Various embodiments of the present invention described herein generally relate to item dispensers, and, in particular, to item dispensers configured to accept a cart having items stored therein and selectively grant access to at least a portion of the items stored in the cart.
Item dispensers are frequently used to dispense a variety of items, such as food products, toiletries, and other goods to various users. In the healthcare industry, dispensers are often placed in hospitals and used to distribute linens, surgical scrubs, and other healthcare items to members of a hospital's staff. These dispensers can be configured to store such items on shelves disposed within the dispenser, or on moveable carts that can be wheeled into an interior portion of a dispenser. To prevent access to the stored items, the dispensers may include a lockable access door that can be opened by an authorized user.
In various existing dispensers, such as those described in U.S. Pat. No. 6,502,718 entitled “Garment dispensing and receiving apparatus having a removable cart body and a flexible dispensing door,” filed Sep. 19, 2002, authorized users may be granted access to a subset of items stored within a dispenser that are each stored within individual receptacles in the dispenser. Moreover, certain dispensers include various cart guide mechanisms for guiding a cart into an enclosure, such as those described in U.S. Pat. No. 7,874,562 entitled “Guides and other apparatus for inserting a cart, such as a cart with one or more fixed wheels, into an enclosure,” filed Jul. 16, 2007 and claiming priority to application Ser. No. 11/744,387 (now U.S. Pat. No. 7,628,410), filed May 4, 2007.
However, there is an ongoing need in the art for secure dispensers that enable an authorized user to more easily access stored items while minimizing the initial assembly cost of the dispensers and maximizing security against unauthorized access to the stored items. Furthermore, in view of increasing efforts to reduce operational cost, there is also a need for dispensers that are easy to use, more reliable and that can be manufactured at a lower cost.
Various embodiments are directed to a system for dispensing items. In various embodiments, the system comprises: a cart comprising a cart body configured for storing one or more items and a dispenser. In various embodiments, the dispenser comprises: a housing defining an access opening and an interior portion dimensioned for receiving the cart; an access door disposed adjacent the access opening, the access door configured for movement between (i) a closed position in which the access door prevents access to the cart when the cart is stored within the interior area of the housing and (ii) an open position in which the access door permits access to the cart when stored within the interior area of the housing; and a cart guide mechanism comprising a rear guide rail extending along a rear portion of the housing and an angled guide rail extending between the rear portion of the housing and a first side portion of the housing; wherein the angled guide rail is configured to guide the cart to a desired position within the dispenser where a first side wall of the cart body is substantially adjacent to a second side portion of the housing opposite the first side portion, and a rear wall of the cart body is substantially parallel and adjacent to the rear horizontal guide rail.
In various embodiments, the cart comprises a cart locking member; and the cart guide mechanism comprises a cart locking mechanism configured to engage the cart locking member when the cart is stored at the desired position within the dispenser. Moreover, in certain embodiments, the cart body defines at least one chamfered vertical rear corner located between the rear wall of the cart body and a second side of the cart body, and the angled guide rail of the chamfered vertical rear corner is substantially adjacent and parallel to the angled guide rail when the cart is stored at the desired position within the dispenser. Moreover, in various embodiments, the cart further comprises at least one guide block having a hole extending at least partially therethrough, wherein the guide block is positioned proximate a first side of the cart body such that the hole extends in a direction parallel to the back wall of the cart; and the cart guide mechanism of the housing further comprises a guide pin, wherein at least a portion of the guide pin is configured to engage the hole of the guide block coupled to the cart when the cart is stored at the desired position within the dispenser. In certain embodiments, the cart comprises a cart locking member positioned along the rear wall of the cart body and proximate the second side of the cart body; and the cart guide mechanism comprises a cart locking mechanism configured to engage the cart locking member when the cart is stored at the desired position within the dispenser; and wherein the cart guide mechanism prevents unauthorized removal of the cart from the dispenser while the guide pin is engaged with the hole of the guide block and the cart locking mechanism is engaged with the cart locking member.
Moreover, in various embodiments, the cart further comprises at least one guide roller; and the dispenser further comprises at least one guide plate comprising at least one guide surface configured to engage the at least one guide roller; and wherein the at least one guide roller is configured to engage the at least one guide surface as the cart is directed into the interior of the housing in a first direction of travel and redirect the cart to a second direction of travel as the cart is directed into the interior of the housing. In certain embodiments, the at least one guide roller extends vertically above a top of the cart; and the at least one guide plate is positioned adjacent a ceiling of the housing. In certain embodiments, the at least one guide roller comprises a first guide roller and a second guide roller; and the at least one guide plate comprises a first guide plate comprising a first guide surface and a second guide plate comprising a second guide surface; and wherein the first guide roller is configured to engage and follow the first guide surface as the cart is directed into the interior of the housing in a first direction of travel and redirect the cart to a second direction of travel as the cart is directed into the interior of the housing; and the second guide roller is configured to engage and follow the second guide surface as the cart is directed out of the housing in a third direction of travel.
