Item placement detection and optimization in material handling systems

Information

  • Patent Grant
  • 11392891
  • Patent Number
    11,392,891
  • Date Filed
    Tuesday, November 3, 2020
    4 years ago
  • Date Issued
    Tuesday, July 19, 2022
    2 years ago
Abstract
A method includes: obtaining, from an image sensor mounted on a mobile automation apparatus, an image representing a plurality of items on a support structure in a facility; responsive to detection of the items in the image, for each item: obtaining an item region defining an area of the image containing the item; obtaining a performance metric corresponding to the item; encoding the performance metric as a visual attribute; and generating an item overlay using the visual attribute; and controlling a display to present the image, and each of the item overlays placed over the corresponding item regions.
Description
BACKGROUND

In facilities supporting material handling activities, such as warehouses, retail facilities such as grocers, and the like, the physical placement of items within the facility (e.g. the location of each item within the facility) can affect the performance of the facility, for example in terms of the volume of materials handled in a given time frame. Such facilities may be large and complex, with hundreds or thousands of distinct items handled therein, however, complicating accurate assessments of current item placements and facility performance.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.



FIG. 1 is a schematic of a mobile automation system.



FIG. 2 is a side view of a mobile automation apparatus in the system of FIG. 1.



FIG. 3 is a flowchart of a method of item placement detection and optimization.



FIG. 4 is a diagram illustrating a shelf module.



FIG. 5 is a diagram illustrating example item regions obtained at block 310 of the method of FIG. 3.



FIG. 6 is a diagram illustrating example overlay regions generated at block 330 of the method of FIG. 3.



FIG. 7 is a diagram illustrating an example performance of block 345 of the method of FIG. 3.



FIG. 8 is a flowchart of a method for generating performance metrics.



FIG. 9 is a diagram illustrating an example performance of the method of FIG. 9.



FIG. 10 is a flowchart of a method of generating relocation indicators.



FIG. 11 is a diagram illustrating an example performance of block 345 of the method of FIG. 3 after the performance of the method of FIG. 10.



FIG. 12. is a diagram illustrating a set of overlays generated via successive performances of the method 300.



FIG. 13. is a diagram illustrating an additional item overlay corresponding to a rate of change in performance metrics.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


DETAILED DESCRIPTION

Examples disclosed herein are directed to a method, comprising: obtaining, from an image sensor mounted on a mobile automation apparatus, an image representing a plurality of items on a support structure in a facility; responsive to detection of the items in the image, for each item: obtaining an item region defining an area of the image containing the item; obtaining a performance metric corresponding to the item; encoding the performance metric as a visual attribute; and generating an item overlay using the visual attribute; and controlling a display to present the image, and each of the item overlays placed over the corresponding item regions.


Additional examples disclosed herein are directed to a computing device, comprising: a communications interface, and; a processor configured to: obtain, from an image sensor mounted on a mobile automation apparatus, an image representing a plurality of items on a support structure in a facility; responsive to detection of the items in the image, for each item: obtain an item region defining an area of the image containing the item; obtain a performance metric corresponding to the item; encode the performance metric as a visual attribute; and generate an item overlay using the visual attribute; and control a display to present the image, and each of the item overlays placed over the corresponding item regions.



FIG. 1 depicts a mobile automation system 100 in accordance with the teachings of this disclosure. The system 100 includes a server 101 in communication with at least one mobile automation apparatus 103 (also referred to herein simply as the apparatus 103) and at least one client computing device 104 via communication links 105, illustrated in the present example as including wireless links. In the present example, the links 105 are provided by a wireless local area network (WLAN) deployed via one or more access points (not shown). In other examples, the server 101, the client device 104, or both, are located remotely (i.e. outside the environment in which the apparatus 103 is deployed), and the links 105 therefore include wide-area networks such as the Internet, mobile networks, and the like. The system 100 also includes a dock 106 for the apparatus 103 in the present example. The dock 106 is in communication with the server 101 via a link 107 that in the present example is a wired link. In other examples, however, the link 107 is a wireless link.


The client computing device 104 is illustrated in FIG. 1 as a mobile computing device, such as a tablet, smart phone or the like. In other examples, the client device 104 is implemented as another type of computing device, such as a desktop computer, a laptop computer, another server, a kiosk, a monitor, and the like. The system 100 can include a plurality of client devices 104 in communication with the server 101 via respective links 105.


The system 100 is deployed, in the illustrated example, in a retail facility including a plurality of support structures such as shelf modules 110-1, 110-2, 110-3 and so on (collectively referred to as shelf modules 110 or shelves 110, and generically referred to as a shelf module 110 or shelf 110—this nomenclature is also employed for other elements discussed herein). Each shelf module 110 supports a plurality of products 112, which may also be referred to as items. Each shelf module 110 includes a shelf back 116-1, 116-2, 116-3 and a support surface (e.g. support surface 117-3 as illustrated in FIG. 1) extending from the shelf back 116 to a shelf edge 118-1, 118-2, 118-3. A variety of other support structures may also be present in the facility, such as pegboards, tables, and the like.


The shelf modules 110 (also referred to as sub-regions of the facility) are typically arranged in a plurality of aisles (also referred to as regions of the facility), each of which includes a plurality of modules 110 aligned end-to-end. In such arrangements, the shelf edges 118 face into the aisles, through which customers in the retail facility, as well as the apparatus 103, may travel. As will be apparent from FIG. 1, the term “shelf edge” 118 as employed herein, which may also be referred to as the edge of a support surface (e.g., the support surfaces 117) refers to a surface bounded by adjacent surfaces having different angles of inclination. In the example illustrated in FIG. 1, the shelf edge 118-3 is at an angle of about ninety degrees relative to the support surface 117-3 and to the underside (not shown) of the support surface 117-3. In other examples, the angles between the shelf edge 118-3 and the adjacent surfaces, such as the support surface 117-3, is more or less than ninety degrees.


