The present application is related to Singapore Patent No. 200505954-8 filed Sep. 15, 2005, entitled “AN ELECTRICAL ISOLATION CIRCUIT FOR PREVENTING CURRENT FLOW FROM AN ELECTRICAL APPLICATION TO A DC POWER SOURCE”. Singapore Patent No. 200505954-8 is assigned to the assignee of the present application and is hereby incorporated by reference into the present disclosure as if fully set forth herein. The present application hereby claims priority under 35 U.S.C. §119(a) to Singapore Patent No. 200505954-8.
The present disclosure relates to electrical isolation of DC power sources and, in particular, to systems for preventing current flow from an electrical application to a DC power source.
During operation of certain types of electrical applications, the voltages generated may exceed the voltage of the DC power supply in use. Thus, current flows from the electrical application into the DC power supply. This may result in damage to the DC power supply in, for example, electrical applications with inductive loads such as DC motors.
In particular, brushless DC motors (BLDC) require commutation for correct and efficient operation. Commutation is achieved in BLDC motors by controlling several switches configured to switch ON and OFF at predetermined intervals and thus controls the commutation of the stator coils of the BLDC motor. Conventional BLDC systems may employ such switches as a semiconductor switch implemented on an integrated circuit (IC).
In most electrical applications, when the electrical application is turned OFF, the DC power supply is isolated from the electrical application. However, in BLDC motors back an electric and magnetic field (EMF) is generated by the commutation of the stator coils. When the BLDC motor is turned OFF or when there is a loss of power, the back EMF generated can induce current that is driven back into the DC power supply. The DC power supply may thus be damaged by the induced current. Such electrical applications thus require electrical isolation from the DC power supply to prevent damage to the power supply during normal operations. Typically, electrical isolation is accomplished by a Shottky diode or MOSFET between the power supply and the electrical application.
Referring to
There is therefore a need for an improved system of providing electrical isolation for applications that may generate voltages in excess of the DC power supply.
The present disclosure seeks to provide an electrical isolation circuit for preventing the flow of current from an electrical application to a DC power source.
In one embodiment, the present disclosure is an electrical isolation circuit. The isolation circuit includes a switch coupled between DC power source and an electrical application. The isolation circuit also includes a comparator configured to receive inputs from the DC power source and the electrical application. The comparator causes the switch to switch OFF when the electrical application has a higher voltage than the DC power source, thereby preventing flow of current from the electrical application to the DC power source.
In another embodiment, the present disclosure is an electrical isolation circuit. The electrical isolation circuit includes a MOSFET operating as a switch and coupled between a DC power source and an electrical application. The electrical isolation circuit also includes an op-amp operating as a comparator for controlling the MOSFET, by receiving inputs from the DC power source and the electrical application. The op-amp causes the MOSFET to switch OFF when the electrical application has a higher voltage than the DC power source, thereby preventing flow of current from the electrical application to the DC power source.
In still another embodiment, the present disclosure is a method for electrical isolation of a DC power source from an electrical application. The method includes providing a switch coupled between the DC power source and the electrical application and providing a comparator for controlling the switch by comparing inputs from the DC power source and the electrical application. The method also includes switching the switch OFF when the electrical application has a higher voltage than the DC power source, thereby preventing flow of current from the electrical application to the DC power source.
In yet another embodiment, the present disclosure is a brushless DC (BLDC) motor system having an electrical isolation circuit. The BLDC motor system includes a DC power source and a BLDC motor having a plurality of commutation switches configured to switch ON or OFF at predetermined intervals to control commutation of stator coils of the BLDC motor. The BLDC motor system also includes an electrical isolation circuit. The electrical isolation circuit includes a switch coupled between the DC power source and the BLDC motor and a comparator for controlling the switch by receiving inputs from the DC power source and the BLDC motor. The comparator causes the switch to switch OFF when the electrical application has a higher voltage than the DC power source, thereby preventing flow of current from the BLDC motor to the DC power source.
For a more complete understanding of this disclosure and its features, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
MOSFET 50 acts as a switch between DC power source 10 and electrical application 20. When MOSFET 50 is switched OFF, DC power source 10 is isolated from electrical application 20. Drain 51 of MOSFET 50 is coupled to electrical application 20, while source 52 of MOSFET 50 is coupled to DC power source 10. Gate 53 of MOSFET 50 is coupled to output 43 of op-amp 40. Op-amp 40 operates as a comparator and provides the control for switching MOSFET 50 ON or OFF.
Positive input 41 of op-amp 40 is coupled to DC power source 10 while negative input 42 of op-amp 40 is coupled to electrical application 20. Op-amp 40 operates as a comparator and thus receives voltage input from DC power source 10 and electrical application 20.
During operation of electrical application or BLDC motor 20, a plurality of commutation switches are utilized to control the commutation of the motors of electrical application or BLDC motor 20. The plurality of commutation switches are configured to switch ON or OFF at predetermined intervals to control the commutation of the stator coils of electrical application or BLDC motor 20. The commutation switches used in electrical application or BLDC motor 20 may be semiconductor switches implemented on integrated circuits (ICs).
When starting electrical application BLDC motor 20, MOSFET 50 operating as a switch is OFF. Commutation switches 23 and 24 are then switched ON. This results in current 31 flowing from DC power source 10 via an intrinsic diode or body diode of MOSFET 50 through commutation switches 24 and 23 and then to ground. Voltage (Vmotor) of electrical application or BLDC motor 20 is voltage (Vdd) of DC power source 20 minus voltage drop across the body diode of MOSFET 50. Op-amp 40 thus receives a higher voltage input at its positive input 41 compared to negative input 42 which is Vdd minus voltage drop across the body diode of MOSFET 50. Output 43 of op-amp 40 returns a high output forcing MOSFET 50 to switch ON. This allows the current 31 to be fully delivered from DC power source 10 through the commutation switches 24 and 23 to the stator of electrical application or BLDC motor 20.
