scope with the disclosed embodiments are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.


There is provided an isolated power converter. More particularly, in one embodiment, there is provided a power converter including a first magnetic core having a primary winding and a secondary winding around the first magnetic core. The power converter also includes a second magnetic core having a first leg, a second leg coupled to the first leg, and a third leg coupled to the first and second legs, wherein a part of the third leg is equidistant from the first leg and the second leg. The second magnetic core has a first winding encircling the first leg, a first end of the first winding coupled to the secondary winding, a second winding encircling the second leg, a first end of the second winding coupled to the secondary winding, and a third winding encircling the third leg, a first end of the third winding coupled to a second end of the first winding and to a second end of the second winding.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an exemplary isolated power converter employing an inductor assembly in accordance with one embodiment;



FIG. 2 is a schematic diagram of the exemplary isolated power converter of FIG. 1 in accordance with one embodiment;



FIG. 3 is a schematic diagram of an alternate embodiment of an exemplary isolated power converter in accordance with one embodiment;



FIG. 4 is a schematic diagram of a full bridge converter in accordance with one embodiment;



FIG. 5 illustrates two exemplary timing diagrams for the switching devices of full bridge converter of FIG. 4 that enable the generation of a quasi-square wave AC input suitable for the power converter of FIG. 1 in accordance with one embodiment;



FIG. 6 illustrates an exemplary quasi-square wave in accordance with one embodiment;



FIG. 7 is a schematic representation of an equivalent circuit for the secondary side of the power converter of FIG. 1 during the PT1 stage in accordance with one embodiment;



FIG. 8 is a schematic representation of an equivalent circuit for the secondary side of the power converter of FIG. 1 during the PT2 stage in accordance with one embodiment;



FIG. 9 is a schematic representation of an equivalent circuit for the secondary side of the power converter of FIG. 1 during the FW1 and FW2 stages in accordance with one embodiment;



FIG. 10 is a block diagram of an exemplary power conversion system employing the isolated power converter of FIG. 1 in accordance with one embodiment;



FIG. 11 is a schematic diagram of a generalized exemplary m-phase power converter based on a full bridge topology on the primary side in accordance with one embodiment;



FIG. 12 shows a representation of an exemplary multi-phase transformer and multiphase inductor assembly suitable for use with the power converter of FIG. 11 in accordance with one embodiment; and



FIG. 13 is a chart showing the peak to peak switching ripple in the output current for values of m=2, m=3, and m=4 in the power converter of FIG. 11 in accordance with one embodiment.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

With reference to FIG. 1, a diagram of an exemplary isolated power converter 10 employing an inductor assembly in accordance with one embodiment is illustrated. In one embodiment, isolated power converter 10 is an alternating current (“AC”) to direct current (“DC”) converter. In alternate embodiments, however, the power converter may perform other suitable forms of power conversion.


As illustrated, power converter 10 may include one or more AC sources 12a and 12b. The AC sources (also collectively designated 12) provide an electrical current whose magnitude and direction vary cyclically. For example, in one embodiment, AC sources 12 provide an AC signal with a sine wave waveform. In other embodiments, AC sources 12 may provide an AC signal with a square waveform, a sawtooth waveform, or a triangle waveform. It will be appreciated, however, that these embodiments are not intended to be exclusive. As such, in alternate embodiments, AC signals with other suitable AC waveforms, such as the quasi-square wave described below, may be employed.


AC sources 12 may generate the AC signals themselves, or they may receive and/or condition AC signals from another source. For example, as will be described further below, AC sources 12 may draw their power from a regulated source, such as a wall outlet, from another power converter, such as a full bridge converter (see discussion of FIG. 4 below), or from another suitable AC source 12. Further, in one embodiment, AC sources 12a and 12b are configured to provide AC signals that are shifted in phase from each other. For example, the AC power provided by AC source 12a may be 180 degrees out-of-phase with the AC power provided by AC source 12b. As will be described further below, in one embodiment, employing multiple AC signals that are shifted in phase from each other enables power converter 10 to provide an output current with reduced switching ripple.


AC sources 12 may be coupled to a transformer 14 that includes a magnetic core 15, primary windings (collectively designated 16), and secondary windings (collectively designated 18). As those of ordinary skill in the art will appreciate, transformer 14 transfers energy from primary windings 16 to secondary windings 18 via a magnetic coupling between the two windings along magnetic core 15. In various embodiments, magnetic core 15 may comprise steel, iron, ferrite, or other suitable core materials. As shown in FIG. 1, in at least one embodiment, transformer 14 includes two sets of primary windings 16a and 16b and two sets of secondary windings 18a and 18b coupled to or corresponding to AC sources 12a and 12b. Primary windings 16 may comprise copper wire, aluminum wire, gold wire, etc.


Primary windings 16 may be wrapped around or encircle the magnetic core 15 for a suitable number of turns, Np, and secondary windings 18 may be wrapped around or encircle magnetic core 15 for a suitable number of turns, Ns. For the purposes of this document, a winding or wire is encircling or wrapped around a structure, such as a magnetic core, if that winding or wire traverses at least partially around the surface of the structure. For example, a winding is considered to be wrapped around a magnetic core if a current through the winding induces a flux in the magnetic core.


The voltage generated in secondary windings 18 will be a function of the voltage at primary windings 16 multiplied by the ratio Ns/Np. For example, if Ns=1 and Np=10, then 400 volts (“V”) on primary windings 16 will generate roughly 40V on secondary windings 18. Of course, as the total power cannot change, the current in secondary windings 18 will be roughly ten times the current in primary windings (i.e., Np/Ns). It will be appreciated, however, that winding resistance, leakage effects, induced eddy currents, and a variety of other types of losses will affect the power transfer across transformer 14 thereby reducing the actual voltage and/or current in secondary windings 18 from the ideal (i.e., 40V).


Secondary windings 18 may be coupled to an inductor assembly 19, which includes a magnetic core 20. As with magnetic core 15 of transformer 14, magnetic core 20 may be comprised of any suitable core material, including but not limited to steel, ferrite, or iron. Magnetic core 20 illustrated in FIG. 1 is an E-I core, named as such due to its shape (i.e., an “I” shaped core geometry fastened on top of an “E” shaped core geometry). An E-E core (two E-shaped cores facing each other) geometry may also be employed as the magnetic core 20. In addition, in alternate embodiments, such as the exemplary one described below with regard to FIG. 11, other suitable core geometries may be employed.


In the illustrated configuration, secondary winding 18a is coupled to a first end of a first winding 22 that is wrapped around a first leg 24 of magnetic core 20. First winding 22 is wrapped around first leg 24 to form NL turns. First winding 22 in combination with first leg 24 forms an inductor. As such, first winding 22 will alternatively be referred to as an inductor or inductor winding 22. Secondary winding 18a is also coupled to a first switch 26. In one embodiment, first switch 26 functions as a rectification component such as a synchronous rectifier for the power converter 10. As such, first switch 26 may be employed to convert/rectify the AC signal generated on the secondary side of transformer 14 to a DC signal. In this embodiment, the first switch 26 may be a metal-oxide semiconductor field-effect transistor (“MOSFET”) switch. In alternate embodiments, however, switch 26 may be replaced or supplemented by a diode or other suitable rectification circuitry.


