Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use

Information

  • Patent Grant
  • 11654129
  • Patent Number
    11,654,129
  • Date Filed
    Tuesday, January 5, 2021
    3 years ago
  • Date Issued
    Tuesday, May 23, 2023
    11 months ago
Abstract
An isothiocyanate functional surfactant, wherein the protonated form of said surfactant is represented by the following chemical structure:
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.


REFERENCE TO A SEQUENCE LISTING

Not applicable.


BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates in general to isothiocyanate functional surfactants, formulations incorporating isothiocyanate functional surfactants, and associated methods of use—including, but not limited to, chemopreventive, chemotherapeutic and/or chemoprotective applications.


2. Background Art

Natural, semi-sythentic, and/or synthetic compounds having one or more isothiocyanate functional groups and their associated uses have been known in the art for years and are the subject of a plurality of patents and publications, including, but not limited to: U.S. Pat. No. 8,772,251 entitled “Use Of Isothiocyanate Derivatives As Anti-Myeloma Agents,” U.S. Pat. No. 7,303,770 entitled “Cancer Chemoprotective Food Products,” U.S. Pat. No. 6,737,441 entitled “Treatment Of Helicobacter With Isothiocyanates,” U.S. Pat. No. 6,340,784 entitled “Method For Selective Increase Of The Anticarcinogenic Glucosinolates In Brassica Oleracea,” U.S. Pat. No. 6,166,003 entitled “Heterocyclic Compounds For Cancer Chemoprevention,” U.S. Pat. No. 5,411,986 entitled “Chemoprotective Isothiocyanates,” U.S. Pat. No. 5,114,969 entitled “Method Of Inhibiting Lung Tumors, Arylalkyl Isothiocyanates, And Method Of Synthesizing Same,” United States Patent Application Publication No. US 2013/0116203 entitled “Isothiocynates And Glucosinolate Compounds And Anti-Tumor Compositions Containing Same,” United States Patent Application Publication No. 2009/0081138 entitled “Cancer Chemoprotective Compositions And Natural Oils And Methods For Making Same,” and United States Patent Application Publication No. 2006/0127996 entitled “Method Of Extraction Of Isothiocyanates Into Oil From Glucosinolate-Containing Plants And Method Of Producing Products With Oil Containing Isothiocyanates Extracted From Glucosinolate-Containing Plants,” all of which are hereby incorporated herein by reference in their entirety—including all references cited therein.


U.S. Pat. No. 8,772,251 appears to disclose the use of glucomoringin (GMG) and its des-thio-glucoside (GMG-ITC) for the preparation of a medicament for the treatment of myeloma. The chemical structures of GMG and GMG-ITC are provided below:




embedded image


U.S. Pat. No. 7,303,770 appears to disclose vegetable sources that serve as chemoprotective agents. The chemoprotective agents disclosed are rich in glucosinolate (i.e., metabolic precursors to isothiocyanates). The vegetable sources are used to provide a dietary means of reducing the level of carcinogens in mammals.


U.S. Pat. No. 6,737,441 appears to disclose methods of preventing or inhibiting the growth of Helicobacter pylori through the use of a composition that comprises a glucosinolate, an isothiocyanate or a derivative or metabolite thereof. The '441 patent also appears to disclose methods of preventing or treating persistent chronic gastritis, ulcers and/or stomach cancer in subjects at risk for, or in need of treatment thereof.


U.S. Pat. No. 6,340,784 appears to disclose a method for producing Brassica oleracea with elevated anticarcinogenic glucosinolate derivatives. The elevated levels are obtained by crossing wild Brassica oleracea species with Brassica oleracea breeding lines, and subsequently selecting hybrids with levels of 4-methylsulfinylbutyl and/or 3-methylsulfinylpropyl glucosinolates elevated above that initially found in Brassica oleracea breeding lines. The invention also relates to edible brassica plants, such as broccoli plants, with elevated levels of 4-methylaulfinylbutyl glucosinolate and/or 3-methylsulfinylpropyl glucosinolates, and to seeds of such plants.


U.S. Pat. No. 6,166,003 appears to disclose a compound comprising a heterocyclic moiety, such as a thiophene, covalently attached to an alkylene isothiocyanate moiety. The compound is reportedly effective to prevent the occurrence or progression of cancer or a precancerous condition, and can be used for therapeutic or prophylactic purposes. The compound can be provided and administered in the form of a pharmaceutical composition, a cosmetic, a food additive, supplement, or the like. The '003 patent also discloses methods for synthesis and use of the chemopreventive compound.


U.S. Pat. No. 5,411,986 appears to disclose that sulforaphane has been isolated and identified as a major and very potent phase II enzyme inducer in broccoli (Brassica oleracea italica). Sulforaphane is disclosed as a mono-functional inducer, inducing phase II enzymes selectively without the induction of aryl hydrocarbon receptor-dependent cytochromes P-450 (phase I enzymes). The '986 patent discloses synthesizing analogues differing in the oxidation state of sulfur and the number of methylene groups, wherein their inducer potencies were measured. Sulforaphane was identified as the most potent of these analogues. Other analogues having different substituent groups in place of the methylsulfinyl group of sulforaphane were also synthesized and assessed. Of these, the most potent were 6-isothiocyanato-2-hexanone and exo-2-acetyl-6-isothiocyanatonorbornane.


U.S. Pat. No. 5,114,969 appears to disclose a method of inhibiting lung tumor multiplicity and/or incidence by treating mammals with relatively long chain arylalkyl isothiocyanates, especially effective with respect to tumors induced by exposure to tobacco-specific nitrosamine. Among the isothiocyanates disclosed are 4-phenylbutyl isothiocyanate, phenylpentyl isothiocyanate and phenylhexyl isothiocyanate, which are synthesized by adding hydrochloride of phenylbutylamine, phenylpentylamine, or phenylhexylamine in water to thiophosgene in an inert organic solvent.


United States Patent Application Publication No. 2013/0116203 appears to disclose glucosinolate and isothiocyanate compounds and related methods for synthesizing these compounds and analogs. In certain embodiments, these glucosinolate and isothiocyanate compounds are useful and chemopreventive and or chemotherapeutic agents. Examples include compounds of Formula I: R—N═C═S (I) wherein R is selected from the group consisting of dimethylpropyl, C3-C10 mono- or bicycloalkyl, C6-C10 mono- or bicycloakenyl, halobenzyl, alkyloxybenzyl, tetrahydronaphthalenyl, biphenyl-C1-C6-alkyl, phenoxybenzyl-C1-C6-alkyl, and pyridinyl-C1-C6-alkyl; N-acetyl cysteine conjugates thereof; and salts thereof.


United States Patent Application Publication No. 2009/0081138 appears to disclose chemoprotective compositions containing reduced oil-content extraction meals made from plants containing natural oils and glucosinolates. The oil content of the extraction meals may be reduced using batchwise or continuous supercritical fluid extractions. Also provided are glucosinolate-rich compositions containing purified glucosinolates isolated from plant materials. The glucosinolate-rich compositions may be made by reducing the oil content of a plant materials containing natural oils and glucosinolates and isolating the glucosinolates from the reduced oil-content plant materials using a membrane extraction. Natural oils containing isothiocyanates are also provided.


