The present invention is directed, in general, to power electronics and, in particular, to isolated power converters and methods of operating and manufacturing the same.
Most people are aware that electrical devices generally require electrical power to operate. Electrical power requirements often vary greatly, however, between different types of electrical devices. For example, even though both a lamp and a computer plug into the same wall outlet, these two devices may operate at different electrical voltages. To make this possible, many electrical devices employ power converters that control, condition, or convert power between the source and the load. For example, a power converter in a computer may receive power from a wall outlet at one voltage level and convert that power to another voltage level suitable to power the computer. In this way, power converters enable a great variety of electrical devices to receive power from a single standardized power source (e.g., a wall outlet, a car engine, etc.). One type of power converter, known as an isolated power converter, employs a transformer (amongst other components) to perform this power conversion.
Accordingly, what is needed in the art is an isolated power converter topology that overcomes the deficiencies of the prior art.
Certain aspects commensurate in scope with the disclosed embodiments are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.
There is provided an isolated power converter. More particularly, in one embodiment, there is provided a power converter including a first magnetic core having a primary winding and a secondary winding around the first magnetic core. The power converter also includes a second magnetic core having a first leg, a second leg coupled to the first leg, and a third leg coupled to the first and second legs, wherein a part of the third leg is equidistant from the first leg and the second leg. The second magnetic core has a first winding encircling the first leg, a first end of the first winding coupled to the secondary winding, a second winding encircling the second leg, a first end of the second winding coupled to the secondary winding, and a third winding encircling the third leg, a first end of the third winding coupled to a second end of the first winding and to a second end of the second winding.
Like reference symbols in the various drawings indicate like elements.
With reference to
As illustrated, power converter 10 may include one or more AC sources 12a and 12b. The AC sources (also collectively designated 12) provide an electrical current whose magnitude and direction vary cyclically. For example, in one embodiment, AC sources 12 provide an AC signal with a sine wave waveform. In other embodiments, AC sources 12 may provide an AC signal with a square waveform, a sawtooth waveform, or a triangle waveform. It will be appreciated, however, that these embodiments are not intended to be exclusive. As such, in alternate embodiments, AC signals with other suitable AC waveforms, such as the quasi-square wave described below, may be employed.
AC sources 12 may generate the AC signals themselves, or they may receive and/or condition AC signals from another source. For example, as will be described further below, AC sources 12 may draw their power from a regulated source, such as a wall outlet, from another power converter, such as a full bridge converter (see discussion of
AC sources 12 may be coupled to a transformer 14 that includes a magnetic core 15, primary windings (collectively designated 16), and secondary windings (collectively designated 18). As those of ordinary skill in the art will appreciate, transformer 14 transfers energy from primary windings 16 to secondary windings 18 via a magnetic coupling between the two windings along magnetic core 15. In various embodiments, magnetic core 15 may comprise steel, iron, ferrite, or other suitable core materials. As shown in
Primary windings 16 may be wrapped around or encircle the magnetic core 15 for a suitable number of turns, Np, and secondary windings 18 may be wrapped around or encircle magnetic core 15 for a suitable number of turns, Ns. For the purposes of this document, a winding or wire is encircling or wrapped around a structure, such as a magnetic core, if that winding or wire traverses at least partially around the surface of the structure. For example, a winding is considered to be wrapped around a magnetic core if a current through the winding induces a flux in the magnetic core.
The voltage generated in secondary windings 18 will be a function of the voltage at primary windings 16 multiplied by the ratio Ns/Np. For example, if Ns=1 and Np=10, then 400 volts (“V”) on primary windings 16 will generate roughly 40V on secondary windings 18. Of course, as the total power cannot change, the current in secondary windings 18 will be roughly ten times the current in primary windings (i.e., Np/Ns). It will be appreciated, however, that winding resistance, leakage effects, induced eddy currents, and a variety of other types of losses will affect the power transfer across transformer 14 thereby reducing the actual voltage and/or current in secondary windings 18 from the ideal (i.e., 40V).
Secondary windings 18 may be coupled to an inductor assembly 19, which includes a magnetic core 20. As with magnetic core 15 of transformer 14, magnetic core 20 may be comprised of any suitable core material, including but not limited to steel, ferrite, or iron. Magnetic core 20 illustrated in
In the illustrated configuration, secondary winding 18a is coupled to a first end of a first winding 22 that is wrapped around a first leg 24 of magnetic core 20. First winding 22 is wrapped around first leg 24 to form NL turns. First winding 22 in combination with first leg 24 forms an inductor. As such, first winding 22 will alternatively be referred to as an inductor or inductor winding 22. Secondary winding 18a is also coupled to a first switch 26. In one embodiment, first switch 26 functions as a rectification component such as a synchronous rectifier for the power converter 10. As such, first switch 26 may be employed to convert/rectify the AC signal generated on the secondary side of transformer 14 to a DC signal. In this embodiment, the first switch 26 may be a metal-oxide semiconductor field-effect transistor (“MOSFET”) switch. In alternate embodiments, however, switch 26 may be replaced or supplemented by a diode or other suitable rectification circuitry.
Secondary winding 18b is coupled to a first end of a second winding 28 that is wrapped around a second leg 30 of magnetic core 20. Second winding 28 is wrapped around second leg 30 to form NL turns. Second winding 28 in combination with second leg 30 forms an inductor. As such, second winding 28 will alternatively be referred to as an inductor or inductor winding 28. Secondary winding 18b is also coupled to a second switch 32. As will be described further below, second switch 32 may also be employed to convert/rectify the AC signal generated on the secondary side of transformer 14 to a DC signal. In alternate embodiments, switch 32 may be replaced or supplemented by a diode or other suitable rectification circuitry.