Moreover, in various embodiments, the access door comprises an item access mechanism configured to selectively provide access to a portion of the interior of the housing through at least one aperture extending through the item access mechanism, and wherein the item access mechanism is slidably coupled to the housing such that the item access mechanism is configured to slide laterally relative to the access opening. In certain embodiments, the item access mechanism comprises at least one slidable panel configured to reposition the at least one aperture vertically relative to the access opening. In certain embodiments, the cart comprises a guide rail extending across a front face of the cart; and the item access mechanism comprises a guide configured to slidably engage the guide rail of the cart.
In various embodiments, the dispenser further comprises a control system in communication with the item access mechanism, wherein the control system comprises: a user interface; and a processor configured to receive user input from the user interface, and to selectably grant access to a portion of the interior of the housing via the item access mechanism based at least in part on the user input.
In various embodiments, the housing further comprises a door locking mechanism configured to selectably lock the access door in the closed position.
In various embodiments, the first side portion of the housing comprises a first side panel and/or the second side portion of the housing comprises a second side panel.
Various embodiments are directed to a cart for storing one or more items. In various embodiments, the cart comprises: a cart body for storing one or more items, wherein the cart body defines a perimeter of the cart; a plurality of drive wheels secured relative to the cart body; and a retractable support base secured relative to the cart body, wherein the retractable support base comprises one or more outrigger members and one or more support wheels each secured proximate a distal end of a corresponding outrigger member, and wherein the retractable support base is adjustable between: an extended configuration in which the distal ends of the one or more outrigger members extend beyond the perimeter of the cart; and a retracted configuration in which the distal ends of the one or more outrigger members are positioned within the bounds of the cart's perimeter.
In various embodiments, the retractable support base is biased to the extended configuration. In certain embodiments, the retractable support base further comprises a latch mechanism configured to lock the retractable support base in the extended configuration. In various embodiments, the outrigger members are configured to rotate about a vertical axis of rotation between the extended configuration and the retracted configuration.
In certain embodiments, the outrigger members rotate between 50 and 55 degrees between the extended configuration and the retracted configuration. Moreover, in various embodiments, the outrigger members are offset relative to the axis of rotation.
The cart of claim 16, wherein the perimeter of the cart has a rectangular cross-section, having a long dimension and a narrow dimension perpendicular to the long dimension, and wherein the retractable support base is configured such that the outrigger members extend beyond the perimeter of the cart in a direction parallel to the narrow dimension while in the extended configuration.
Various embodiments are directed to a system for dispensing items. In various embodiments, the system comprises: a cart comprising a cart body configured for storing one or more items; and a plurality of drive wheels secured relative to the cart body; and a retractable support base secured relative to the cart body, wherein the retractable support base comprises one or outrigger members and one or more support wheels secured proximate a distal end of a corresponding outrigger member, and wherein the retractable support base is adjustable between: an extended configuration in which the distal ends of the one or more outrigger members extend beyond the perimeter of the cart; and a retracted configuration in which the distal ends of the one or more outrigger members are positioned within the perimeter of the cart; and a dispenser comprising: a housing defining an access opening and an interior portion dimensioned for receiving the cart; and a cart engagement mechanism configured to engage and pivot the retractable support base to the retracted configuration when the cart is inserted into the interior portion of the housing.
In various embodiments, the retractable support base is biased to the extended configuration. Moreover, in various embodiments, the retractable support base further comprises a latch mechanism configured to lock the retractable support base in the extended configuration; and the cart engagement mechanism comprises a latch release member configured to unlock the retractable support base such that the retractable support base is pivotable to the retracted configuration. In certain embodiments, the dispenser comprises a cart guide mechanism configured to guide the cart into the dispenser such that the cart engagement mechanism engages the retractable support base of the cart to pivot the retractable support base to the retracted configuration.
Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
Overview
Various embodiments of the present invention are directed to a dispenser configured for storing one or more items and dispensing the stored items to authorized users. According to various embodiments, the dispenser generally includes a housing defining an interior portion dimensioned to receive a movable cart configured for supporting various items. As described in greater detail herein, the movable cart may comprise an array of receptacles each configured to accept at least one item therein, while the dispenser may comprise an item access mechanism configured to selectively provide access to a subset of these receptacles.
In order to provide selective access to the removable cart within the dispenser, various embodiments include a movable access door configured for being moved to an open position, in which a user has access unobstructed access to the movable cart within the dispenser such the cart may be removed from the dispenser, and a closed position, in which a user is prevented from removing the cart stored within the dispenser.
As described in greater detail herein, various embodiments of the dispenser's access door are configured to enable an authorized user to easily access the cart stored within the dispenser. For example, in various embodiments, the access door is configured to slide in a lateral direction relative to the dispenser's housing such that an authorized user can easily adjust the access door to the open or closed position. Moreover, as described in detail below, various embodiments of the dispenser include a door locking mechanism configured to prevent the movable access door from being moved away from the closed position.
Moreover, the access door may comprise one or more item access mechanisms configured to provide selective access to a subset of items stored within the movable cart. As a non-limiting example, the item access mechanism may comprise one or more item doors sized such that a user may be granted access to a single receptacle. While the access door is in the closed position, the item access mechanism may be configured to be positioned proximate one or more receptacles having items stored therein, and thus provide selective access to the items in the one or more receptacles.
