Isomerization process

Information

  • Patent Grant
  • 8067658
  • Patent Number
    8,067,658
  • Date Filed
    Friday, January 23, 2009
    15 years ago
  • Date Issued
    Tuesday, November 29, 2011
    12 years ago
Abstract
An isomerization process is disclosed including contacting a n-hexane hydrocarbon feed containing less than about 10 volume % naphthenic hydrocarbons with a catalyst to produce an iso-hexane containing product; wherein the catalyst is prepared by: a) incorporating tungsten on a zirconium hydroxide solid; b) drying and calcining the tungsten impregnated zirconium hydroxide; c) sizing the dried and calcined material to particle sizes between about 150 and about 600 microns; d) incorporating a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof, on the sized material; e) drying and calcining the Group VIII metal impregnated tungsten/zirconia material; and f) contacting the second dried and calcined material with hydrogen in a reducing environment to form the catalyst which contains tungsten, zirconia and a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof.
Description

The present invention relates to a process for the isomerization of n-hexane. In another aspect, this invention relates to a process for the isomerization of n-hexane with a catalyst containing tungsten, zirconium and a Group VIII metal.


One way to comply with the regulations limiting benzene concentration in gasoline is to hydrogenate benzene forming cyclohexane, which has a much lower octane number than benzene, and results in an octane penalty for the resulting product as compared to the benzene feed. To compensate for this loss of octane, n-hexane, present in many refinery streams including the benzene hydrogenation product, can be isomerized to higher octane iso-hexanes.


Therefore, development of an improved process for effectively isomerizing n-hexane to higher octane iso-hexanes would be a significant contribution to the art, greatly increasing the value of the n-hexane hydrocarbons and countering the octane loss from hydrogenating benzene.


BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, an isomerization process is provided including the following:


contacting a hydrocarbon feed comprising n-hexane and less than about 10 volume % naphthenic hydrocarbons with a catalyst at isomerization conditions for isomerization of at least a portion of the n-hexane to a product comprising iso-hexane; wherein the catalyst is prepared by the following method:

    • (a) incorporating tungsten on a zirconium hydroxide solid by incipient wetness impregnation using an aqueous solution of a tungsten compound to form tungsten impregnated zirconium hydroxide;
    • (b) drying and calcining the tungsten impregnated zirconium hydroxide to form a first dried and calcined material;
    • (c) sizing the dried and calcined material to particle sizes between about 150 and about 600 microns to form a sized material;
    • (d) incorporating a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof, on the sized material by incipient wetness impregnation using an aqueous solution of a Group VIII metal compound comprising said Group VIII metal to form a Group VIII metal impregnated tungsten/zirconia material;
    • (e) drying and calcining the Group VIII metal impregnated tungsten/zirconia material to form a second dried and calcined material; and
    • (f) contacting the second dried and calcined material with hydrogen in a reducing environment to form the catalyst which comprises tungsten, zirconia and a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graphic illustration of n-Hexane Molecules Converted per Tungsten Atom per Hour vs. Time on Stream data for three runs wherein nickel containing catalysts were separately used to convert n-hexane.



FIG. 2 is a graphic illustration of n-Hexane Conversion vs. Time on Stream data for three runs wherein platinum containing catalysts were separately used to convert n-hexane.



FIG. 3 is a graphic illustration of Dimethyl Butanes Yield vs. Time on Stream data for three runs wherein platinum containing catalysts were separately used to convert n-hexane.



FIG. 4 is a graphic illustration of 2,3 Dimethyl Butane Yield vs. Time on Stream data for three runs wherein platinum containing catalysts were separately used to convert n-hexane.



FIG. 5 is a graphic illustration of n-Hexane Conversion vs. Time on Stream data for three runs wherein palladium containing catalysts were separately used to convert n-hexane.



FIG. 6 is a graphic illustration of Dimethyl Butanes Yield vs. Time on Stream data for three runs wherein palladium containing catalysts were separately used to convert n-hexane.



FIG. 7 is a graphic illustration of 2,3 Dimethyl Butane Yield vs. Time on Stream data for three runs wherein palladium containing catalysts were separately used to convert n-hexane.



FIG. 8 is a graphic illustration of n-Hexane Conversion vs. Time on Stream data for three runs wherein nickel containing catalysts were separately used to convert n-hexane.



FIG. 9 is a graphic illustration of Dimethyl Butanes Yield vs. Time on Stream data for three runs wherein nickel containing catalysts were separately used to convert n-hexane.



FIG. 10 is a graphic illustration of 2,3 Dimethyl Butane Yield vs. Time on Stream data for three runs wherein nickel containing catalysts were separately used to convert n-hexane.