The second ends of both first winding 22 and second winding 28 are coupled together and coupled to a first end of a center winding 34, as indicated by reference numeral 35. Center winding 34 is wrapped around a center leg 36 of magnetic core 20 to form NC turns. Center leg 36, in the E-I core geometry, is placed in the window between first leg 24 and second leg 30. Typically, it is preferred to place center leg 36 such that a part of center leg 36 is equidistant from first leg 24 and second leg 30 to achieve a relatively symmetric core geometry. However, depending on the application, center leg 36 can be placed anywhere in the window between first leg 24 and second leg 30. Center winding 34 in combination with center leg 36 forms an inductor. As such, center winding 34 will alternatively be referred to as inductor or center inductor winding 34. As more clearly shown in
As shown in
Second end 39 of center winding 34, as shown in
As described above, AC sources 12 may provide an AC signal to the primary side of transformer 14. In one embodiment, AC source 12 may receive this AC signal from another converter, such as full bridge converter 50 that is illustrated in
Full bridge converter 50 includes a DC source 52. In one embodiment, DC source 52 may comprise an AC rectifier configured to generate a DC signal from an incoming AC signal. DC source 52 may be coupled to four switching devices 54, 56, 58, and 60. In one embodiment, switching devices 54, 56, 58, and 60 comprise MOSFET switches. In operation, switching devices 54, 56, 58, and 60 may be gated to produce an AC signal that is a symmetrical quasi-square wave (i.e., a square wave with dead time). An exemplary quasi-square wave is depicted in
Both timing schemes depicted in diagrams 70 and 72 result in same voltage ratio (input voltage/output voltage) for power converter 10. This ratio is given by the Equation 1 below:
where V0 is the output voltage, Vin is the input voltage, and D is the duty cycle. In the timing diagram 70, the duty cycle for gating patterns applied to switching devices 54, 56, 58, and 60 is 50%. The duty cycle D that determines the input-output voltage ratio is related to the phase shift between the gating signals shown in timing diagram 70 applied to each leg of full bridge converter 50. On the other hand, in timing diagram 72, switching devices 54 and 58 are gated with duty cycle D while switching devices 56 and 60 are gated with duty cycle 1-D. Further, as shown, first switch 26 and second switch 32 (i.e., the secondary side synchronous rectifiers) are gated with duty cycle 1-D in both timing diagram 70 and timing diagram 72.
The voltage across primary winding 16, synthesized according to either of the timing diagrams shown in
The equivalent circuit 120 of
When power converter 10 is in the FW1 and FW2 stages, the energy stored in inductor assembly 19 is transferred to the filter capacitor 40 through the freewheeling current. This transference is illustrated in
The design of power converter 10 may provide several advantages over and above conventional topologies including reduced switching ripple in the flux density in first leg 24 and second leg 30, which results in reduced core losses, and increased inductance due to center winding 34 resulting in reduced switching ripple in the output current. This reduced switching ripple can enable filter capacitor 40 to have a lower capacitance value, which equates to a smaller sized capacitor than conventional isolated power converters. Power converter 10 may also provide a wider stability region for peak current mode control before sub-harmonic oscillations occur in the inductor currents.
The flux density switching ripple in first leg 24 and second leg 30 and center leg 36 for power converter 10 is given by the following Equation 2 below:
where ΔBL is the flux density of first leg 24 and second leg 30, ΔBC is the flux density of center leg 36, fs is the switching frequency, AL is the cross sectional area of first leg 24 and second leg 30, and AC is the cross-sectional area of center leg 36. It can be seen from Equation 2, that center winding 34 reduces the flux density ripple in both first leg 24 and second leg 30 and center leg 36 resulting in reduced core loss and higher efficiency power conversion.
The effective filter inductance seen by a load of power converter 10 is given by the Equation 3 below:
As such, if NL=3, for example, the effective filter inductance in power converter 10 can be increased by a factor of 2.8 by using a single turn center winding 34 (i.e., NC) over a conventional power converter lacking center winding 34. Moreover, because this increase in inductance comes while using a standard E-I core, magnetic core 20 may occupy no more additional space in power converter 10 than the standard E-I core with reduced inductance would have in conventional systems.
The two phase system employed in power converter 10 can be extended to any suitable number of phases to accommodate higher power levels, tighter ripple, and/or reduced size requirements. A generalized exemplary m-phase power converter 150 based on a full bridge topology on the primary side is shown in
Transformer 152 is coupled to an inductor assembly 156. In one configuration, inductor assembly 156 may include a magnetic core 158, windings 160a-160m, and center winding 162. Like magnetic core 20 described above, magnetic core 158 may be comprised of any suitable core material, such as ferrite, steel, or iron. As shown in the
Power converter 150 may also include filter capacitor 40 (see
If the phase angles of the AC input signals in power converter 150 are shifted in phase from each other by 360 degrees divided by m or shifted from each other in time by Ts divided by m, the peak to peak switching ripple in the output current of power converter 150 will vary inversely with the value of m. For example, if m=2 (two-phase interleaving), the AC input signals (and thus currents 112 and 114 of
In various other embodiments, there are also provided methods for manufacturing power converter 10 and/or power converter 150. For example, in one embodiment, there is provided a method of manufacturing a power converter including providing a magnetic core 20 with at least three legs (first leg 24, second leg 30, and center leg 36), wherein a part of center leg 36 is equidistant to remaining first leg 24 and second leg 30. The method also includes wrapping a first winding 22, second winding 28, and center winding 34 around each of first leg 24, second leg 30, and center leg 36, coupling center winding 34 around equidistant center leg 36 in series to the junction of each of first winding 22 and second winding 28 around each of remaining first leg 24 and second leg 30, and coupling first winding 22 and second winding 28 around each of remaining first leg 24 and second leg 30 to the secondary side of transformer 14. This method may also include coupling a capacitor 40 to center winding 34 around equidistant center leg 36, coupling a rectification component (first switch 26 and second switch 32) to the winding the second side of the transformer, and/or coupling a primary side of the transformer to an AC source 12.
It will be seen by those skilled in the art that many embodiments taking a variety of specific forms and reflecting changes, substitutions, and alternations can be made without departing from the spirit and scope of the invention. Therefore, the described embodiments illustrate but do not restrict the scope of the claims.