Secondary winding 18b is coupled to a first end of a second winding 28 that is wrapped around a second leg 30 of magnetic core 20. Second winding 28 is wrapped around second leg 30 to form NL turns. Second winding 28 in combination with second leg 30 forms an inductor. As such, second winding 28 will alternatively be referred to as an inductor or inductor winding 28. Secondary winding 18b is also coupled to a second switch 32. As will be described further below, second switch 32 may also be employed to convert/rectify the AC signal generated on the secondary side of transformer 14 to a DC signal. In alternate embodiments, switch 32 may be replaced or supplemented by a diode or other suitable rectification circuitry.


The second ends of both first winding 22 and second winding 28 are coupled together and coupled to a first end of a center winding 34, as indicated by reference numeral 35. Center winding 34 is wrapped around a center leg 36 of magnetic core 20 to form NC turns. Center leg 36, in the E-I core geometry, is placed in the window between first leg 24 and second leg 30. Typically, it is preferred to place center leg 36 such that a part of center leg 36 is equidistant from first leg 24 and second leg 30 to achieve a relatively symmetric core geometry. However, depending on the application, center leg 36 can be placed anywhere in the window between first leg 24 and second leg 30. Center winding 34 in combination with center leg 36 forms an inductor. As such, center winding 34 will alternatively be referred to as inductor or center inductor winding 34. As more clearly shown in FIG. 2 below, center winding 34 is arrayed in series with the junction of first winding 22 and second winding 28.


As shown in FIG. 1, center leg 36 may include an air gap 38. As will be appreciated, air gap 38 stores majority of the inductor energy necessary for the operation of power converter 10. In particular, as air typically has lower permeance than the core material and cannot saturate, air gap 38 is able to limit the magnetic flux such that flux density in the magnetic core 20 is below the saturation limit of the material. The air gap 38 height should be chosen to achieve the required inductance while preventing core saturation. Increasing the air gap 38 height to prevent core saturation results in reduced inductance and increased fringing flux. This flux can impinge on winding surfaces causing eddy currents, hence increased losses in the windings. The design of the air gap 38, thus involves multiple trade-offs in achieving a functioning inductor. Air gaps can be used in transformer cores, such as the core 15, as well to reduce the magnetizing inductance and increase the magnetizing current. Nonetheless, it will be appreciated that in alternate embodiments, air gap 38 may be omitted or replaced by another suitable energy storage component. This could be another material with a lower permeance and higher saturation limit than the material used for the remainder of the core. Further, in still other embodiments, air gaps and/or equivalent core materials may be inserted into first leg 24 and second leg 30 in place of or in addition to air gap 38.


Second end 39 of center winding 34, as shown in FIG. 1, may be coupled to a filter capacitor 40. Filter capacitor 40 may act in combination with inductor assembly 19 to form a filter capable of “smoothing” out a noisy DC signal created by first switch 26 and second switch 32 to create a smoother, less rippled DC output V0 42. However, filter capacitor 40 may be omitted in some configurations.



FIG. 2 illustrates a schematic diagram of exemplary isolated power converter 10 of FIG. 1. In the schematic diagram, inductor assembly 19 includes first, second and center windings 22, 28, 34 illustrated using the schematic symbol for winding and magnetic core 20 is illustrated using the schematic symbol for a magnetic core. The schematic view in FIG. 2 more clearly shows the series relationship between center winding 34 with the junction of first winding 22 and second winding 28.



FIG. 3 illustrates a schematic diagram of an alternate embodiment of exemplary isolated power converter 10 of FIG. 1. In particular, FIG. 3 shows a single AC source 12 that provides an AC signal that is a combination of the individual AC signals produced by AC sources 12a and 12b of FIGS. 1 and 2. Further, transformer 14 is depicted in FIG. 3 as including a single primary winding 16 and a single secondary winding 18 to transform the unified AC signal from AC source 12.


As described above, AC sources 12 may provide an AC signal to the primary side of transformer 14. In one embodiment, AC source 12 may receive this AC signal from another converter, such as full bridge converter 50 that is illustrated in FIG. 4 in accordance with one embodiment. Although the discussion below will focus on embodiments converting a quasi-square wave AC signal generated by full bridge converter 50, it will be appreciated that full bridge converter 50 is only one exemplary system for generating an appropriate AC signal. As such, in alternate embodiments, AC signal may be received from other suitable sources, including, but not limited to half-bridge converters, push-pull converters, multi-level converters, public utilities, AC generators, other transformers, and the like.


Full bridge converter 50 includes a DC source 52. In one embodiment, DC source 52 may comprise an AC rectifier configured to generate a DC signal from an incoming AC signal. DC source 52 may be coupled to four switching devices 54, 56, 58, and 60. In one embodiment, switching devices 54, 56, 58, and 60 comprise MOSFET switches. In operation, switching devices 54, 56, 58, and 60 may be gated to produce an AC signal that is a symmetrical quasi-square wave (i.e., a square wave with dead time). An exemplary quasi-square wave is depicted in FIG. 6 and described further below.



FIG. 5 illustrates two exemplary timing diagrams 70 and 72 for switching devices 54, 56, 58, and 60 of full bridge converter 50 of FIG. 4 that enable the generation of a quasi-square wave AC input for power converter 10 of FIG. 1. More specifically, FIG. 5 shows a gating pattern 74 for switching device 54, a gating pattern 76 for switching device 56, a gating pattern 78 for switching device 58, and a gating pattern 80 for switching device 60. In addition, timing diagrams 70 and 72 also include gating patterns 82 and 84 that may be employed to control switching devices (first switch 26 and second switch 32 of FIG. 1) to convert the quasi-square wave signal of FIG. 6 into a DC signal.


Both timing schemes depicted in diagrams 70 and 72 result in same voltage ratio (input voltage/output voltage) for power converter 10. This ratio is given by the Equation 1 below:









V
o


V

i





n



=

D







N
s


N
p




,





where V0 is the output voltage, Vin is the input voltage, and D is the duty cycle. In the timing diagram 70, the duty cycle for gating patterns applied to switching devices 54, 56, 58, and 60 is 50%. The duty cycle D that determines the input-output voltage ratio is related to the phase shift between the gating signals shown in timing diagram 70 applied to each leg of full bridge converter 50. On the other hand, in timing diagram 72, switching devices 54 and 58 are gated with duty cycle D while switching devices 56 and 60 are gated with duty cycle 1-D. Further, as shown, first switch 26 and second switch 32 (i.e., the secondary side synchronous rectifiers) are gated with duty cycle 1-D in both timing diagram 70 and timing diagram 72.


The voltage across primary winding 16, synthesized according to either of the timing diagrams shown in FIG. 5, is quasi-square wave 100 shown in FIG. 6. From FIG. 6, it can be seen that quasi-square wave 100 and thus power converter 10 goes through four distinct stages over a single switching period. These four stages are referred to as the Power Transfer (“PT”) 1 stage, the Free-Wheeling (“FW”) 1 stage, the PT2 stage and the FW2 stage. During PT1 and PT2 stages, power is transferred to output 42 from the input across transformer 14, because the AC signal at secondary windings 18 has an absolute value greater than zero. On the other hand, during FW1 and FW2 stages, the energy stored in inductor assembly 19 is transferred to output 42, because the AC signal at secondary windings 18 is at zero volts.