FIG. 11 is a graphic illustration of n-Hexane Conversion vs. Time on Stream data for four runs wherein a nickel containing catalyst and platinum containing catalysts were separately used to convert n-hexane.



FIG. 12 is a graphic illustration of n-Hexane Conversion vs. Time on Stream data for four runs wherein a nickel containing catalyst and platinum containing catalysts were separately used to convert n-hexane.



FIG. 13 is a graphic illustration of 2,3 Dimethyl Butane Yield vs. Time on Stream data for four runs wherein a nickel containing catalyst and platinum containing catalysts were separately used to convert n-hexane.



FIG. 14 is a graphic illustration of Initial Cracking Product Yield vs. % Nickel as Nickel Tungstate data for seven runs wherein nickel containing catalysts were separately used to convert n-hexane.



FIG. 15 is a graphic illustration of n-Hexane Conversion vs. Time on Stream data and of Cracking Product Yield vs. Time on Stream data for two runs wherein a nickel containing catalyst and a tungstate zirconia catalyst were separately used to convert n-hexane.



FIG. 16 is a graphic illustration of n-Hexane Conversion vs. Time on Stream data and of Cracking Product Yield vs. Time on Stream data for two runs wherein a nickel containing catalyst and a tungstate zirconia catalyst were separately used to convert n-hexane.





DETAILED DESCRIPTION OF THE INVENTION

The hydrocarbon feed stream of this invention can be any hydrocarbon feed comprising, consisting of, or consisting essentially of n-hexane and less than about 10 volume % naphthenic hydrocarbons, and more preferably less than about 5 volume % naphthenic hydrocarbons. Preferably, the hydrocarbon feed comprises at least about 80 weight % n-hexane, and more preferably at least about 90 weight % n-hexane. Naphthenic hydrocarbons can include any mono or poly cyclic hydrocarbon. Most typically, the naphthenic hydrocarbon in a n-hexane stream is cyclohexane.


The hydrocarbon feed stream is contacted with a material comprising, consisting of, or consisting essentially of a catalyst, at isomerization conditions, for isomerization of at least a portion of the n-hexane to a product comprising, consisting of, or consisting essentially of iso-hexanes. The product preferably comprises, consists of, or consists essentially of an iso-hexane selected from the group consisting of 2,2-dimethylbutane, 2,3-dimethylbutane, 2-methylpentane, 3-methylpentane, and combinations thereof. The product more preferably comprises, consists of, or consists essentially of 2,3-dimethylbutane.


The isomerization conditions include a temperature in the range of from about 160° C. to about 300° C., a pressure in the range of from about 150 to about 250 psig, a liquid hourly space velocity of about 0.5 to about 20 hr−1, and a hydrogen to hydrocarbon molar ratio of at least about 0.1; preferably a temperature in the range of from about 177° C. to about 288° C., a pressure in the range of from about 190 to about 210 psig, a liquid hourly space velocity of about 0.5 to about 10 hr−1, and a hydrogen to hydrocarbon molar ratio of at least about 0.5; and more preferably a temperature in the range of from about 177° C. to about 230° C., a pressure in the range of from about 190 to about 210 psig, a liquid hourly space velocity of about 0.5 to about 4 hr−1, and a hydrogen to hydrocarbon molar ratio of at least about 0.5.


The catalyst is preferably prepared by the following method:

    • (a) incorporating tungsten on a zirconium hydroxide solid by incipient wetness impregnation using an aqueous solution of a tungsten compound to form tungsten impregnated zirconium hydroxide;
    • (b) drying and calcining the tungsten impregnated zirconium hydroxide to form a first dried and calcined material;
    • (c) sizing the dried and calcined material to particle sizes between about 150 and about 600 microns to form a sized material;
    • (d) incorporating a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof, on the sized material by incipient wetness impregnation using an aqueous solution of a Group VIII metal compound comprising the Group VIII metal to form a Group VIII metal impregnated tungsten/zirconia material;
    • (e) drying and calcining the Group VIII metal impregnated tungsten/zirconia material to form a second dried and calcined material; and
    • (f) contacting the second dried and calcined material with hydrogen in a reducing environment to form the catalyst which comprises, consists of, or consists essentially of tungsten, zirconia and a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof.


The tungsten compound can be any tungsten compound capable of becoming a part of an aqueous solution, and is preferably ammonium metatungstate.


The calcining of step b) is in the presence of oxygen and at a temperature in the range of from about 600° C. to about 900° C., preferably from about 700° C. to about 815° C. The calcining of step e) is in the presence of oxygen and at a temperature in the range of from about 300° C. to less than or equal to about the calcining temperature in step b). The reducing environment of step (f) preferably comprises a temperature in the range of from about 350 to about 400° C., and a pressure in the range of from about 150 psig to about 250 psig.


