Information
-
Patent Grant
-
6770013
-
Patent Number
6,770,013
-
Date Filed
Monday, April 29, 200222 years ago
-
Date Issued
Tuesday, August 3, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Lucchesi; Nicholas D.
- Hwang; Victor
Agents
-
CPC
-
US Classifications
Field of Search
US
- 482 79
- 482 91
- 482 92
- 482 125
- 482 126
- 482 131
- 482 140
- 482 145
- 482 148
- 482 907
- 606 241
- 606 237
- 602 32
- 602 36
- 602 38
- 601 23
-
International Classifications
- A63B21002
- A63B2302
- A61F500
-
Abstract
A device for selectively applying tractive forces to a user's back. In some embodiments, the device is an isometric exercise device. In some embodiments, the device is a portable, collapsible device. In some embodiments, the device enables a user to selectively adjust and control the magnitude and/or application region of the tractive forces while the device is being used. In some embodiments, the user-exerted tractive force is applied to handle portions of the device and transmitted to a lower extremity engaging portion of the device. In some embodiments, the device is configured such that a user can connect and remove the user's lower extremities from the device without requiring the manual manipulation of the mounts used to selectively retain the user's lower extremities. In some embodiments, the device is adjustable for use by a wide variety of differently sized individuals.
Description
FIELD OF THE INVENTION
The present invention relates generally to isometric exercise devices, and more specifically to devices that apply tractive forces to a user's spine.
BACKGROUND OF THE INVENTION
Individuals who suffer from back pain, and particularly from low back pain, may often obtain relief from such pain by the application of a tractive, spine-extending force. Such force normally involves immobilizing the individual's neck and shoulders and applying a force to the individual's lower extremities. The force is generally applied using a hospital-type bed equipped with a tractive force creating mechanism. Another known instrument for applying such a force is an inversion apparatus, which essentially suspends an individual in an inverted position wherein the individual literally hangs by the user's feet or ankles.
The drawback of the traction-equipped bed is that the individual undergoing treatment cannot adjust the tractive force applied after the individual has been strapped into the bed. The inversion technique applies a force that is determined by the weight of the individual, which may be more or less force than the individual needs to extend their spine. Additionally, the inversion technique is uncomfortable if used soon after a meal and is always somewhat uncomfortable because it tends to cause excessive blood pressure in the individual's head.
SUMMARY OF THE INVENTION
The present invention is directed to a device for selectively applying tractive forces to a user's back. In some embodiments, the device is an isometric exercise device. In some embodiments, the device is a portable, collapsible device. In some embodiments, the device enables a user to selectively adjust and control the magnitude and/or application region of the tractive forces while the device is being used. In some embodiments, the user-exerted tractive force is applied to handle portions of the device and transmitted to a lower extremity engaging portion of the device. In some embodiments, the device is configured such that a user can connect and remove the user's lower extremities from the device without requiring the manual manipulation of the mounts used to selectively retain the user's lower extremities. In some embodiments, the device is adjustable for use by a wide variety of differently sized individuals.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view of an isometric exercise device constructed according to the present invention, with various positions of the components of the device shown in phantom lines.
FIG. 2
is a perspective view of another isometric exercise device constructed according to the present invention.
FIG. 3
is a fragmentary perspective view showing the lower-extremity engagement structure of
FIG. 1
with other suitable stirrup assemblies.
FIG. 4
is a fragmentary perspective view showing the lower-extremity engagement structure of
FIG. 1
with other suitable stirrup assemblies.
FIG. 5
is a fragmentary perspective view showing other embodiments of the lower-extremity engagement structure of the device of FIG.
1
.
FIG. 6
is a fragmentary perspective view showing other embodiments of the lower-extremity engagement structure of the device of FIG.
1
.
FIG. 7
is a fragmentary perspective view showing other embodiments of the lower-extremity engagement structure of the device of FIG.
1
.
FIG. 8
is a fragmentary perspective view showing other embodiments of the lower-extremity engagement structure of the device of FIG.
1
.
FIG. 9
is a fragmentary top plan view of the device of
FIG. 1
, with the lower-extremity engagement structure in an extended configuration.
FIG. 10
is a fragmentary top plan view of the device of
FIG. 1
, with both the lower-extremity engagement structure in a stowed configuration.
FIG. 11
is a perspective view of another isometric exercise device constructed according to the present invention.
FIG. 12
is a perspective view of another isometric exercise device constructed according to the present invention.
FIG. 13
is a perspective view of another isometric exercise device constructed according to the present invention.
FIG. 14
is a perspective view of another isometric exercise device according to the present invention.
FIG. 15
is a top plan view of the device of
FIG. 14
, with the transmitting portion pivoted to a collapsed configuration.
FIG. 16
is a top plan view of the device of
FIG. 14
, with the transmitting portion pivoted to another collapsed configuration.
FIG. 17
is a perspective view of another isometric exercise device according to the present invention.
FIG. 18
is a top plan view of the device of
FIG. 17
, with the transmitting portion in a stowed configuration and the lower-extremity engagement structure in an extended configuration.
FIG. 19
is a top plan view of the device of
FIG. 17
, with both the transmitting portion and the lower-extremity engagement structure in collapsed configurations.
FIG. 20
is a perspective view of the device of
FIG. 17
, with both the transmitting portion and the lower-extremity engagement structure in collapsed configurations.
FIG. 21
is a perspective view of another isometric exercise device according to the present invention.
FIG. 22
is a top view illustrating the device of
FIG. 17
being used.
FIG. 23
is a fragmentary side-elevation view of the device of
FIG. 1
or
17
being used to support a user's lower extremity.
FIG. 24
is a fragmentary perspective view of another suitable lock mechanism for use in embodiments of the device that include a pivotal lower-extremity engagement structure.
DETAILED DESCRIPTION AND BEST MODE OF THE INVENTION
An example of an isometric exercise device constructed according to the invention is shown in FIG.