United States Patent Application Publication No. 2006/0127996 appears to disclose a method of extraction of isothiocyanates into oil from glucosinolate-containing plants and method of producing products with oil containing isothiocyanates extracted from glucosinolate-containing plants.


While the above-identified patents and publications do appear to disclose natural, semi-sythentic, and/or synthetic compounds having one or more isothiocyanate functional groups associated with a plurality of applications and/or uses, none of the above-identified patents and/or publications disclose isothiocyanate functional surfactants derived from natural and/or non-natural amino acids, including, but not limited to, lysine.


It is therefore an object of the present invention to provide novel isothiocyanate functional surfactants that will partially and/or fully remedy problems and/or complications associated with non-surfactant and/or non-lysine derived isothiocyanate functional compounds. It is therefore an additional object of the present invention to provide novel formulations incorporating isothiocyanate functional surfactants, and associated novel methods of use.


These and other objects of the present invention will become apparent in light of the present specification, claims, chemical structures, chemical formulae, and drawings.


SUMMARY OF THE INVENTION

In one embodiment, the present invention is directed to an isothiocyanate functional surfactant, wherein said isothiocyanate functional surfactant comprises at least one isothiocyanate functional group associated with an aliphatic and/or aromatic carbon atom of the isothiocyanate functional surfactant.


The present invention is also directed to a lysine derivative, wherein the lysine derivative comprises an α-nitrogen and a ε-nitrogen, and wherein an alkyl and/or alkanoyl substituent comprising at least approximately 8 carbon atoms is associated with the α-nitrogen, and further wherein at least one isothiocyanate functional group is associated with the ε-nitrogen.


The present invention is further directed to a novel surfactant, wherein the protonated form of said surfactant is represented by the following chemical structure/representation:




embedded image



wherein the surfactant comprises a non-polar moiety (NP) and a polar moiety (P), and wherein at least one isothiocyanate functional group (NCS) is associated with the polar and/or non-polar moiety.


In another embodiment, the present invention is directed to a surfactant or a pharmaceutically acceptable salt thereof, wherein the protonated form of said surfactant is represented by the following chemical structure:




embedded image



wherein R1 comprises an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer; wherein R2 comprises NCS; and wherein R3-R5 are the same or different and comprise H; OH; an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer with the proviso that at least one of R3-R5 comprise an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 8 to approximately 25 carbon atom(s).


The present invention is also directed to a surfactant or a pharmaceutically acceptable salt thereof, wherein the protonated form of said surfactant is represented by the following chemical structure:




embedded image



wherein X comprises an integer ranging from approximately 1 to approximately 25, and wherein Y comprises an integer ranging from approximately 6 to approximately 25.


In a preferred embodiment, the present invention is directed to a surfactant or a pharmaceutically acceptable salt thereof, wherein the protonated form of said surfactant is represented by the following chemical structure:




embedded image


In another embodiment, the present invention is directed to a surfactant or a pharmaceutically acceptable salt thereof, wherein the surfactant is represented by the following chemical structure:




embedded image



wherein R1 comprises an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer; wherein R2 comprises NCS; wherein R3-R5 are the same or different and comprise H; OH; an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer with the proviso that at least one of R3-R5 comprise an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 8 to approximately 25 carbon atom(s), wherein X comprises a counter cation such as, but not limited to, alkali metals, alkaline earth metals, transition metals, s-block metals, d-block metals, p-block metals, NZ4+, wherein Z comprises, H, R6, OR6, and wherein R6 comprises an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer.







DETAILED DESCRIPTION OF THE INVENTION

While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and described herein in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated.


As is discussed in greater detail herein, the present invention is directed toward isothiocyanate functional surfactants. Preferably, these surfactants serve as chemopreventive, chemotherapeutic and/or chemoprotective agents. However, the isothiocyanate functional surfactants of the present invention may also, and/or alternatively, be used to treat a plurality of conditions, including, but not limited to, acne, alopecia areata, basal cell carcinoma, bowen's disease, congenital erythropoietic porphyria, contact dermatitis, darier's disease, dystrophic epidermolysis bullosa, eczema, epidermolysis bullosa simplex, erythropoietic protoporphyria, fungal infections of nails, hailey-hailey disease, herpes simplex, hidradenitis suppurativa, hirsutism, hyperhidrosis, ichthyosis, impetigo, keloids. keratosis pilaris, lichen planus, lichen sclerosus, melanoma, melisma, pemphigus vulgaris, phytophotodermatitis, plantar warts, pityriasis lichenoides, polymorphic light eruption, psoriasis, pyoderma gangrenosum, rosacea, scabies, shingles, squamous cell carcinoma, sweet's syndrome, and vitiligo—just to name a few. The present invention also includes formulations that utilize isothiocyanate functional surfactants.


It will be understood that term surfactant is derived from the contraction of the terms surface-active-agent and is defined herein as a molecule and/or group of molecules which are able to modify the interfacial properties of the liquids (aqueous and non-aqueous) in which they are present. The surfactant properties of these molecules reside in their amphiphilic character which stems from the fact that each surfactant molecule has both a hydrophilic moiety and a hydrophobic (or lipophilic) moiety, and that the extent of each of these moieties is balanced so that at concentrations at or below the critical micelle concentration (i.e., CMC) they generally concentrate at the air-liquid interface and materially decrease the interfacial tension. For example, sodium salts of saturated carboxylic acids are extremely soluble in water up to C8 length and are thus not generally regarded as true surfactants. They become less soluble in water from C9 up to C18 length, the domain of effective surfactants for this class of compounds. The carboxylic acids (fatty acids) can be either saturated or unsaturated starting from C16 chain lengths.


Without being bound by any one particular theory, it is believed that the isothiocyanate functional surfactants disclosed herein serve as medicaments and/or chemopreventive, chemotherapeutic and/or chemoprotective agents by altering, modifying, and/or boosting the body's immune system. It is also believed that the isothiocyanate functional surfactants disclosed herein facilitate elevating phase II enzymes (e.g., HAD(P)H quinine oxidoreductase) which are believed to, among other things regulate inflammatory responses within the body, as well as detoxify potential and active carcinogens.


In accordance with the present invention, the isothiocyanate functional surfactants may be used as a topical leave-on product in which one or more surfactants remain on the skin and are not immediately and/or ever rinsed off away from the skin. Alternatively, the isothiocyanate functional surfactants of the present invention may be used as a topical wash in an apply-and-rinse fashion. For either case, it is preferred that the isothiocyanate functional surfactants be generally mild to human skin (e.g., non-irritating or low-irritating). In particular, anionic N-alkanoyl surfactants derived from amino acids are especially preferred because, while not completely predictable, they have a tendency to be mild. The methods of preparation detailed in this invention employ but are not limited to amino acids that possess at least two amine functionalities, at least one of which is converted to an N-alkanoyl functionality, and at least one of which is converted into isothiocyanate functionality. The amino acids include but are not limited to the α-amino acids lysine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid, 2,7-diaminoheptanoic acid, and 2,8-diaminooctanoic acid. Additionally, amino acids other than α-amino acids may be employed, such as β-amino acids, etcetera. It will be understood that amino acid derived surfactants are preferred due to their mild nature, but any one of a number of other surfactants are likewise contemplated for use in accordance with the present invention.