This application is a continuation of patent application Ser. No. 11/686,140, entitled “Isolated Power Converter,” filed on Mar. 14, 2007 (now U.S. Pat. No. 7,468,649), which application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1376978 | Stoekle | May 1921 | A |
2473662 | Pohm | Jun 1949 | A |
3007060 | Guenther | Oct 1961 | A |
3346798 | Dinger | Oct 1967 | A |
3358210 | Grossoehme | Dec 1967 | A |
3433998 | Woelber | Mar 1969 | A |
3484562 | Kronfeld | Dec 1969 | A |
3553620 | Cielo et al. | Jan 1971 | A |
3602795 | Gunn | Aug 1971 | A |
3622868 | Todt | Nov 1971 | A |
3681679 | Chung | Aug 1972 | A |
3708742 | Gunn | Jan 1973 | A |
3708744 | Stephens et al. | Jan 1973 | A |
4019122 | Ryan | Apr 1977 | A |
4075547 | Wroblewski | Feb 1978 | A |
4202031 | Hesler et al. | May 1980 | A |
4257087 | Cuk | Mar 1981 | A |
4274071 | Pfarre | Jun 1981 | A |
4327348 | Hirayama | Apr 1982 | A |
4471423 | Hase | Sep 1984 | A |
4499481 | Greene | Feb 1985 | A |
4570174 | Huang et al. | Feb 1986 | A |
4577268 | Easter et al. | Mar 1986 | A |
4581691 | Hock | Apr 1986 | A |
4613841 | Roberts | Sep 1986 | A |
4636823 | Margalit et al. | Jan 1987 | A |
4660136 | Montorefano | Apr 1987 | A |
4770667 | Evans et al. | Sep 1988 | A |
4770668 | Skoultchi et al. | Sep 1988 | A |
4785387 | Lee et al. | Nov 1988 | A |
4799138 | Chahabadi et al. | Jan 1989 | A |
4803609 | Gillett et al. | Feb 1989 | A |
4823249 | Garcia, II | Apr 1989 | A |
4837496 | Erdi | Jun 1989 | A |
4853668 | Bloom | Aug 1989 | A |
4866367 | Ridley et al. | Sep 1989 | A |
4876638 | Silva et al. | Oct 1989 | A |
4887061 | Matsumura | Dec 1989 | A |
4899271 | Seiersen | Feb 1990 | A |
4903089 | Hollis et al. | Feb 1990 | A |
4922400 | Cook | May 1990 | A |
4962354 | Visser et al. | Oct 1990 | A |
4964028 | Spataro | Oct 1990 | A |
4999759 | Cavagnolo et al. | Mar 1991 | A |
5003277 | Sokai et al. | Mar 1991 | A |
5014178 | Balakrishnan | May 1991 | A |
5027264 | DeDoncker et al. | Jun 1991 | A |
5068756 | Morris et al. | Nov 1991 | A |
5106778 | Hollis et al. | Apr 1992 | A |
5126714 | Johnson | Jun 1992 | A |
5132888 | Lo et al. | Jul 1992 | A |
5134771 | Lee et al. | Aug 1992 | A |
5172309 | DeDoncker et al. | Dec 1992 | A |
5177460 | Dhyanchand et al. | Jan 1993 | A |
5182535 | Dhyanchand | Jan 1993 | A |
5204809 | Andresen | Apr 1993 | A |
5206621 | Yerman | Apr 1993 | A |
5208739 | Sturgeon | May 1993 | A |
5223449 | Morris et al. | Jun 1993 | A |
5225971 | Spreen | Jul 1993 | A |
5231037 | Yuan et al. | Jul 1993 | A |
5244829 | Kim | Sep 1993 | A |
5262930 | Hua et al. | Nov 1993 | A |
5282126 | Husgen | Jan 1994 | A |
5285396 | Aoyama | Feb 1994 | A |
5291382 | Cohen | Mar 1994 | A |
5303138 | Rozman | Apr 1994 | A |
5305191 | Loftus, Jr. | Apr 1994 | A |
5335163 | Seiersen | Aug 1994 | A |
5336985 | McKenzie | Aug 1994 | A |
5342795 | Yuan et al. | Aug 1994 | A |
5343140 | Gegner | Aug 1994 | A |
5353001 | Meinel et al. | Oct 1994 | A |
5369042 | Morris et al. | Nov 1994 | A |
5374887 | Drobnik | Dec 1994 | A |
5399968 | Sheppard et al. | Mar 1995 | A |
5407842 | Morris et al. | Apr 1995 | A |
5450307 | Yasumura | Sep 1995 | A |
5459652 | Faulk | Oct 1995 | A |
5468661 | Yuan et al. | Nov 1995 | A |
5477175 | Tisinger et al. | Dec 1995 | A |
5508903 | Alexndrov | Apr 1996 | A |
5523673 | Ratliff et al. | Jun 1996 | A |
5539630 | Pietkiewicz et al. | Jul 1996 | A |
5554561 | Plumton | Sep 1996 | A |
5555494 | Morris | Sep 1996 | A |
5610085 | Yuan et al. | Mar 1997 | A |
5624860 | Plumton et al. | Apr 1997 | A |
5663876 | Newton et al. | Sep 1997 | A |
5700703 | Huang et al. | Dec 1997 | A |
5712189 | Plumton et al. | Jan 1998 | A |
5719544 | Vinciarelli et al. | Feb 1998 | A |
5734564 | Brkovic | Mar 1998 | A |
5736842 | Jovanovic | Apr 1998 | A |
5742491 | Bowman et al. | Apr 1998 | A |
5747842 | Plumton | May 1998 | A |
5756375 | Celii et al. | May 1998 | A |
5760671 | Lahr et al. | Jun 1998 | A |
5783984 | Keuneke | Jul 1998 | A |
5784266 | Chen | Jul 1998 | A |
5804943 | Kollman et al. | Sep 1998 | A |
5815383 | Lei | Sep 1998 | A |
5815386 | Gordon | Sep 1998 | A |
5864110 | Moriguchi et al. | Jan 1999 | A |
5870299 | Rozman | Feb 1999 | A |
5880942 | Leu | Mar 1999 | A |
5886508 | Jutras | Mar 1999 | A |
5889298 | Plumton et al. | Mar 1999 | A |