As noted, the item access mechanisms may comprise one or more item doors sized to provide access to a selected subset of receptacles provided in the cart. Thus, the dispenser may include one or more cart guide mechanisms configured to guide the cart into the appropriate location within the dispenser to interact with the item access mechanisms, and to maintain the cart position within the dispenser during use. Thus, the dispenser may comprise one or more guide mechanisms, such as cart guide bars, configured to guide the cart into the dispenser while a user is placing a cart therein. Moreover, the dispenser may comprise a cart locking mechanism configured to interact with a cart locking member disposed on the cart, and thereby maintain the location of the cart within the dispenser.
In some embodiments, as described in greater detail below, the dispenser includes a movable security bar including a flexible joint located between the two ends of the security bar, one end of the bar being immovably coupled to dispenser and another end being detachably coupled to the dispenser when in its horizontal, closed position. The flexible joint of the security bar is configured to allow a user to move the security bar into a vertical position and thus grant unobstructed access to the interior of the dispenser.
These and other embodiments of the dispenser described herein are comprised of low-cost, reliable components that serve to improve reliability and reduce the overall manufacturing cost of the dispenser.
Item Supporting Cart
The cart 150 also includes a series of parallel horizontal divider members 48 extending from the first side wall 44 to the second side wall 45. As shown in
As shown in the illustrated embodiment of
In the illustrated embodiment of
As illustrated in
In various embodiments, the horizontal guide rail 151 also includes a chamfered locator angle 152 proximate the second side of the cart 45, which is configured to interact with a corresponding angled guide rail 311 disposed within the housing 50 (shown in
According to various embodiments, the cart 150 also includes a cart locking member 153 (shown in
As illustrated in
Thus, when the cart 150 is fully inserted in the proper position in the housing 50, the components of the cart guide mechanism interact with the corresponding components of the cart guide mechanism portion of the housing 50. As will be described in greater detail herein, the guide mechanism and the locking mechanism 312 are configured to selectively lock the cart in position such that the chamfered locator corner 152 of the cart 150 is in contact with the angled guide rail 311, a rear portion of the horizontal guide rail 151 of the cart 150 is in contact with the horizontal guide rail 308, and a side portion of the horizontal guide rail 151 of the cart 150 is in contact with a cart stop 314.
In the illustrated embodiment shown in
When in use, an item to be dispensed is placed within each of the cart's receptacles and the cart 150 is placed into the interior of the housing 50 so that the open front portion 46a of the body 40 is substantially co-planar with an access opening 110 of the dispenser's housing 50. As discussed in more detail below, this allows a control system 70 and item access mechanism 440 to control access to the interior of the receptacles.
Moreover, in the illustrated embodiment of
Additionally, in the illustrated embodiment of
Certain embodiments of the cart 150 may be configured with a relatively narrow width, where the width dimension is the measured as the distance between the front of the cart 150 (corresponding to the front of the open faced body 40) and the back of the cart 150 (corresponding to the back of the open faced body 40). In various embodiments, such a narrow body cart 150 may have a width of less than 24 inches. In a particular embodiment, the cart 150 has a width of approximately 18 inches. The cart may have a height, for example, of 70 inches or greater.
The cart 150 may be subject to various safety rules and/or regulations established by governmental entities and/or independent safety testing and certification organizations. For example, Underwriters Laboratories (UL) has established a safety certification test to determine whether carts (e.g., cart 150) and other dispensers are at risk of tipping over when subject to a force that causes at least a portion of the base of the cart to lose contact with a support surface. Such example standards are published as UL Standard 751, entitled “Vending Machine.” The UL 751 standard requires inter alia that, under worst-case conditions in which only an upper portion of the cart is loaded, the loaded cart will not tip over when the cart is angled at 10 degrees relative to a horizontal support surface. Accordingly, when angled at 10 degrees relative to a horizontal support surface, the center of gravity of the cart 150 (unloaded or at least partially loaded) should remain over the base of the cart 150 defined by the wheels, such that the cart will return to an upright position when released.
As shown in
As shown in
Referring again to
As noted above, the front portion and the rear portion of the outrigger member 1010 are configured to extend beyond the front and rear of the cart frame 160 in the extended configuration to provide additional support to prevent the cart 150 from tipping. Accordingly, when the cart 150 is tipped at an angle of 10 degrees measured against the horizontal support surface in accordance with UL 751, the center of gravity of the cart 150 remains above the enlarged base of the cart 150, causing the cart to return to an upright position when released. As an example, in the extended configuration, the front portion of the outrigger member 1010 may extend at least 3 inches beyond the front edge of the cart frame 160, and the rear portion of the outrigger member may extend at least 2 inches beyond the rear edge of the cart frame 160. As shown in
In various embodiments, the retractable support base 1000 additionally comprises a support plate 1101 adjacent the top surface of the retractable support base 1000. In various embodiments, the support plate 1101 provides additional support to the retractable support base 1000 proximate the pivot axis 1100 to prevent bending or flexing of the base frame 1200 during use.