1
and generally indicated at
10
. Device
10
may also be referred to as an isometric stretching device, or a stretching device. In the illustrated embodiment, device
10
includes a body
12
to which a lower-extremity engagement structure
14
and a transmitting portion
16
are coupled. Lower-extremity engagement structure
14
and transmitting portion
16
comprise what may be referred to as a body-connecting means, or a body-connecting structure. In
FIG. 1
, body
12
has an elongate, generally tubular construction. It is within the scope of the invention, however, that body
12
may have a variety of configurations. For example, in some embodiments, body
12
may be a solid, non-tubular member, and in some embodiments, the body may itself form a comparatively wider and/or longer structure, such as to include supports for the underside of a user's legs. Body
12
may optionally include a cover
13
that extends generally between the illustrated portion and the user's legs. Cover
13
, which is shown in fragmentary lines in
FIG. 2
may be formed of any suitable deformable or resilient material and is adapted to provide a smooth and/or supportive interface with the underside of a user's legs.
Lower-extremity engagement structure
14
is adapted to receive and support a user's lower extremities, such as the user's feet, ankles and/or lower legs, and to provide comfortable, yet firm, support to these extremities as tractive forces are applied by a user. As used herein, the term “lower extremity” refers to a user's lower leg, ankle and foot, and therefore lower-extremity engagement structure
14
engages or supports at one of one these regions of a user's lower extremity. The following discussion refers to a lower-extremity engagement structure that provides two generally opposed and spaced-apart contact regions to each of the user's lower extremities. However, it is within the scope of the invention that lower-extremity engagement structure
14
may include any suitable structure for releasably engaging at least a portion of a user's lower extremities to provide resistive support thereto as tractive forces are applied by a user. Similarly, the above definition of “lower extremity,” as used herein, is not meant to imply or require that each of these regions need to be received and supported by lower-extremity engagement structure
14
. In some embodiments, only one region will be received and supported. In others, more than one may be engaged and supported.
In
FIG. 1
, structure
14
includes at least one lower extremity mount
18
for each of the user's lower extremities. Although not required in all embodiments of the invention, it is preferable that a user can insert and remove the user's lower extremities into and out of the mounts without requiring the user to adjust or otherwise manipulate the mounts with the user's hands. More specifically, it should be remembered that many users of device
10
will be experiencing back pain. Accordingly, it is desirable, but not required, that the user can use device
10
, including coupling the user's lower extremities to mounts
18
, without having to bend to a position in which the user's hands are positioned at or around the user's lower extremities.
The mounts shown in
FIG. 1
provide an example of a lower extremity engaging means that is adapted to automatically engage the user's lower extremities. By this it is meant that a user does not have to manually adjust or secure the mounts after insertion of the user's lower extremities into an operative position therewith. As shown, each mount
18
includes a stirrup assembly
19
, such as indicated in FIG.
1
. Each stirrup assembly
19
is adapted to receive and support spaced-apart and generally opposed surfaces of a user's lower extremity. In the illustrated embodiment, each stirrup assembly includes a heel-engaging stirrup
20
, which is adapted to receive and support a heel portion of a user's leg proximate the user's ankle. It is within the scope of the invention that stirrup
20
may additionally or alternatively receive and support the back of a user's lower leg, and as such may in those embodiments also be referred to as a leg-engaging stirrup. Each stirrup assembly also includes a foot-engaging stirrup
22
, which is adapted to receive and support the top of user's foot. As shown, each stirrup includes a base
24
and a body-engaging surface
26
, which is typically formed from a foamed or padded material to cushion the engagement of the user's body by the stirrup. In the illustrated embodiment, the stirrup assemblies define generally opposed concave surfaces.
As shown, the stirrups
20
and
22
in each stirrup assembly
19
are spaced-apart from each other relative to body
12
, with stirrups
22
being located further away from body
12
than stirrups
20
. As used herein, the heel-engaging stirrups may be referred to collectively as a heel-engaging stirrup pair
27
, and the foot-engaging stirrups may be referred to collectively as a foot-engaging stirrup pair
35
.
In
FIG. 23
, a user's lower extremity
212
is shown received in an operative position within stirrup assembly
19
. As shown, the back
213
of the user's heel region
214
is received and supported by stirrup
20
, and the top
215
of the user's foot
216
is received and supported by stirrup
22
. In the illustrated configuration, mount
18
, namely stirrup assembly
19
, supports the user's foot in a relaxed position, in which the user's foot and toes extend at an angle
217
in the range of approximately 25 and approximately 40 degrees relative to the long axis
218
of the user's leg, with a specific orientation of approximately 30-35 degrees shown in FIG.
23
. It is within the scope of the invention that other angles may be used, such as (but not limited to) angles in the range of approximately 15 and approximately 110 degrees, of approximately 20 and approximately 90 degrees, and of approximately 20 and approximately 70 degrees.
A benefit of the configuration shown in
FIG. 23
is that a user's lower extremities may be inserted into an operative position with the device without requiring the use of the user's hands. More specifically, the stirrups in each stirrup assembly are oriented such that neither stirrup defines a closed loop, such as a strap or cuff that must be secured and/or tightened around a user's leg after insertion of the user's leg therethrough. Instead, by inserting the user's lower extremity above the heel-engaging stirrup and below the foot-engaging stirrup, the stirrups apply generally opposed restraining forces upon the user's lower extremity, and therefore retain the user's lower extremity without requiring the use of manually tightened straps, cuffs or the like. The illustrated embodiment also demonstrates an example of a mount that accommodates lateral insertion and removal of the user's lower extremity. More specifically, each mount enables a user to insert one of the user's lower extremities into an operative position relative to the mount by moving the user's lower extremity into this position from a disengaged position on either lateral side of the mount. Furthermore, after the user's lower extremities are inserted into an operative position, the user is not required to keep the user's feet in a flexed position to prevent the user's feet from disengaging the stirrups.