The methods for preparing isothiocyanate functional surfactants and/or their precursors can involve, but are not limited to, conversion of an amine functionality to an isothiocyanate functionality. The methods of conversion of amine functionalities to isothiocyanate functionalities may comprise, but are not limited to: (1) reaction with carbon disulfide to yield an intermediate dithiocarbamate, followed by reaction with ethylchloroformate or its functional equivalent such as bis(trichloromethyl)-carbonate, trichloromethyl chloroformate, or phosgene; (2) reaction with thiophosgene; (3) reaction with 1,1′-thiocarbonyldiimidizole; (4) reaction with phenylthiochloroformate; (5) reaction with ammonium or alkali metal thiocyanate to prepare an intermediate thiourea followed by cleaving to the isothiocyanate via heating; and (6) reaction with an isothiocyanato acyl halide [SCN—(CH2)n—CO—Cl]. The resulting isothiocyanate functional surfactant, depending on the method of preparation, can be isolated as a pure material or as a mixture with other surfactants. The resulting isothiocyanate functional surfactant, depending on the method of preparation, can be isolated and used directly in nonionic form, anionic form, cationic form, zwitterionic (amphoteric) form, or in a neutral surfactant-precursor form in combination with a base such as sodium hydroxide or triethanol amine if the neutral surfactant-precursor form possesses a protonated carboxylic acid group such that reaction (deprotonation) with the base converts the neutral surfactant-precursor form to an anionic surfactant, or in neutral surfactant-precursor form in combination with an acid if the neutral surfactant-precursor form possess amine functionality such that reaction (protonation) with the acid converts the neutral surfactant-precursor form to a cationic surfactant.


In accordance with the present invention the isothiocyanate functional surfactants can be applied and/or associated with a human using any one of a number of techniques including, but not limited to, spraying, dripping, dabbing, rubbing, blotting, dipping, and any combination thereof.


In certain preferred embodiments of the present invention, the isothiocyanate functional surfactants are removed from the affected area after a period of time. Such a period comprises, but is not limited to, seconds (e.g., 1 second, 2 seconds, 5 seconds, 10 seconds, 15 seconds, 20 seconds, 30 seconds, 45 seconds, and 60 seconds), minutes (e.g., 1 minute, 2 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes, and 60 minutes), hours (e.g., 1 hour, 2 hours, 5 hours, 10 hours, 15 hours, 20 hours, 30 hours, 45 hours, and 60 hours), days (e.g., 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 14 days, 21 days, 30 days), etcetera. It will be understood that the step of removing preferably occurs via rinsing, wiping, and/or extracting—just to name a few.


Depending upon the subject and/or the severity of the medical condition, multiple applications may be necessary. As such, the steps of applying and/or removing the isothiocyanate functional surfactants may be repeated once or a plurality of times.


In one embodiment, the present invention is directed to an isothiocyanate functional surfactant, wherein said isothiocyanate functional surfactant comprises at least one isothiocyanate functional group associated with an aliphatic and/or aromatic carbon atom of the isothiocyanate functional surfactant.


The present invention is also directed to a lysine derivative, wherein the lysine derivative comprises an α-nitrogen and a ε-nitrogen, and wherein an alkyl and/or alkanoyl substituent comprising at least approximately 8 carbon atoms is associated with the α-nitrogen, and further wherein at least one isothiocyanate functional group is associated with the ε-nitrogen.


The present invention is further directed to a novel surfactant, wherein the protonated form of said surfactant is represented by the following chemical structure/representation:




embedded image



wherein the surfactant comprises a non-polar moiety (NP) and a polar moiety (P), and wherein at least one isothiocyanate functional group (NCS) is associated with the polar and/or non-polar moiety.


In another embodiment, the present invention is directed to a surfactant or a pharmaceutically acceptable salt thereof, wherein the protonated form of said surfactant is represented by the following chemical structure:




embedded image



wherein R1 comprises an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer; wherein R2 comprises NCS; and wherein R3-R5 are the same or different and comprise H; OH; an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer with the proviso that at least one of R3-R5 comprise an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 8 to approximately 25 carbon atom(s).


The present invention is also directed to a surfactant or a pharmaceutically acceptable salt thereof, wherein the protonated form of said surfactant is represented by the following chemical structure:




embedded image



wherein X comprises an integer ranging from approximately 1 to approximately 25, and wherein Y comprises an integer ranging from approximately 6 to approximately 25.


More preferably, the surfactant is represented by one or more of the following chemical structures:




embedded image


In another embodiment, the present invention is directed to a surfactant or a pharmaceutically acceptable salt thereof, wherein the protonated form of the surfactant is represented by the following chemical structure:




embedded image



wherein R1 comprises an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer; wherein R2 comprises NCS; wherein R3-R5 are the same or different and comprise H; OH; an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer with the proviso that at least one of R3-R5 comprise an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 8 to approximately 25 carbon atom(s), wherein X comprises a counter cation such as, but not limited to, alkali metals, alkaline earth metals, transition metals, s-block metals, d-block metals, p-block metals, NZ4+, wherein Z comprises, H, R6, OR6, and wherein R6 comprises an alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, aryl, alkaryl, aralkyl, alkoxy, alkanoyl, aroyl, alkenyl, alkynyl and/or cyano group containing approximately 1 to approximately 25 carbon atom(s), wherein the carbon atom(s) may be a linking group to, or part of, a halogen, a N, O, and/or S containing moiety, and/or one or more functional groups comprising alcohols, esters, ammonium salts, phosphonium salts, and combinations thereof; a linkage to a dimer; a linkage to an oligomer; and/or a linkage to a polymer.


In accordance with the present invention, the isothiocyanate functional surfactant may be associated with an additional surfactant, wherein the additional surfactant is selected from at least one of the group comprising a non-ionic surfactant, an anionic surfactant, a cationic surfactant, a zwitterionic surfactant, and combinations thereof.