5889660 | Taranowski et al. | Mar 1999 | A |
5900822 | Sand et al. | May 1999 | A |
5907481 | Svärdsjö | May 1999 | A |
5909110 | Yuan et al. | Jun 1999 | A |
5910665 | Plumton et al. | Jun 1999 | A |
5920475 | Boylan et al. | Jul 1999 | A |
5925088 | Nasu | Jul 1999 | A |
5929665 | Ichikawa et al. | Jul 1999 | A |
5933338 | Wallace | Aug 1999 | A |
5940287 | Brkovic | Aug 1999 | A |
5946207 | Schoofs | Aug 1999 | A |
5956245 | Rozman | Sep 1999 | A |
5956578 | Weitzel et al. | Sep 1999 | A |
5959850 | Lim | Sep 1999 | A |
5977853 | Ooi et al. | Nov 1999 | A |
5999066 | Saito et al. | Dec 1999 | A |
5999429 | Brown | Dec 1999 | A |
6003139 | McKenzie | Dec 1999 | A |
6008519 | Yuan et al. | Dec 1999 | A |
6011703 | Boylan et al. | Jan 2000 | A |
6038154 | Boylan et al. | Mar 2000 | A |
6046664 | Weller et al. | Apr 2000 | A |
6055166 | Jacobs et al. | Apr 2000 | A |
6060943 | Jansen | May 2000 | A |
6067237 | Nguyen | May 2000 | A |
6069798 | Liu | May 2000 | A |
6069799 | Bowman et al. | May 2000 | A |
6078510 | Spampinato et al. | Jun 2000 | A |
6084792 | Chen et al. | Jul 2000 | A |
6094038 | Lethellier | Jul 2000 | A |
6097046 | Plumton | Aug 2000 | A |
6125046 | Jang et al. | Sep 2000 | A |
6144187 | Bryson | Nov 2000 | A |
6147886 | Wittenbreder | Nov 2000 | A |
6156611 | Lan et al. | Dec 2000 | A |
6160721 | Kossives et al. | Dec 2000 | A |
6163466 | Davila, Jr. et al. | Dec 2000 | A |
6181231 | Bartilson | Jan 2001 | B1 |
6188586 | Farrington et al. | Feb 2001 | B1 |
6191964 | Boylan et al. | Feb 2001 | B1 |
6208535 | Parks | Mar 2001 | B1 |
6215290 | Yang et al. | Apr 2001 | B1 |
6218891 | Lotfi et al. | Apr 2001 | B1 |
6229197 | Plumton et al. | May 2001 | B1 |
6262564 | Kanamori | Jul 2001 | B1 |
6288501 | Nakamura et al. | Sep 2001 | B1 |
6288920 | Jacobs et al. | Sep 2001 | B1 |
6295217 | Yang et al. | Sep 2001 | B1 |
6304460 | Cuk | Oct 2001 | B1 |
6309918 | Huang et al. | Oct 2001 | B1 |
6317021 | Jansen | Nov 2001 | B1 |
6317337 | Yasumura | Nov 2001 | B1 |
6320490 | Clayton | Nov 2001 | B1 |
6323090 | Zommer | Nov 2001 | B1 |
6325035 | Codina et al. | Dec 2001 | B1 |
6344986 | Jain et al. | Feb 2002 | B1 |
6345364 | Lee | Feb 2002 | B1 |
6348848 | Herbert | Feb 2002 | B1 |
6351396 | Jacobs | Feb 2002 | B1 |
6356462 | Jang et al. | Mar 2002 | B1 |
6362986 | Schultz et al. | Mar 2002 | B1 |
6373727 | Hedenskog et al. | Apr 2002 | B1 |
6373734 | Martinelli | Apr 2002 | B1 |
6380836 | Matsumoto et al. | Apr 2002 | B2 |
6388898 | Fan et al. | May 2002 | B1 |
6392902 | Jang et al. | May 2002 | B1 |
6400579 | Cuk | Jun 2002 | B2 |
6414578 | Jitaru | Jul 2002 | B1 |
6438009 | Assow | Aug 2002 | B2 |
6462965 | Uesono | Oct 2002 | B1 |
6466461 | Mao et al. | Oct 2002 | B2 |
6469564 | Jansen | Oct 2002 | B1 |
6477065 | Parks | Nov 2002 | B2 |
6483724 | Blair et al. | Nov 2002 | B1 |
6489754 | Blom | Dec 2002 | B2 |
6498367 | Chang et al. | Dec 2002 | B1 |
6501193 | Krugly | Dec 2002 | B1 |
6504321 | Giannopoulos et al. | Jan 2003 | B2 |
6512352 | Qian | Jan 2003 | B2 |
6525603 | Morgan | Feb 2003 | B1 |
6539299 | Chatfield et al. | Mar 2003 | B2 |
6545453 | Glinkowski et al. | Apr 2003 | B2 |
6548992 | Alcantar et al. | Apr 2003 | B1 |
6549436 | Sun | Apr 2003 | B1 |
6552917 | Bourdillon | Apr 2003 | B1 |
6563725 | Carsten | May 2003 | B2 |
6570268 | Perry et al. | May 2003 | B1 |
6580627 | Takahashi | Jun 2003 | B2 |
6597592 | Carsten | Jul 2003 | B2 |
6608768 | Sula | Aug 2003 | B2 |
6611132 | Nakagawa et al. | Aug 2003 | B2 |
6614206 | Wong et al. | Sep 2003 | B1 |
6654259 | Koshita et al. | Nov 2003 | B2 |
6661276 | Chang | Dec 2003 | B1 |
6668296 | Dougherty et al. | Dec 2003 | B1 |
6674658 | Mao et al. | Jan 2004 | B2 |
6683797 | Zaitsu et al. | Jan 2004 | B2 |
6687137 | Yasumura | Feb 2004 | B1 |
6696910 | Nuytkens et al. | Feb 2004 | B2 |
6731486 | Holt et al. | May 2004 | B2 |
6741099 | Krugly | May 2004 | B1 |
6753723 | Zhang | Jun 2004 | B2 |
6765810 | Perry | Jul 2004 | B2 |
6775159 | Webb et al. | Aug 2004 | B2 |
6784644 | Xu et al. | Aug 2004 | B2 |
6804125 | Brkovic | Oct 2004 | B2 |
6813170 | Yang | Nov 2004 | B2 |
6831847 | Perry | Dec 2004 | B2 |
6856149 | Yang | Feb 2005 | B2 |
6862194 | Yang et al. | Mar 2005 | B2 |
6867678 | Yang | Mar 2005 | B2 |
6867986 | Amei | Mar 2005 | B2 |
6873237 | Chandrasekaran et al. | Mar 2005 | B2 |