In the illustrated embodiment shown in
FIG. 1
, the heel-engaging and foot-engaging stirrups are respectively mounted on axles
28
and
36
, which are rotatably received in bores
30
in a frame portion
44
of structure
14
. Also shown are optional bushings
32
that space the stirrups relative to frame portion
44
. In this configuration, the stirrups in each stirrup pair may be rotated as a unit with respect to the frame portion. In the illustrated embodiment, the region
45
of frame portion
44
to which mounts
18
are coupled extends at an angle relative to the long axis of body
12
, thereby positioning the stirrups, and a user's lower extremities that are received therein, in an elevated position relative to the body. It is within the scope of the invention, however, that frame portion
44
, including region
45
, may have a wide variety of configurations relative to body
12
, including configurations in which region
45
extends generally along the long axis
47
of body
12
and configurations in which region
45
extends generally parallel and offset from this axis.
Recognizing that devices according to the present invention may be used by a variety of users of different sizes, the distance between the stirrups
20
and
22
forming each stirrup is preferably adjustable. For example, in
FIG. 1
, structure
14
includes a plurality of spaced-apart bores
30
into which axles
28
and
36
may be selectively inserted to adjust the relative spacing of the axles, and corresponding stirrups, along frame portion
44
. In the illustrated embodiment, at least one stirrup of each stirrup pair
27
and
35
includes a fastening mechanism
54
that enables the stirrup to be selectively released from the axle, thereby permitting removal of the corresponding axle from the bore in which it was inserted. The axle may thereafter be reinserted into a different bore to adjust the relative spacing of the stirrup pairs. An example of such a fastening mechanism
54
is shown in
FIG. 1
in the form of a set screw, but other suitable mechanisms may be used, such as pins, threads, spring-biased detents, and the like. An additional or alternative reason for providing adjustability to the sizing of the mounts is that users may periodically use a device according to the invention while wearing shoes, and at other times use the device when not wearing shoes.
As discussed, the stirrups are mounted on axles, which are rotatably received within bores in structure
14
. This enables the respectively leg- or foot-engaging stirrups to be rotated with their respective axles, such as to adjust to the shape of a particular user's lower extremities and/or to permit the stirrups to be rotated as a user's lower extremity is inserted into and removed from an operative position with structure
14
. To illustrate that the stirrups are rotatable relative to structure
14
, the stirrups are shown in
FIG. 1
in a free rotated position, with an operative position shown in FIG.
2
.
It is within the scope of the invention that other suitable mechanisms may be used to rotatably couple the stirrups to structure
14
. For example, instead of having the stirrups rotate with the respective axles, each stirrup instead may be rotatably mounted on the respective axle, such as with bearings or other suitable rotatable mounts. A benefit of such a construction is that the stirrups on each end of an axle may be rotated independent from each other. This may be desirable, for example, when a user prefers to insert or remove one lower extremity at a time and/or when a user's lower extremities are not of equal size. An example of such a construction is shown in FIG.
3
. As shown, each stirrup
20
and
22
includes a bearing assembly
60
that enables the stirrup to rotate about its corresponding axle. Bearing assembly
60
may include any suitable structure that permits rotation of the stirrup relative to the axle. Illustrative examples of suitable structures for bearing assembly
60
are shown in FIG.
3
. Heel-engaging stirrups
20
demonstrate an example of a bearing assembly
60
that includes a plurality of ball-bearings
62
that travel within races
64
as the stirrup is rotated. Foot-engaging stirrups
22
demonstrate another example of a suitable bearing assembly, namely, a bearing assembly
60
in which axle
36
includes a neck
66
that is received through a bore
68
in stirrup
22
and a head
70
that is larger in cross-sectional area than bore
68
. As shown, head
70
is retained within the stirrup to provide a rotational mount for the stirrup upon the axle.
As another example of a suitable mounting mechanism for the stirrups, each stirrup may be mounted on its own axle. This configuration enables each stirrup to be rotatably and/or adjustably positioned independent of the other stirrups. An example of such a construction is shown in
FIG. 4
, in which the heel-engaging stirrups are mounted on axles
28
′ and
28
″ and the foot-engaging stirrups are mounted on axles
36
′ and
36
″. To further demonstrate that a variety of rotatable configurations may be used for the independent axles, heel-engaging stirrups
20
are illustratively presented with axles
28
′ and
28
″ that are nonrotatably mounted on the stirrups and which are rotatably coupled to frame portion
44
by any suitable bearing assembly
60
so that the axles and stirrups rotate as a unit. As another example, foot-engaging stirrups
22
are illustratively presented with axles
36
′ and
36
″ that nonrotably extend from frame portion
44
and which are rotatably coupled to the stirrups. It is also within the scope of the invention that the stirrups may be fixedly, or non-rotatably, mounted relative to structure
14
.
It should be understood that the examples of suitable stirrups and mounting mechanisms therefor may be used with any devices according to the present invention. Typically, each of the stirrups will utilize the same type of mount, but it is also within the scope of the invention that the stirrup assemblies, or more commonly the stirrup pairs, may utilize different mounting mechanisms. For example, one of the stirrup pairs, such as pair
27
, may be non-adjustably mounted relative to the frame portion, with the other stirrup pair, such as pair
35
, being adjustably mounted relative to the frame portion and the other stirrup pair to provide for selectively sizing of the distance between the stirrup pairs. An example of this configuration is graphically illustrated in
FIG. 4
, although it is also within the scope of the invention that the bearing assembly of
FIG. 4
may be implemented with other stirrups and that other stirrup pairs may have the adjustability shown in FIG.
4
.
Although the stirrups described above provide examples of suitable leg-engagement structures for use with devices
10
according to the present invention, other such structures may also be used and are within the scope of the invention. For example, and as shown in
FIG. 5
, structure
14
may include mounts
18
that include at least one post or other tubular member
72
that projects from frame portion
44
and which is adapted to support a user's feet and/or the lower portions of a user's legs. Preferably, member
72
includes an outer layer
74
formed from a soft or padded material to cushion the engagement with the user's body. It is within the scope of the invention that member
72
may be constructed with any of the adjustability and/or rotatability described and/or illustrated above with respect to stirrups
20
and
22
. In the left side of
FIG. 5
, mount
18
includes a pair of spaced-apart tubular members
72
, with one member being adapted to receive and support an upper portion of a user's foot and the other member being adapted to receive a support a heel or lower-leg portion of the user's lower extremity. On the right side of
FIG. 5
, mount
18
includes a tubular member
72
and a heel-engaging stirrup
20
to graphically illustrate that the lower-extremity engagement structure may have a variety of configurations, such as including selected ones of the mounts, and variations thereto, described and/or illustrated herein.