Non-limiting examples of preferred anionic surfactants include taurates; isethionates; alkyl and alkyl ether sulfates; succinamates; alkyl sulfonates, alkylaryl sulfonates; olefin sulfonates; alkoxy alkane sulfonates; sodium and potassium salts of fatty acids derived from natural plant or animal sources or synthetically prepared; sodium, potassium, ammonium, and alkylated ammonium salts of alkylated and acylated amino acids and peptides; alkylated sulfoacetates; alkylated sulfosuccinates; acylglyceride sulfonates, alkoxyether sulfonates; phosphoric acid esters; phospholipids; and combinations thereof. Specific anionic surfactants contemplated for use include, but are by no means limited to, ammonium cocoyl isethionate, sodium cocoyl isethionate, sodium lauroyl isethionate, sodium stearoyl isethionate, sodium lauroyl sarcosinate, sodium cocoyl sarcosinate, sodium lauryl sarcosinate, disodium laureth sulfosuccinate, sodium lauryl sulfoacetate, sodium cocoyl glutamate, TEA-cocoyl glutamate, TEA cocoyl alaninate, sodium cocoyl taurate, potassium cetyl phosphate.


Non-limiting examples of preferred cationic surfactants include alkylated quaternary ammonium salts R4NX; alkylated amino-amides (RCONH—(CH2)n)NR3X; alkylimidazolines; alkoxylated amines; and combinations thereof. Specific examples of anionic surfactants contemplated for use include, but are by no means limited to, cetyl ammonium chloride, cetyl ammonium bromide, lauryl ammonium chloride, lauryl ammonium bromide, stearyl ammonium chloride, stearyl ammonium bromide, cetyl dimethyl ammonium chloride, cetyl dimethyl ammonium bromide, lauryl dimethyl ammonium chloride, lauryl dimethyl ammonium bromide, stearyl dimethyl ammonium chloride, stearyl dimethyl ammonium bromide, cetyl trimethyl ammonium chloride, cetyl trimethyl ammonium bromide, lauryl trimethyl ammonium chloride, lauryl trimethyl ammonium bromide, stearyl trimethyl ammonium chloride, stearyl trimethyl ammonium bromide, lauryl dimethyl ammonium chloride, stearyl dimethyl cetyl ditallow dimethyl ammonium chloride, dicetyl ammonium chloride, dilauryl ammonium chloride, dilauryl ammonium bromide, distearyl ammonium chloride, distearyl ammonium bromide, dicetyl methyl ammonium chloride, dicetyl methyl ammonium bromide, dilauryl methyl ammonium chloride, distearyl methyl ammonium chloride, distearyl methyl ammonium bromide, ditallow dimethyl ammonium chloride, ditallow dimethyl ammonium sulfate, di(hydrogenated tallow) dimethyl ammonium chloride, di(hydrogenated tallow) dimethyl ammonium acetate, ditallow dipropyl ammonium phosphate, ditallow dimethyl ammonium nitrate, di(coconutalkyl)dimethyl ammonium chloride, di(coconutalkyl)dimethyl ammonium bromide, tallow ammonium chloride, coconut ammonium chloride, stearamidopropyl PG-imonium chloride phosphate, stearamidopropyl ethyldimonium ethosulfate, stearimidopropyldimethyl (myristyl acetate) ammonium chloride, stearamidopropyl dimethyl cetearyl ammonium tosylate, stearamidopropyl dimethyl ammonium chloride, stearamidopropyl dimethyl ammonium lactate, ditallowyl oxyethyl dimethyl ammonium chloride, behenamidopropyl PG dimonium chloride, dilauryl dimethyl ammonium chloride, distearly dimethyl ammonium chloride, dimyristyl dimethyl ammonium chloride, dipalmityl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, stearamidoproyl PG-dimonium chloride phosphate, stearamidopropyl ethyldiammonium ethosulfate, stearamidopropyl dimethyl (myristyl acetate) ammonium chloride, stearimidopropyl dimethyl cetaryl ammonium tosylate, stearamido propyl dimethyl ammonium chloride, stearamidopropyl dimethyl ammonium lactate.


Non-limiting examples of preferred non-ionic surfactants include alcohols, alkanolamides, amine oxides, esters (including glycerides, ethoxylated glycerides, polyglyceryl esters, sorbitan esters, carbohydrate esters, ethoxylated carboxylic acids, phosphoric acid triesters), ethers (including ethoxylated alcohols, alkyl glucosides, ethoxylated polypropylene oxide ethers, alkylated polyethylene oxides, alkylated polypropylene oxides, alkylated PEG/PPO copolymers), silicone copolyols. Specific examples of non-ionic surfactants contemplated for use include, but are by no means limited to, cetearyl alcohol, ceteareth-20, nonoxynol-9, C12-15 pareth-9, POE(4) lauryl ether, cocamide DEA, glycol distearate, glyceryl stearate, PEG-100 stearate, sorbitan stearate, PEG-8 laurate, polyglyceryl-10 trilaurate, lauryl glucoside, octylphenoxy-polyethoxyethanol, PEG-4 laurate, polyglyceryl diisostearate, polysorbate-60, PEG-200 isostearyl palmitate, sorbitan monooleate, polysorbate-80.


Non-limiting examples of preferred zwitterionic or amphoteric surfactants include betaines; sultaines; hydroxysultaines, amido betaines, amidosulfo betaines; and combinations thereof. Specific examples of amphoteric surfactants contemplated for use include, but are by no means limited to, cocoamidopropyl sultaine, cocoamidopropyl hydroxyl sultaine, cocoamidopropylbetaine, coco dimethyl carboxymethyl betaine, lauryl dimethyl carboxymethyl betaine, lauryl dimethyl alphacarboxyethyl betaine, cetyl dimethyl carboxymethyl betaine, cetyl dimethyl betaine, lauryl (2-bishydroxy) carboxymethyl betaine, stearyl bis-(2-hydroxyethyl) carboxymethyl betaine, oelyl dimethyl gamma-carboxypropyl betaine, lauryl bis-(2-hydroxypropyl)alpha carboxymethyl betaine, coco dimethyl sulfopropyl betaine, stearyl dimethyl sulfopropyl betaine, lauryl dimethyl sulfoethyl betaine, lauryl bis(2-hydroxyethyl) sulfopropyl betaine, oleyl betaine, cocamidopropyl betaine.


In further accordance with the present invention, the isothiocyanate functional surfactant may be incorporated into a formulation comprising one or more solvents. Preferably, the solvent comprises a hydrocarbon and/or silicone oil that is generally non-hygroscopic and/or generally hydrophobic. Suitable examples, include, silicone based solvents and/or fluids, mineral oil, vegetable oils, squalene (i.e., 2,6,10,15,19,23-hexamethyltetracosane)—just to name a few.


The invention is further described by the following examples.