Referring again to
In the illustrated embodiment of
In various embodiments, the outrigger member 1010 may be biased to an extended configuration to provide an enlarged and stable base for the cart 150 when the cart 150 is being moved by a user. Accordingly, the retractable support base 1000 further comprises an outrigger biasing mechanism configured to bias the outrigger member 1010 to the extended configuration. For example, as shown in
Moreover, the retractable support base 1000 may include a latch mechanism 1050 configured to selectably lock the outrigger member 1010 in the extended configuration. In the illustrated embodiment of
Dispenser Housing Configured to Receive an Item Supporting Cart
In the illustrated embodiment of
As illustrated in
According to various embodiments, the dispenser's access door 60 is operatively connected to the housing 50 adjacent the housing's access opening 310, and comprises a flexible barrier 402, a vertical support member 410, and an item access mechanism 440. In various embodiments, the access door 60 is configured to slide laterally between an open position, in which the access door 60 permits access to the entirety of the interior portion of the housing 50, and a closed position, in which the access door 60 prevents access to the entirety of the interior portion of the housing 50, and only the item access mechanism 440 may allow access to a portion of the interior of the housing 50. For example,
Although not shown, the upper edge 402a of the flexible barrier 402 is operatively connected to the housing 50 by a first plurality of door attachment members (e.g., a first set of openings extending through the flexible barrier, and/or a first set of rings).
As shown in
In addition, the second side edge 402d of the flexible barrier is attached to the housing 10 adjacent the second lateral side 110d of the access opening 110. As shown in
Moreover, as illustrated in
In various embodiments, the vertical support member 410 is configured to slide laterally relative to the housing 50 in order to permit the access door 60 to move between its open and closed positions. The vertical support member 410 may be slidably connected to the housing 50 at its upper end by an upper sliding assembly configured to slide along the upper horizontal support member. In various embodiments, the lower end of the vertical support member 410 is slideably connected to a lower security bar 430. As shown in
The security bar 430 includes a movable joint located between the two ends of the security bar 430. The movable joint allows the security bar 430 to be moved between the retention and access positions. In various embodiments, the movable joint may comprise a universal joint. The security bar 430 is generally rigid and composed of a high-strength metal material, such as steel or aluminum. However, as will be appreciated from the description herein, the security bar 430 may be composed of various materials of suitable strength and rigidity.
In certain embodiments, the lower edge 402b of the flexible barrier 402 is operatively connected to the lower security bar 430 by a second plurality of door attachment members (e.g., a second set of rings 404). As shown in
As will be appreciated from
In the open position shown in
According to various embodiments, the aforementioned components of the access door 60 enable the access door 60 to be easily moved by a user between the open and closed positions of
In various embodiments, the dispenser 7 includes a door locking mechanism 170 configured to lock the access door 60 in its closed position. For example, in the illustrated embodiment of
To unlock the access door 60 from its closed position, the door locking mechanism 170 disengages its at least one latch from the at least one door locking member. In various embodiments, this can be accomplished automatically or manually. For example, in certain embodiments, a keyed mechanism may be provided that enables a user to insert a key into a keyhole provided on the housing 50 and disengage the door locking mechanism's at least one latch by turning the key. In addition, a lever or button mechanism configured to mechanically disengage the at least one latch may be used.
In other embodiments, the dispenser's control system 70 may be configured to control the door locking mechanism 170. In various embodiments, the control system 70 comprises a computing device (e.g., a processor and memory) configured to interface with one or more user input devices disposed on the exterior of the housing (e.g., a keypad, a card reader, an RFID reader, and/or the like). For example, in the illustrated embodiment of
In various embodiments, the door locking mechanism 170 may include a solenoid or other electromechanical device configured to actuate the locking mechanism's latches in response to a control signal received from the control system 70. Thus, in one embodiment, the control system 70 is configured to actuate the door locking mechanisms' latches to unlock the closed access door 60 in response to receiving valid user input (e.g., a card swipe from a card assigned to an authorized user, or an authorization code entered via the key pad). By preventing the access door 60 from being unlocked by a user unable to provide such valid user input, the control system 70 and locking mechanism 170 are able to prevent access to items stored in the interior portion of the housing 50. In certain embodiments, the locking mechanism 170 may also include the aforementioned mechanical unlocking system as a redundant back-up method for unlocking the access door 60 when the automated control system 70 fails. As will be appreciated from the description herein, various embodiments of the door locking mechanism 170 may include various locking mechanisms suitable for securing the access door 60 in its closed position.
In the illustrated embodiment of
Moreover, as illustrated, a side of the first portion of the flexible barrier 405 and a side of the second portion of the flexible barrier 406 are secured to first and second sides of the item access mechanism 440, respectively. Each of the first and second portion of the flexible barrier may be secured to the item access mechanism 440 using mechanisms similar to those described herein as securing the flexible barrier 402 to the housing 50 and the vertical guide bar 410.
In the illustrated embodiment, the item access mechanism 440 is configured to be moved laterally relative to the access opening 110. As shown in
As will be described in greater detail herein, the desired lateral position is indicated to a user via one or more position indicator lights 309 disposed in the dispenser (e.g., on the upper front panel 307). According to various embodiments, the position indicator lights 309 may be—for example—a marking (e.g., a printed arrow) or a light (e.g., an arrow-shaped light illuminated by an LED). As illustrated, each of the plurality of indicator lights 309 corresponds to a vertical column of receptacles in the cart 150, and indicates a desired lateral position determined by the control system 70 to a user. Thus, as illustrated the plurality of indicator lights 309 indicates a lateral position of the item access mechanism 440 to the user. As will be described in greater detail herein, once the user moves the item access mechanism 440 to the indicated lateral position (e.g., a lateral position at which an alignment indicator on the item access mechanism (not shown) is aligned by an illuminated indicator light 309), the item access mechanism 440 may be locked in position by the position locking mechanism.
