The invention is based on an apparatus for disconnection of a live electrical conductor as claimed in the precharacterizing clause of patent claim 1. This apparatus contains an enclosure and two power connections which are passed out of the enclosure. A conductor section which electrically conductively connects the two power connections to one another as well as a propellant means which causes the electrical conductor to be disconnected above a current-dependent limit value which can be predetermined are provided in the enclosure interior. Disconnection generally takes place as a function of the form, the magnitude and the duration of a current that is carried in the electrical conductor. Fuse wires, spring mechanisms or ignition capsules filled with explosive substances are typically used as the means for disconnection of the electrical conductor. In general, the electrical conductor produces a connection between a surge arrester and ground or high-voltage potential. The surge arrester is disconnected in a corresponding manner from the ground or high-voltage potential by the disconnection of the conductor.
In the precharacterizing clause, the invention refers to a prior art for isolation apparatuses as is described, by way of example, in U.S. Pat. No. 5,434,550 A. One of the described isolation apparatuses is used for disconnection of a surge arrester from ground potential and has a dielectric material enclosure, out of which two power connections are passed. A cartridge filled with an explosive substance as well as two current paths that are connected in parallel between the two power connections are provided in the interior of the enclosure. One of the two current paths that has the lower impedance contains a fuse wire that is wound in the form of a coil, while one of the two current paths which in contrast has a high impedance contains a spark gap arranged between two rings. During normal operation of the surge arrester, only a very small leakage current flows through the fuse wire, which is sufficient only to heat the isolation apparatus to a permissible extent. When a brief overvoltage occurs in a network that contains the surge arrester, for example as a result of a switching operation or as a result of a lightning strike, a high current flows through the isolation apparatus for a short time. This current is commutated into the current path that contains the spark gap, with an arc being formed. If the overvoltage lasts for a relatively long time, however, owing to a faulty state in the network, then the fuse wire is melted and an arc is formed in the enclosure interior, which activates the cartridge. This results in the enclosure being detonated, and the surge arrester is disconnected from ground potential. The same effect is achieved if a faulty state of the surge arrester results in an excessively high leakage current being carried in the fuse wire. This current gradually heats the isolation apparatus to such an extent that, above a limit temperature, the cartridge is activated and the connection is disconnected as a result of the explosion. When the explosion occurs, an indicating element is made visible, and the current is commutated into a grounding conductor which contains the indicating element. However, the explosive substance in the cartridge of the isolation apparatus represents an undesirable potential hazard.
An isolation apparatus of the type mentioned initially for a surge arrester is also described in DE 100 30 669 A1. In this apparatus, a gas generator based on an airbag is arranged in a blind hole in a conductor section of a dissipation current path. When a long-lasting fault current occurs, the airbag is fired by an electrical signal which is produced in an inductive transformer through which the fault current flows. An apparatus such as this is comparatively complex.
The invention, as it is defined in the patent claims, achieves the object of specifying an isolation apparatus of the type mentioned initially, which is distinguished by a response characteristic which is adequate to achieve most protection objects and which can nevertheless be produced, transported and installed completely safely.
In the isolation apparatus according to the invention, the propellant means is kept free of combustible substances and is chosen in such a manner that the amount of compressed gas which is required for disconnection can be thermally released from the propellant means by the electrical work produced by the fault current. The electrical work produced by the current heats the propellant means, which is thermally decomposed by the supply of heat until the desired amount of compressed gas is produced in the enclosure. The compressed gas is produced by an endothermic process, which can thus be monitored well. The isolation apparatus according to the invention can therefore be produced, marketed, installed and maintained without in the process needing to comply with the precautionary measures that are required for handling combustible substances, in particular explosive substances. This not only avoids the potential hazard which is otherwise present during production, transportation, installation and maintenance, but at the same time saves costs and time which are incurred in order to reduce the safety risk and to comply with the safety regulations when using explosive substances.
In one preferred embodiment of the invention, the propellant means has an additive which develops gas as a result of vaporization and which is advantageously a liquid, in particular such as water, or possibly alternatively an alcohol. A comparatively large amount of this liquid can be absorbed very conveniently by an adsorber. For financial reasons and in order to make it possible to operate the isolation apparatus reliably and safely, it is recommended that water be provided as the liquid. The adsorber then advantageously has a capillary and/or crystal structure and can then store large amounts of water in a manner which is quite safe dielectrically. Substances which have a silicate, aluminate and/or aluminosilicate structure and which contain large amounts of water in physically bonded form in cavities, such as capillaries or intermediate layers, examples being talc (talcum), zeolite and/or moist earth (clay, sand), which have been found to be particularly useful adsorbers. In a corresponding manner, the water can be incorporated in the propellant means chemically in the form of crystal water. Particularly preferred examples of this are crystallized hydroxides, such as gibbsite.