FIGS. 7-9 illustrate equivalent circuits and current directions for the secondary side of power converter 10 of FIG. 1 during each stage of operation over the switching periods that are presented in FIG. 6. For example, FIG. 7 shows a schematic representation of an equivalent circuit 110 for the secondary side of power converter 10 of FIG. 1 during the PT1 stage in accordance with one embodiment. In equivalent circuit 110, secondary windings 18 are illustrated as a DC power source, because a DC source is equivalent of the AC signal generated on secondary windings 18 during the PT1 stage (see FIG. 6). The first switch 26 is in an open state during the PT1 stage, and is, thus, illustrated in FIG. 7 by a gap in the circuit (i.e., the equivalent of an open switch). The second switch 32 is closed during PT1 stage, so second switch 32 is replaced in equivalent circuit 110 by a wire (i.e., the equivalent of a closed switch). During the stage PT1, current 112 flows from secondary winding 18 through filter capacitor 40 and through second switch 32. Likewise, current 114 also flows through filter capacitor 40. Inductor formed with first winding 22 is charged with current 112, while inductor formed with second winding 24 freewheels current 114 through the output and second switch 32. The sum of the currents 112 and 114 charges inductor formed with center winding 34.


The equivalent circuit 120 of FIG. 8 shows a schematic representation of the secondary side of power converter 10 of FIG. 1 during the PT2 stage in accordance with one embodiment. As shown, similar to the PT1 stage, during the PT2 stage, current 112 flows from secondary side through filter capacitor 40. Because during PT2 stage, quasi-square wave 100 (see FIG. 6) is negative, and, thus, current 112 flows in opposite direction in equivalent circuit 120 than it did in equivalent circuit 110 of FIG. 7. However, because gating patterns 82 and 84 for first switch 26 and second switch 32 are synchronized with the positive and negative swings of quasi square wave 100, current 112 and current 114 both still flow through filter capacitor 40 in the same direction during PT2 stage as they did during PT1 stage (see FIG. 7). In this way, first switch 26 and second switch 32 enable the conversion of the AC input signal to a DC output signal. Further, during the PT2 stage, inductor formed with second winding 24 is charged with current 114, while inductor formed with first winding 22 freewheels current 112 through the output and first switch 26. The sum of the currents 112 and 114 charges inductor formed by the center winding 34.


When power converter 10 is in the FW1 and FW2 stages, the energy stored in inductor assembly 19 is transferred to the filter capacitor 40 through the freewheeling current. This transference is illustrated in FIG. 9, which shows an equivalent circuit 130 of power converter 10 of FIG. 1 during the FW1 and FW2 stages in accordance with one embodiment. In equivalent circuit 130, secondary windings 18 are replaced by a wire, as quasi-square wave 100 (see FIG. 6) is at zero volts during the FW1 and FW2 stages. The energy stored in inductor assembly 19 is transferred to the load (from the PT1 and PT2 stages) through freewheeling currents 132 and 134, which flow in the same direction towards the filter capacitor 40 as currents 112 and 114 in FIGS. 7 and 8. It should be noted that there will be progressively less ripple in the DC output as the combined inductance of inductor assembly 19 increases and/or the capacitance of filter capacitor 40 increases. However, large inductors and large capacitor are expensive both in cost and size. As will be described in greater detail below, one of the advantages of power converter 10 is that center winding 34 provides an increase in the total available inductance enabling relatively smaller inductance associated with first winding 22 and second winding 28 and/or a smaller filter capacitor 40 to be employed.


The design of power converter 10 may provide several advantages over and above conventional topologies including reduced switching ripple in the flux density in first leg 24 and second leg 30, which results in reduced core losses, and increased inductance due to center winding 34 resulting in reduced switching ripple in the output current. This reduced switching ripple can enable filter capacitor 40 to have a lower capacitance value, which equates to a smaller sized capacitor than conventional isolated power converters. Power converter 10 may also provide a wider stability region for peak current mode control before sub-harmonic oscillations occur in the inductor currents.


The flux density switching ripple in first leg 24 and second leg 30 and center leg 36 for power converter 10 is given by the following Equation 2 below:








Δ






B
L


=




N
L

+


N
C


1
-
D





N
L

+

2


N
C







V
o


N
L





1
-
D


f
s




1

A
L




,






Δ






B
C


=



V
o



N
L

+

2


N
C







1
-

2

D



f
s




1

A
C









where ΔBL is the flux density of first leg 24 and second leg 30, ΔBC is the flux density of center leg 36, fs is the switching frequency, AL is the cross sectional area of first leg 24 and second leg 30, and AC is the cross-sectional area of center leg 36. It can be seen from Equation 2, that center winding 34 reduces the flux density ripple in both first leg 24 and second leg 30 and center leg 36 resulting in reduced core loss and higher efficiency power conversion.


The effective filter inductance seen by a load of power converter 10 is given by the Equation 3 below:







L

f
,
eq


=




(


N
L

+

2


N
C



)

2



R
L

+

2


R
C




.






As such, if NL=3, for example, the effective filter inductance in power converter 10 can be increased by a factor of 2.8 by using a single turn center winding 34 (i.e., NC) over a conventional power converter lacking center winding 34. Moreover, because this increase in inductance comes while using a standard E-I core, magnetic core 20 may occupy no more additional space in power converter 10 than the standard E-I core with reduced inductance would have in conventional systems.



FIG. 10 illustrates a block diagram of an exemplary power conversion system 140 employing the isolated power converter 10 of FIG. 1 in accordance with one embodiment. Power conversion system 140 includes an AC source 142, which in one embodiment comprises a connection to a 120 volt AC power signal provided by a public utility or a private generator. Power conversion system 140 may be coupled to AC/DC rectifier 144 which is configured to rectify the AC power signal provided by AC source 142 into a generally DC signal. AC/DC rectifier 144 may be coupled to full bridge converter 50, which is coupled to isolated power converter 10, as described above with regard to FIGS. 1-9. It will be appreciated that power conversion system 140 illustrates merely one embodiment of a power conversion system that employs power converter 10. As such, in alternate embodiments, other suitable power conversion systems may employ power converter 10.


The two phase system employed in power converter 10 can be extended to any suitable number of phases to accommodate higher power levels, tighter ripple, and/or reduced size requirements. A generalized exemplary m-phase power converter 150 based on a full bridge topology on the primary side is shown in FIG. 11 in accordance with one embodiment. As illustrated, power converter 150 features an m-phase isolation transformer 152. Transformer 152 may include a magnetic core 154 and primary windings 16 and secondary windings 18 for each of the m phases of the input AC signals employed. It will be understood that m may be any integer value greater than 2. For example, in various embodiments, m could have a value of 2, 3, 4, 5, 6, 7, 8, 9, and so forth. A representation of one configuration of a multi-phase transformer 152 suitable for use with power converter 150 of FIG. 11 is illustrated in FIG. 12 in accordance with one embodiment.


Transformer 152 is coupled to an inductor assembly 156. In one configuration, inductor assembly 156 may include a magnetic core 158, windings 160a-160m, and center winding 162. Like magnetic core 20 described above, magnetic core 158 may be comprised of any suitable core material, such as ferrite, steel, or iron. As shown in the FIG. 12, in one embodiment, magnetic core 158 may have a plurality of legs 164 upon which windings 160a-160m are wrapped with one winding per phase of the input AC signal. Magnetic core 158 may also include a center leg 166 around which center winding 162 is wrapped. It will be appreciated that the center leg 166 around which the center winding 162 is wrapped includes electrically equivalents of the structure. For example, the center leg 166 around which the center winding 162 is wrapped could be a plurality of center legs 166 having a plurality of center windings 162 arrayed in series or parallel with each other.