As illustrated, the item access mechanism 440 comprises an upper item access door 443a and a lower item access door 443b. Thus, the upper item access door 443a is configured to selectively grant access to at least one receptacle located in a upper portion of the cart 150 (as will be described in greater detail herein), and the lower item access door 443b is configured to selectively grant access to at least one receptacle located in a lower portion of the cart 150. In the illustrated embodiment of
The upper item access door 443a may comprise an access panel and a receptacle selection mechanism comprising a movable panel having an aperture therein. In various embodiments, the aperture is sized such that, when the aperture is aligned with a subset of receptacles in the cart, a user may be provided access to the subset of receptacles through the aperture, but no adjacent receptacles. For example, the aperture is sized at least substantially the same as the access opening of a receptacle, such that when the aperture is aligned with the access opening of the receptacle, a user is provided access to the entirety of the receptacle such that an item stored therein may be removed from the receptacle through the aperture.
The movable panel may be configured to move vertically, such that the aperture may be aligned with a horizontal row of receptacles. Thus, when the item access mechanism 440 is aligned horizontally relative to the access opening of the dispenser such that the aperture is aligned horizontally with a receptacle, a user may be provided access to a single receptacle through the upper access door 443a.
In various embodiments, the access panel is configured to be locked and thus prevent a user from opening the access panel to access the aperture until the item access mechanism 440 is positioned laterally at the desired lateral location and locked in the desired lateral location, and the moving panel of the upper access door 443a is positioned such that the aperture is aligned with a determined receptacle in the cart. Thus, a user may be prevented from opening the access panel until the aperture is aligned with a determined receptacle.
The lower item access door 443b may have a configuration at least substantially similar to that described above in reference to the upper item access door 443a. Thus, the lower item access door 443b may comprise an access panel and a movable panel having an aperture therein, wherein the movable panel is configured to move vertically and thereby align the aperture with a horizontal row of receptacles in the cart 150. As described above in reference to the upper item access door 443a, the access panel of the lower item access door 443b may be configured to remain locked until the item access mechanism 440 is positioned laterally at the desired lateral location and locked in the desired lateral location, and the moving panel of the lower item access door 443b is positioned such that the aperture is aligned with a determined receptacle in the cart 150. Thus, when the item access mechanism 440 is aligned horizontally relative to the access opening 110 of the dispenser 50 such that the aperture is aligned horizontally with a receptacle, a user may be provided access to a single receptacle through the lower access door 443b.
In various embodiments, the movable panel of the item access mechanism 440 may comprise a selector mechanism provided behind the access doors 443a, 443b, such as that described in U.S. patent application Ser. No. 14/042,612. Thus, the selector mechanism may be configured to restrict access to only certain receptacles of the cart 150. For example, the selector mechanism may comprise a vertically moveable plate configured to slide vertically relative to the item access mechanism 440. The plate may comprise an upper edge attached to a flexible upper barrier and a lower edge attached to a flexible lower barrier. The plate may define an upper aperture and a lower aperture each dimensioned such that a user can access an item disposed within a receptacle through one of the apertures.
Collectively, the upper item access door 443a and the lower item access door 443b are configured to provide access to a subset of items stored in the upper portion of the cart 150 and to a subset of items stored in the lower portion of the cart 150. As a non-limiting example, the item access mechanism 440 may be configured to provide a user with access to a shirt stored in a receptacle in the upper portion of the cart 150 and pants stored in a receptacle in the lower portion of the cart 150.
In various embodiments, the item access mechanism 440 is in communication with the control system 70 such that the control system 70 can provide instructions to the item access mechanism 440 regarding one or more receptacles to be accessed by a user. The control system 70 is then configured to instruct the item access mechanism 440 to move the movable panel of the upper item access door 443a to a desired vertical location; to move the movable panel of the lower item access door 443b to a desired vertical location; and to lock the item access mechanism 440 in a desired lateral location.
Cart Engagement Mechanism
As shown in
As shown in
Moreover, as shown in detail in
The corresponding pin guide block 154 comprises a solid block secured to a first side of the cart 150 within the perimeter of the cart 150, and having a hole extending at least partially through the block in a direction parallel to the back of the cart 150. The pin guide block 154 is positioned such that when the cart 150 is in the desired position, and a portion of the cart 150 is in contact with the cart stop 314, at least a portion of the cylinder 313a is positioned within the hole extending through the block 154. Thus, the guide pin 313 impedes movement of the first side of the cart in a direction substantially parallel to the first side of the housing 50. A portion of the surface of the cylinder 313a is configured to engage a corresponding portion of the interior surface of the hole upon the application of a force to the first side of the cart 150 in a direction parallel to the first side of the housing 50. Moreover, the configuration of the pin 313 and the pin guide block 154 do not prevent contact between the cart frame 160 and the cart stop 314.