Example I
Preparation of a Mixture of Nα-lauroyl-Nε-isothiocyanato-L-Lysine with Nα,Nε-bis-lauroyl-L-lysine

A 1 liter beaker equipped with an overhead mechanical stainless steel paddle stirrer was charged with 100 mL of 1 M NaOH (0.100 mol). Stirring was begun and the beaker cooled to −5° C. to −10° C. using a salt/ice bath. Next, 23.4 g (0.100 mol) of Nε-benzylidene-L-lysine (prepared via the method of Bezas, B and Zervas, L., JACS, 83, 1961, 719-722) was added. Immediately afterward and while keeping the solution cold, 140 mL (0.140 mol) of precooled (in a salt/ice bath) 1 M NaOH and 26.1 mL of lauroyl chloride was added in two equal portions over a period of 6 minutes. The mixture was stirred for 10 more minutes at −5 to −10° C., then the ice bath was removed and the reaction mixture allowed to stir for another 1 hour while warming to room temperature. Next, the reaction mixture was cooled using a salt/ice bath and then sufficient concentrated HCl was added to adjust the pH to 7.5-7.8. With the pH at 7.8-7.8 and with continued cooling and stirring, 4.6 mL (60% of stoichiometric, 0.068 mol) of thiophosgene was added drop-wise via an additional funnel over the period of 1 hour. During this time, sufficient 1 M NaOH was added to maintain a pH range between 7.5-7.8. After the thiophosgene addition was complete, additional 1 M NaOH was added as necessary until the pH stabilized in 7.5-7.8 range. Next, sufficient 30% NaOH was added to adjust the pH to approximately 8.5. Next, 12 mL (0.051 mol) of lauroyl chloride was rapidly added, followed by sufficient 1 M NaOH to keep the pH in the range of 8.00-8.50. Next, sufficient concentrated HCl was added to adjust the pH to 1.5. The reaction mixture was filtered via vacuum filtration, and the precipitate washed with dilute HCl (pH=2). The product, a white moist solid, was dried in vacuo while heating to 60° C. 45.19 g of white solid product was recovered, a mixture of predominantly Nα-lauroyl-Nε-isothiocyanato-L-lysine and Nα,Nε-bis-lauroyl-L-lysine (determined via LC-MS analysis). Both compounds in this mixture can be simultaneously converted into anionic (carboxylate) surfactants via reaction with aqueous NaOH to yield a clear aqueous solution of the surfactants.


Example II
Preparation of Pure Nα-lauroyl-Nε-isothiocyanato-L-Lysine
Step 1: Preparation of Nα-lauroyl-Nε-carbobenzoxy-L-Lysine

60.0 g of Nε-cbz-L-Lysine (cbz is carbobenzoxy) purchased from Atomole Scientific Company, LTD was added to a three-liter beaker along with 1200 mL of RO water and the mixture was stirred. Next, 39 mL of 30% aqueous NaOH was added, resulting in dissolution of the Nε-cbz-L-Lysine. The resulting solution was cooled in an ice bath and then 52.5 mL of lauroyl chloride was added. The ice bath was removed 30 minutes later, and stirring continued for an additional six hours, at which time 18 mL of concentrated hydrochloric acid was added. The reaction mixture was then filtered via vacuum filtration, the white solid product washed with 1 M aqueous HCl, and then the solid product was dried in vacuo while heated to approximately 85° C. 96.5 g of dry white solid product was obtained. The product can be further purified by dissolving it in methanol, filtering off any insoluble precipitate, and removing the methanol in vacuo to recover a white solid product (mp 99.5-103.0° C.)


Step 2: Preparation of Nα-lauroyl-Nε-ammonium chloride-L-Lysine

10.0 g of Nα-lauroyl-Nε-carbobenzoxy-L-Lysine was weighed into a one liter Erlenmeyer flask equipped with a magnetic stir bar. 150 mL of concentrated hydrochloric acid was added and the solution was stirred and heated in an oil bath to 104° C., then allowed to cool with the oil bath back to room temperature. The solution was then cooled to 9° C. for approximately four hours, during which time a large mass of white precipitate formed. The reaction mixture was filtered in vacuo and rinsed with a small amount of cold 1 M HCl. The white solid reaction product was then dried in vacuo while being heated to 78° C., yielding 7.89 g of white solid product (mp 191-193° C.).


Step 3: Preparation of Nα-lauroyl-Nε-isothiocyanato-L-Lysine

0.46 mL of thiophosgene was added to 30 mL of dichloromethane in a 125 mL Erlenmeyer flask equipped with a magnetic stir bar. To this solution was drop wise added over 15 minutes a solution consisting of 2.00 g Nα-lauroyl-Nε-ammonium chloride-L-Lysine, 10 mL RO water, and 2.7 mL 20% aqueous NaOH. Stirring was continued for an additional 30 minutes, after which sufficient concentrated hydrochloric acid was added to lower the pH to 1 as indicated by testing with pHydrion paper. The reaction solution was then transferred into a separatory funnel and the bottom turbid dichloromethane layer was isolated and dried with anhydrous magnesium sulfate and gravity filtered. To the filtrate was added 50 mL of hexanes. The solution was then concentrated via removal of 34 mL of solvent via trap-to-trap distillation and then placed in a −19° C. freezer. A mass of white precipitate formed after a few hours and was isolated via vacuum filtration and then dried in vacuo for 2 hours. 1.130 g of a slightly off white solid powder product was obtained [mp 37.0-39.0° C.; IR (cm−1), 3301sb, 2923s, 2852s, 2184m, 2099s, 1721s, 1650s, 1531s, 1456m, 1416w, 1347m, 1216m, 1136w]


Example III
Preparation of a Two-Part Formulation

A two-part formulation for topical application to the skin was prepared as follows:


Part I: A 25% by mass mixture of Nα-lauroyl-Nε-isothiocyanato-L-Lysine in Dow Corning DC344 fluid (a mixture of octamethyl-cyclotetrasiloxane and decamethyl-cyclopentasiloxane) was prepared in a mortar and pestle to produce a paste that was loaded into a 5 ml plastic disposable syringe. A syringe needle was not employed. Rather, the dispensing end of the syringe was capped except for when dispensing without a syringe needle into the palm of a hand occurred.


Part II: Part II consisted of Cetaphil Moisturizing Lotion to which additional triethanol amine (TEA) was added such that the concentration of the additional triethanol amine was 0.006 g triethanol amine per gram of lotion, raising the pH of the Cetaphil Lotion from 7.74 to 8.77.


Preferred Instructions for Application of Formulation to the Skin: A 0.2 mL portion of the Nα-lauroyl-Nε-isothiocyanato-L-Lysine/DC344 mixture is dispensed from the syringe into the palm of a hand (approximately 0.13 g of the mixture). Next, two full squirts of the Cetaphil/TEA lotion is dispensed on top of the Nα-lauroyl-Nε-isothiocyanato-L-Lysine/DC344 mixture (approximately 2.8 g of the lotion). Next, using the index finger of the other hand, the components are mixed thoroughly for 30 seconds, during which time the water insoluble Nα-lauroyl-Nε-isothiocyanato-L-Lysine surfactant-precursor is deprotonated to yield the water-soluble anionic (carboxylate) surfactant and yield a homogenous smooth white lotion (this reduces the pH to 7.4). This mixture is then applied to the afflicted areas by gently rubbing it on as one would apply any moisturizing lotion.