It is also within the scope of the invention that lower-extremity engagement structure
14
does not include a pair of spaced-apart mounts
18
for each lower extremity. Instead, structure
14
may include a single mount for each of the user's lower extremities. For example, structure
14
may include leg cuffs
76
instead of the stirrup assemblies. An example of such a configuration is shown in
FIG. 6
, in which it can be seen that cuffs
76
are adapted to releasably extend around the user's lower leg, as shown in solid lines, and/or feet, as shown in dashed lines. Cuffs
76
may be formed from an elastomeric material that stretches to permit a user's lower extremities to pass therethrough. Alternatively or additionally, the cuffs may include a fastening mechanism
78
, such as buckles, straps, hook-and-loop closure mechanisms, ties, or the like that permit a normally open cuff to be secured around a user's lower extremity. As another example, region
45
of frame portion
44
may extend generally transverse to the long axis of body
12
, such as shown in FIG.
7
. In
FIG. 7
, another example of a suitable mount
18
is also shown, namely a rigid brace
82
that extends from region
45
and around which a user's feet are extended, and optionally cushioned by padding
84
. As discussed, this configuration requires a user to resist the user-applied tractive forces with the user's feet. As a result, this configuration may not be as desirable for some applications when compared to mounts
18
in which the user is not required to exert this positive retaining force by flexing the user's feet while device
10
is used. Still another example is shown in
FIG. 8
, in which flexible straps or loops,
86
are used to support the user's lower extremities.
Returning to
FIG. 1
, it can be seen that structure
14
is pivotally coupled to body
12
by a hinge assembly
90
. Hinge assembly
90
enables structure
14
to be selectively pivoted between an operative, or extended, configuration, which is shown in
FIGS. 1 and 9
, and a stowed configuration, which is shown in FIG.
10
. As shown in
FIG. 10
, structure
14
may be pivoted about hinge assembly
90
to a position in which it is at least substantially overlapping with a body
12
. Examples of situations in which it would be desirable to collapse structure
14
to its stowed configuration include storage and/or transport of the device where it may be desirable for the device to have a shorter overall length and/or overall height.
Hinge assembly
90
may include any suitable structure for pivotally coupling body
12
and lower-extremity engagement structure
14
together for pivotal movement of structure
14
between the extended and stowed configurations. An example of a suitable configuration for hinge assembly
90
is shown in FIGS.
1
and
9
-
10
. As shown, hinge assembly
90
includes a pair of hinge plates
92
and
94
. As perhaps best seen in
FIG. 1
, plates
92
and
94
extend from structure
14
and are pivotal about an axis defined by axle
95
, which pivotally interconnects body
12
and lower-extremity engagement structure
14
. It should be understood that at least one of hinge plates
92
and
94
may alternatively extend from body
12
instead of structure
14
.
As shown in
FIG. 1
, each hinge plate includes bores
96
and
98
into which pins
100
may be received to releasably retain structure
14
in a selected configuration. In the illustrated embodiment, the hinge plates include a first bore
96
, which retains structure
14
in its stowed configuration when pins
100
are inserted therethrough, and a second bore
98
, which retains structure
14
in its extended configuration when pins
100
are inserted therethrough. The pin and bore assembly described above may be referred to a lock mechanism
102
. As also shown in FIGS.
1
and
9
-
10
, lock mechanism
102
includes a release mechanism
103
that is adapted to withdraw pins
100
from the bores responsive to a user depressing or otherwise actuating buttons
104
. As perhaps best seen in
FIG. 9
, buttons
104
are coupled via a leaf spring
106
to pins
100
such that when the buttons are depressed, the pins are withdrawn from a position in which they would pass through one of the bores. Leaf spring
106
provides an example of a suitable biasing mechanism
108
that urges the pins to automatically extend to a position in which the pins pass through the bores to retain structure
14
in a selected configuration. As such, the device may be described as having a hinge assembly with an automatic lock mechanism. It is within the scope of the invention that other suitable biasing mechanisms
108
may be used, such as coil springs, resilient (compressible or extendable) members, and the like. Similarly, release mechanism
103
may utilize other suitable forms of actuators other than buttons
104
, such as levers, slides, pull tabs, and the like. It is also within the scope of the invention that hinge assembly
90
does not include a lock mechanism and/or a biasing mechanism.
Another example of a suitable hinge assembly
90
is shown in FIG.
11
. As shown, lock mechanism
102
includes a removable pin
120
, which may be either free from device
10
or tethered thereto by a leash
122
. The structure shown in
FIG. 11
provides a simpler structure than the previously described automatically engaging lock mechanism. In the illustrated embodiment, structure
14
is pivoted relative to body
12
until the bores through the hinge plates and corresponding portion of body
12
(or structure
14
) are aligned, and then pin
120
is inserted through the body. To release the lock assembly, the user simply pulls the pin out of the bore.
Another example of a suitable lock mechanism
102
is shown in
FIG. 24
, in which the lock mechanism includes what may be referred to as a captive pin
230
. More specifically, the lock mechanism includes a pin
232
that is biased, such as by a spring or other suitable biasing mechanism
234
into a position where it will extend into bores
96
or
98
from external body
12
. Captive pin
230
also includes a head, or knob,
236
that a user grasps and draws against the biasing force in a direction generally transverse to the long axis of body
12
to release the lock mechanism so that the lower-extremity engagement structure may be pivoted relative to the body. When a user releases the knob, the biasing mechanism automatically urges the pin to a position where it will insert into one of bores
96
or
98
, subject to the bore being properly aligned to receive the pin. Yet another example of a captive pin
230
is a cam mechanism that selectively draws the pin into and out of bores
96
or
98
as the cam is rotated relative to the body.
It is also within the scope of the invention that structure
14
is removably coupled to body
12
, but not pivotally coupled to the body. An example of such a configuration is shown in FIG.