6882548 | Jacobs et al. | Apr 2005 | B1 |
6906934 | Yang et al. | Jun 2005 | B2 |
6943553 | Zimmermann et al. | Sep 2005 | B2 |
6944033 | Xu et al. | Sep 2005 | B1 |
6977824 | Yang et al. | Dec 2005 | B1 |
6980077 | Chandrasekaran et al. | Dec 2005 | B1 |
6982887 | Batarseh et al. | Jan 2006 | B2 |
7009486 | Goeke et al. | Mar 2006 | B1 |
7012414 | Mehrotra et al. | Mar 2006 | B1 |
7016204 | Yang et al. | Mar 2006 | B2 |
7026807 | Anderson et al. | Apr 2006 | B2 |
7034586 | Mehas et al. | Apr 2006 | B2 |
7034647 | Yan et al. | Apr 2006 | B2 |
7046523 | Sun et al. | May 2006 | B2 |
7061358 | Yang | Jun 2006 | B1 |
7076360 | Ma | Jul 2006 | B1 |
7095638 | Uusitalo | Aug 2006 | B2 |
7098640 | Brown | Aug 2006 | B2 |
7099163 | Ying | Aug 2006 | B1 |
7136293 | Petkov et al. | Nov 2006 | B2 |
7148669 | Maksimovic et al. | Dec 2006 | B2 |
7170268 | Kim | Jan 2007 | B2 |
7176662 | Chandrasekaran | Feb 2007 | B2 |
7209024 | Nakahori | Apr 2007 | B2 |
7269038 | Shekhawat et al. | Sep 2007 | B2 |
7280026 | Chandrasekaran et al. | Oct 2007 | B2 |
7285807 | Brar et al. | Oct 2007 | B2 |
7298118 | Chandrasekaran | Nov 2007 | B2 |
7301785 | Yasumura | Nov 2007 | B2 |
7321283 | Mehrotra et al. | Jan 2008 | B2 |
7332992 | Iwai | Feb 2008 | B2 |
7339208 | Brar et al. | Mar 2008 | B2 |
7339801 | Yasumura | Mar 2008 | B2 |
7348612 | Sriram et al. | Mar 2008 | B2 |
7360004 | Dougherty et al. | Apr 2008 | B2 |
7362592 | Yang et al. | Apr 2008 | B2 |
7362593 | Yang et al. | Apr 2008 | B2 |
7385375 | Rozman | Jun 2008 | B2 |
7386404 | Cargonja et al. | Jun 2008 | B2 |
7417875 | Chandrasekaran et al. | Aug 2008 | B2 |
7427910 | Mehrotra et al. | Sep 2008 | B2 |
7446512 | Nishihara et al. | Nov 2008 | B2 |
7447049 | Garner et al. | Nov 2008 | B2 |
7468649 | Chandrasekaran | Dec 2008 | B2 |
7471523 | Yang | Dec 2008 | B2 |
7489225 | Dadafshar | Feb 2009 | B2 |
7499295 | Indika de Silva et al. | Mar 2009 | B2 |
7554430 | Mehrotra et al. | Jun 2009 | B2 |
7558037 | Gong et al. | Jul 2009 | B1 |
7558082 | Jitaru | Jul 2009 | B2 |
7567445 | Coulson et al. | Jul 2009 | B2 |
7633369 | Chandrasekaran et al. | Dec 2009 | B2 |
7663183 | Brar et al. | Feb 2010 | B2 |
7667986 | Artusi et al. | Feb 2010 | B2 |
7675758 | Artusi et al. | Mar 2010 | B2 |
7675759 | Artusi et al. | Mar 2010 | B2 |
7675764 | Chandrasekaran et al. | Mar 2010 | B2 |
7715217 | Manabe et al. | May 2010 | B2 |
7733679 | Luger et al. | Jun 2010 | B2 |
7746041 | Xu et al. | Jun 2010 | B2 |
7778050 | Yamashita | Aug 2010 | B2 |
7778051 | Yang | Aug 2010 | B2 |
7787264 | Yang et al. | Aug 2010 | B2 |
7791903 | Zhang et al. | Sep 2010 | B2 |
7795849 | Sohma | Sep 2010 | B2 |
7813101 | Morikawa | Oct 2010 | B2 |
7847535 | Meynard et al. | Dec 2010 | B2 |
7889517 | Artusi et al. | Feb 2011 | B2 |
7889521 | Hsu | Feb 2011 | B2 |
7906941 | Jayaraman et al. | Mar 2011 | B2 |
7940035 | Yang | May 2011 | B2 |
7965528 | Yang et al. | Jun 2011 | B2 |
8179699 | Tumminaro et al. | May 2012 | B2 |
20020057080 | Telefus et al. | May 2002 | A1 |
20020114172 | Webb et al. | Aug 2002 | A1 |
20030026115 | Miyazaki | Feb 2003 | A1 |
20030197585 | Chandrasekaran et al. | Oct 2003 | A1 |
20030198067 | Sun et al. | Oct 2003 | A1 |
20040017689 | Zhang et al. | Jan 2004 | A1 |
20040034555 | Dismukes et al. | Feb 2004 | A1 |
20040148047 | Dismukes et al. | Jul 2004 | A1 |
20040156220 | Kim et al. | Aug 2004 | A1 |
20040200631 | Chen | Oct 2004 | A1 |
20040217794 | Strysko | Nov 2004 | A1 |
20050024179 | Chandrasekaran et al. | Feb 2005 | A1 |
20050245658 | Mehrotra et al. | Nov 2005 | A1 |
20050281058 | Batarseh et al. | Dec 2005 | A1 |
20060006976 | Bruno | Jan 2006 | A1 |
20060038549 | Mehrotra et al. | Feb 2006 | A1 |
20060038649 | Mehrotra et al. | Feb 2006 | A1 |
20060038650 | Mehrotra et al. | Feb 2006 | A1 |
20060109698 | Qu | May 2006 | A1 |
20060187684 | Chandrasekaran et al. | Aug 2006 | A1 |
20060197510 | Chandrasekaran | Sep 2006 | A1 |
20060198173 | Rozman | Sep 2006 | A1 |
20060226477 | Brar et al. | Oct 2006 | A1 |
20060226478 | Brar et al. | Oct 2006 | A1 |
20060237968 | Chandrasekaran | Oct 2006 | A1 |
20060255360 | Brar et al. | Nov 2006 | A1 |
20070007945 | King et al. | Jan 2007 | A1 |
20070045765 | Brar et al. | Mar 2007 | A1 |
20070069286 | Brar et al. | Mar 2007 | A1 |