FIG. 12 illustrates one embodiment of a suitable design for center leg 166. However, it will be appreciated that in alternate embodiments, other suitable configurations for magnetic core 158 may be employed as long as a part of center leg 166 is equidistant or generally equidistant from each of the plurality of legs 164 that have windings 160 or the center leg 166 is located such that the flux paths from the legs 164 to the center leg 166 are almost symmetrical.


Power converter 150 may also include filter capacitor 40 (see FIG. 11), which functions substantially similar to the way that it functioned in power converter 10 of FIG. 1. Finally, power converter may include a plurality of synchronous rectification switches 170 configured to rectify the AC input signal (e.g., quasi-square wave 100) to create a DC signal.


If the phase angles of the AC input signals in power converter 150 are shifted in phase from each other by 360 degrees divided by m or shifted from each other in time by Ts divided by m, the peak to peak switching ripple in the output current of power converter 150 will vary inversely with the value of m. For example, if m=2 (two-phase interleaving), the AC input signals (and thus currents 112 and 114 of FIGS. 7 and 8) are shifted in phase by half the switching period while for three-phase interleaving (m=3), the phase shift is a third of the switching period. FIG. 13 is a chart showing the peak to peak switching ripple in the output current for values of m=2, m=3, and m=4 in power converter 150 of FIG. 11 in accordance with one embodiment. As illustrated, as m increases (i.e., as the number of interleaved AC signals increases), the ripple in the output current decreases.


In various other embodiments, there are also provided methods for manufacturing power converter 10 and/or power converter 150. For example, in one embodiment, there is provided a method of manufacturing a power converter including providing a magnetic core 20 with at least three legs (first leg 24, second leg 30, and center leg 36), wherein a part of center leg 36 is equidistant to remaining first leg 24 and second leg 30. The method also includes wrapping a first winding 22, second winding 28, and center winding 34 around each of first leg 24, second leg 30, and center leg 36, coupling center winding 34 around equidistant center leg 36 in series to the junction of each of first winding 22 and second winding 28 around each of remaining first leg 24 and second leg 30, and coupling first winding 22 and second winding 28 around each of remaining first leg 24 and second leg 30 to the secondary side of transformer 14. This method may also include coupling a capacitor 40 to center winding 34 around equidistant center leg 36, coupling a rectification component (first switch 26 and second switch 32) to the winding the second side of the transformer, and/or coupling a primary side of the transformer to an AC source 12.


It will be seen by those skilled in the art that many embodiments taking a variety of specific forms and reflecting changes, substitutions, and alternations can be made without departing from the spirit and scope of the invention. Therefore, the described embodiments illustrate but do not restrict the scope of the claims.

Claims
  • 1. A power converter, comprising: a transformer including a transformer core with a plurality of legs; andan inductor, coupled to the transformer, including: an inductor core including first and second outer legs and a center leg,first and second inductor windings wrapped around the first and second outer legs, respectively, anda center inductor winding wrapped around the center leg and with a first end connected to the first and second inductor windings, the center leg having a part thereof equidistant from the first and second outer legs.
  • 2. The power converter of claim 1 wherein a first end of the first and second inductor windings is coupled to a secondary winding wrapped around one of the plurality of legs of the transformer core, and the first end of the center inductor winding is connected to a second end of the first and second inductor windings.
  • 3. The power converter of claim 1 further comprising a capacitor coupled to a second end of the center inductor winding.
  • 4. The power converter of claim 2 further comprising a rectification component coupled to the first end of the first and second inductor windings.
  • 5. The power converter of claim 4 wherein the rectification component is selected from the group consisting of: a synchronous rectifier, anda diode.
  • 6. The power converter of claim 1 wherein the transformer includes a primary winding and a secondary winding wrapped around one of the plurality of legs of the transformer core.
  • 7. The power converter of claim 1 wherein the center leg of the inductor has an air gap.
  • 8. The power converter of claim 1 further comprising at least one switching device coupled to the transformer.
  • 9. The power converter of claim 1 further comprising a plurality of switching devices forming a full bridge topology coupled to the transformer.
  • 10. The power converter of claim 9 wherein the plurality of switching devices are configured to be controlled to produce a symmetrical quasi-square wave AC signal.
  • 11. A method of manufacturing a power converter, comprising: forming a transformer including a transformer core with a plurality of legs; andforming an inductor, coupled to the transformer, including: providing an inductor core including first and second outer legs and a center leg,wrapping first and second inductor windings around the first and second outer legs, respectively, andwrapping a center inductor winding around the center leg and with a first end connected to the first and second inductor windings, the center leg having a part thereof equidistant from the first and second outer legs.
  • 12. The method of claim 11 wherein forming the inductor includes coupling a first end of the first and second inductor windings to a secondary winding wrapped around one of the plurality of legs of the transformer core, and connecting the first end of the center inductor winding to a second end of the first and second inductor windings.
  • 13. The method of claim 11 further comprising coupling a capacitor to a second end of the center inductor winding.
  • 14. The method of claim 12 further comprising coupling a rectification component to the first end of the first and second inductor windings.
  • 15. The method of claim 14 wherein the rectification component is selected from the group consisting of: a synchronous rectifier, anda diode.
  • 16. The method of claim 11 wherein forming the transformer includes wrapping a primary winding and a secondary winding around one of the plurality of legs of the transformer core.
  • 17. The method of claim 11 wherein forming the inductor includes providing an air gap in the center leg thereof.
  • 18. The method of claim 11 further comprising coupling at least one switching device to the transformer.
  • 19. The method of claim 11 further comprising coupling a plurality of switching devices forming a full bridge topology to the transformer.
  • 20. The method of claim 19 wherein the plurality of switching devices are configured to be controlled to produce a symmetrical quasi-square wave AC signal.
Parent Case Info

This application is a continuation of patent application Ser. No. 11/686,140, entitled “Isolated Power Converter,” filed on Mar. 14, 2007 (now U.S. Pat. No. 7,468,649), which application is incorporated herein by reference.