12
. As shown, body
12
terminates at an end region
130
to which a corresponding end region
132
of structure
14
is releasably coupled by a fastening mechanism
134
. In the illustrated embodiment, the end regions are telescopingly coupled together and are retained in an assembled configuration by a pin
136
that passes through a bore
137
in the end regions. As shown, end region
132
of structure
14
is received within end region
130
of body
12
, but it is within the scope of the invention that this relationship may be reversed. Similarly, in
FIG. 12
, a plurality of bores
137
are shown in end region
132
to illustrate that the regions may optionally be adjustably secured together, such as to extend the overall length of device
10
. It is within the scope of the invention that at least one of the end regions may include more than one bore to permit the length of the device to be adjusted and that other suitable fastening mechanisms may be used. Examples of other suitable fastening mechanisms include spring-biased pins, such as described above with respect to pins
100
(including the variants described above), mating threads on the respective end regions, and other twist-to-lock mechanisms.
In a further variant, it is within the scope of the invention that the lower-extremity engagement structure is fixedly coupled to body
12
. By “fixedly coupled,” it is meant that structure
14
is not adapted to be removed and replaced from engagement with body
12
without destroying at least a portion of body
12
, structure
14
, or any intervening structure. Examples of configurations in which body
12
and structure
14
are fixedly coupled together include embodiments in which the portions are integrally formed with each other (as shown in solid lines in
FIG. 13
, and embodiments in which the portions are welded or adhesively bonded together, as shown in dashed lines in FIG.
13
. Alternatively, “releasably coupled” portions and “removably coupled” portions refer to portions that are configured to be repeatedly coupled together into an operative position, disconnected, and then recoupled together without disassembly or destruction of the portions.
A benefit of fixedly coupling body
12
and structure
14
together is that structure
14
may be integrally formed with body
12
, or if separately formed from body
12
, secured thereto with less complex and/or expensive structure as may be required for a pivotal or releasable coupling. A benefit of a removable coupling is that structure
14
can be removed from body
12
, such as for storage or transportation, thereby reducing the overall dimensions of the device. A removable lower-extremity engagement structure also permits the selective removal and replacement of structure
14
, such as if necessary due to wear. It also permits the interchange of structure
14
with a different type of lower-extremity engagement structure or even a lower-extremity exercising structure, which is configured for use by a user during exercises or strengthening activities. Regardless of the interconnection of structure
14
with body
12
, any of these embodiments of device
10
may include any of the mounts
18
and/or transmitting portions
16
described and/or illustrated herein.
As discussed, device
10
enables the magnitude and rate of application of the tractive forces to be applied and selected by a user. As such, device
10
may be described as being configured to permit the application of user-generated tractive forces, meaning that the user controls at least the timing and magnitude of the tractive forces, and commonly, the application and release of these forces while device
10
is being used. In contrast, many conventional devices either automatically apply a predetermined and constant tractive force as the device is used, or only permit the magnitude of the tractive force to be adjusted while device
10
is not being used.
Returning to
FIG. 1
, it can be seen that a transmitting portion
16
includes a pair of handle assemblies
150
that extend from body
12
. Each handle assembly includes a gripping portion
152
, which is positioned and adapted to be gripping by a user of device
10
, and a force-transmitting structure
154
, which interconnects the handle with body
12
so that user-applied tractive forces are transmitted from grippable portion
152
to body
12
and therefore to lower extremity engagement structure
14
. In the illustrated embodiment, it can be seen that the handle assemblies extend at divergent angles from body
12
, generally away from structure
14
. In this position, the gripping portions are positioned to be grasped by a user's hands when the hands are at the user's sides. As such, device
10
has a generally Y-shaped configuration in FIG.
1
. In
FIG. 1
, gripping portions
152
extend generally transverse to the long axis
47
of body
12
and out of a plane defined by body
12
and structure
154
. It is within the scope of the invention that portions
152
may extend in other directions, such as transverse to long axis
47
and generally within this plane, as indicated in dashed lines in FIG.
1
.
Because device
10
may be used by a variety of users having different sizes, the distance
156
between handle assemblies
150
is preferably (but not required to be) adjustable. An example of an embodiment of device
10
in which the distance between handle assemblies
150
is adjustable is shown in FIG.
14
. As shown, each handle assembly
150
includes an end region
160
distal gripping portion
152
that is pivotally coupled by body
12
. In the illustrated embodiment, end regions
160
are pivotally coupled to body
12
by a bracket
162
, which includes pins
164
that extend through regions
160
and define pivot axes therefor. It is within the scope of the invention that any other suitable mount that enables pivotal movement of the handle assemblies relative to body
12
may be used.
Also shown in
FIG. 14
is a handle retention structure
170
that is adapted to limit the extent to which the handle assemblies may pivot away from each other, thereby limiting the maximum distance
156
between the handle assemblies. Retention structure
170
includes a leash assembly
172
that is coupled to each structure
154
and limits the extent to which the handle assemblies may be pivoted away from the long axis of body
12
.
In the illustrated embodiment, leash assembly
172
includes a pair of leashes
174
, with each leash
174
including end regions
176
and
178
that are respectively coupled to structures
154
and body
12
. A benefit of each handle assembly being tethered to body
12
by its own leash
174
is that the handles may be independently positioned relative to each other, within the range of positions defined by the respective leash
174
. It is within the scope of the invention, however, that leash assembly
172
may couple the handle assemblies together, such that the maximum distance between the assemblies is limited, but the distance between each handle assembly and axis
47
is not required to be equal. Leashes
174
may be constructed from a variety of materials, including flexible and/or rigid materials. Examples of rigid materials include pivotally and/or slidably coupled metal or rigid plastic members. Examples of flexible materials include ropes, cords, straps, and extruded or molded flexible plastic materials. Leashes
174
may also be formed from a plurality of adjustably interconnected rigid materials, such as chain, hinged metal or rigid plastic segments, and rigid telescoping members. In some embodiments, it may be desirable for the retention structure to include a biasing mechanism
180
that urges the handle assemblies toward each other and/or toward long axis
47
. Examples of suitable biasing mechanisms include springs and elastomeric bands, such as may be used to form leashes
174
.