At a next interval, commutation switches 24 and 23 are initially ON but are now switched OFF. Referring to
Accordingly, embodiments of electrical isolation circuit 30 of the present disclosure provide electrical isolation of electrical application 20, preventing current flow from electrical application 20 back into DC power source 10 thereby damaging it. By using comparator 40 and a switch (such as MOSFET 50), the present disclosure provides real time dynamic electrical isolation as and when there is a requirement for electrical isolation. Comparator (such as op-amp 40) compares the voltage of DC power source 10 and the voltage of electrical application 20.
During normal operations, the voltage of DC voltage source 10 should always be higher than the voltage of electrical application 20. The comparator would then provide an output to the switch to switch it ON. Accordingly, DC power source 10 provides current to electrical application 20. However, when the voltage of electrical application 20 rises above the voltage of DC voltage source 10 and causes current to flow back into DC power source 10, the comparator would then provide an output to the switch to switch it OFF. Accordingly, an electrical isolation to prevent the flow of current back into DC power source 10 is provided.
While the present description refers to the electrical application being a brushless DC motor (BLDC). It should be understood that the present disclosure may be practiced with a variety of other electrical applications that require electrical isolation when excessive voltages are generated within the electrical application.
It may be advantageous to set forth definitions of certain words and phrases used in this patent document. The term “couple” and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.
While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
200505954-8 | Sep 2005 | SG | national |
Number | Name | Date | Kind |
---|---|---|---|
4864214 | Billings et al. | Sep 1989 | A |
5261501 | Tsuchiya et al. | Nov 1993 | A |
5530788 | Saijima | Jun 1996 | A |
5686814 | Wierzbicki | Nov 1997 | A |
5914582 | Takamoto et al. | Jun 1999 | A |
5945816 | Marusik | Aug 1999 | A |
6194792 | Yanou et al. | Feb 2001 | B1 |
6213249 | Noro et al. | Apr 2001 | B1 |
6213571 | Yamada et al. | Apr 2001 | B1 |
6288187 | Armand | Sep 2001 | B1 |
6332506 | Kifuku | Dec 2001 | B1 |
6384567 | Maeda | May 2002 | B1 |
6407524 | Endo et al. | Jun 2002 | B1 |
6410997 | Sjursen et al. | Jun 2002 | B1 |
6420906 | Kohda | Jul 2002 | B1 |
6459972 | Kodaka et al. | Oct 2002 | B2 |
6469564 | Jansen | Oct 2002 | B1 |
6600239 | Winick et al. | Jul 2003 | B2 |
6643572 | Kohge et al. | Nov 2003 | B2 |
6696807 | Iwata et al. | Feb 2004 | B2 |
6719089 | Yoneda et al. | Apr 2004 | B2 |
6747880 | Grover | Jun 2004 | B2 |
6837331 | Kawada et al. | Jan 2005 | B2 |
6879121 | Haussecker et al. | Apr 2005 | B2 |
6917169 | Nagasawa et al. | Jul 2005 | B2 |
6972918 | Kokami et al. | Dec 2005 | B2 |
6973992 | Yoneda et al. | Dec 2005 | B2 |
6987333 | Winick et al. | Jan 2006 | B2 |
6987371 | Kifuku | Jan 2006 | B2 |
6988027 | Yuda et al. | Jan 2006 | B2 |
6995567 | Kawashima et al. | Feb 2006 | B2 |
7009349 | Nagase et al. | Mar 2006 | B2 |
7015665 | Ohshima | Mar 2006 | B2 |
7027315 | Halfmann et al. | Apr 2006 | B2 |
7054089 | Kokami | May 2006 | B2 |
7106012 | Matsuda et al. | Sep 2006 | B2 |
7142038 | Baglin | Nov 2006 | B2 |
7158332 | Kokami | Jan 2007 | B2 |
7165646 | Kifuku et al. | Jan 2007 | B2 |
7176651 | Kifuku et al. | Feb 2007 | B2 |
7257475 | Asaumi et al. | Aug 2007 | B2 |
7294985 | Kifuku | Nov 2007 | B2 |
7336047 | Ueda et al. | Feb 2008 | B2 |
7379282 | Zansky | May 2008 | B1 |
20020024317 | Amakusa et al. | Feb 2002 | A1 |
20020039034 | Kohda | Apr 2002 | A1 |
20020113494 | Winick et al. | Aug 2002 | A1 |
20020135235 | Winick et al. | Sep 2002 | A1 |
20030227707 | Kokami et al. | Dec 2003 | A1 |
20040041472 | Chan et al. | Mar 2004 | A1 |
20040100722 | Kokami | May 2004 | A1 |
20040130913 | Giandalia et al. | Jul 2004 | A1 |
20040145843 | Winick et al. | Jul 2004 | A1 |
20050280313 | Baglin | Dec 2005 | A1 |
20060072237 | Kokami | Apr 2006 | A1 |
20060087266 | Krenzke et al. | Apr 2006 | A1 |
20060212137 | Sone | Sep 2006 | A1 |
20060282703 | Nam | Dec 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070194744 A1 | Aug 2007 | US |