Moreover, as shown in
As shown in the illustrated embodiment of
As can be appreciated from
Moreover, as will be discussed in detail in reference to
Similarly, the rear placement guide 317 comprises an angled guide surface 317a configured to facilitate movement of the cart out of the dispenser 7 by engaging the rear guide roller 157. Thus, when engaged with the rear guide roller 157, the rear placement guide 317 directs the cart 150 away from the cart stop 314 and through the access opening 110. In various embodiments, the front placement guide 316 and rear placement guide 317 are secured to an upper portion of the housing 50 such that the front and rear guide rollers 156, which extend vertically away from a ceiling of the cart 150 are configured to engage the front and rear placement guides 316, 317 during insertion and removal of the cart 150.
In various embodiments, the housing 50 may additionally comprise one or more features for operating the retractable support base 1000 of a cart 150. As shown in
Moreover, as shown in
As shown in
When removing the cart 150 from the housing 50, the biasing system of the retractable support base 1000 causes the outrigger member 1010 to move toward the extended configuration, thereby forming a larger, more stable base for the cart 150 when removed from the housing 50. As the outrigger member 1010 rotates to the extended configuration under the force applied by the biasing system (e.g., biasing spring 1110), the rear stability pin 1022 engages the latch mechanism 1050 to thereby selectively latch the outrigger member 1010 in the extended configuration.
Accordingly, the movement between the extended configuration and the retracted configuration occurs while the cart 150 is being positioned within the housing 50, but does not require any specific user interaction to cause the retractable support base 1000 to rotate. Similarly, the retractable support base 1000 rotates from the retracted configuration to the extended configuration upon removal of the cart 150 from the housing 50 without any specific user interaction.
Exemplary Placement of a Cart within a Dispenser
Beginning with the illustration of
As shown in
Next, the user pushes the rear portion of the cart 150 toward the rear of the dispenser 7. As shown in
Next, the user pushes the rear portion of the cart 150 such that cart 150 rotates into the dispenser's housing 50 and is guided by the cart guide rail 308 such that the cart 150 generally slides along the angled guide rail 311 until the cart 150 is entirely within the dispenser 7. In particular, as the user pushes the rear portion of the cart 150, the second rear corner of the cart contacts the angled guide rail 311 (as shown in
In the resulting loaded position shown in
To remove the cart 150 from the dispenser 7, the user follows an analogous procedure. For example, the user first disengages the cart locking mechanism 312 by proving a force to the user engagement mechanism 312c. The user then guides the second side of the cart 150 out of the dispenser 7 (e.g., as effectively shown in
As will be appreciated from the above description, the aforementioned procedure for inserting the cart 150 into the dispenser 7 enables a user to position the cart 150 by engaging portions of the cart guide mechanism. Using this method, the cart 150 can be guided into the appropriate position within the dispenser 7 and locked therein with minimal force supplied by the user.
Beginning with
As shown in
As shown in
As shown in
As shown in
Method of Providing Access to an Item Stored in a Cart
As previously described in reference to
Prior to receiving a user input, the item access mechanism 440 may be positioned in a ready position, wherein the item access mechanism 440 is proximate the second side of the access opening 110d (as shown in
Referring again to
Upon a determination that the user input is indicative of an authorized user, the control system 70 determines one or more receptacles of the cart for which to provide access. The control system 70 may have data stored therein indicative of various features of the items stored in each of the plurality of receptacles. Upon a user obtaining access to a particular receptacle, the control system 70 may be updated to reflect that the receptacle is thereafter empty, until the receptacle is reloaded. For example, a cart 150 may comprise clean scrubs to be worn by hospital personnel, and an upper portion of the cart 150 may comprise shirts and the bottom portion of the cart 150 may comprise pants. Upon receipt of user input indicative of an authorized user, the control system 70 may determine a single receptacle from the upper portion of the cart 150 containing an appropriately sized shirt for the user, and may determine a single receptacle from the lower portion of the cart 150 containing appropriately sized pants for the user. The user may thereafter be granted access to the receptacle containing the appropriately sized shirt and the receptacle containing the appropriately sized pants.
After determining one or more appropriate receptacles based at least in part on the provided user input, the control system 70 causes a position indicator light 309 to illuminate and thereby instruct to the user to move the item access mechanism 440 to the corresponding lateral position. As previously noted, upon the item access mechanism 440 reaching the indicated lateral position, the item access mechanism 440 may be locked into place (e.g., by a corresponding engagement mechanism) such that the item access mechanism 440 cannot be repositioned during use.
Additionally, after determining one or more appropriate receptacles for the user, the access panels corresponding to the upper access door 443a and the lower access door 443b move such that the aperture is aligned vertically with the row corresponding with the identified receptacle. Thus, prior to granting the user access to the interior of the dispenser 7, the aperture corresponding to the upper access door 443a is aligned with the identified receptacle, and the aperture corresponding to the lower access door 443b is aligned with the identified receptacle.
After the apertures are aligned with the one or more identified receptacles, the upper access door 443a and/or lower access door 443b are unlocked such that the user is granted access to the identified receptacles. As previously described, the various features of the dispenser 7, cart 150, and item access mechanism 440 substantially impede the user from accessing adjacent receptacles. For example, the user is prevented from pulling the item access mechanism 440 away from the cart 150 so as to obtain easier access to adjacent receptacles by the engagement between the lower guide member 446 of the item access mechanism 440 and the security bar 430, and the engagement between the guide 444 and the guide rail 155.