Example IV
Preparation of a One-Part Formulation

A one-part formulation for topical application to the skin was prepared as follows:


First, 0.00025% (by wt.; 5.0 micromolar) of Sodium Nα-lauroyl-Nε-isothiocyanate-L-Lysinate, the sodium salt of the material provided in step three of Example II, was associated with (QS to achieve 100%) 2,6,10,15,19,23-Hexamethyltetracosane (commercially available from Sigma-Aldrich). It will be understood that the concentration of Sodium Nα-lauroyl-Nε-isothiocyanate-L-Lysinate may range from approximately 0.000001% to approximately 50%. Non-limiting examples of additional concentrations include 0.0005%, 0.005%, 0.005%, 0.005%, 0.05%, 0.5%, 5%—just to name a few.


Preferred Instructions for Application of the One-Part Formulation to the skin: A 0.1-1.0 mL portion of the one-part formulation is dispensed from a container into the palm of a hand for subsequent administration to an affected area and/or is dispensed directly onto an affected area by gently rubbing it on as one would apply a moisturizing lotion.


The foregoing description merely explains and illustrates the invention and the invention is not limited thereto except insofar as the appended claims are so limited, as those skilled in the art who have the disclosure before them will be able to make modifications without departing from the scope of the invention.

Claims
  • 1. A formulation comprising: a lysine derivative, wherein the lysine derivative comprises an α-nitrogen and a ε-nitrogen, wherein an alkyl and/or alkanoyl substituent comprising at least 8 carbon atoms is bound to the α-nitrogen, and further wherein the ε-nitrogen forms part of an isothiocyanate functional group; anda carrier for the lysine derivative.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/526,344, entitled “ISOTHIOCYANATE FUNCTIONAL SURFACTANTS, FORMULATIONS INCORPORATING THE SAME, AND ASSOCIATED METHODS OF USE,” filed Jul. 30, 2019, which is a continuation of U.S. application Ser. No. 15/973,915, entitled “ISOTHIOCYANATE FUNCTIONAL SURFACTANTS, FORMULATIONS INCORPORATING THE SAME, AND ASSOCIATED METHODS OF USE,” filed May 8, 2018, now U.S. Pat. No. 10,363,236 B2, which is a continuation of U.S. application Ser. No. 15/353,260, entitled “ISOTHIOCYANATE FUNCTIONAL SURFACTANTS, FORMULATIONS INCORPORATING THE SAME, AND ASSOCIATED METHODS OF USE,” filed Nov. 16, 2016, now U.S. Pat. No. 9,962,361, which is a continuation-in-part of U.S. application Ser. No. 15/297,304, entitled “ISOTHIOCYANATE FUNCTIONAL SURFACTANT FORMULATION AND ASSOCIATED METHOD OF USE,” filed Oct. 19, 2016, now U.S. Pat. No. 9,951,005, which is a continuation of U.S. application Ser. No. 14/594,788, filed Jan. 12, 2015, now U.S. Pat. No. 9,951,003, which is a continuation of U.S. application Ser. No. 13/342,516, filed Jan. 3, 2012, now U.S. Pat. No. 8,933,119, which claims the benefit of U.S. Provisional Application Ser. No. 61/502,067, filed Jun. 28, 2011, and U.S. Provisional Application Ser. No. 61/429,325, filed Jan. 3, 2011—all of which are hereby incorporated herein by reference in their entirety, including all references cited therein.