US Referenced Citations (368)
Number Name Date Kind
1376978 Stoekle May 1921 A
2473662 Pohm Jun 1949 A
3007060 Guenther Oct 1961 A
3346798 Dinger Oct 1967 A
3358210 Grossoehme Dec 1967 A
3433998 Woelber Mar 1969 A
3484562 Kronfeld Dec 1969 A
3553620 Cielo et al. Jan 1971 A
3602795 Gunn Aug 1971 A
3622868 Todt Nov 1971 A
3681679 Chung Aug 1972 A
3708742 Gunn Jan 1973 A
3708744 Stephens et al. Jan 1973 A
4019122 Ryan Apr 1977 A
4075547 Wroblewski Feb 1978 A
4202031 Hesler et al. May 1980 A
4257087 Cuk Mar 1981 A
4274071 Pfarre Jun 1981 A
4327348 Hirayama Apr 1982 A
4471423 Hase Sep 1984 A
4499481 Greene Feb 1985 A
4570174 Huang et al. Feb 1986 A
4577268 Easter et al. Mar 1986 A
4581691 Hock Apr 1986 A
4613841 Roberts Sep 1986 A
4636823 Margalit et al. Jan 1987 A
4660136 Montorefano Apr 1987 A
4770667 Evans et al. Sep 1988 A
4770668 Skoultchi et al. Sep 1988 A
4785387 Lee et al. Nov 1988 A
4799138 Chahabadi et al. Jan 1989 A
4803609 Gillett et al. Feb 1989 A
4823249 Garcia, II Apr 1989 A
4837496 Erdi Jun 1989 A
4853668 Bloom Aug 1989 A
4866367 Ridley et al. Sep 1989 A
4876638 Silva et al. Oct 1989 A
4887061 Matsumura Dec 1989 A
4899271 Seiersen Feb 1990 A
4903089 Hollis et al. Feb 1990 A
4922400 Cook May 1990 A
4962354 Visser et al. Oct 1990 A
4964028 Spataro Oct 1990 A
4999759 Cavagnolo et al. Mar 1991 A
5003277 Sokai et al. Mar 1991 A
5014178 Balakrishnan May 1991 A
5027264 DeDoncker et al. Jun 1991 A
5068756 Morris et al. Nov 1991 A
5106778 Hollis et al. Apr 1992 A
5126714 Johnson Jun 1992 A
5132888 Lo et al. Jul 1992 A
5134771 Lee et al. Aug 1992 A
5172309 DeDoncker et al. Dec 1992 A
5177460 Dhyanchand et al. Jan 1993 A
5182535 Dhyanchand Jan 1993 A
5204809 Andresen Apr 1993 A
5206621 Yerman Apr 1993 A
5208739 Sturgeon May 1993 A
5223449 Morris et al. Jun 1993 A
5225971 Spreen Jul 1993 A
5231037 Yuan et al. Jul 1993 A
5244829 Kim Sep 1993 A
5262930 Hua et al. Nov 1993 A
5282126 Husgen Jan 1994 A
5285396 Aoyama Feb 1994 A
5291382 Cohen Mar 1994 A
5303138 Rozman Apr 1994 A
5305191 Loftus, Jr. Apr 1994 A
5335163 Seiersen Aug 1994 A
5336985 McKenzie Aug 1994 A
5342795 Yuan et al. Aug 1994 A
5343140 Gegner Aug 1994 A
5353001 Meinel et al. Oct 1994 A
5369042 Morris et al. Nov 1994 A
5374887 Drobnik Dec 1994 A
5399968 Sheppard et al. Mar 1995 A
5407842 Morris et al. Apr 1995 A
5450307 Yasumura Sep 1995 A
5459652 Faulk Oct 1995 A
5468661 Yuan et al. Nov 1995 A
5477175 Tisinger et al. Dec 1995 A
5508903 Alexndrov Apr 1996 A
5523673 Ratliff et al. Jun 1996 A
5539630 Pietkiewicz et al. Jul 1996 A
5554561 Plumton Sep 1996 A
5555494 Morris Sep 1996 A
5610085 Yuan et al. Mar 1997 A
5624860 Plumton et al. Apr 1997 A
5663876 Newton et al. Sep 1997 A
5700703 Huang et al. Dec 1997 A
5712189 Plumton et al. Jan 1998 A
5719544 Vinciarelli et al. Feb 1998 A
5734564 Brkovic Mar 1998 A
5736842 Jovanovic Apr 1998 A
5742491 Bowman et al. Apr 1998 A
5747842 Plumton May 1998 A
5756375 Celii et al. May 1998 A
5760671 Lahr et al. Jun 1998 A
5783984 Keuneke Jul 1998 A
5784266 Chen Jul 1998 A
5804943 Kollman et al. Sep 1998 A
5815383 Lei Sep 1998 A
5815386 Gordon Sep 1998 A
5864110 Moriguchi et al. Jan 1999 A
5870299 Rozman Feb 1999 A
5880942 Leu Mar 1999 A
5886508 Jutras Mar 1999 A
5889298 Plumton et al. Mar 1999 A
5889660 Taranowski et al. Mar 1999 A
5900822 Sand et al. May 1999 A
5907481 Svärdsjö May 1999 A
5909110 Yuan et al. Jun 1999 A
5910665 Plumton et al. Jun 1999 A
5920475 Boylan et al. Jul 1999 A
5925088 Nasu Jul 1999 A
5929665 Ichikawa et al. Jul 1999 A
5933338 Wallace Aug 1999 A
5940287 Brkovic Aug 1999 A
5946207 Schoofs Aug 1999 A
5956245 Rozman Sep 1999 A
5956578 Weitzel et al. Sep 1999 A
5959850 Lim Sep 1999 A
5977853 Ooi et al. Nov 1999 A
5999066 Saito et al. Dec 1999 A
5999429 Brown Dec 1999 A
6003139 McKenzie Dec 1999 A
6008519 Yuan et al. Dec 1999 A
6011703 Boylan et al. Jan 2000 A
6038154 Boylan et al. Mar 2000 A
6046664 Weller et al. Apr 2000 A
6055166 Jacobs et al. Apr 2000 A
6060943 Jansen May 2000 A
6067237 Nguyen May 2000 A
6069798 Liu May 2000 A
6069799 Bowman et al. May 2000 A
6078510 Spampinato et al. Jun 2000 A
6084792 Chen et al. Jul 2000 A
6094038 Lethellier Jul 2000 A
6097046 Plumton Aug 2000 A
6125046 Jang et al. Sep 2000 A
6144187 Bryson Nov 2000 A
6147886 Wittenbreder Nov 2000 A
6156611 Lan et al. Dec 2000 A
6160721 Kossives et al. Dec 2000 A
6163466 Davila, Jr. et al. Dec 2000 A
6181231 Bartilson Jan 2001 B1
6188586 Farrington et al. Feb 2001 B1
6191964 Boylan et al. Feb 2001 B1
6208535 Parks Mar 2001 B1
6215290 Yang et al. Apr 2001 B1
6218891 Lotfi et al. Apr 2001 B1
6229197 Plumton et al. May 2001 B1
6262564 Kanamori Jul 2001 B1
6288501 Nakamura et al. Sep 2001 B1
6288920 Jacobs et al. Sep 2001 B1
6295217 Yang et al. Sep 2001 B1
6304460 Cuk Oct 2001 B1
6309918 Huang et al. Oct 2001 B1
6317021 Jansen Nov 2001 B1
6317337 Yasumura Nov 2001 B1
6320490 Clayton Nov 2001 B1
6323090 Zommer Nov 2001 B1
6325035 Codina et al. Dec 2001 B1
6344986 Jain et al. Feb 2002 B1
6345364 Lee Feb 2002 B1
6348848 Herbert Feb 2002 B1
6351396 Jacobs Feb 2002 B1
6356462 Jang et al. Mar 2002 B1
6362986 Schultz et al. Mar 2002 B1
6373727 Hedenskog et al. Apr 2002 B1
6373734 Martinelli Apr 2002 B1
6380836 Matsumoto et al. Apr 2002 B2
6388898 Fan et al. May 2002 B1
6392902 Jang et al. May 2002 B1
6400579 Cuk Jun 2002 B2
6414578 Jitaru Jul 2002 B1
6438009 Assow Aug 2002 B2
6462965 Uesono Oct 2002 B1
6466461 Mao et al. Oct 2002 B2
6469564 Jansen Oct 2002 B1
6477065 Parks Nov 2002 B2
6483724 Blair et al. Nov 2002 B1
6489754 Blom Dec 2002 B2
6498367 Chang et al. Dec 2002 B1
6501193 Krugly Dec 2002 B1
6504321 Giannopoulos et al. Jan 2003 B2