After the user retrieves the items from the one or more receptacles, the upper and lower access doors 443a, 443b are closed and locked, and item access mechanism 440 is unlocked such that it can slide laterally relative to the access opening 110. In various embodiments, the control system 70 may provide the user with instructions to return the item access mechanism to the ready position. However, in various embodiments the item access mechanism 440 is returned to the ready position automatically.
A dispenser 7 having a removable cart 150 with a plurality of receptacles therein allows the dispenser 7 to be restocked with items in a significantly reduced amount of time compared to other dispensers. Whereas other dispensers having a plurality of receptacles disposed within the dispenser must be restocked at a dispenser installation location by placing items in each of the receptacles individually, a dispenser 7 having a removable cart 150 may be restocked by simply removing an empty cart 150 from the dispenser 7 and replacing it with a filled cart 150 that may be restocked away from the installation location.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This patent application is a continuation of U.S. application Ser. No. 15/804,743, filed on Nov. 6, 2017, which claims priority to U.S. application Ser. No. 15/013,779, filed on Feb. 2, 2016, which claims priority to U.S. Provisional Patent Application Ser. No. 62/110,972, filed Feb. 2, 2015, and entitled “Item Dispensing Apparatus” and U.S. Provisional Patent Application Ser. No. 62/148,120, filed Apr. 15, 2015, and entitled “Item Dispensing Apparatus,” the contents of all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
328224 | Jacobson | Oct 1885 | A |
2202358 | Stone | May 1940 | A |
3055419 | Rubin et al. | Sep 1962 | A |
3058320 | Foster et al. | Oct 1962 | A |
3116097 | Novales | Dec 1963 | A |
3249294 | Hughes et al. | May 1966 | A |
3282382 | Thompson | Nov 1966 | A |
3392543 | Miller | Jul 1968 | A |
3439725 | Haimovitz | Apr 1969 | A |
3455621 | Kingsley | Jul 1969 | A |
3464509 | Gray | Sep 1969 | A |
3639919 | White | Feb 1972 | A |
3687546 | Endebrock et al. | Aug 1972 | A |
3690118 | Rainwater | Sep 1972 | A |
3712363 | Thomassen | Jan 1973 | A |
3719408 | Fulling ton | Mar 1973 | A |
3752550 | Niemeyer | Aug 1973 | A |
3785669 | Doheny | Jan 1974 | A |
3807480 | Smart | Apr 1974 | A |
3834865 | Lee | Sep 1974 | A |
3861768 | Wilson | Jan 1975 | A |
3961675 | Siegel | Jun 1976 | A |
4034572 | Morris et al. | Jul 1977 | A |
4037526 | Jackie | Jul 1977 | A |
4073369 | Nordskog | Feb 1978 | A |
4077228 | Schumacher et al. | Mar 1978 | A |
4108363 | Susumu | Aug 1978 | A |
4192436 | Schuller et al. | Mar 1980 | A |
4281730 | Swersey et al. | Aug 1981 | A |
4365854 | Waller | Dec 1982 | A |
4401216 | Koch | Aug 1983 | A |
4491375 | Ugalde | Jan 1985 | A |
4509577 | Priefert | Apr 1985 | A |
4891755 | Asher | Jan 1990 | A |
4974658 | Komatsu et al. | Dec 1990 | A |
4976301 | Easley et al. | Dec 1990 | A |
5067630 | Nesser et al. | Nov 1991 | A |
5085261 | Bortoluzzi | Feb 1992 | A |
5163495 | Lichy | Nov 1992 | A |
5370722 | Simmons | Dec 1994 | A |
5379823 | Kraeutler | Jan 1995 | A |
5385265 | Schlamp | Jan 1995 | A |
5657805 | Magro | Aug 1997 | A |
5683221 | Ablabutyan | Nov 1997 | A |
5724764 | Alsup | Mar 1998 | A |
5875597 | Gingrich et al. | Mar 1999 | A |
5964270 | Kirkey et al. | Oct 1999 | A |
5971512 | Swan | Oct 1999 | A |
6024153 | Goldman | Feb 2000 | A |
6282914 | Steinhoff et al. | Sep 2001 | B1 |
6385505 | Lipps | May 2002 | B1 |
6394738 | Springer | May 2002 | B1 |
6397916 | Bengtsson et al. | Jun 2002 | B1 |
6409187 | Crow, Jr. | Jun 2002 | B1 |
6409589 | Laconico, Jr. et al. | Jun 2002 | B1 |
6450598 | Hanel | Sep 2002 | B1 |
6502718 | Fitzgerald et al. | Jan 2003 | B2 |
6510566 | Bryce | Jan 2003 | B2 |
6595606 | Gunst | Jul 2003 | B1 |
6615894 | McKeon | Sep 2003 | B1 |
6626508 | Hase et al. | Sep 2003 | B1 |
6848491 | Gambarelli et al. | Feb 2005 | B2 |
6910302 | Crawford | Jun 2005 | B2 |
6994409 | Godlewski | Feb 2006 | B2 |