In a further advantageous embodiment of the invention, a propellant means is used which contains a gas-forming material, which decomposes predominantly endothermically above a limit temperature. Materials which emit large amounts of gases, such as certain plastics, greases and/or oils, under the influence of arcs have been particularly proven for this purpose. These include, in particular, polymethylmethacrylates (PMMA), polyurethanes (PUR), silicones, silicone gels, silicone oils, mineral oils or organic oils or greases.
For the isolation apparatus to operate well and for a rapid response, the propellant means should expediently be arranged in the enclosure interior. If the isolation apparatus is intended to respond with a possibly relatively long delay time, then the isolation apparatus should have a spark gap which is connected in parallel with the conductor section and is arranged in the enclosure interior in order to pick up an arc, which is formed during disconnection of the electrical conductor, one of the two electrodes of the spark gap should be in the form of a hollow electrode, and the interior of the hollow electrode should then hold the propellant means. A response characteristic which can be reproduced well is achieved if, in a section on which a foot point of an arc is formed, the hollow electrode has a wall thickness which allows the gas-forming effect of the arc to act on the propellant means when the arc work is above a predetermined value.
A particularly effective arrangement of the propellant means is achieved if the conductor section, which is in the form of a coil, is integrated in the enclosure wall since, then, the available internal volume of the enclosure can be filled with the propellant means and in addition need accommodate only the parallel-connected spark gap.
The invention will be explained in more detail in the following text using exemplary embodiments.
Identical parts are identified by the same reference symbols in the figures. The isolation apparatuses which are illustrated by way of example in
In all the embodiments, the two power connections are electrically conductively connected to one another forming a low-impedance current path, with the aid of a conductor section 7 which is connected between the two surfaces 5, 6. In the embodiment shown in
The embodiments shown in
In the embodiment shown in
Alternatively, the propellant means may fill the remaining volume of the internal area 4. The arc 12 can then be struck in the propellant means and forms compressed gas in the internal area 4 immediately after it has been struck. The formation of compressed gas is once again dependent on the arc work. By suitable dimensioning of the nature of the propellant means and the amount of the propellant means, as well as the strength of the enclosure, it is thus possible to ensure that the enclosure is not destroyed until the arc work has exceeded the predetermined limit value. Short current surges produced by transitory overvoltages can thus be carried in the isolation apparatus without destruction of the enclosure 3 while, in contrast, long-lasting fault currents lead to disconnection of the electrical conductor and to disconnection of the surge arrester from ground or from the network.
If the propellant means is enclosed in the electrode 12 or is accommodated in the internal area 4, then long-lasting fault currents of a comparatively low amplitude admittedly do not lead to the formation of arcs, but currents such as these heat the propellant means to a sufficiently great extent that, above a temperature limit value which is governed by the electrical work of the current, this propellant means supplies compressed gas at a pressure which is sufficiently high to destroy the enclosure 3.
In the embodiment shown in
In the embodiment shown in
In the embodiment shown in
Number | Date | Country | Kind |
---|---|---|---|
02405342 | Apr 2002 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2694123 | Smith, Jr. | Nov 1954 | A |
2757261 | Lingal et al. | Jul 1956 | A |
3227642 | Lemelson | Jan 1966 | A |
3265838 | Ackermann | Aug 1966 | A |
3268690 | Frink et al. | Aug 1966 | A |
3305656 | Devins | Feb 1967 | A |
3909570 | Harner et al. | Sep 1975 | A |
4250365 | McConnell | Feb 1981 | A |
4342978 | Meister | Aug 1982 | A |
4434336 | Garzon | Feb 1984 | A |
4566401 | Tomita | Jan 1986 | A |
4663692 | Carothers et al. | May 1987 | A |
5113167 | Raudabaugh | May 1992 | A |
5434550 | Putt | Jul 1995 | A |
5471185 | Shea et al. | Nov 1995 | A |
5952910 | Krause | Sep 1999 | A |
Number | Date | Country |
---|---|---|
10030669 | Jan 2002 | DE |
10047503 | Apr 2002 | DE |
01159984 | Jun 1989 | JP |
03165479 | Jul 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20030210508 A1 | Nov 2003 | US |