The Group VIII metal compound can be any compound capable of becoming a part of an aqueous solution, and is preferably selected from the group consisting of nickel(II)nitrate, chloroplatinic acid, tetraamine palladium(II)nitrate, diammineplatinum(II)nitrate, palladium(II)nitrate, and combinations thereof.


For catalysts wherein the Group VIII metal compound comprises nickel; the molar ratio of nickel to tungsten in the second dried and calcined material in step (e) is at most about 0.65; and at least about 70% of the nickel of the second dried and calcined material is in the form of nickel tungstate.


Preferably, the catalyst comprises between about 60 and about 95 weight % zirconia, more preferably between about 70 and about 90 weight % zirconia, and most preferably between about 75 and about 90 weight % zirconia; and between about 5 and about 40 weight % tungsten, more preferably between about 5 and about 35 weight % tungsten, and most preferably between about 10 and about 20 weight % tungsten; and between about 0.01 and about 5 weight % of the Group VIII metal, more preferably between about 0.1 and about 5 weight % of the Group VIII metal.


For catalysts wherein the Group VIII metal compound comprises nickel, the catalyst preferably comprises between about 1.5 and about 5 weight % nickel. For catalysts wherein the Group VIII metal, of the Group VIII metal compound, is selected from the group consisting of platinum, palladium, or combinations thereof, the catalyst preferably comprises between about 0.1 and about 0.5 weight % of the Group VIII metal.


The zirconium hydroxide solid of step (a) can contain sufficient aluminum to result in the catalyst containing between about 0.1 and about 3 weight % aluminum.


The zirconium hydroxide solid of step (a) can also contain sufficient hafnium to result in the catalyst containing between about 0.1 and about 2 weight % hafnium.


The catalyst can contain neither, either or both of such aluminum and hafnium components.


EXAMPLES

The following examples are presented to further illustrate the present invention and are not to be construed as unduly limiting the scope of the present invention.


Example I

WO3/ZrO2 Preparation


The preparation began with the precipitation of amorphous Zr(OH)4. Sufficient concentrated aqueous ammonium hydroxide was added drop-wise to a 0.25 molar aqueous solution of zirconyl chloride under vigorous stirring to obtain a final pH of 10.5-11. The resulting slurry was allowed to age for 1 hour under vigorous stirring before being filtered and washed with approximately 3 times its volume in distilled water. The filter cake was dried in a vacuum oven for 2 days at 121.1° C. and approximately −15 in. Hg. Once dry, the Zr(OH)4 was washed a second time in approximately 3 times its volume of distilled water to ensure all of the residual chloride ions were rinsed from the solid. The Zr(OH)4 was dried overnight in a vacuum oven at 121.11° C. and approximately −15 in. Hg. Tungsten was deposited on the zirconium hydroxide via incipient wetness impregnation using an aqueous solution of ammonium metatungstate ((NH4)6H2W12O40.xH2O) added drop-wise to Zr(OH)4 taken directly from the vacuum oven. The ammonium metatungstate solution concentration was adjusted depending on the desired wt. % W in the final material. The wetted support was dried overnight in a vacuum oven at 121.1° C. and approximately −15 in. Hg. The dried material was calcined in air for three hours at 748.9° C.







Control





Ni


/



WO
3



/



ZrO
2






Catalyst







A




(


3.0






wt
.




%






Ni

;





16.2






wt
.




%






W


)





Nickel was added by incipient wetness impregnation to a portion of the WO3/ZrO2 that had been dried overnight in a vacuum oven (121.1° C., ˜−15 in. Hg) using an aqueous solution of nickel (II) nitrate. The nickel (II) nitrate solution concentration was adjusted depending on the desired wt. % Ni in the final material. The catalyst was again dried overnight in a vacuum oven (121.1° C., ˜−15 in. Hg) before being calcined at 498.9° C. for 3 hours in air. Prior to evaluation for hexane conversion, the catalyst was exposed to 120 standard cubic centimeters per minute (sccm) hydrogen at 371.1° C. and 200 psig for one hour.








Inventive





Ni


/



WO
3



/



ZrO
2






Catalyst







B




(


1.4






wt
.




%






Ni

;





10.8






wt
.




%






W


)







and







Inventive





Ni


/



WO
3



/



ZrO
2






Catalyst







C




(


3.2






wt
.




%






Ni

;





10.1






wt
.