As discussed, pivotally coupling handle assemblies
150
to body
12
enables the distance
156
between the handle assemblies to be selectively adjusted by a user. One possible application of this adjustment mechanism is discussed above, namely to size device
10
for use by users with different girths and/or preferred operative configurations for device
10
. Another possible application is to permit the handle assemblies to be pivoted from the extended, or operative, configuration shown in
FIG. 14
to a stowed configuration, such as shown in
FIGS. 15 and 16
. As shown, the handle assemblies are pivoted to configurations in which they extend generally parallel to axis
47
and therefore reduce the overall width of device
10
. In
FIG. 15
, the handles are pivoted toward each other and away from structure
14
, while in
FIG. 16
, the handles are pivoted toward structure
14
to provide more compact overall shape for device
10
. It should be understood that embodiments of device
10
that are intended to be pivoted to the stowed configuration shown in
FIG. 16
should either be formed without a retention structure
170
, include a leash assembly that is sufficiently elastomeric or stretchable to permit the pivotal range required to pivot the handle assemblies to the configuration shown in
FIG. 16
, where they are releasably retained by retainers
182
, or the device should include a releasable retention structure (such as a releasable leash assembly), in which the at least one of the body and/or the handle assemblies may be selectively disconnected by the retention structure. In the illustrated embodiment, leash assembly
170
is shown disconnected from structures
154
to permit the handle assemblies to pivot to the illustrated position. Also shown in
FIGS. 15-16
are retainers
182
that releasably engage the handle assemblies to retain the handle assemblies in the stowed configuration.
As discussed above, it is within the scope of the invention that the position of mounts
18
relative to body
12
may be adjustable, such as to permit device
10
to be sized for use by a variety of differently sized individuals. As such, it is not necessary for the distance between transmitting portion
16
and body
12
, such as the distance between grippable portions
152
and body
12
, to be adjustable. However, in some embodiments, it may be desirable for this distance to be adjustable.
An example of a device
10
according to the present invention in which transmitting portion
16
is adjustably mounted on body
12
is shown in FIG.
17
. As shown, transmitting portion
16
, including handle assemblies
150
, bracket
162
, and retention structure
170
are adjustably positioned along the length of body
12
. In the illustrated embodiment, bracket
162
is slidably adjustable along the length of body
12
and includes a fastener
190
that selectively engages a plurality of bores, or detents,
192
, along body
12
to secure the transmitting portion in a selected position along the body. In dashed lines in
FIG. 17
, selected mounting positions for transmitting portion
16
are shown for the purpose of illustration. Fastener
190
may be freely insertable and removable from bracket
162
, or alternatively may be spring biased into a locked position, in which the fastener is positioned to engage one of the detents. As also shown in
FIG. 17
, retention structure
170
, namely leashes
174
are mounted on a carriage
194
that also slides along body
12
responsive to repositioning of bracket
162
along the body. Similar to several of the previously described embodiments of device
10
, the embodiment shown in
FIG. 17
may also be selectively collapsed from the extended, or operative, configuration shown in
FIG. 17
to a collapsed, or stowed, configuration, which is shown in
FIGS. 18-20
. As shown, the overall length of the device may typically be further collapsed from the configurations illustrated previously when transmitting portion
16
is adjustably mounted on body
12
.
Although the embodiment of device
10
shown in
FIG. 17
includes not only an adjustable transmitting portion
16
but also an adjustable lower-extremity engagement structure
14
, it is within the scope of the invention that the adjustable transmitting portion may be implemented with any of the lower-extremity engagement structures described and/or illustrated herein. Similarly, device
10
may be implemented with an adjustable transmitting portion that does not include a retention structure
170
or pivotal handle assemblies
150
.
Another suitable mechanism for providing adjustability to the size of device
10
when it is in its operative, or extended, configuration is for the length of handle assemblies
150
to be adjustable. An example of such a device is shown in
FIG. 21
, in which the length of transmitting structure
154
is selectively adjustable by an adjustment mechanism
200
. Although illustrated in combination with an adjustable bracket
162
that may be selectively positioned along the length of body
12
, it is also within the scope of the invention that handle assemblies
150
with adjustable lengths may be used with embodiments of device
10
that do not include an adjustable bracket
162
. Mechanism
200
may include any suitable structure that enables the length of transmitting structure
154
to be adjusted.
An example of a suitable configuration for an adjustable transmitting structure
154
is shown in
FIG. 21
, in which structure
154
includes telescoping members
202
and
204
that are slidably adjustable relative to each other, and mechanism
200
includes a releasable fastener
206
that is schematically illustrated in FIG.
21
and selectively secures the members in a selected position relative to each other. For example, the members may be releasably retained in a selected length by an internal cam structure, by spring biased pins that extend through apertures in the outer member, and/or by a pin that is selectively inserted through selected ones of aligned bores in the members. As also indicated graphically in dashed lines in
FIG. 21
, it is within the scope of the invention that structure
154
includes more then two telescoping members and corresponding fasteners
206
. Similarly, the length of structure
154
may be adjustable by mechanisms other than telescoping members, such as by including two or more members that are selectively secured in a side-by-side relationship to define the length of structure
154
.
In
FIG. 22
, device
10
, such as the embodiment shown in
FIG. 17
, is shown being used by a user
210
. As shown, the user's lower extremities
212
are received and supported, or retained, by lower-extremity engagement structure
14
. In the illustrated embodiment, the back of the user's heel region
214
of each extremity is supported by a heel-engaging stirrup
20
, and the front, or top, of each of the user's feet
216
is supported by a foot-engaging stirrup
22
. When the user grasps grippable portions
152
of handle assemblies
150
and applies a force thereto that is directed generally toward the user's lower extremities, a tractive force is applied to the user's spine and lower back. The timing and the magnitude of the tractive force is controlled by the user while the device is being used, namely, by the user selecting when and how hard to apply this user-exerted force. As such, while device
10
is being used, the user may experience natural feedback as the tractive forces are applied to the user's body, and then discontinue, continue or adjust the application of the tractive forces without repositioning or removing the user's hands or lower-extremities, and even without interrupting the application of the tractive forces. Similarly, because the device enables a user to apply the user-exerted forces with differing magnitudes to each gripping portion
152
, the user may selectively apply a localized tractive force that is stronger on one side of the user's back than the other. As an extension of this application, the user may even only apply force to one of the grippable portions at a time.