20070114979 | Chandrasekaran | May 2007 | A1 |
20070120953 | Koga et al. | May 2007 | A1 |
20070121351 | Zhang et al. | May 2007 | A1 |
20070159857 | Lee | Jul 2007 | A1 |
20070222463 | Qahouq et al. | Sep 2007 | A1 |
20070241721 | Weinstein et al. | Oct 2007 | A1 |
20070296028 | Brar et al. | Dec 2007 | A1 |
20070298559 | Brar et al. | Dec 2007 | A1 |
20070298564 | Brar et al. | Dec 2007 | A1 |
20080024259 | Chandrasekaran et al. | Jan 2008 | A1 |
20080054874 | Chandrasekaran et al. | Mar 2008 | A1 |
20080111657 | Mehrotra et al. | May 2008 | A1 |
20080130321 | Artusi et al. | Jun 2008 | A1 |
20080130322 | Artusi et al. | Jun 2008 | A1 |
20080137381 | Beasley | Jun 2008 | A1 |
20080150666 | Chandrasekaran et al. | Jun 2008 | A1 |
20080205104 | Lev et al. | Aug 2008 | A1 |
20080232141 | Artusi et al. | Sep 2008 | A1 |
20080298106 | Tataeishi | Dec 2008 | A1 |
20080310190 | Chandrasekaran et al. | Dec 2008 | A1 |
20080315852 | Jayaraman et al. | Dec 2008 | A1 |
20080316779 | Jayaraman et al. | Dec 2008 | A1 |
20090027926 | Yang et al. | Jan 2009 | A1 |
20090046486 | Lu et al. | Feb 2009 | A1 |
20090109711 | Hsu | Apr 2009 | A1 |
20090257250 | Liu | Oct 2009 | A1 |
20090273957 | Feldtkeller | Nov 2009 | A1 |
20090284994 | Lin et al. | Nov 2009 | A1 |
20090315530 | Baranwal | Dec 2009 | A1 |
20100091522 | Chandrasekaran et al. | Apr 2010 | A1 |
20100123486 | Berghegger | May 2010 | A1 |
20100149838 | Artusi et al. | Jun 2010 | A1 |
20100182806 | Garrity et al. | Jul 2010 | A1 |
20100188876 | Garrity et al. | Jul 2010 | A1 |
20100254168 | Chandrasekaran | Oct 2010 | A1 |
20100321958 | Brinlee et al. | Dec 2010 | A1 |
20100321964 | Brinlee et al. | Dec 2010 | A1 |
20110038179 | Zhang | Feb 2011 | A1 |
20110134664 | Berghegger | Jun 2011 | A1 |
20110149607 | Jungreis et al. | Jun 2011 | A1 |
20110182089 | Berghegger | Jul 2011 | A1 |
20110239008 | Lam et al. | Sep 2011 | A1 |
20110305047 | Jungreis et al. | Dec 2011 | A1 |
20120243271 | Berghegger | Sep 2012 | A1 |
20120294048 | Brinlee | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
101141099 | Mar 2008 | CN |
201252294 | Jun 2009 | CN |
0 665 634 | Jan 1994 | EP |
57097361 | Jun 1982 | JP |
3-215911 | Sep 1991 | JP |
2000-68132 | Mar 2000 | JP |
WO8700991 | Feb 1987 | WO |
WO 2010083511 | Jul 2010 | WO |
WO 2010083514 | Jul 2010 | WO |
WO 2010114914 | Oct 2010 | WO |
WO 2011116225 | Sep 2011 | WO |
Entry |
---|
Chen, W., et al., “Integrated Planar Inductor Scheme for Multi-module Interleaved Quasi-Square-Wave (QSW) DC/DC Converter,” 30th Annual IEEE Power Electronics Specialists Conference (PESC '99), 1999, pp. 759-762, vol. 2, IEEE, Los Alamitos, CA. |
Lenk, R., “Introduction to the Tapped Buck Converter,” PCIM 2000, HFPC 2000 Proceedings, Oct. 2000, pp. 155-166. |
Maksimović, D., et al., “Switching Converters with Wide DC Conversion Range,” IEEE Transactions on Power Electronics, Jan. 1991, pp. 151-157, vol. 6, No. 1, IEEE, Los Alamitos, CA. |
Middlebrook, R.D., “Transformerless DC-to-DC Converters with Large Conversion Ratios,” IEEE Transactions on Power Electronics, Oct. 1988, pp. 484-488, vol. 3, No. 4, IEEE, Los Alamitos, CA. |
Pietkiewicz, A., et al. “Coupled-Inductor Current-Doubler Topology in Phase-Shifted Full-Bridge DC-DC Converter,” 20th International Telecommunications Energy Conference (INTELEC), Oct. 1998, pp. 41-48, IEEE, Los Alamitos, CA. |
Rico, M., et al., “Static and Dynamic Modeling of Tapped-Inductor DC-to-DC Converters,” 1987, pp. 281-288, IEEE, Los Alamitos, CA. |
Wei, J., et al., “Comparison of Three Topology Candidates for 12V VRM,” IEEE APEC, 2001, pp. 245-251, IEEE, Los Alamitos, CA. |
Wong, P.-L., et al., “Investigating Coupling Inductors in the Interleaving QSW VRM,” 15th Annual Applied Power Electronics Conference and Exposition (APEC 2000), Feb. 2000, pp. 973-978, vol. 2, IEEE, Los Alamitos, CA. |
Xu, P., et al., “Design and Performance Evaluation of Multi-Channel Interleaved Quasi-Square-Wave Buck Voltage Regulator Module,” HFPC 2000 Proceedings, Oct. 2000, pp. 82-88. |
“AN100: Application Note using Lx100 Family of High Performance N-Ch JFET Transistors,” AN100.Rev 1.01, Sep. 2003, 5 pp., Lovoltech, Inc., Santa Clara, CA. |
“AN101A: Gate Drive Network for a Power JFET,” AN101A.Rev 1.2, Nov. 2003, 2 pp., Lovoltech, Inc., Santa Clara, CA. |