7134242 | Fitzgerald | Nov 2006 | B2 |
7282652 | Johnson et al. | Oct 2007 | B1 |
7353658 | Voute et al. | Apr 2008 | B2 |
7407238 | Fitzgerald | Aug 2008 | B2 |
7428447 | Stonikas et al. | Sep 2008 | B2 |
7628410 | Fitzgerald et al. | Dec 2009 | B2 |
7874562 | Fitzgerald et al. | Jan 2011 | B2 |
8229802 | Henry | Jul 2012 | B2 |
8744621 | Michael | Jun 2014 | B2 |
8763672 | Smart et al. | Jul 2014 | B2 |
9208635 | Fitzgerald et al. | Dec 2015 | B2 |
9245406 | Fitzgerald et al. | Jan 2016 | B2 |
9478093 | Broom et al. | Oct 2016 | B2 |
9576418 | Fitzgerald et al. | Feb 2017 | B2 |
20010042346 | Brioschi | Nov 2001 | A1 |
20020130135 | Fitzgerald et al. | Sep 2002 | A1 |
20030025424 | Graves | Feb 2003 | A1 |
20030221797 | Schaller | Dec 2003 | A1 |
20040004419 | Godlewski | Jan 2004 | A1 |
20040031574 | Gambarelli et al. | Feb 2004 | A1 |
20040206462 | Fitzgerald et al. | Oct 2004 | A1 |
20040245272 | Fitzgerald et al. | Dec 2004 | A1 |
20050060938 | Fitzgerald | Mar 2005 | A1 |
20060230683 | Hung | Oct 2006 | A1 |
20060250056 | Fitzgerald | Nov 2006 | A1 |
20060266770 | Fitzgerald | Nov 2006 | A1 |
20070073441 | Stonikas et al. | Mar 2007 | A1 |
20070080519 | Murdock | Apr 2007 | A1 |
20080001031 | Doebertin et al. | Jan 2008 | A1 |
20080272137 | Fitzgerald et al. | Nov 2008 | A1 |
20080272139 | Fitzgerald | Nov 2008 | A1 |
20080272141 | Fitzgerald et al. | Nov 2008 | A1 |
20080272564 | Fitzgerald et al. | Nov 2008 | A1 |
20080272565 | Fitzgerald et al. | Nov 2008 | A1 |
20130123978 | Stark et al. | May 2013 | A1 |
20130211585 | Broom et al. | Aug 2013 | A1 |
20140091684 | Fitzgerald et al. | Apr 2014 | A1 |
20140368100 | Burd | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
201236594 | May 2009 | CN |
201909966 | Jul 2011 | CN |
0553470 | Aug 1993 | EP |
1061013 | Dec 2000 | EP |
1382273 | Jan 2004 | EP |
H06-045082 | Feb 1994 | JP |
H06-045082 | Jun 1994 | JP |
2004035267 | Feb 2004 | JP |
2008-036143 | Feb 2008 | JP |
2010-077709 | Apr 2010 | JP |
Entry |
---|
International Preliminary Examining Authority, International Report on Patentability (Chapter II) for International Application No. PCT/US2016/016198, dated Apr. 26, 2017, 8 pages, European Patent Office, Netherlands. |
International Preliminary Examining Authority, Written Opinion for International Application No. PCT/US2016/016198, dated Jan. 5, 2017, 7 pages, European Patent Office, Netherlands. |
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US20163/016198, dated Jul. 12, 2016, 18 pages, European Patent Office, Netherlands. |
International Searching Authority, Invitation to Pay Additional Fees and, Where Applicable, Protest Fee for International Application No. PCT/2016/016198, May 3, 2016, 8 pages, European Patent Office, The Netherlands. |
LTL Home Products, Inc., “Spectrum Folding Doors,” Mar. 30, 2009 to Jul. 12, 2012, Internet Archive. <http://web.archive.org/web/20090330195345/http://www.ltlhomeproducts.com/oakmont-folding-doors.php>, 1 page. |
Servicor Cleanroom Products, “Sliding Track Curtains,” Feb. 25, 2002 to Dec. 31, 2008, Internet Archive <http://web.archive.org/web/20080509191632/http://www.servicor.com/slidingcurtain.html>, 1 page. |
United States Patent and Trademark Office, Notice of Allowance for U.S. Appl. No. 15/013,779, dated Jul. 3, 2017. |
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 15/013,779, dated Feb. 1, 2017. |
Wilson Quality Safety Products, “Accordion Fold Curtains,” Feb. 16, 2007 to Feb. 9, 2010, Internet Archive <http://web.archive.org/web/20070216072132/http://www.wilsonindustries.com/partitions-accordion_fold_curtains.htm>, 1 page. |
U.S. Appl. No. 15/013,779, filed Feb. 2, 2016, U.S. Pat. No. 9,809,240, Issued. |
U.S. Appl. No. 15/804,743, filed Nov. 6, 2017, U.S. Pat. No. 10,246,114, Issued. |
Number | Date | Country | |
---|---|---|---|
20190291761 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62148120 | Apr 2015 | US | |
62110972 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15804743 | Nov 2017 | US |
Child | 16371758 | US | |
Parent | 15013779 | Feb 2016 | US |
Child | 15804743 | US |