The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements.
A typical SIDI system generates undesirable noise during normal operation. As used herein, the term noise refers to any unwanted or undesirable noise that is generated during normal operation of electrical, mechanical, and/or electromechanical devices. The noise is not indicative of present and/or potential damage to these devices. As shown in
Additionally, operation of the fuel injectors cause the SIDI system to generate noise. An impulse is generated each time the fuel injector “fires” (i.e. delivers fuel to the combustion chamber), which can be seen to be coincident with the electronic PCM signal pulses 76. These impulses are simultaneously comprised of both electromechanical (solenoid) and electro-hydraulic forces. The fuel injectors include electronically-controlled needle valve openings. The opening and closing actuation (e.g. electromechanical and/or hydraulic actuation) of the needle valve openings cause the noise pulses 78.
As described above, operation of the injection pump and the fuel injectors contribute significantly to the impulsive noise that the SIDI system generates. In particular, rigid mechanical contact between the fuel rail and the cylinder head, as well as between the fuel injector and the cylinder head, transfer noise energy between the SIDI system and various components of the engine. The present invention provides a fuel injector attachment system for high pressure SIDI fuel delivery systems that incorporate noise isolation technology. More specifically, the present invention provides a SIDI system that directly couples the fuel injectors to the fuel rail assembly and isolates elements of the fuel injectors from the cylinder head to interrupt transmission paths of noise energy. With the injector fastened to the rail in the manner described herein, the rail isolation limits vibration energy from being transmitted into the engine.
Referring now to
The snap ring 116 provides additional support to maintain the desired position of the fuel injector 102. The snap ring 116 may be removable to allow the fuel injector to be insertably coupled to and/or removed from the injector cup boss 110. The SIDI fuel injector system 100 may also include an anterior injector seat (not shown) that contacts an upper portion of the fuel injector 102 within the injector cup boss 110.
As described above, the fuel injector 102 is directly coupled to the fuel rail assembly 104 without rigid mechanical contact between the injector cup boss 110 and the cylinder head 106. The injector seat 114 limits the axial position of the fuel injector 102 with respect to the injector cup boss 110. In the present implementation, the injector seat 114 may be formed from an elastomeric material. Those skilled in the art can appreciate that the present invention is not limited to using elastomeric materials. Other materials, including, but not limited to, nylon, composites, and/ or metals are anticipated. For example, thermal conductivity of an elastomeric material forming the injector seat 114 may be increased by the addition of aluminum particles.
The cylinder head 106 includes an opening 122 that accommodates the fuel injector 102 and a fuel injector nozzle 124. In conventional SIDI systems (as described in
A biasing element, such as a spring 128, may be included. The spring 128 provides a downward biasing force to position the fuel injector 102 within the cylinder head 106. However, it is to be understood that a biasing element is not required for proper positioning of the fuel injector 102. For example, an internal fuel rail pressure is typically sufficient to bias the fuel injector against the injector seat 114. Further, although the spring 128 is shown disposed between the injector cup boss 110 and an intermediate portion 130 of the fuel injector 102, those skilled in the art can appreciate that the spring 128 may be otherwise located. For example, the spring 128 may be located between an upper interior surface 132 of the injector cup boss 110 and an upper portion 134 of the fuel injector 102 as shown in
As described above, a longitudinal position of the fuel injector 102 is maintained. In this manner, proper positioning of the fuel injector nozzle 124 for optimized combustion is maintained. Further and as indicated at 136, the configuration of the SIDI fuel injector system 100 allows angular rotation of the fuel injector 102 relative to the cylinder head 106. For example, the spherical portion 118 of the injector locating base 112 and the injector seat 114 allow a degree of angular latitude to compensate for misalignment and/or slight positional errors. The opening 122 is sufficiently large to accommodate angular rotation of the fuel injector 102 while maintaining isolation between the fuel injector 102 and the cylinder head 106. A gap between the fuel injector 102 and the cylinder head 106 as indicated at 138 allows for limited longitudinal movement of the fuel injector 102. For example, if the injector seat 114 compresses and/or the snap ring 116 is damaged, the fuel injector 102 will not necessarily contact the cylinder head 106. For example, a controlled clearance between the bottom of the injector base and the cylinder head port acts as a failsafe in the event of a improperly-positioned or snap ring 116. The injector is trapped between the rail and head thereby maintaining the integrity of the wet seal (i.e., the O-ring 120), with increased noise being the only degradation to the system.
The isolated fuel injector arrangements of previous implementations may be combined and/or integrated with a fuel injector mounting system 150 as shown in
An alternative implementation of a fuel injector mounting system 170 is shown in
In this manner, the retainer clip 178a, in combination with the injector sleeve 182, maintains an axial/longitudinal position and a radial position of the fuel injector 180. A clearance gap 188 between the injector and cylinder head provides isolation as described in previous implementations. The features of the fuel injector mounting system 170 may be combined and/or integrated with previous implementations of the isolated fuel injectors as described in
Another implementation of a fuel injector mounting system 200 is shown in
The retainer plate 212 includes retainer clips 220. When the retainer plate 212 is positioned to lock the fuel injector 208 in place, the retainer clips 220 engage the retainer plate grooves 206. In this manner, the retainer plate 212 maintains a position of the fuel injector 208 as described in previous implementations. In an alternative implementation, a plurality of individual retainer plates (not shown) that correspond to a plurality of retaining interfaces 204 may replace the continuous retainer plate 212.
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention has been described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.