INDUSTRIAL APPLICABILITY
Exercise devices according to the present invention are applicable to the fitness, rehabilitation, health and other industries in which is it necessary or desirable to apply tractive forces to a user's lower back or other body portions.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
Claims
- 1. An isometric exercise device, comprising:a body; a lower extremity engagement structure associated with the body and adapted to engage and retain a user's lower extremities, wherein the engagement structure includes a frame portion and, for each of the user's lower extremities, a pair of mounts that are coupled to the frame portion; a transmitting portion associated with the body generally distal the lower extremity engagement structure, wherein the transmitting portion includes a pair of handle assemblies with grippable portions that are adapted to be grasped by a user's hands while the user's lower extremities are engaged by the lower extremity engagement structure such that when a user exerts a user-directed force upon the grippable portions in a direction generally toward the lower extremity engagement structure, a tractive force is applied to the user's back; and a hinge assembly pivotally coupling the frame portion to the body for pivotal movement of the frame portion and the pairs of mounts as a unit relative to the body in a range of configurations that include an extended configuration, in which the engagement structure extends generally away from the body and the transmitting portion relative to the hinge assembly, and a collapsed configuration, in which the engagement structure at least substantially overlaps with the body and extends generally toward the transmitting portion relative to the hinge assembly.
- 2. The device of claim 1, wherein the mounts are adapted to engage and support the user's lower extremities without requiring manual manipulation of the mounts.
- 3. The device of claim 1, wherein each pair of spaced-apart mounts is adapted to engage and support spaced-apart portions of a respective one of the user's lower extremities.
- 4. The device of claim 3, wherein one of each pair of mounts is adapted to engage and support a heel portion of the user's lower extremity.
- 5. The device of claim 3, wherein one of each pair of mounts is adapted to engage and support a foot portion of the user's lower extremity.
- 6. The device of claim 5, wherein one of each pair of mounts is adapted to engage and support a heel portion of the user's lower extremity.
- 7. The device of claim 3, wherein each pair of spaced-apart mounts is adapted to accommodate lateral insertion and removal of the user's lower extremities.
- 8. The device of claim 3, wherein each pair of the spaced-apart mounts includes a stirrup adapted to engage and support a portion of the user's lower extremity.
- 9. The device of claim 3, wherein at least one of each pair of mounts is rotatable relative to the frame portion.
- 10. The device of claim 3, wherein the frame portion includes a region to which the pairs of mounts are mounted, and further wherein the region extends at an inclined angle relative to a long axis of the body.
- 11. The device of claim 1, wherein the device includes a lock mechanism adapted to selectively retain the engagement structure in a selected configuration.
- 12. The device of claim 11, wherein the lock mechanism is adapted to automatically secure the engagement structure in a selected configuration upon pivoting of the engagement structure to the configuration.
- 13. The device of claim 11, wherein the lock mechanism includes a release mechanism that upon actuation is adapted to selectively release the lock mechanism to free the engagement structure for pivotal movement relative to the body, and further wherein the release mechanism includes a biasing mechanism that urges the release mechanism away from an actuated position.
- 14. The device of claim 1, wherein the engagement structure is selectively releasable from the body.
- 15. The device of claim 1, wherein the engagement structure is non-removably coupled to the body.
- 16. The device of claim 1, wherein each of the handle assemblies is pivotally coupled to the body.
- 17. The device of claim 16, wherein the handle assemblies are selectively positionable in a range of configurations that include an extended configuration, in which the handle assemblies extend divergently away from the lower extremity engagement structure, and a collapsed configuration, in which the handle assemblies extend generally parallel to a long axis of the body.
- 18. The device of claim 16, wherein the device further includes a handle retention structure adapted to limit the degree to which the handle assemblies may pivot away from the body.
- 19. The device of claim 16, wherein the device further includes at least one retainer adapted to selectively retain the handle assemblies proximate the body.
- 20. The device of claim 1, wherein each of the handle assemblies is selectively positionable within a range of positions on the body.
- 21. The device of claim 1, wherein the handle assemblies are coupled to the body by a bracket, and further wherein the bracket is adjustably mounted on the body for selective positioning within a range of positions relative to the lower extremity engagement structure to adjust the distance between the bracket and the lower extremity engagement structure and thereby adjust the distance between the lower extremity engagement structure and the handle assemblies.
- 22. The device of claim 21, wherein the handle assemblies are pivotally coupled to the bracket.
- 23. The device of claim 22, wherein the device further includes a handle retention structure adapted to limit the degree to which the handle assemblies may pivot away from the body.
- 24. The device of claim 23, wherein the device further includes at least one retainer adapted to selectively retain the handle assemblies proximate the body.
- 25. An isometric exercise device, comprising:an elongate body defining a long axis; a lower extremity engagement structure pivotally coupled to an end region of the body and having a plurality of mounts adapted to engage and retain a user's lower extremities, wherein the lower extremity engagement structure is selectively pivotal relative to the body in a range of configurations that includes a collapsed configuration, in which the lower extremity engagement structure at least partially overlaps with the body, and an extended configuration, in which the mounts extend generally away from the body relative to the collapsed configuration; a transmitting portion associated with the body, wherein the transmitting portion includes a pair of handle assemblies with grippable portions that are adapted to be grasped by a user's hands while the user's lower extremities are engaged by the lower extremity engagement structure such that when a user exerts a caudally directed force upon the grippable portions, the force is transmitted through the grippable portions to exert a tractive force to the user's back, wherein the handle assemblies are pivotally coupled to the body by a bracket and are selectively pivotal within a range of configurations that include a collapsed configuration, in which the handle assemblies extend generally parallel to the long axis, and an extended configuration, in which the handle assemblies extend divergently from the bracket in a direction generally away from the lower extremity engagement structure, and further wherein the bracket is adjustably mounted on the body for selective positioning along the body to respectively adjust the distance between the bracket and the lower extremity engagement structure.