US Referenced Citations (193)
Number Name Date Kind
2905701 Nutting et al. Sep 1959 A
3108040 Folkers Oct 1963 A
3725030 Newallis et al. Apr 1973 A
3740435 Newallis et al. Jun 1973 A
3969087 Saito et al. Jul 1976 A
4083836 Anjou et al. Apr 1978 A
4158656 Jones et al. Jun 1979 A
4191752 Kada et al. Mar 1980 A
4929704 Schwark May 1990 A
4938949 Borch et al. Jul 1990 A
5114969 Chung et al. May 1992 A
5126129 Wiltrout et al. Jun 1992 A
5208249 Rowe et al. May 1993 A
5231209 Chung et al. Jul 1993 A
5290578 Passey et al. Mar 1994 A
5385734 Friedman Jan 1995 A
5411986 Cho et al. May 1995 A
5582818 Nakanishi Dec 1996 A
5589504 Dannenberg et al. Dec 1996 A
5686108 Pusateri et al. Nov 1997 A
5725895 Fahey et al. Mar 1998 A
5882646 Pusateri et al. Mar 1999 A
5968505 Fahey et al. Oct 1999 A
5968567 Fahey et al. Oct 1999 A
6008260 Pezzuto et al. Dec 1999 A
6046231 Kosmeder, II et al. Apr 2000 A
RE36784 Cho et al. Jul 2000 E
6166003 Lam Dec 2000 A
6172250 Seguin et al. Jan 2001 B1
6177122 Fahey et al. Jan 2001 B1
6242018 Fahey et al. Jun 2001 B1
6340784 Mithen et al. Jan 2002 B1
6348220 Ribnicky et al. Feb 2002 B1
6414037 Pezzuto et al. Jul 2002 B1
6436450 Omary et al. Aug 2002 B1
6455554 Dull et al. Sep 2002 B1
6465512 Nakamura et al. Oct 2002 B2
6492399 Dull et al. Dec 2002 B1
6524594 Santora et al. May 2003 B1
6680062 Muizzuddin et al. Jan 2004 B2
6737441 Fahey May 2004 B2
6824796 Pusateri et al. Nov 2004 B2
6878751 Donnelly et al. Apr 2005 B1
6991811 Brovelli et al. Jan 2006 B1
7303770 Fahey et al. Dec 2007 B2
7338959 Chamberlain et al. Mar 2008 B2
7402569 Fahey Jul 2008 B2
7407986 Gao et al. Aug 2008 B2
7615657 Bathurst et al. Nov 2009 B2
7744937 West et al. Jun 2010 B2
7820145 Tamarkin et al. Oct 2010 B2
7879822 Dagan et al. Jan 2011 B2
8003633 Robertson et al. Aug 2011 B1
8008281 Prendergast et al. Aug 2011 B2
8039511 Cheng et al. Oct 2011 B2
8158161 Sussan et al. Apr 2012 B2
8163499 Singh et al. Apr 2012 B2
8168655 Gadek et al. May 2012 B2
8303949 Gao et al. Nov 2012 B2
8309541 Robertson et al. Nov 2012 B1
8410037 Molenda et al. Apr 2013 B2
8410170 Cheng et al. Apr 2013 B2
8414869 Perricone Apr 2013 B2
8492616 Mero Jul 2013 B2
8510127 Hermann et al. Aug 2013 B2
8653067 Kobayashi et al. Feb 2014 B2
8709406 Gao et al. Apr 2014 B2
8731970 Hermann et al. May 2014 B2
8772251 Morazzoni et al. Jul 2014 B2
8772274 Robertson et al. Jul 2014 B1
8835721 Mero Sep 2014 B2
8865765 Silver Oct 2014 B2
8865772 Silver Oct 2014 B2
8921644 Barten Dec 2014 B2
8933119 Silver Jan 2015 B2
9017666 Ashurst Apr 2015 B2
9096505 Robertson et al. Aug 2015 B2
9096611 Ren et al. Aug 2015 B2
9126910 Robertson et al. Sep 2015 B2
9126911 Robertson et al. Sep 2015 B2
9131722 Kim et al. Sep 2015 B2
9181221 Ren et al. Nov 2015 B2
9254331 Dubois et al. Feb 2016 B2
9308192 Coulombe et al. Apr 2016 B2
9315505 Ren et al. Apr 2016 B2
9359349 Ren et al. Jun 2016 B2
9393225 Beumer et al. Jul 2016 B2
9486434 Zhang et al. Nov 2016 B2
9504667 Silver Nov 2016 B2
9505768 Carson et al. Nov 2016 B2
9532969 Silver Jan 2017 B2
9585860 Silver Mar 2017 B2
9610258 McWherter et al. Apr 2017 B2
9636320 Silver May 2017 B2
9642827 Silver May 2017 B2
9649290 Silver May 2017 B2
9655874 Silver May 2017 B2
9687463 Silver Jun 2017 B2
9771322 Silver Sep 2017 B2
9828337 Silver Nov 2017 B2
9839621 Silver Dec 2017 B2
9931314 Silver Apr 2018 B2
9932306 Silver Apr 2018 B2
9949943 Silver Apr 2018 B2
9951003 Silver Apr 2018 B2
9951004 Silver Apr 2018 B2
9951005 Silver Apr 2018 B2
9962361 Silver May 2018 B2
10010520 Cheng et al. Jul 2018 B2
10080734 Silver Sep 2018 B2
10111852 Silver Oct 2018 B2
10273205 Silver Apr 2019 B2
10287246 Silver May 2019 B2
10308559 Silver Jun 2019 B2
10308599 Silver Jun 2019 B2
10308600 Silver Jun 2019 B2
10315990 Yang Jun 2019 B2
10335387 Silver Jul 2019 B2
10343990 Silver Jul 2019 B2
10426763 Kahrs Oct 2019 B2
10434081 Silver Oct 2019 B2
10434082 Silver Oct 2019 B2
10441561 Silver Oct 2019 B2
10471039 Silver Nov 2019 B2
10532039 Silver Jan 2020 B2
10561632 Silver Feb 2020 B1
10583107 Silver Mar 2020 B2
10583108 Silver Mar 2020 B2
10583201 Chen et al. Mar 2020 B2
10640464 Silver May 2020 B2
10647668 Silver May 2020 B2
10654799 Silver May 2020 B2
10765656 Silver Sep 2020 B2
10864187 Silver Dec 2020 B2
10869854 Silver Dec 2020 B2
10869855 Silver Dec 2020 B2
10874630 Silver Dec 2020 B2
10888540 Silver Jan 2021 B2
11020372 Deleyrolle et al. Jun 2021 B2
11046645 Shinohata et al. Jun 2021 B2
11279674 Silver Mar 2022 B2
11306057 Silver Apr 2022 B2
11339125 Silver May 2022 B2
11407713 Silver Aug 2022 B2
20020164381 Shacknai et al. Nov 2002 A1
20030185864 Kobayashi et al. Oct 2003 A1
20030198616 Howard Oct 2003 A1
20030224131 Kamei et al. Dec 2003 A1
20040156873 Gupta Aug 2004 A1
20050042182 Arkin et al. Feb 2005 A1
20050095261 Popp May 2005 A1
20050100621 Popp et al. May 2005 A1
20050118124 Reinhart Jun 2005 A1
20050193448 Gardner et al. Sep 2005 A1
20060127996 Fahey Jun 2006 A1
20060160713 Sekine et al. Jul 2006 A1
20070041925 Picano et al. Feb 2007 A1
20080027129 Commo Jan 2008 A1
20080044497 Sussan Feb 2008 A1
20080124407 Eaton et al. May 2008 A1
20080154210 Jordan et al. Jun 2008 A1
20080254150 Rheins et al. Oct 2008 A1
20080306148 Robertson et al. Dec 2008 A1
20080311192 West et al. Dec 2008 A1
20080311276 West et al. Dec 2008 A1
20090081138 Ashurst Mar 2009 A1
20090186853 Yu et al. Jul 2009 A1
20090324522 Chevreau Dec 2009 A1
20100124598 West et al. May 2010 A1
20100273839 Kurth et al. Oct 2010 A1
20110003747 Coloumbe et al. Jan 2011 A1
20110014137 Talalay et al. Jan 2011 A1
20110028548 Fossel Feb 2011 A1
20110150810 Molenda Jun 2011 A1
20110195103 Perez Arcas et al. Aug 2011 A1
20120135925 Meijler May 2012 A1
20120202878 Silver Aug 2012 A1
20130079401 Chen Mar 2013 A1
20130116203 Rajski et al. May 2013 A1
20130316921 Cohen et al. Nov 2013 A1
20140075590 Van Den Bosch et al. Mar 2014 A1
20150038579 Silver Feb 2015 A1
20150126600 Silver May 2015 A1
20150320799 Low et al. Nov 2015 A1
20160015676 Silver Jan 2016 A1
20160015677 Silver Jan 2016 A1
20160022624 Silver Jan 2016 A1
20160030379 Silver Feb 2016 A1
20160030380 Silver Feb 2016 A1
20160030381 Silver Feb 2016 A1
20170037000 Silver Feb 2017 A1
20170037001 Silver Feb 2017 A1
20180203014 Cheresh et al. Jul 2018 A1
Foreign Referenced Citations (20)
Number Date Country
101091705 Dec 2007 CN
0998943 May 2000 EP
1 961 418 Aug 2008 EP
