The present invention relates to loudspeakers and more in particular to an improved waveguide for a loudspeaker.
Currently, most of the large loudspeaker systems for professional audio applications are designed with a “line-array” configuration.
In detail, this kind of system includes a plurality of audio modules intended to reproduce a full range of frequencies, which are vertically stacked together, very close to each other, so as to define a single extended source of all applicable frequencies.
Each module is designed to produce a wavefront, which is as smooth as possible, for the full range of frequencies of interest.
Basically, each module is devised to produce a response which is isophasic or a very good approximation thereof.
The modules are provided with respective waveguides, which are intended to convert an incoming round cross-sectional sound wavefront into a flat, tall and thin rectangular cross-sectional wavefront.
The waveguides are made of two main components: a shell having an internal surface, which is such shaped so as to provide the above-mentioned change in the cross-section of the wavefront, and an acoustic phase plug, located within the shell, which in cooperation with said internal shape provides the wave with the required phase coherence.
Currently, most of the waveguides define a plurality of pathways for acoustic energy from the entrance to the exit of the waveguide, thereby producing a simulated isophasic response.
Waveguides exist that have single path designs, which however are characterized by geometries unable to avoid the generation of acoustic reflections and/or turbulence of the sound wave into their single paths and/or comb filtering external to the waveguide, thereby producing sub-optimal responses
It is an objective of the present invention to provide a waveguide for a loudspeaker able to produce an actual isophasic response and able at the same time to minimize or even nullify reflections and turbulences.
This objective is achieved by the waveguide realized in accordance with claim 1.
Additional features and advantages of the present invention will be more apparent from the illustrative, and thus non-limiting, description, of a preferred, but not exclusive embodiment of the invention, as illustrated in the appended drawings in which:
With reference to the aforementioned figures, 1 indicates a waveguide intended to be used in a loudspeaker 2, especially but not necessarily in a “line-array” loudspeaker. The waveguide 1 of the invention includes a shell assembly which comprises at least one shell 11, 12, that is a hollow housing, having an inlet opening 110, 120 (shown in
Note that the shell 11, 12 (or each shell, if there is more than one, which is a case discussed later on in the description) can be used in cooperation with a horn, in order to further control the usable-frequency spectrum waveform propagation.
Preferably, the inlet opening 110, 120 is circular and the outlet opening 111, 121 is rectangular; however, other shapes are possible, and for example the inlet opening 110, 120 can be rectangular and the outlet opening 111, 121 can be oval.
If the outlet opening 111, 121 is rectangular, it can be between 25 and 26 mm in width and more preferably about 25.4 mm.
If the inlet opening 110, 120 is circular, it can be shaped so as to be coupled with a 35.6 mm exit diameter compression driver 3; however, the waveguide 1 can also be designed to fit 50 mm, 25 mm or 19 mm diameter drivers.
Furthermore, the shell 11, 12 is preferably, although not necessarily, provided with a central symmetry plane V, which in use is vertical (see
The length of the outlet opening 111, 121 is also in use vertically orientated.
The shell 11, 12 extends predominantly on said ideal central symmetry plane V, or in any case, in use it is vertically oriented.
Inside the shell 11, 12 a phase plug 13, 14 is inserted, defining therebetween a pathway W (see
Therefore, said acoustic pathway W is laterally defined by the internal surface S′, 5″ of the shell 11, 12 walls and the external surface P′, P″ of the phase plug 13, 14.
The phase plug 13, 14 of the invention is completely contained in its shell 11, 12 and is preferably, although not necessarily, provided with its own central symmetry plane V′, which can be the same one as the shell 11, 12 (see
The phase plug 13, 14 also has a prevalent extension on its symmetry plane V′, and it is preferably a solid integral element, representing the core of the waveguide 1 and the only element included in the shell 11, 12.
The pathway W has a longitudinal extension direction D between said openings 110, 120, 111, 121 and one of its important characteristics is that
The directions of all longitudinal splines S1, S2, S3, S4, S5, S6 of the pathway W are perpendicular to said inlet opening 110, 120 at said inlet opening 110, 120 on at least one ideal longitudinal surface.
Furthermore, the lengths of all longitudinal splines S1, S2, S3, S4, S5, S6 in the same longitudinal ideal surfaces, equidistant from each other and the top and the bottom internal edges of the shell, are substantially equal from relative points between the inlet opening 110, 120 and the outlet opening 111, 121; in the preferred embodiment shown in the appended drawings, these longitudinal splines are normal to the inlet opening 110, 120, at the outlet opening 111, 121, on at least one ideal longitudinal surface.
Also, the directions of all longitudinal splines S1, S2, S3, S4, S5, S6 of the pathway W can be perpendicular to said outlet opening 111, 121; note that an embodiment of the invention where the directions of all longitudinal splines (S1, S2, S3, S4, S5, S6) of the pathway (W) are transversal to the outlet opening's central axis at said outlet opening (111, 121) is also possible.