- 26. The device of claim 25, further including a lock mechanism adapted to selectively retain the lower extremity engagement structure in a selected configuration relative to the body.
- 27. The device of claim 25, further including a retention structure adapted to limit the degree to which the handle assemblies may pivot away from the long axis of the body.
- 28. The device of claim 25, wherein the mounts are adapted to engage and support a user's lower extremities without requiring manual manipulation of the mounts.
- 29. The device of claim 28, wherein the mounts include a pair of stirrup assemblies, and further wherein each stirrup assembly includes a first stirrup that is adapted to engage and support a heel portion of the user's lower extremity proximate the user's ankle and a second stirrup that is adapted to engage and support an upper portion of a user's foot.
- 30. The device of claim 29, wherein the lower extremity engagement structure includes a frame portion to which the mounts are coupled, and further wherein at least one of the stirrups is rotatably mounted relative to the frame portion.
- 31. The device of claim 25, wherein the plurality of mounts includes for each of the user's lower extremities at least a pair of spaced-apart mounts adapted to engage and support spaced-apart portions of a respective one of the user's lower extremities.
- 32. The device of claim 31, wherein one of each pair of mounts is adapted to engage and support a heel portion of the user's lower extremity.
- 33. The device of claim 31, wherein one of each pair of mounts is adapted to engage and support a foot portion of the user's lower extremity.
- 34. The device of claim 33, wherein one of each pair of mounts is adapted to engage and support a heel portion of the user's lower extremity.
- 35. The device of claim 31, wherein each pair of spaced-apart mounts is adapted to accommodate lateral insertion and removal of the user's lower extremities.
- 36. The device of claim 31, wherein each pair of spaced-apart mounts includes a stirrup adapted to engage and support a portion of the user's lower extremity.
- 37. The device of claim 31, wherein the engagement structure includes a frame portion that couples each pair of mounts to the body, and further wherein at least one of each pair of mounts is rotatable relative to the frame portion.
- 38. The device of claim 31, wherein the engagement structure includes a frame portion that couples each pair of mounts to the body, wherein the frame portion includes a region to which each pair of mounts is mounted, and further wherein the region extends at an inclined angle relative to a long axis of the body.
- 39. The device of claim 26, wherein the lock mechanism is adapted to automatically secure the engagement structure in a selected configuration upon pivoting of the engagement structure to the configuration.
- 40. The device of claim 26, wherein the lock mechanism includes a release mechanism that upon actuation is adapted to selectively release the lock mechanism to free the engagement structure for pivotal movement relative to the body, and further wherein the release mechanism includes a biasing mechanism that urges the release mechanism away from an actuated position.
- 41. The device of claim 25, wherein the engagement structure is selectively releasable from the body.
- 42. The device of claim 25, wherein the engagement structure is non-removably coupled to the body.
- 43. The device of claim 25, wherein each of the handle assemblies includes at least a pair of adjustable members extending between the bracket and the grippable portion, with the adjustable members adapted to selectively adjust the distance between the grippable portion and the bracket.
- 44. The device of claim 43, wherein the pair of members are telescoping members that are slidably adjustable relative to each other.
- 45. An isometric exercise device, comprising:a body; a lower extremity engagement structure associated with the body and adapted to engage and retain a user's lower extremities; and a transmitting portion associated with the body generally distal the lower extremity engagement structure, wherein the transmitting portion includes a pair of handle assemblies with grippable portions that are adapted to be grasped by a user's hands while the user's lower extremities are engaged by the lower extremity engagement structure such that when a user exerts a user-directed force upon the grippable portions in a direction generally toward the lower extremity engagement structure, a tractive force is applied to the user's back, wherein each of the handle assemblies is pivotally coupled to the body, and further wherein the device includes a handle retention structure adapted to limit the degree to which the handle assemblies may pivot away from the body.
- 46. The device of claim 45, wherein the handle assemblies are selectively positionable in a range of configurations that include an extended configuration, in which the handle assemblies extend divergently away from the lower extremity engagement structure, and a collapsed configuration, in which the handle assemblies extend generally parallel to a long axis of the body.
- 47. The device of claim 45, wherein the device further includes at least one retainer adapted to selectively retain the handle assemblies proximate the body.
- 48. An isometric exercise device, comprising:a body; a lower extremity engagement structure associated with the body and adapted to engage and retain a user's lower extremities; and a transmitting portion associated with the body generally distal the lower extremity engagement structure, wherein the transmitting portion includes a pair of handle assemblies with grippable portions that are adapted to be grasped by a user's hands while the user's lower extremities are engaged by the lower extremity engagement structure such that when a user exerts a user-directed force upon the grippable portions in a direction generally toward the lower extremity engagement structure, a tractive force is applied to the user's back, wherein the handle assemblies are coupled to the body by a bracket, and further wherein the bracket is adapted to be slidably adjusted within a range of positions along the body to adjust the distance between the bracket and the lower extremity engagement structure.
- 49. The device of claim 48, wherein the handle assemblies are selectively positionable in a range of configurations that include an extended configuration, in which the handle assemblies extend divergently away from the lower extremity engagement structure, and a collapsed configuration, in which the handle assemblies extend generally parallel to a long axis of the body.
- 50. The device of claim 49, wherein the device further includes a handle retention structure adapted to limit the degree to which the handle assemblies may pivot away from the body.
- 51. The device of claim 50, wherein the device further includes least one retainer adapted to selectively retain the handle assemblies proximate the body.
- 52. The device of claim 48, wherein each of the handle assemblies is pivotally coupled to the bracket.
US Referenced Citations (22)
Foreign Referenced Citations (5)
Number |
Date |
Country |
1278698 |
Sep 1968 |
DE |
3234687 |
Mar 1984 |
DE |
106304 |
Apr 1984 |
EP |
2446109 |
Jan 1979 |
FR |
WO 9404227 |
Mar 1994 |
WO |