Information
-
Patent Grant
-
6723939
-
Patent Number
6,723,939
-
Date Filed
Wednesday, September 11, 200222 years ago
-
Date Issued
Tuesday, April 20, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Fishman; Marina
- Fishman; M.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 218 7
- 218 14
- 218 9
- 218 37
- 218 75
- 218 78
- 218 79
- 218 80
- 218 84
- 218 119
- 218 120
- 218 140
- 218 154
- 218 44
- 218 152
-
International Classifications
-
Abstract
The movable conductors of a three-phase isolation switch are incorporated into the electrically insulative molded shaft, thereby mechanically supporting them and isolating them from the metal axle of the shaft. Movable contacts on the ends of each movable conductor are angularly spaced by α degrees, where α is less than 180° and is 90° in the exemplary embodiment. A common fixed load contact is located angularly between, and spaced α degrees from, both the fixed line and ground contacts so that the shaft is rotated only α degrees between a first, closed position, in which the movable conductors connect the fixed load contact for each phase to the corresponding fixed line contact, and a second, grounded position, where the fixed load contact of each phase is connected by the movable conductor to the corresponding fixed ground contact.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to switches for electric power systems and more particularly to an isolation switch for medium-voltage switchgear.
2. Background Information
Electric power systems include switchgear that distribute power from source buses to load buses and typically provide protection for the load buses. Isolation switches allow the downstream devices to be disconnected from the source bus, such as for maintenance, and provide the capability of connecting the de-energized load bus to ground to protect those working on the system.
A common type of isolation switch has three poles, each including a straight copper conductor mounted for rotation about a transverse axis through the mid point of the conductor with the three pole conductors axially spaced along the common axis of a support shaft. A fixed line contact and a fixed load contact for each pole are positioned in a housing diametrically opposite one another for engagement with the two ends of the movable conductor with the main shaft in a “connected ” position to provide electrical continuity between the feeder line and the load bus. A second load contact and a ground contact for each pole are positioned diametrically opposite one another 90° from the diametrically opposite fixed line contact and first load contact for engagement by the two ends of the movable conductor with the shaft in a “grounded” position to connect the load bus to ground. In these typically medium voltage isolation switches, the poles must be sufficiently spaced axially to prevent arcing and multiple fins are provided on the insulative covers on the movable conductors to provide the required creep distance from the ends of the movable conductors to the metal shaft.
There is room for improvement in isolation switches for electric power systems.
SUMMARY OF THE INVENTION
This need and others are satisfied by the invention which is directed to an isolation switch for electric power circuits which includes a housing, a shaft mounted for rotation about its longitudinal axis within the housing and one or more pole units each comprising a movable conductor carried by the shaft and having a first movable contact at one end and a second movable contact at another end. The first and second movable contacts are angularly spaced in a plane perpendicular to the longitudinal axis of the shaft by an angle α. The isolation switch in accordance with the invention further includes a fixed load contact, a fixed line contact and a fixed ground contact all mounted in the housing in the plane perpendicular to the main shaft. The fixed load terminal is disposed between and angularly spaced from the fixed line contact and the fixed ground contact by the angle α. The shaft is rotatable to a first position in which the first movable contact engages the fixed load contact and the second movable contact engages the fixed line contact, and a second position α degrees from the first position in which the first movable contact engages the fixed ground contact and the second movable contact engages the fixed load contact.
In accordance with another aspect of the invention, the isolation switch comprises a housing, an elongated electrically insulative shaft with a metallic core extending along a longitudinal axis about which the shaft is mounted in the housing for rotation. The isolation switch includes one or more pole units each comprising a movable conductor embedded in and solely supported by the elongated electrically insulative shaft in electrical isolation from the metallic core in a plane substantially perpendicular to the longitudinal axis of the shaft. The shaft is rotatable between a connected position in which the movable conductor connects the load conductor of the electrical system to the line conductor, and a grounded position in which the movable conductor connects the load conductor to the ground conductor.
BRIEF DESCRIPTION OF THE DRAWINGS
A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
FIG. 1
is an isometric view of an isolation switch in accordance with the invention.
FIG. 2
is an isometric view of the rotatable shaft which forms part of the isolation switch of FIG.
1
.
FIG. 3
is a sectional view through the rotatable shaft of
FIG. 2
taken through one of the outer poles.
FIG. 4
is a sectional view through one of the poles of the isolation switch shown in the closed position.