“AN108: Applications Note: How to Use Power JFETs® and MOSFETs Interchangeably in Low-Side Applications,” Rev. 1.0.1, Feb. 14, 2005, 4 pp., Lovoltech, Inc., Santa Clara, CA. |
Ajram, S., et al., “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches,” IEEE Transactions on Power Electronics, Sep. 2001, pp. 594-602, vol. 16, No. 5, IEEE, Los Alamitos, CA. |
Balogh, L., et al., “Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode,” IEEE Proceedings of APEC, pp. 168-174, 1993, IEEE, Los Alamitos, CA. |
Biernacki, J., et al., “Radio Frequency DC-DC Flyback Converter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 8-11, 2000, pp. 94-97, vol. 1, IEEE, Los Alamitos, CA. |
Chen, W., et al., “Design of High Efficiency, Low Profile, Low Voltage Converter with Integrated Magnetics,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 911-917, IEEE, Los Alamitos, CA. |
Chhawchharia, P., et al., “On the Reduction of Component Count in Switched Capacitor DC/DC Convertors,” Hong Kong Polytechnic University, IEEE, 1997, Hung Hom, Kowloon, Hong King, pp. 1395-1401. |
Curtis, K., “Advances in Microcontroller Peripherals Facilitate Current-Mode for Digital Power Supplies,” Digital Power Forum '06, 4 pp., Sep. 2006, Darnell Group, Richardson, TX. |
Eisenbeiser, K., et al., “Manufacturable GaAs VFET for Power Switching Applications,” IEEE Electron Device Letters, Apr. 2000, pp. 144-145, vol. 21, No. 4, IEEE. |
Freescale Semiconductor, “Implementing a Digital AC/DC Switched-Mode Power Supply using a 56F8300 Digital Signal Controller,” Application Note AN3115, Aug. 2005, 24 pp., Chandler, AZ. |
Gaye, M., et al., “A 50-100MHz 5V to -5V, 1W Cuk Converter Using Gallium Arsenide Power Switches,” ISCAS 2000—IEEE International Symposium on Circuits and Systems, May 28-31, 2000, pp. I-264-I-267, vol. 1, IEEE, Geneva, Switzerland. |
Goldberg, A.F., et al., “Finite-Element Analysis of Copper Loss in 1-10-MHz Transformers,” IEEE Transactions on Power Electronics, Apr. 1989, pp. 157-167, vol. 4, No. 2, IEEE, Los Alamitos, CA. |
Goldberg, A.F., et al., “Issues Related to 1-10-MHz Transformer Design,” IEEE Transactions on Power Electronics, Jan. 1989, pp. 113-123, vol. 4, No. 1, IEEE, Los Alamitos, CA. |
Jitaru, I.D., et al., “Quasi-Integrated Magnetic an Avenue for Higher Power Density and Efficiency in Power Converters,” 12th Annual Applied Power Electronics Conference and Exposition, Feb. 23-27, 1997, pp. 395-402, vol. 1, IEEE, Los Alamitos, CA. |
Kollman, R., et al., “10 MHz PWM Converters with GaAs VFETs,” IEEE 11th Annual Applied Power Electronics Conference and Exposition, Mar. 1996, pp. 264-269, vol. 1, IEEE. |
Kuwabara, K., et al., “Switched-Capacitor DC—DC Converters,” Fujitsu Limited, IEEE, 1988, Kawasaki, Japan, pp. 213-218. |
Lee, P.-W., et al., “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors,” IEEE Transactions on Industrial Electronics, Aug. 2000, pp. 787-795, vol. 47, No. 4, IEEE, Los Alamitos, CA. |
Liu, W., “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” §5-5: Modulation Doping, 1999, pp. 323-330, John Wiley & Sons, New York, NY. |
Maxim, Application Note 725, www.maxim-ic.com/an725, Maxim Integrated Products, Nov. 29, 2001, 8 pages. |
Miwa, B.A., et al., “High Efficiency Power Factor Correction Using Interleaving Techniques,” IEEE Proceedings of APEC, 1992, pp. 557-568, IEEE, Los Alamitos, CA. |
National Semiconductor Corporation, “LM2665 Switched Capacitor Voltage Converter,” www.national.com, Sep. 2005, 9 pages. |
National Semiconductor Corporation, “LMC7660 Switched Capacitor Voltage Converter,” www.national.com, Apr. 1997, 12 pages. |
Nguyen, L.D., et al., “Ultra-High-Speed Modulation-Doped Field-Effect Transistors: A Tutorial Review,” Proceedings of the IEEE, Apr. 1992, pp. 494-518, vol. 80, No. 4, IEEE. |
Niemela, V.A., et al., “Comparison of GaAs and Silicon Synchronous Rectifiers in a 3.3V Out, 50W DC-DC Converter,” 27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996, pp. 861-867, vol. 1, IEEE. |
Ninomiya, T., et al., “Static and Dynamic Analysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control,” Proceedings of 1991 IEEE Power Electronics Specialists Conference (PESC '91), 1991, pp. 230-237, IEEE, Los Alamitos, CA. |
