This invention relates to gases distribution systems and in particular, though not solely, to respiratory humidification systems which humidify gases for a patient, or other person in need of such gases, to breathe.
Many, if not all, existing respiratory humidification systems which deliver humidified gases (such as oxygen or anaesthetic gases) to a patient, or other person in need of such gases, operate as temperature controllers. That is, the temperature of the gases leaving the humidification device in the breathing circuit is monitored and the heat source controlled in response to changes in that temperature to achieve a desired outgoing humidified gases temperature. An example of this type of humidifier control system is disclosed in our prior U.S. Pat. No. 5,558,084.
These prior art systems we temperature probes which measure the temperature of the gas at various parts of the respiratory circuit This method has some drawbacks:
It is therefore an object of the present invention to provide a respiratory humidification system and sensor which will go at least some way towards overcoming the above disadvantages or which at least provide the industry with a useful choice.
Accordingly, in a first aspect, the present invention consists in, a sensor configured to determine a parameter of a flow of respiratory gas comprising:
a temperature transducer, configured for positioning adjacent said flow of gas,
a sensor housing configured to house said transducer and provide a substantial pathogen barrier to said flow of gas; and
a conductive path between said transducer and said flow of gas.
In a second aspect the present invention consists in a system for conveying a flow of respiratory gas comprising:
a conduit adapted to convey said flow of gases,
a thermally conductive member extending from the interior of said conduit in contact with said flow of gas to the exterior of said conduit, and
an external engagement for a temperature sensor engaging said member which does not protrude into said conduit.
To those skilled in the art to which the invention relates, many changes in construction and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the invention as defined in the appended claims. The disclosures and the descriptions herein are purely illustrative and are not intended to be in any sense limiting.
One preferred form of the present invention will now be described with reference to the accompanying drawings in which;
With reference to the accompanying drawings and in particular to
As the water 8 within chamber 4 is heated it slowly evaporates, mixing water vapour with the gases flowing through the humidification chamber 4. Accordingly, humidified gases leave humidification chamber 4 via outlet 12 and are passed to a patient or other person in need of such gases 13 through a gases transportation pathway or inspiratory conduit 14. In order to reduce condensation within the inspiratory conduit 14 and to raise the temperature of the gases provided to the patient 13 a heating wire means 15 may be provided which may be energised under the control of control means 1.
In
Control means 11 may for example comprise a microprocessor or logic circuit with associated memory or storage means which stores software program which, when executed by the microprocessor logic circuit, controls the operation of the humidification system in accordance with instructions set of the software and also in response to external inputs. For example, control means 11 may be provided with input from heater plate 9 so that control means 11 is provided with information on the temperature and/or power usage of the heater plate 9. In addition, control means 11 could be provided with inputs of the temperature of the gases flow, for example a temperature sensing means or temperature probe 17 may be provided at or near the patient to indicate the gases temperature being received by the patient and a further temperature probe 18 maybe provided to indicate to control means 11 the temperature of the humidified gases flow as it leaves outlet 12 of humidification chamber 4.
A still further input to control means 11 may be user input means or switch 20 which could be used to allow a user (such as a health care professional or the patient themselves) to set a desired gases temperature of gases to be delivered or a desired gases humidity level to be delivered or alternatively other functions could be controlled by switch 20 such as control of the heating delivered by heater wire 15 or selecting from a number of automatic gases delivery configurations.
A number of preferred embodiments of the system (or parts thereof) set out above will now be described in more detail.
Temperature Probe
With reference to FIGS. 1 to 5, the various preferred forms of a temperature probe 17 or 18 are shown. The temperature probe 17 or 18 is preferably formed of a metal. Moulded plastics material such as polycarbonate could alternatively be used. The temperature sensor may be provided by any component whose electrical characteristics vary with temperature. In one embodiment of the present invention thermistor beads are used. The temperature sensor could be any temperature measuring device for example, thermocouple or RTD. The themistor beads are attached to wire conductors 48, which carry electrical signals to and from control means 11.
The present invention addresses the problems of the prior art by removing the need for the temperature probe to be inserted into the gas stream. Instead the temperature of the gas is remotely sensed via a conductive path through the wall of the break circuit. This conductive path, integral to the breathing circuit, could then be disposed of or reused after suitable sterilisation.
FIGS. 1 to 5 depict variations on this method.
With the temperature sensor located externally to the breathing circuit 14 unless the sensor is insulated from the ambient environment the temperature sensor will be affected by the ambient temperature. Compensation of this measurement error could be provided for in two ways:
The above improvements address the short comings of the current temperature measurement methods used for respiratory humidification systems.
Number | Date | Country | Kind |
---|---|---|---|
520513 | Jul 2002 | NZ | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NZ03/00164 | 7/25/2003 | WO | 8/29/2005 |