6512352 Qian Jan 2003 B2
6525603 Morgan Feb 2003 B1
6539299 Chatfield et al. Mar 2003 B2
6545453 Glinkowski et al. Apr 2003 B2
6548992 Alcantar et al. Apr 2003 B1
6549436 Sun Apr 2003 B1
6552917 Bourdillon Apr 2003 B1
6563725 Carsten May 2003 B2
6570268 Perry et al. May 2003 B1
6580627 Takahashi Jun 2003 B2
6597592 Carsten Jul 2003 B2
6608768 Sula Aug 2003 B2
6611132 Nakagawa et al. Aug 2003 B2
6614206 Wong et al. Sep 2003 B1
6654259 Koshita et al. Nov 2003 B2
6661276 Chang Dec 2003 B1
6668296 Dougherty et al. Dec 2003 B1
6674658 Mao et al. Jan 2004 B2
6683797 Zaitsu et al. Jan 2004 B2
6687137 Yasumura Feb 2004 B1
6696910 Nuytkens et al. Feb 2004 B2
6731486 Holt et al. May 2004 B2
6741099 Krugly May 2004 B1
6753723 Zhang Jun 2004 B2
6765810 Perry Jul 2004 B2
6775159 Webb et al. Aug 2004 B2
6784644 Xu et al. Aug 2004 B2
6804125 Brkovic Oct 2004 B2
6813170 Yang Nov 2004 B2
6831847 Perry Dec 2004 B2
6856149 Yang Feb 2005 B2
6862194 Yang et al. Mar 2005 B2
6867678 Yang Mar 2005 B2
6867986 Amei Mar 2005 B2
6873237 Chandrasekaran et al. Mar 2005 B2
6882548 Jacobs et al. Apr 2005 B1
6906934 Yang et al. Jun 2005 B2
6943553 Zimmermann et al. Sep 2005 B2
6944033 Xu et al. Sep 2005 B1
6977824 Yang et al. Dec 2005 B1
6980077 Chandrasekaran et al. Dec 2005 B1
6982887 Batarseh et al. Jan 2006 B2
7009486 Goeke et al. Mar 2006 B1
7012414 Mehrotra et al. Mar 2006 B1
7016204 Yang et al. Mar 2006 B2
7026807 Anderson et al. Apr 2006 B2
7034586 Mehas et al. Apr 2006 B2
7034647 Yan et al. Apr 2006 B2
7046523 Sun et al. May 2006 B2
7061358 Yang Jun 2006 B1
7076360 Ma Jul 2006 B1
7095638 Uusitalo Aug 2006 B2
7098640 Brown Aug 2006 B2
7099163 Ying Aug 2006 B1
7136293 Petkov et al. Nov 2006 B2
7148669 Maksimovic et al. Dec 2006 B2
7170268 Kim Jan 2007 B2
7176662 Chandrasekaran Feb 2007 B2
7209024 Nakahori Apr 2007 B2
7269038 Shekhawat et al. Sep 2007 B2
7280026 Chandrasekaran et al. Oct 2007 B2
7285807 Brar et al. Oct 2007 B2
7298118 Chandrasekaran Nov 2007 B2
7301785 Yasumura Nov 2007 B2
7321283 Mehrotra et al. Jan 2008 B2
7332992 Iwai Feb 2008 B2
7339208 Brar et al. Mar 2008 B2
7339801 Yasumura Mar 2008 B2
7348612 Sriram et al. Mar 2008 B2
7360004 Dougherty et al. Apr 2008 B2
7362592 Yang et al. Apr 2008 B2
7362593 Yang et al. Apr 2008 B2
7385375 Rozman Jun 2008 B2
7386404 Cargonja et al. Jun 2008 B2
7417875 Chandrasekaran et al. Aug 2008 B2
7427910 Mehrotra et al. Sep 2008 B2
7446512 Nishihara et al. Nov 2008 B2
7447049 Garner et al. Nov 2008 B2
7468649 Chandrasekaran Dec 2008 B2
7471523 Yang Dec 2008 B2
7489225 Dadafshar Feb 2009 B2
7499295 Indika de Silva et al. Mar 2009 B2
7554430 Mehrotra et al. Jun 2009 B2
7558037 Gong et al. Jul 2009 B1
7558082 Jitaru Jul 2009 B2
7567445 Coulson et al. Jul 2009 B2
7633369 Chandrasekaran et al. Dec 2009 B2
7663183 Brar et al. Feb 2010 B2
7667986 Artusi et al. Feb 2010 B2
7675758 Artusi et al. Mar 2010 B2
7675759 Artusi et al. Mar 2010 B2
7675764 Chandrasekaran et al. Mar 2010 B2
7715217 Manabe et al. May 2010 B2
7733679 Luger et al. Jun 2010 B2
7746041 Xu et al. Jun 2010 B2
7778050 Yamashita Aug 2010 B2
7778051 Yang Aug 2010 B2
7787264 Yang et al. Aug 2010 B2
7791903 Zhang et al. Sep 2010 B2
7795849 Sohma Sep 2010 B2
7813101 Morikawa Oct 2010 B2
7847535 Meynard et al. Dec 2010 B2
7889517 Artusi et al. Feb 2011 B2
7889521 Hsu Feb 2011 B2
7906941 Jayaraman et al. Mar 2011 B2
7940035 Yang May 2011 B2
7965528 Yang et al. Jun 2011 B2
8179699 Tumminaro et al. May 2012 B2
20020057080 Telefus et al. May 2002 A1
20020114172 Webb et al. Aug 2002 A1
20030026115 Miyazaki Feb 2003 A1
20030197585 Chandrasekaran et al. Oct 2003 A1
20030198067 Sun et al. Oct 2003 A1
20040017689 Zhang et al. Jan 2004 A1
20040034555 Dismukes et al. Feb 2004 A1
20040148047 Dismukes et al. Jul 2004 A1
20040156220 Kim et al. Aug 2004 A1
20040200631 Chen Oct 2004 A1
20040217794 Strysko Nov 2004 A1
20050024179 Chandrasekaran et al. Feb 2005 A1
20050245658 Mehrotra et al. Nov 2005 A1
20050281058 Batarseh et al. Dec 2005 A1
20060006976 Bruno Jan 2006 A1
20060038549 Mehrotra et al. Feb 2006 A1
20060038649 Mehrotra et al. Feb 2006 A1
20060038650 Mehrotra et al. Feb 2006 A1
20060109698 Qu May 2006 A1
20060187684 Chandrasekaran et al. Aug 2006 A1
20060197510 Chandrasekaran Sep 2006 A1
20060198173 Rozman Sep 2006 A1
20060226477 Brar et al. Oct 2006 A1
20060226478 Brar et al. Oct 2006 A1
20060237968 Chandrasekaran Oct 2006 A1
20060255360 Brar et al. Nov 2006 A1
20070007945 King et al. Jan 2007 A1
20070045765 Brar et al. Mar 2007 A1
20070069286 Brar et al. Mar 2007 A1
20070114979 Chandrasekaran May 2007 A1
20070120953 Koga et al. May 2007 A1
20070121351 Zhang et al. May 2007 A1
20070159857 Lee Jul 2007 A1
20070222463 Qahouq et al. Sep 2007 A1
20070241721 Weinstein et al. Oct 2007 A1
20070296028 Brar et al. Dec 2007 A1
20070298559 Brar et al. Dec 2007 A1
20070298564 Brar et al. Dec 2007 A1
20080024259 Chandrasekaran et al. Jan 2008 A1
20080054874 Chandrasekaran et al. Mar 2008 A1
20080111657 Mehrotra et al. May 2008 A1
20080130321 Artusi et al. Jun 2008 A1
20080130322 Artusi et al. Jun 2008 A1
20080137381 Beasley Jun 2008 A1
20080150666 Chandrasekaran et al. Jun 2008 A1
20080205104 Lev et al. Aug 2008 A1
20080232141 Artusi et al. Sep 2008 A1
20080298106 Tataeishi Dec 2008 A1
20080310190 Chandrasekaran et al. Dec 2008 A1
20080315852 Jayaraman et al. Dec 2008 A1
20080316779 Jayaraman et al. Dec 2008 A1
20090027926 Yang et al. Jan 2009 A1
20090046486 Lu et al. Feb 2009 A1
20090109711 Hsu Apr 2009 A1
20090257250 Liu Oct 2009 A1
20090273957 Feldtkeller Nov 2009 A1
20090284994 Lin et al. Nov 2009 A1
20090315530 Baranwal Dec 2009 A1
20100091522 Chandrasekaran et al. Apr 2010 A1