%






W


)





Catalysts B and C were prepared in the same manner as that described for the preparation of Catalyst A except that for inventive Catalysts B and C the calcined support materials were sized to 35-100 mesh (resulting in particle sizes ranging between about 150 and about 600 microns) prior to the addition of Nickel.


Catalysts A, B and C were evaluated for the isomerization of n-hexane by the following procedure:


A stream of hydrocarbons containing about 5 wt % cyclohexane in n-hexane was separately passed over about two grams of each of Catalysts A, B and C in a reactor at a rate of about 25 mL/hr (a LHSV of about 17 hr−1). Along with the hydrocarbon feed, about 60 sccm of H2 was also charged to the reactor during each run, resulting in a H2/HC molar ratio of about 0.7. The reactor temperature was about 287.8° C. and the pressure was about 200 psig.


The results, expressed as n-hexane molecules converted per tungsten atom per hour versus time on stream, are presented in FIG. 1. The results demonstrate that the activities of pre-sieved Inventive Catalysts B and C stabilized, while the activity of non pre-sieved Control Catalyst A continually decreased with time on stream.


Example II






Inventive





Pt


/



WO
3



/



ZrO
2






Catalyst







D




(


0.5






wt
.




%






Pt

;





12.0






wt
.




%






W


)





Catalyst D was prepared using the same procedure as that for Catalyst B, but, in place of the aqueous solution of nickel (II) nitrate, using an aqueous solution of chloroplatinic acid.







Control






P

t



/


Mordenite





Catalyst







E




(

0.5






wt
.




%






Pt

)





A quantity of mordenite was contacted with an aqueous solution of chloroplatinic acid. The catalyst was dried overnight in a vacuum oven (121.1° C., ˜−15 in. Hg) before being calcined at 498.9° C. for 3 hours in air. Prior to evaluation for hexane conversion, the catalyst was exposed to 120 sccm hydrogen at 371.1° C. and 200 psig for one hour.







Control






P

t



/


ZSM


-


5





Catalyst







F




(

0.5






wt
.




%






Pt

)





Catalyst F was prepared using the same procedure as that for Catalyst E, but, in place of the Mordenite, using a ZSM-5 material.


A stream of hydrocarbons containing about 5 wt % cyclohexane in n-hexane was separately passed over about eight grams of each of Catalysts D, E and F in a reactor at a rate of about 25 mL/hr (a LHSV of about 2 hr−1). Along with the hydrocarbon feed, about 60 sccm of H2 was also charged to the reactor during each run, resulting in a H2/HC molar ratio of about 0.7. The reactor temperature varied from about 204.4° C. at the beginning of each run down to about 176.7° C. after 160 minutes on stream and the pressure was about 200 psig.


Conversion results, expressed as n-hexane conversion versus time on stream, are presented in FIG. 2, results of dimethylbutanes (DMB) yield versus time on stream are presented in FIG. 3, and results of 2,3 DMB yield versus time on stream are presented in FIG. 4. The results in FIGS. 2-4 demonstrate that the inventive Pt/WO3/ZrO2 Catalyst D is much more effective at converting n-hexane, with much higher DMB and 2,3 DMB yields, than the Pt/Mordenite Control Catalyst E or the Pt/ZSM-5 Control Catalyst F.


Example III






Inventive





Pt


/



WO
3



/



ZrO
2






Catalyst







G




(


0.3






wt
.




%






Pd

;





13.0






wt
.




%






W


)





Catalyst G was prepared using the same procedure as that for Catalyst B, but, in place of the aqueous solution of nickel (II) nitrate, using an aqueous solution of tetraamine palladium (II) nitrate.







Control






P

d



/


Mordenite





Catalyst







H




(

0.3






wt
.




%






Pd

)





Catalyst H was prepared using the same procedure as that for Catalyst E, but, in place of the aqueous solution of chloroplatinic acid, using an aqueous solution of tetraamine palladium (II) nitrate.







Control






P

d



/


ZSM


-


5





Catalyst







I




(

0.3






wt
.




%






Pd

)





Catalyst I was prepared using the same procedure as that for Catalyst F, but, in place of the aqueous solution of chloroplatinic acid, using an aqueous solution of tetraamine palladium (II) nitrate.


A stream of hydrocarbons containing about 5 wt % cyclohexane in n-hexane was separately passed over about eight grams of each of Catalysts G, H and I in a reactor at a rate of about 25 mL/hr (a LHSV of about 2 hr−1). Along with the hydrocarbon feed, about 60 sccm of H2 was also charged to the reactor during each run, resulting in a H2/HC molar ratio of about 0.7. The reactor temperature varied from about 204.4° C. at the beginning of each run down to about 176.7° C. after 160 minutes on stream and the pressure was about 200 psig.