FIG. 5
is a sectional view similar to
FIG. 4
showing the switch in the grounded position.
FIG. 6
is a sectional view similar to
FIG. 4
showing the switch in the isolated position.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1
illustrates a three-phase isolation switch
1
in accordance with the invention. The isolation switch
1
has a generally U-shaped housing
3
formed by a base wall
5
and a pair of opposed side walls
7
extending outward from the sides of the base wall. The housing is electrically insulative. Referring to
FIG. 4
as well as
FIG. 1
, a pair of spaced apart integrally molded supports
9
and
11
extend from the base wall
5
between the sidewalls
7
. Another support
13
spans the sidewalls
7
near their extremities. Barriers
15
extending transversely from the supports
9
,
11
and
13
divide the interior of the housing into three pole compartments
17
a
-
17
c.
A shaft
19
is mounted between bearing blocks
20
on the sidewalls
7
for rotation about a longitudinal axis
21
and thus extends across all three-pole compartments
17
a
-
17
c
. Each pole compartment
17
a
-
17
c
houses a pole unit which includes a moving conductor
23
carried by the shaft
19
, a fixed line contact
25
mounted on the support
11
, a fixed ground contact
27
mounted on the support
9
, and a fixed load contact
29
mounted on the support
13
. The fixed line contact
25
, fixed ground contact
27
and fixed load contact
29
are connected through internal conductors
30
,
32
, and
34
to the line, ground and load conductors
31
,
33
and
35
, respectively, of an electric power circuit
37
.
As best seen in
FIGS. 2 and 3
, the shaft
19
is molded of an electrically insulative material. A steel axle
39
, such as a hex bar, is molded into the shaft
19
and extends along the longitudinal axis
21
. The moving conductors
23
are molded into the insulating material of the shaft
19
which provides the sole mechanical support for the moving conductors and electrical isolation from the steel axle
39
. The molded shaft
19
is generally in the form of an equilateral triangle in cross-section at each pole with the steel axle
39
extending through the apex and with linear extensions
19
1
and
19
2
on the other comers. Each moving conductor
23
is a copper bar with a first movable contact
41
at one end
43
and a second movable contact
45
at the other end
47
. This movable conductor
23
has a center section
49
which is laterally offset from the steel axle
39
, and first and second terminal sections
51
and
53
at the ends
43
and
47
. Fins
55
integrally molded on the shaft
19
adjacent the movable contacts
41
and
45
for the outer poles
17
a
and
17
c
increase the creep distance between these movable contacts and the ends of the steel axle
39
that extend beyond the molded body of the shaft
19
. These fins are not necessary on the center pole as the molded resin extends fully along the axle
39
between the poles. The movable contacts
41
and
45
on the ends of the moving conductor
23
are angularly spaced in the plane of
FIG. 3
, which is perpendicular to the longitudinal axis
21
of the shaft
19
by an angle α. This angle α is less than 180°, and in the exemplary embodiment shown, is about 90°. The terminal sections
51
and
53
of the movable conductor form angles β with the center section
49
. The angles β are about 45° in the exemplary embodiment.
As can be seen in
FIG. 4
, the fixed line contact
25
, fixed ground contact
27
and fixed load contact
29
are all radially spaced from the longitudinal axis
21
of the shaft
19
by the same distance with the fixed load contact
29
angularly spaced between the fixed line contact
25
and the fixed ground contact
27
each by the angle α which again is less than 180° and in the exemplary embodiment is about 90°. In this exemplary embodiment, the fixed contacts
25
,
27
and
29
are disposed in a T configuration
57
having a cross leg
59
and an intersecting leg
61
. The fixed line contact
25
and the fixed ground contact
27
are located at opposite ends of the cross leg
59
with the load contact
29
at the free end of the intersecting leg
61
. This places the longitudinal axis
21
of the shaft
19
at the intersection of the cross leg
59
and the intersecting leg
61
.
The shaft
19
is rotated about its longitudinal axis
21
manually or by a motor (not shown) coupled to one end of the steel core
39
. With the shaft
19
in a first position shown in
FIG. 4
, the first movable contact
41
engages the fixed load contact
29
and the second movable contact
45
engages the fixed line contact
25
. Rotation of the shaft
19
clockwise by the angle α, e.g., 90°, to a second, grounded position shown in
FIG. 5
brings the first movable contact
41
into engagement with the fixed ground contact
27
while the second movable contact
45
engages the common fixed load contact
29
. Thus, in this second position, the load conductor
35
of the electrical power system
37
is grounded.