20100123486 Berghegger May 2010 A1
20100149838 Artusi et al. Jun 2010 A1
20100182806 Garrity et al. Jul 2010 A1
20100188876 Garrity et al. Jul 2010 A1
20100254168 Chandrasekaran Oct 2010 A1
20100321958 Brinlee et al. Dec 2010 A1
20100321964 Brinlee et al. Dec 2010 A1
20110038179 Zhang Feb 2011 A1
20110134664 Berghegger Jun 2011 A1
20110149607 Jungreis et al. Jun 2011 A1
20110182089 Berghegger Jul 2011 A1
20110239008 Lam et al. Sep 2011 A1
20110305047 Jungreis et al. Dec 2011 A1
20120243271 Berghegger Sep 2012 A1
20120294048 Brinlee Nov 2012 A1
Foreign Referenced Citations (11)
Number Date Country
101141099 Mar 2008 CN
201252294 Jun 2009 CN
0 665 634 Jan 1994 EP
57097361 Jun 1982 JP
3-215911 Sep 1991 JP
2000-68132 Mar 2000 JP
WO8700991 Feb 1987 WO
WO 2010083511 Jul 2010 WO
WO 2010083514 Jul 2010 WO
WO 2010114914 Oct 2010 WO
WO 2011116225 Sep 2011 WO
Non-Patent Literature Citations (60)
Entry
Chen, W., et al., “Integrated Planar Inductor Scheme for Multi-module Interleaved Quasi-Square-Wave (QSW) DC/DC Converter,” 30th Annual IEEE Power Electronics Specialists Conference (PESC '99), 1999, pp. 759-762, vol. 2, IEEE, Los Alamitos, CA.
Lenk, R., “Introduction to the Tapped Buck Converter,” PCIM 2000, HFPC 2000 Proceedings, Oct. 2000, pp. 155-166.
Maksimović, D., et al., “Switching Converters with Wide DC Conversion Range,” IEEE Transactions on Power Electronics, Jan. 1991, pp. 151-157, vol. 6, No. 1, IEEE, Los Alamitos, CA.
Middlebrook, R.D., “Transformerless DC-to-DC Converters with Large Conversion Ratios,” IEEE Transactions on Power Electronics, Oct. 1988, pp. 484-488, vol. 3, No. 4, IEEE, Los Alamitos, CA.
Pietkiewicz, A., et al. “Coupled-Inductor Current-Doubler Topology in Phase-Shifted Full-Bridge DC-DC Converter,” 20th International Telecommunications Energy Conference (INTELEC), Oct. 1998, pp. 41-48, IEEE, Los Alamitos, CA.
Rico, M., et al., “Static and Dynamic Modeling of Tapped-Inductor DC-to-DC Converters,” 1987, pp. 281-288, IEEE, Los Alamitos, CA.
Wei, J., et al., “Comparison of Three Topology Candidates for 12V VRM,” IEEE APEC, 2001, pp. 245-251, IEEE, Los Alamitos, CA.
Wong, P.-L., et al., “Investigating Coupling Inductors in the Interleaving QSW VRM,” 15th Annual Applied Power Electronics Conference and Exposition (APEC 2000), Feb. 2000, pp. 973-978, vol. 2, IEEE, Los Alamitos, CA.
Xu, P., et al., “Design and Performance Evaluation of Multi-Channel Interleaved Quasi-Square-Wave Buck Voltage Regulator Module,” HFPC 2000 Proceedings, Oct. 2000, pp. 82-88.
“AN100: Application Note using Lx100 Family of High Performance N-Ch JFET Transistors,” AN100.Rev 1.01, Sep. 2003, 5 pp., Lovoltech, Inc., Santa Clara, CA.
“AN101A: Gate Drive Network for a Power JFET,” AN101A.Rev 1.2, Nov. 2003, 2 pp., Lovoltech, Inc., Santa Clara, CA.
“AN108: Applications Note: How to Use Power JFETs® and MOSFETs Interchangeably in Low-Side Applications,” Rev. 1.0.1, Feb. 14, 2005, 4 pp., Lovoltech, Inc., Santa Clara, CA.
Ajram, S., et al., “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches,” IEEE Transactions on Power Electronics, Sep. 2001, pp. 594-602, vol. 16, No. 5, IEEE, Los Alamitos, CA.
Balogh, L., et al., “Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode,” IEEE Proceedings of APEC, pp. 168-174, 1993, IEEE, Los Alamitos, CA.
Biernacki, J., et al., “Radio Frequency DC-DC Flyback Converter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 8-11, 2000, pp. 94-97, vol. 1, IEEE, Los Alamitos, CA.
Chen, W., et al., “Design of High Efficiency, Low Profile, Low Voltage Converter with Integrated Magnetics,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 911-917, IEEE, Los Alamitos, CA.
Chhawchharia, P., et al., “On the Reduction of Component Count in Switched Capacitor DC/DC Convertors,” Hong Kong Polytechnic University, IEEE, 1997, Hung Hom, Kowloon, Hong King, pp. 1395-1401.
Curtis, K., “Advances in Microcontroller Peripherals Facilitate Current-Mode for Digital Power Supplies,” Digital Power Forum '06, 4 pp., Sep. 2006, Darnell Group, Richardson, TX.
Eisenbeiser, K., et al., “Manufacturable GaAs VFET for Power Switching Applications,” IEEE Electron Device Letters, Apr. 2000, pp. 144-145, vol. 21, No. 4, IEEE.
Freescale Semiconductor, “Implementing a Digital AC/DC Switched-Mode Power Supply using a 56F8300 Digital Signal Controller,” Application Note AN3115, Aug. 2005, 24 pp., Chandler, AZ.
Gaye, M., et al., “A 50-100MHz 5V to -5V, 1W Cuk Converter Using Gallium Arsenide Power Switches,” ISCAS 2000—IEEE International Symposium on Circuits and Systems, May 28-31, 2000, pp. I-264-I-267, vol. 1, IEEE, Geneva, Switzerland.
Goldberg, A.F., et al., “Finite-Element Analysis of Copper Loss in 1-10-MHz Transformers,” IEEE Transactions on Power Electronics, Apr. 1989, pp. 157-167, vol. 4, No. 2, IEEE, Los Alamitos, CA.
Goldberg, A.F., et al., “Issues Related to 1-10-MHz Transformer Design,” IEEE Transactions on Power Electronics, Jan. 1989, pp. 113-123, vol. 4, No. 1, IEEE, Los Alamitos, CA.
Jitaru, I.D., et al., “Quasi-Integrated Magnetic an Avenue for Higher Power Density and Efficiency in Power Converters,” 12th Annual Applied Power Electronics Conference and Exposition, Feb. 23-27, 1997, pp. 395-402, vol. 1, IEEE, Los Alamitos, CA.
Kollman, R., et al., “10 MHz PWM Converters with GaAs VFETs,” IEEE 11th Annual Applied Power Electronics Conference and Exposition, Mar. 1996, pp. 264-269, vol. 1, IEEE.
Kuwabara, K., et al., “Switched-Capacitor DC—DC Converters,” Fujitsu Limited, IEEE, 1988, Kawasaki, Japan, pp. 213-218.
Lee, P.-W., et al., “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors,” IEEE Transactions on Industrial Electronics, Aug. 2000, pp. 787-795, vol. 47, No. 4, IEEE, Los Alamitos, CA.