Conversion results, expressed as n-hexane conversion versus time on stream, are presented in FIG. 5, results of DMB yield versus time on stream are presented in FIG. 6, and results of 2,3 DMB yield versus time on stream are presented in FIG. 7. The results in FIGS. 5-7 demonstrate that the inventive Pd/WO3/ZrO2 Catalyst G is much more effective at converting n-hexane, with much higher DMB and 2,3 DMB yields, than the Pd/Mordenite Control Catalyst H or the Pd/ZSM-5 Control Catalyst I.


Example IV






Inventive





Ni


/



WO
3



/



ZrO
2






Catalyst







J




(


2.44






wt
.




%






Ni

;





12.3






wt
.




%






W


)





Catalyst J was prepared using the same procedure as that for Catalyst B.







Control





Ni


/


Mordenite





Catalyst







K




(

2.5






wt
.




%






Ni

)





Catalyst K was prepared using the same procedure as that for Catalyst E, but, in place of the aqueous solution of chloroplatinic acid, using an aqueous solution of nickel (II) nitrate.







Control





Ni


/


ZSM


-


5





Catalyst







L




(

2.5






wt
.




%






Ni

)





Catalyst L was prepared using the same procedure as that for Catalyst F, but, in place of the aqueous solution of chloroplatinic acid, using an aqueous solution of nickel (II) nitrate.


A stream of hydrocarbons containing about 5 wt % cyclohexane in n-hexane was separately passed over about eight grams of each of Catalysts J, K and L in a reactor at a rate of about 25 mL/hr (a LHSV of about 2 hr−1) Along with the hydrocarbon feed, about 60 sccm of H2 was also charged to the reactor during each run, resulting in a H2/HC molar ratio of about 0.7. The reactor temperature for the Catalyst J run varied from about 204.4° C. at the beginning of each run down to about 176.7° C. after 206 minutes on stream and the pressure was about 200 psig. The reactor temperature for Catalyst K and L runs varied from about 176.7° C. at the beginning of each run up to about 204.4° C. after 72 minutes on stream and the pressure was also about 200 psig.


Conversion results, expressed as n-hexane conversion versus time on stream, are presented in FIG. 8, results of DMB yield versus time on stream are presented in FIG. 9, and results of 2,3 DMB yield versus time on stream are presented in FIG. 10. The results in FIGS. 8-10 demonstrate that the inventive Ni/WO3/ZrO2 Catalyst J is much more effective at converting n-hexane, with much higher DMB and 2,3 DMB yields, than the Ni/Mordenite Control Catalyst K or the Ni/ZSM-5 Control Catalyst L.



FIGS. 11-13 compare n-hexane conversion, DMB yield, and 2,3 DMB yield, respectively, versus time on stream, for Inventive Catalysts D and J with that for Control Catalysts E and F. The results show that the Pt/WO3/ZrO2 Catalyst D and the Ni/WO3/ZrO2 Catalyst J are much more effective at converting n-hexane, with much higher DMB and 2,3 DMB yields, than the Pt/Mordenite Control Catalyst E or the Pt/ZSM-5 Control Catalyst F.


Table 1 below presents compositional and physical property data for Catalysts D-L (grouped by catalyst type), and Table 2 below presents zirconia, nickel and tungsten data for Inventive Catalysts D(Pt), G(Pd), and J(Ni).















TABLE 1






Pt, Pd,
Tungsten







Ni
Surface
Tungsten
Hf



Loading
Loading
Loading
Impurity
SiO2/
Surface Area


Catalyst
(wt %)
(W/nm2)
(wt %)
(wt %)
Al2O3
(m2/g)





















D
0.46
6.8
12.0
1.58

57.6


Pt/WO3/ZrO2


G
0.29
7.4
13.0
1.40

57.4


Pd/WO3/ZrO2


J
2.44
7.3
12.3
1.52

55.1


Ni/WO3/ZrO2


E
0.5



20
500


Pt/Mordenite


H
0.3



20
500


Pd/Mordenite


K
2.5



20
500


Ni/Mordenite


F
0.5



23
425


Pt/ZSM-5


I
0.3



23
425


Pd/ZSM-5


L
2.5



23
425


Ni/ZSM-5






















TABLE 2








Nickel







Zirconium
Tungstate
Nickel



Zirconia
Tungstate
(wt
Oxide
Ni/W
% Ni as


Catalyst
(wt %)
(wt %)
%)
(wt %)
(Mole)
NiWO4







D
79.1
20.5






Pt/WO3/


ZrO2


G
78.9
21.1






Pd/WO3/


ZrO2


J
78.9
11.7
8.1
1.2
0.621
62.2


Ni/WO3/


ZrO2









Example V

Inventive Ni/WO3/ZrO2 Catalysts “M”-“P”


Inventive Catalysts M-P were prepared by the same method of Catalyst B, but with a calcination temperature of 700° C. instead of 498.9° C., and with a relatively low W loading.