The shaft
19
can be rotated to an intermediate, third position such as shown in
FIG. 6
where neither of the movable contacts
41
,
45
, is connected to the fixed load contact
29
so that the load conductor
35
is isolated.
The above arrangement makes it possible to reduce the physical size of medium voltage three-phase, three-position switch. Only one fixed load contact is required as opposed to the two fixed load contacts required in other isolation switches. In addition, molding the movable conductors into the shaft isolates the phases from one another. This allows a reduction in pole spacing, that is the physical width of the switch. Another advantage of the isolation switch of the invention is that, it reduces the amount of labor required for assembly of the switch as an assembler does not have to assemble the shaft, and therefore, assembly time and shaft variation are reduced.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.
Claims
- 1. An isolation switch for an electric power circuit having a line conductor, load conductor and ground conductor, the isolation switch comprising:a housing; a shaft mounted for rotation about its longitudinal axis within the housing; a pole unit comprising: a movable conductor carried by the shaft and having a first movable contact at one end and a second movable contact at another end, the first and second movable contacts being angularly spaced in a plane perpendicular to the longitudinal axis of the shaft by an angle α; a fixed load contact, a fixed line contact, and a fixed ground contact all mounted in the housing in the plane perpendicular to the shaft with the fixed load contact between and angularly spaced from the fixed line contact and the fixed ground contact by the angle α, the shaft being rotatable to a first position in which the first movable contact engages the fixed load contact and the second movable contact engages the fixed line contact, and a second position α degrees from the first position in which the first movable contact engages the fixed ground contact and the second movable contact engages the fixed load contact; and wherein the shaft has a metal axle extending along the longitudinal axis and the pole unit includes an insulative material mechanically mounting the movable conductor on an providing electrical isolation from the metal axle.
- 2. The isolation switch of claim 1, wherein the shaft is rotatable to a third position in which neither of the first and second movable contacts engages the fixed load contact.
- 3. The isolation switch of claim 1, wherein the angle α is less than 180°.
- 4. The isolation switch of claim 3, wherein the angle α is about 90°.
- 5. The isolation switch of claim 1 comprising multiple pole units axially spaced along the shaft.
- 6. The isolation switch of claim 5, wherein there are three pole units.
- 7. The isolation switch of claim 1 comprising multiple pole units and the insulative material extending along the metal axle between the axially spaced pole units to form a single continuous element integral with the insulative material at the pole units.
- 8. The isolation switch of claim 7, wherein the insulative material forms integral fins adjacent the first and second movable contacts on outer pole units.
- 9. The isolation switch of claim 1, wherein the angle α is about 90° and the movable conductor comprises a copper bar having a center section and terminal sections at the one end and another end of the copper bar and forming about 45° angles with the center section.
- 10. The isolation switch of claim 9, wherein projections of longitudinal axis of the terminal sections of the movable conductor intersect at the longitudinal axis of the shaft.
- 11. The isolation switch of claim 10, wherein the fixed line contact, fixed ground contact and fixed load contact are disposed in a T configuration having a cross leg and an intersecting leg intersecting the cross leg, the fixed line contact and the fixed ground contact being disposed at opposite ends of the cross leg and the fixed load contact being disposed at a free end of the intersecting leg, and the longitudinal axis of the shaft being disposed at the intersection of the intersecting leg with the cross leg.
- 12. An isolation switch for an electrical power circuit having a line conductor, a load conductor and a ground conductor, the isolation switch comprising:a housing; an elongated electrically insulative shaft with a metal axle extending along a longitudinal axis about which the shaft is mounted in the housing for rotation; and a pole unit comprising a movable conductor embedded and solely supported by the elongated electrically insulative shaft in electrical isolation from the metal axle, the shaft being rotatable between a connected position in which the movable conductor connects the load conductor to the line conductor, and a grounded position in which the movable conductor connects the load connector to the ground conductor.
- 13. The isolation switch of claim 12 comprising multiple pole units mounted axially on the shaft.
- 14. The isolation switch of claim 13, wherein the movable conductor has terminal sections angularly spaced from each other by an angle α and each extending substantially radially outward from the longitudinal axis of the shaft and a center section joining the terminal sections and offset laterally from the metal axle.
US Referenced Citations (9)