O'Meara, K., “A New Output Rectifier Configuration Optimized for High Frequency Operation,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 219-225, Toronto, CA. |
Peng, C., et al., “A New Efficient High Frequency Rectifier Circuit,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 236-243, Toronto, CA. |
Plumton, D.L., et al., “A Low On-Resistance High-Current GaAs Power VFET,” IEEE Electron Device Letters, Apr. 1995, pp. 142-144, vol. 16, No. 4, IEEE. |
Rajeev, M., “An Input Current Shaper with Boost and Flyback Converter Using Integrated Magnetics,” Power Electronics and Drive Systems, 5th International Conference on Power Electronics and Drive Systems 2003, Nov. 17-20, 2003, pp. 327-331, vol. 1, IEEE, Los Alamitos, CA. |
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 3-9, IEEE, Los Alamitos, CA. |
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 1-7, vol. 16, No. 1, IEEE, Los Alamitos, CA. |
Sun, J., et al., “Unified Analysis of Half-Bridge Converters with Current-Doubler Rectifier,” Proceedings of 2001 IEEE Applied Power Electronics Conference, 2001, pp. 514-520, IEEE, Los Alamitos, CA. |
Sun, J., et al., “An Improved Current-Doubler Rectifier with Integrated Magnetics,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 831-837, vol. 2, IEEE, Dallas, TX. |
Texas Instruments Incorporated, “LT1054, LT1054Y Switched-Capacitor Voltage Converters With Regulators,” SLVS033C, Feb. 1990—Revised Jul. 1998, 25 pages. |
Thaker, M., et al., “Adaptive/Intelligent Control and Power Management Reduce Power Dissipation and Consumption,” Digital Power Forum '06, 11 pp., Sep. 2006, Darnell Group, Richardson, TX. |
Vallamkonda, S., “Limitations of Switching Voltage Regulators,” A Thesis in Electrical Engineering, Texas Tech University, May 2004, 89 pages. |
Weitzel, C.E., “RF Power Devices for Wireless Communications,” 2002 IEEE MTT-S CDROM, 2002, pp. 285-288, paper TU4B-1, IEEE, Los Alamitos, CA. |
Williams, R., “Modern GaAs Processing Methods,” 1990, pp. 66-67, Artech House, Inc., Norwood, MA. |
Xu, M., et al., “Voltage Divider and its Application in the Two-stage Power Architecture,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, IEEE, 2006, Blacksburg, Virginia, pp. 499-505. |
Xu, P., et al., “Design of 48 V Voltage Regulator Modules with a Novel Integrated Magnetics,” IEEE Transactions on Power Electronics, Nov. 2002, pp. 990-998, vol. 17, No. 6, IEEE, Los Alamitos, CA. |
Xu, P., et al., “A Family of Novel Interleaved DC/DC Converters for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Power Electronics Specialists Conference, Jun. 2001, pp. 1507-1511, IEEE, Los Alamitos, CA. |
Xu, P., et al., “A Novel Integrated Current Doubler Rectifier,” IEEE 2000 Applied Power Electronics Conference, Mar. 2000, pp. 735-740, IEEE, Los Alamitos, CA. |
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 824-830, vol. 2, IEEE, Dallas, TX. |
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” IEEE Transactions on Power Electronics, Mar. 2003, pp. 670-678, vol. 18, No. 2, IEEE, Los Alamitos, CA. |
Zhou, X., et al., “A High Power Density, High Efficiency and Fast Transient Voltage Regulator Module with a Novel Current Sensing and Current Sharing Technique,” IEEE Applied Power Electronics Conference, Mar. 1999, pp. 289-294, IEEE, Los Alamitos, CA. |
Zhou, X., et al., “Investigation of Candidate VRM Topologies for Future Microprocessors,” IEEE Applied Power Electronics Conference, Mar. 1998, pp. 145-150, IEEE, Los Alamitos, CA. |
Freescale Semiconductor, “Design of a Digital AC/DC SMPS using the 56F8323 Device, Designer Reference Manual, 56800E 16-bit Digital Signal Controllers”, DRM074, Rev. 0, Aug. 2005 (108 pages). |
Freescale Semiconductor, “56F8323 Evaluation Module User Manual, 56F8300 16-bit Digital Signal Controllers”, MC56F8323EVMUM, Rev. 2, Jul. 2005 (72 pages). |
Freescale Semiconductor, “56F8323/56F8123 Data Sheet Preliminary Technical Data, 56F8300 16-bit Digital Signal Controllers,” MC56F8323 Rev. 17, Apr. 2007 (140 pages). |
Power Integrations, Inc., “TOP200-4/14 TOPSwitch® Family Three-terminal Off-line PWM Switch,” Internet Citation http://www.datasheet4u.com/.download.php?id=311769, Jul. 1996, XP002524650, pp. 1-16. |
Number | Date | Country | |
---|---|---|---|
20090097290 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11686140 | Mar 2007 | US |
Child | 12341804 | US |