According to an important feature of the invention, each transversal cross-section W1, W2, W3, W4, W5, W6, W7, W8, W9 of the pathway W has an ideal centerline C, through which the above-said longitudinal splines S1, S2, S3, S4, S5, S6 pass, which is equidistant from the perimeter P of that transversal cross section (see
More in detail, a plurality of longitudinal center splines including but not limited to S1, S2, S3, S4, S5, S6 of substantially equal length on horizontal surfaces vertically equidistant from each other and the top/bottom shell edges, defines the three-dimensional center surface, the acoustic pathway W is defined around.
Each of the plurality of groups of relative points P1, P2, P3, P4, P5, P6 along the lengths of all the longitudinal center splines S1, S2, S3, S4, S5, S6 defines each of said centerline C of the acoustic cross-sections; again, this is only exemplificatively shown in
Note that in the embodiment shown in the figures, the acoustic pathway W has equal curvatures on the above-mentioned longitudinal ideal surfaces (see
Furthermore, the acoustic pathway W is such shaped so as to only include tangential transitions along the longitudinal direction from the inlet opening 110, 120 and the outlet opening 111, 121.
Moreover, as shown in
In this construction, the invention comprises an integral phase element 13, 14, 15 shaping a respective phase plug 13, 14 for each shell 11, 12 (see
Constructively, as shown in
The phase element 13, 14, 15 can be a solid body member, which shapes the two phase plugs 13, 14, which are joined by means of a common central plate 16 placed at the central symmetry ideal plane V′.
The phase element 13, 14, 15 and the shell assembly 11, 12 are provided with centering means 103, 102, 51, 52, for example the male/female or plug/socket elements shown in
Preferably, the bi-shell assembly 12, 13 has two outlet openings 111, 121 facing diverging directions, meaning that the ideal planes of the openings are not parallel with each other.
Therefore, the lower opening 121 is in use slightly facing downwards and the upper opening 111 is slightly facing upwards; however, a parallel openings construction is also possible.
Outlet openings 111, 121 can have respective central axes, which are angled with each other between 0° and 2°.
In this vertical pair design, the top part or “top waveguide” 11, 13 can be configured to produce an exit propagation of 0° to +5° vertical splay, whilst the “bottom waveguide” 12, 14 can be configured to produce 0° to −5° vertical splay; vertically asymmetric designs are however not ruled out.
Note that in each waveguide of the pair, the outlet opening central axis can be offset outwardly from the inlet openings of about 7.4 mm.
The central axes of the outlet openings can be between 134 and 135 mm vertically apart from each other and more preferably are 134.7 mm apart.
The central axes of the inlet openings have a predetermined offset that can be between 6 and 9 mm or between 7 and 8 mm or can be about 7, 4 mm from the outlet openings.
More in general, multi-shell assemblies, defined by a series of shells aligned along a common symmetry plane, each housing a respective phase plug 13, 14 are also possible.
The shell 11, 12 (or each shell) may include a single pathway W for the acoustic energy, the pathway W being such shaped so as to make the acoustic wavefront entering the inlet opening 110, 120 become an isophasic wavefront exiting the outlet opening 111, 121.
Note that although the waveguide 1 can be designed to produce a flat wavefront at the outlet opening 111, 121, the invention can also be designed to emit a curved acoustic wavefront.
Furthermore, in the embodiment shown in the appended drawings, the areas of the pathway cross-sections W1, W2, W3, W4, W5, W6, W7, W8, W9 increase linearly from the inlet opening 110, 120 to the outlet opening 111, 121; however, exponential or logarithmic area expansion rates are not ruled out.
The phase plug 13, 14 (or each phase plug) is almond-shaped and has two smooth lateral surfaces P′, P″.
More in detail, as shown in
As shown in
More in detail, in the preferred embodiment shown in the drawings, the acoustic pathway W starts with an initial circular cross-section W1 at the inlet opening 110, 120, extends in the longitudinal direction with oval cross-sections, then transitions into a vesica piscis cross-sections, then vesica piscis ring cross-sections W2, wish-bone like cross-sections W3, W4, W5, W6, W7, tuning fork like cross-sections W8 and finally into a rectangle shaped cross-section W9 at the outlet opening 111, 121.
Number | Name | Date | Kind |
---|---|---|---|
8887862 | Hughes, II | Nov 2014 | B2 |
20120033842 | Donarski | Feb 2012 | A1 |
20140270308 | Donarski | Sep 2014 | A1 |
20160212523 | Spillmann | Jul 2016 | A1 |
20180063636 | Spillmann | Mar 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20200245061 A1 | Jul 2020 | US |