2000169321 Jun 2000 JP
2002284702 Oct 2002 JP
2008193572 Jul 2006 JP
WO 1994005250 Mar 1994 WO
WO 1994019948 Sep 1994 WO
WO 1997007230 Feb 1997 WO
WO 1997026908 Jul 1997 WO
WO 2005016329 Feb 2005 WO
WO 2006065736 Jun 2006 WO
WO 2007056941 May 2007 WO
WO 2008070961 Jun 2008 WO
WO 2008128189 Oct 2008 WO
WO 2009088986 Jul 2009 WO
WO 2010140902 Dec 2010 WO
WO 2012010644 Jan 2012 WO
WO 2012064973 May 2012 WO
WO 2013003601 Jan 2013 WO
Non-Patent Literature Citations (59)
Entry
Amara et al. J. Am. Chem. Chem. Soc. 2009, 131, 10610-10619.
Zuang et al. Subgroup 2. Skin Irritation/Corrosion, in Cosmetics-European Commission, http://ec.europa.eu/consumers/sectors/cosmetics/files/doc/antest/(5)_chapter_3/2_skin_irritation_en.pdf., accessed Mar. 13, 2014.
Robert et al. New Engl. J. Med. 1999, 341 (24), 1817-1828.
Weber et al. The Journal of Emergency Medicine, 1999, 17 (2), 235-237.
Saint-Mezard et al. Eur. J. Dermatol. 2004, 14, 284-295.
PCT Written Opinion of the International Searching Authority for International Application No. PCT/US12/44660 dated Jul. 15, 2013.
PCT Written Opinion of the International Searching Authority for International Application No. PCT/US12/44593 dated Sep. 7, 2012.
PCT Written Opinion of the International Searching Authority for International Application No. PCT/US12/44628 dated Apr. 5, 2013.
PCT Written Opinion of the International Searching Authority for International Application No. PCT/US13/052307 dated Dec. 5, 2013.
Yehuda et al., Potential skin anti-inflammatory effects of 4-methylthiobutylisothiocyanate (MTBI) isolated from rocket (Eruca sativa) seeds, Biofactors 35(3), pp. 295-305, 2009. Abstract; p. 297, Fig. 1. https://www.researchgate.net/publication/24443311_Potential_skin_antiinflammatory_effects_of_4-methylthiobutylisothiocyanate_MTBI_isolated_from_rocket_Eruca_sativa_seeds.
Novio et al., Isothiocyanates: An Overview of Their Antimicrobial Activity Against Human Infections. Molecular Diversity Preservation International/Multidisciplinary Digital Publishing Institute (MDPI), Molecules 2016, 21, 626. pp. 1-28.
Dufour et al., The Antibacterial Properties of Isothiocyanates. Microbiology Research. Microbiology (2015), 161. pp. 229-243.
Valentine W. M. et al.: “Covalent Cross-Linking of Erythrocyte Spectrin by Carbon Disulfide in Vivo,” Toxicology and Applied Pharmacology, Academic Press, Amsterdam, NL, vol. 121, No. 1, Jul. 1, 1993 pp. 71-77.
Sundaram G. S. M. et al.: “Synthesis of Bioorthogonal and Crosslinking Amino Acids for Use in Peptide Synthesis,” Amino Acids; The Forum for Amino Acid and Protein Research, Springer-Verlag, VI, vol. 39, No. 5, Apr. 22, 2010, pp. 1381-1384.
Mironov et al.: “Synthesis and Properties of New Chlorin and Bacteriochlorin Photosensitizers,” Proceedings of SPIE; Photochemistry; Photodynamic Therapy and Other Modalities, vol. 2625, Jan. 31, 1996, pp. 23-32.
Allyl Isothiocyante Product Safety Data Sheet, sc-252361, pp. 1-14., print date Apr. 22, 2010.
Office Action for U.S. Appl. No. 13/342,516 dated May 22, 2013.
Office Action for U.S. Appl. No. 13/342,516 dated Mar. 18, 2014.
Office Action for U.S. Appl. No. 14/594,788 dated Sep. 30, 2015.
Office Action for U.S. Appl. No. 14/594,788 dated May 17, 2016.
Office Action for U.S. Appl. No. 14/880,408 dated Apr. 6, 2016.
Office Action for U.S. Appl. No. 14/880,408 dated Jul. 25, 2016.
Office Action for U.S. Appl. No. 14/880,408 dated Oct. 18, 2016.
Office Action for U.S. Appl. No. 14/880,418 dated Apr. 7, 2016.
Office Action for U.S. Appl. No. 14/880,418 dated Jul. 19, 2016.
Office Action for U.S. Appl. No. 14/880,418 dated Oct. 18, 2016.
Office Action for U.S. Appl. No. 14/880,426 dated Aug. 8, 2016.
Office Action for U.S. Appl. No. 14/880,426 dated Oct. 31, 2016.
Office Action for U.S. Appl. No. 13/348,821 dated Jan. 16, 2013.
Office Action for U.S. Appl. No. 13/348,821 dated Feb. 25, 2014.
Office Action for U.S. Appl. No. 14/519,462 dated Nov. 30, 2015.
Office Action for U.S. Appl. No. 14/519,462 dated Jul. 14, 2016.
Office Action for U.S. Appl. No. 14/868,897 dated Jun. 27, 2016.
Office Action for U.S. Appl. No. 14/868,929 dated Jul. 7, 2016.
Office Action for U.S. Appl. No. 14/868,959 dated Jul. 7, 2016.
Office Action for U.S. Appl. No. 13/952,236 dated Jun. 23, 2014.
Office Action for U.S. Appl. No. 14/519,510 dated Oct. 16, 2015.
Office Action for U.S. Appl. No. 14/519,510 dated Jun. 8, 2016.
Office Action for U.S. Appl. No. 14/867,585 dated Aug. 18, 2016.
Office Action for U.S. Appl. No. 14/867,626 dated Aug. 19, 2016.
Office Action for U.S. Appl. No. 13/351,616 dated Feb. 21, 2014.
Office Action for U.S. Appl. No. 13/351,616 dated Sep. 18, 2014.
Office Action for U.S. Appl. No. 13/351,616 dated Jan. 29, 2016.
Kricheldorf et al. Makromol. Chem. 1980, 181, 2571-2585.
Office Action for U.S. Appl. No. 14/594,788 dated Jul. 10, 2017.
Office Action for U.S. Appl. No. 14/594,788 dated Jun. 20, 2017.
Office Action for U.S. Appl. No. 14/594,788 dated Apr. 12, 2017.
Office Action for U.S. Appl. No. 14/880,418 dated Sep. 20, 2017.
Office Action for U.S. Appl. No. 15/296,701 dated Jun. 21, 2017.
Office Action for U.S. Appl. No. 15/296,701 dated May 3, 2017.
Office Action for U.S. Appl. No. 15/297,304 dated Jun. 20, 2017.
Office Action for U.S. Appl. No. 15/297,304 dated May 3, 2017.
Office Action for U.S. Appl. No. 15/634,639 dated Aug. 25, 2017.
Office Action for U.S. Appl. No. 15/397,375 dated Sep. 25, 2017.
Office Action for U.S. Appl. No. 15/590,645 dated Jun. 8, 2017.
Office Action for U.S. Appl. No. 15/353,260 dated Aug. 9, 2017.
Office Action for U.S. Appl. No. 15/459,822 dated Oct. 6, 2017.
Office Action for U.S. Appl. No. 15/675,915 dated Nov. 1, 2017.
Brown et al., Direct Modification of the Proinflammatory Cytokine Macrophage Migration Inhibitory Factor by Dietary Isothiocyanates, pp. 32425-32433, 2009.
Related Publications (1)
Number Date Country
20210244702 A1 Aug 2021 US
Provisional Applications (2)
Number Date Country
61502067 Jun 2011 US
61429325 Jan 2011 US
Continuations (5)
Number Date Country
Parent 16526344 Jul 2019 US
Child 17141300 US
Parent 15973915 May 2018 US
Child 16526344 US
Parent 15353260 Nov 2016 US
Child 15973915 US
Parent 14594788 Jan 2015 US
Child 15297304 US
Parent 13342516 Jan 2012 US
Child 14594788 US
Continuation in Parts (1)
Number Date Country
Parent 15297304 Oct 2016 US
Child 15353260 US