Inventive Ni/WO3/ZrO2 Catalyst “Q”


Inventive Catalyst Q was prepared by the same method of Catalyst B, but with a calcination temperature of 700° C. instead of 498.9° C., and with a relatively high W loading.


Inventive Ni/WO3/ZrO2 Catalyst “R”


Inventive Catalyst R was prepared by the same method of Catalyst B, but with a calcination temperature of 800° C. instead of 498.9° C., and with a relatively low W loading.


Inventive Ni/WO3/ZrO2 Catalyst “S”


Inventive Catalyst S was prepared by the same method of Catalyst B, but with a calcination temperature of 900° C. instead of 498.9° C., and with a relatively low W loading.


Additional data for Catalysts M-S is shown in Table 3 below.







Control






WO
3



/



ZrO
2






Catalyst







T




(


17.8






wt
.




%






W

;





700

°






C
.




Calcination



)





Control Catalyst T was prepared by the same method used to prepare the WO3/ZrO2 material in Example I, but with a calcination temperature of 700° C. instead of 748.9° C.















TABLE 3






% Ni in
Ni
Hf
W
Ni/W Mole
ZrO2


Catalyst
NiWO4
(Wt %)
(Wt %)
(Wt %)
Ratio
(Wt %)





















M
83.2
1.379
2.069
10.75
0.40
82.1


N
50.9
3.2
2.08
10.074
0.99
81.5


O
13.4
4.793
1.866
10.26
1.46
78.7


P
8.0
6.352
1.903
10.236
1.94
76.6


Q
100.0
3.04
1.41
16.2
0.59
69.9


R
70.3
1.878
2.116
9.544
0.62
84.1


S
86.4
1.782
2.104
9.549
0.58
84.3









A stream of hydrocarbons containing about 5 wt % cyclohexane in n-hexane was separately passed over about two grams of each of Catalysts M-R and T (and about four grams of catalyst were used for Catalyst S) in a reactor at a rate of about 25 mL/hr (a LHSV of about 17 hr−1 for Catalysts M-R and T, and about 8.5 hr−1 for Catalyst S). Along with the hydrocarbon feed for each run, about 60 sccm of H2 was also charged to the reactor during each run, resulting in a H2/HC molar ratio of about 0.7. For one additional run each, the stream of hydrocarbons was passed over about two grams of each of Catalysts Q and T at a flow rate yielding a LHSV of about 2 hr−1, and the flow rate of H2 charged to the reactor was adjusted to yield a H2/HC molar ratio of about 0.7. The reactor temperature for all runs was about 287.8° C. and the pressure was about 200 psig.


Results of the initial cracking product yield versus % Ni as NiWO4 in the catalyst for Catalysts M-S are presented in FIG. 14. Catalysts M-P are plotted in FIG. 14 as a group labeled “700° C., Low W”. The results in FIG. 14 demonstrate that n-hexane conversion over a Ni/WO3/ZrO2 catalyst having a higher % Ni as NiWO4 generally results in much lower initial cracking activity as compared to a Ni/WO3/ZrO2 catalyst having a lower % Ni as NiWO4.


The n-Hexane conversion results and cracking product yield results for the 2 hr−1 LHSV run and for the 17 hr−1 LHSV run, comparing Catalysts Q and T, are presented in FIGS. 15 and 16, respectively. The results in FIGS. 15 and 16 demonstrate that adding nickel to a WO3/ZrO2 catalyst (as in Catalyst Q) generally results in higher n-hexane conversion as compared to a WO3/ZrO2 catalyst. The results also show that the cracking product yield for catalysts Q and T were similar for the 2 hr−1 LHSV run, and, for the 17 hr−1 LHSV run, was somewhat higher, but still relatively low, for the Ni/WO3/ZrO2 catalyst (Q) as compared to the WO3/ZrO2 catalyst (T).


Example VI

Ni/WO3/ZrO2 Catalysts “U” and “V”


Catalysts U and V were prepared by the same method of Catalyst A, but with a calcination temperature of 800° C. instead of 498.9° C.


Ni/WO3/ZrO2 Catalysts “W” and “X”


Catalysts W and X were prepared by the same method of Catalyst A, but with a calcination temperature of 900° C. instead of 498.9° C.


Additional data concerning Catalysts U-X, showing the aluminum and hafnium concentrations among other items, is presented in Tables 4 and 5 below.