Liu, W., “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” §5-5: Modulation Doping, 1999, pp. 323-330, John Wiley & Sons, New York, NY.
Maxim, Application Note 725, www.maxim-ic.com/an725, Maxim Integrated Products, Nov. 29, 2001, 8 pages.
Miwa, B.A., et al., “High Efficiency Power Factor Correction Using Interleaving Techniques,” IEEE Proceedings of APEC, 1992, pp. 557-568, IEEE, Los Alamitos, CA.
National Semiconductor Corporation, “LM2665 Switched Capacitor Voltage Converter,” www.national.com, Sep. 2005, 9 pages.
National Semiconductor Corporation, “LMC7660 Switched Capacitor Voltage Converter,” www.national.com, Apr. 1997, 12 pages.
Nguyen, L.D., et al., “Ultra-High-Speed Modulation-Doped Field-Effect Transistors: A Tutorial Review,” Proceedings of the IEEE, Apr. 1992, pp. 494-518, vol. 80, No. 4, IEEE.
Niemela, V.A., et al., “Comparison of GaAs and Silicon Synchronous Rectifiers in a 3.3V Out, 50W DC-DC Converter,” 27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996, pp. 861-867, vol. 1, IEEE.
Ninomiya, T., et al., “Static and Dynamic Analysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control,” Proceedings of 1991 IEEE Power Electronics Specialists Conference (PESC '91), 1991, pp. 230-237, IEEE, Los Alamitos, CA.
O'Meara, K., “A New Output Rectifier Configuration Optimized for High Frequency Operation,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 219-225, Toronto, CA.
Peng, C., et al., “A New Efficient High Frequency Rectifier Circuit,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 236-243, Toronto, CA.
Plumton, D.L., et al., “A Low On-Resistance High-Current GaAs Power VFET,” IEEE Electron Device Letters, Apr. 1995, pp. 142-144, vol. 16, No. 4, IEEE.
Rajeev, M., “An Input Current Shaper with Boost and Flyback Converter Using Integrated Magnetics,” Power Electronics and Drive Systems, 5th International Conference on Power Electronics and Drive Systems 2003, Nov. 17-20, 2003, pp. 327-331, vol. 1, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 3-9, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 1-7, vol. 16, No. 1, IEEE, Los Alamitos, CA.
Sun, J., et al., “Unified Analysis of Half-Bridge Converters with Current-Doubler Rectifier,” Proceedings of 2001 IEEE Applied Power Electronics Conference, 2001, pp. 514-520, IEEE, Los Alamitos, CA.
Sun, J., et al., “An Improved Current-Doubler Rectifier with Integrated Magnetics,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 831-837, vol. 2, IEEE, Dallas, TX.
Texas Instruments Incorporated, “LT1054, LT1054Y Switched-Capacitor Voltage Converters With Regulators,” SLVS033C, Feb. 1990—Revised Jul. 1998, 25 pages.
Thaker, M., et al., “Adaptive/Intelligent Control and Power Management Reduce Power Dissipation and Consumption,” Digital Power Forum '06, 11 pp., Sep. 2006, Darnell Group, Richardson, TX.
Vallamkonda, S., “Limitations of Switching Voltage Regulators,” A Thesis in Electrical Engineering, Texas Tech University, May 2004, 89 pages.
Weitzel, C.E., “RF Power Devices for Wireless Communications,” 2002 IEEE MTT-S CDROM, 2002, pp. 285-288, paper TU4B-1, IEEE, Los Alamitos, CA.
Williams, R., “Modern GaAs Processing Methods,” 1990, pp. 66-67, Artech House, Inc., Norwood, MA.
Xu, M., et al., “Voltage Divider and its Application in the Two-stage Power Architecture,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, IEEE, 2006, Blacksburg, Virginia, pp. 499-505.
Xu, P., et al., “Design of 48 V Voltage Regulator Modules with a Novel Integrated Magnetics,” IEEE Transactions on Power Electronics, Nov. 2002, pp. 990-998, vol. 17, No. 6, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Family of Novel Interleaved DC/DC Converters for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Power Electronics Specialists Conference, Jun. 2001, pp. 1507-1511, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Novel Integrated Current Doubler Rectifier,” IEEE 2000 Applied Power Electronics Conference, Mar. 2000, pp. 735-740, IEEE, Los Alamitos, CA.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 824-830, vol. 2, IEEE, Dallas, TX.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” IEEE Transactions on Power Electronics, Mar. 2003, pp. 670-678, vol. 18, No. 2, IEEE, Los Alamitos, CA.
Zhou, X., et al., “A High Power Density, High Efficiency and Fast Transient Voltage Regulator Module with a Novel Current Sensing and Current Sharing Technique,” IEEE Applied Power Electronics Conference, Mar. 1999, pp. 289-294, IEEE, Los Alamitos, CA.
Zhou, X., et al., “Investigation of Candidate VRM Topologies for Future Microprocessors,” IEEE Applied Power Electronics Conference, Mar. 1998, pp. 145-150, IEEE, Los Alamitos, CA.
Freescale Semiconductor, “Design of a Digital AC/DC SMPS using the 56F8323 Device, Designer Reference Manual, 56800E 16-bit Digital Signal Controllers”, DRM074, Rev. 0, Aug. 2005 (108 pages).
Freescale Semiconductor, “56F8323 Evaluation Module User Manual, 56F8300 16-bit Digital Signal Controllers”, MC56F8323EVMUM, Rev. 2, Jul. 2005 (72 pages).
Freescale Semiconductor, “56F8323/56F8123 Data Sheet Preliminary Technical Data, 56F8300 16-bit Digital Signal Controllers,” MC56F8323 Rev. 17, Apr. 2007 (140 pages).
Power Integrations, Inc., “TOP200-4/14 TOPSwitch® Family Three-terminal Off-line PWM Switch,” Internet Citation http://www.datasheet4u.com/.download.php?id=311769, Jul. 1996, XP002524650, pp. 1-16.
Related Publications (1)
Number Date Country
20090097290 A1 Apr 2009 US
Continuations (1)
Number Date Country
Parent 11686140 Mar 2007 US
Child 12341804 US