A stream of hydrocarbons containing about 5 wt % cyclohexane in n-hexane was separately passed over about two grams of each of Catalysts U-X in a reactor at a rate of about 25 mL/hr (a LHSV of about 17 hr−1). Along with the hydrocarbon feed, about 60 sccm of H2 was also charged to the reactor during each run, resulting in a H2/HC molar ratio of about 0.7. The reactor temperature was about 287.8° C. and the pressure was about 200 psig.


Results of such n-hexane conversion runs are shown in Table 6 below. These results demonstrate that the presence of Hf and/or Al in the Ni/WO3/ZrO2 catalyst does not have a substantial effect on either initial n-hexane conversion or initial cracking yield.
















TABLE 4







Tungsten








Nickel
Surface
Tungsten
Aluminum
Hafnium
Calcination
Surface



Loading
Loading
Loading
Doping
Impurity
Temperature
Area


Catalyst
(wt %)
(W/nm2)
(wt %)
(wt %)
(wt %)
(° C.)
(m2/g)







U
2.78
10.89
16.2


800
48.9


Ni/WO3/ZrO2


800° C. Calcin.


W
2.33
17.11
16.9


900
32.4


Ni/WO3/ZrO2


900° C. Calcin.


V
2.26
13.17
16.7

1.41
800
41.6


Ni/WO3/


ZrO2(Hf)


800° C. Calcin.


X
2.59
17.79
16.6
1.07
1.35
900
30.6


Ni/WO3/


ZrO2(1Al, Hf)


900° C. Calcin.






















TABLE 5







Tungsten
Nickel
Nickel





Zirconia
Oxide
Tungstate
Oxide
Ni/W
% Ni as


Catalyst
(wt %)
(wt %)
(wt %)
(wt %)
(Mole)
NiWO4





















U
83
2.4
14.6

0.54
100


Ni/WO3/ZrO2


800° C. Calcin.


W
80
10.5
9.4
0.3
0.43
88.4


Ni/WO3/ZrO2


900° C. Calcin.


V
81
6.9
12

0.42
100


Ni/WO3/ZrO2 (Hf)


800° C. Calcin.


X
82
6.4
11.7

0.49
100


Ni/WO3/ZrO2


(1Al, Hf)


900° C. Calcin.




















TABLE 6








Initial
Initial




n-Hexane
Cracking



Catalyst
Conversion (%)
Yield (%)









U
21.6
0.31



Ni/WO3/ZrO2



800° C. Calcin.



W
25.0
3.34



Ni/WO3/ZrO2



900° C. Calcin.



V
22.3
3.10



Ni/WO3/ZrO2 (Hf)



800° C. Calcin.



X
20.3
1.87



Ni/WO3/ZrO2



(1Al, Hf)



900° C. Calcin.










While this invention has been described in detail for the purpose of illustration, it should not be construed as limited thereby but intended to cover all changes and modifications within the spirit and scope thereof.

Claims
  • 1. An isomerization process comprising contacting a hydrocarbon feed comprising n-hexane and less than about 10 volume % naphthenic hydrocarbons with a catalyst at isomerization conditions for isomerization of at least a portion of said n-hexane to a product comprising iso-hexane; wherein said catalyst is prepared by the following method: (a) incorporating tungsten on a zirconium hydroxide solid by incipient wetness impregnation using an aqueous solution of a tungsten compound to form tungsten impregnated zirconium hydroxide;(b) drying and calcining said tungsten impregnated zirconium hydroxide to form a first dried and calcined material;(c) sizing said dried and calcined material to particle sizes between about 150 and about 600 microns to form a sized material;(d) incorporating a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof, on said sized material by incipient wetness impregnation using an aqueous solution of a Group VIII metal compound comprising said Group VIII metal to form a Group VIII metal impregnated tungsten/zirconia material;(e) drying and calcining said Group VIII metal impregnated tungsten/zirconia material to form a second dried and calcined material;(f) contacting said second dried and calcined material with hydrogen in a reducing environment to form said catalyst which comprises tungsten, zirconia and a Group VIII metal selected from the group consisting of nickel, platinum and palladium, and combinations thereof, andwherein said zirconium hydroxide solid of step (a) contains sufficient aluminum to result in said catalyst containing between about 0.1 and about 3 weight % aluminum.
  • 2. A process in accordance with claim 1 wherein said product comprises an iso-hexane selected from the group consisting of 2,2-dimethylbutane, 2,3-dimethylbutane, 2-methylpentane, 3-methylpentane, and combinations thereof.
  • 3. A process in accordance with claim 1 wherein said product comprises 2,3-dimethylbutane.
  • 4. A process in accordance with claim 1 wherein said isomerization conditions include a temperature in the range of from about 160° C. to about 300° C., a pressure in the range of from about 150 to about 250 psig, a liquid hourly space velocity of about 0.5 to about 20 hr−1, and a hydrogen to hydrocarbon molar ratio of at least about 0.1.
  • 5. A process in accordance with claim 1 wherein said isomerization conditions include a temperature in the range of from about 177° C. to about 288° C., a pressure in the range of from about 190 to about 210 psig, a liquid hourly space velocity of about 0.5 to about 10 hr−1, and a hydrogen to hydrocarbon molar ratio of at least about 0.5.
  • 6. A process in accordance with claim 1 wherein said isomerization conditions include a temperature in the range of from about 177° C. to about 230° C., a pressure in the range of from about 190 to about 210 psig, a liquid hourly space velocity of about 0.5 to about 4 hr−1, and a hydrogen to hydrocarbon molar ratio of at least about 0.5.
  • 7. A process in accordance with claim 1 wherein said hydrocarbon feed comprises at least about 80 weight % n-hexane.
  • 8. A process in accordance with claim 1 wherein said hydrocarbon feed comprises at least about 90 weight % n-hexane.
  • 9. A process in accordance with claim 1 wherein said tungsten compound is ammonium metatungstate.
  • 10. A process in accordance with claim 1 wherein said calcining of step b) is in the presence of oxygen and at a temperature in the range of from about 600° C. to about 900° C.; and wherein said calcining of step e) is in the presence of oxygen and at a temperature in the range of from about 300° C. to less than or equal to about said calcining temperature in step b).
  • 11. A process in accordance with claim 10 wherein said Group VIII metal compound comprises nickel; wherein the molar ratio of nickel to tungsten in said second dried and calcined material is at most about 0.65; and wherein at least about 70% of the nickel of said second dried and calcined material is in the form of nickel tungstate.
  • 12. A process in accordance with claim 1 wherein said Group VIII metal compound is selected from the group consisting of nickel (II) nitrate, chloroplatinic acid, tetraamine palladium (II) nitrate, diammineplatinum (II) nitrate, palladium (II) nitrate, and combinations thereof.
  • 13. A process in accordance with claim 1 wherein said catalyst comprises between about 60 and about 95 weight % zirconia; between about 5 and about 40 weight % tungsten; and between about 0.01 and about 5 weight % of said Group VIII metal.
  • 14. A process in accordance with claim 1 wherein said catalyst comprises between about 70 and about 90 weight % zirconia; between about 5 and about 35 weight % tungsten; and between about 0.01 and about 5 weight % of said Group VIII metal.
  • 15. A process in accordance with claim 1 wherein said catalyst comprises between about 75 and about 90 weight % zirconia; between about 10 and about 20 weight % tungsten; and between about 0.1 and about 5 weight % of said Group VIII metal.
  • 16. A process in accordance with claim 13 wherein said Group VIII metal compound comprises nickel and said catalyst comprises between about 1.5 and about 5 weight % nickel.
  • 17. A process in accordance with claim 13 wherein said Group VIII metal, of said Group VIII metal compound, is selected from the group consisting of platinum, palladium, or combinations thereof and wherein said catalyst comprises between about 0.1 and about 0.5 weight % of said Group VIII metal.
  • 18. A process in accordance with claim 1 wherein said reducing environment of step (f) comprises a temperature in the range of from about 350 to about 400° C., and a pressure in the range of from about 150 psig to about 250 psig.
  • 19. A process in accordance with claim 1 wherein said hydrocarbon feed is further characterized to comprise less than about 5 volume % naphthenic hydrocarbons.
  • 20. A process in accordance with claim 1 wherein said zirconium hydroxide solid of step (a) contains sufficient hafnium to result in said catalyst containing between about 0.1 and about 2 weight % hafnium.
US Referenced Citations (13)
Number Name Date Kind
3067127 Plank et al. Dec 1962 A
3558471 Kittrell Jan 1971 A
4912077 Lachman et al. Mar 1990 A
5510309 Chang et al. Apr 1996 A
5552128 Chang et al. Sep 1996 A
5854170 Chang et al. Dec 1998 A
6080904 Chang et al. Jun 2000 A
6124232 Chang et al. Sep 2000 A
6184430 Venkatesh et al. Feb 2001 B1
6977322 Gillespie Dec 2005 B2
7304199 Xu et al. Dec 2007 B2
7399896 Gillespie et al. Jul 2008 B2
20030181774 Kong et al. Sep 2003 A1
Related Publications (1)
Number Date Country
20100191032 A1 Jul 2010 US