The apparatus 103 is equipped with a plurality of navigation and data capture sensors 108, such as image sensors (e.g. one or more digital cameras) and depth sensors (e.g. one or more Light Detection and Ranging (LIDAR) sensors, one or more depth cameras employing structured light patterns, such as infrared light, or the like). The apparatus 103 is deployed within the retail facility and, via communication with the server 101 and use of the sensors 108, navigates autonomously or partially autonomously along a length 119 of at least a portion of the shelves 110.


While navigating among the shelves 110, the apparatus 103 can capture images, depth measurements and the like, representing the shelves 110 and the items 112 supported by the shelves 110 (generally referred to as shelf data or captured data). Navigation may be performed according to a frame of reference 102 established within the retail facility. The apparatus 103 therefore tracks its pose (i.e. location and orientation) in the frame of reference 102.


The server 101 includes a special purpose controller, such as a processor 120, specifically designed to control and/or assist the mobile automation apparatus 103 to navigate the environment and to capture data. The processor 120 is interconnected with a non-transitory computer readable storage medium, such as a memory 122, having stored thereon computer readable instructions for performing various functionality, including control of the apparatus 103 to navigate the modules 110 and capture shelf data, as well as post-processing of the shelf data. The memory 122 can also store data for use in the above-mentioned control of the apparatus 103 and post-processing of captured data, such as a repository 123. The repository 123 can contain, for example, a map of the facility, operational constraints for use in controlling the apparatus 103, the image and/or depth data captured by the apparatus 103, and the like.


The memory 122 includes a combination of volatile memory (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 120 and the memory 122 each comprise one or more integrated circuits. In some embodiments, the processor 120 is implemented as one or more central processing units (CPUs) and/or graphics processing units (GPUs).


The server 101 also includes a communications interface 124 interconnected with the processor 120. The communications interface 124 includes suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the server 101 to communicate with other computing devices—particularly the apparatus 103, the client device 104 and the dock 106—via the links 105 and 107. The links 105 and 107 may be direct links, or links that traverse one or more networks, including both local and wide-area networks. The specific components of the communications interface 124 are selected based on the type of network or other links that the server 101 is required to communicate over. In the present example, as noted earlier, a wireless local-area network is implemented within the retail facility via the deployment of one or more wireless access points. The links 105 therefore include either or both wireless links between the apparatus 103 and the mobile device 104 and the above-mentioned access points, and a wired link (e.g. an Ethernet-based link) between the server 101 and the access point.


The processor 120 can therefore obtain data captured by the apparatus 103 via the communications interface 124 for storage (e.g. in the repository 123) and subsequent processing (e.g. to detect objects such as shelved products in the captured data, and detect status information corresponding to the objects). The server 101 maintains, in the memory 122, an application 125 executable by the processor 120 to perform such subsequent processing. In particular, as discussed in greater detail below, the server 101 is configured, via execution of the instructions of the application 125 by the processor 120, to obtain detected positions of the items 112 in images captured by the apparatus 103, as well as to obtain performance metrics associated with the items 112. The performance metrics, as will be discussed in greater detail below, correspond generally to rates at which the items 112 are dispensed from the facility (e.g. rates of consumption of the items 112).


Having obtained the above information, the application 125 further configures the processor 120 to generate visual representations of the performance metrics, and to detect and present relocation indicators identifying items 112 to be physically repositioned within the facility. Such repositioning may, in turn, increase the performance of the material handling operations within the facility. The server 101 repeats the above functionality periodically based on updated data captured by the apparatus 103, enabling continuous observation of current item locations and corresponding performance metrics.


In some examples, the server 101 can perform the above functions using data retrieved from other subsystems. For example, the server 101 can communicate, via the interface 124, with a performance monitoring subsystem 128, e.g. via a link 130, to retrieve certain forms of performance data. The subsystem 128 can include any one of, or any combination of, a point of sale (PoS) subsystem, a product category management and/or merchandizing planning system, or the like.


The server 101 may also transmit status notifications (e.g. notifications indicating that products are out-of-stock, in low stock or misplaced) to the client device 104 responsive to the determination of product status data. In addition, the server 101 can transmit the above-mentioned visual representations and/or relocation identifiers to the client device 104. The client device 104 includes one or more controllers (e.g. central processing units (CPUs) and/or field-programmable gate arrays (FPGAs) and the like) configured to process notifications and other information received from the server 101. For example, the client device 104 includes a display 132 controllable to present information received from the server 101.


Turning now to FIG. 2, the mobile automation apparatus 103 is shown in greater detail. The apparatus 103 includes a chassis 201 containing a locomotive assembly 203 (e.g. one or more electrical motors driving wheels, tracks or the like). The apparatus 103 further includes a sensor mast 205 supported on the chassis 201 and, in the present example, extending upwards (e.g., substantially vertically) from the chassis 201. The mast 205 supports the sensors 108 mentioned earlier. In particular, the sensors 108 include at least one imaging sensor 207, such as a digital camera. In the present example, the mast 205 supports seven digital cameras 207-1 through 207-7 oriented to face the shelves 110.


The mast 205 also supports at least one depth sensor 209, such as a 3D digital camera capable of capturing both depth data and image data. The apparatus 103 also includes additional depth sensors, such as LIDAR sensors 211. In the present example, the mast 205 supports two LIDAR sensors 211-1 and 211-2. As shown in FIG. 2, the cameras 207 and the LIDAR sensors 211 are arranged on one side of the mast 205, while the depth sensor 209 is arranged on a front of the mast 205. That is, the depth sensor 209 is forward-facing (i.e. captures data in the direction of travel of the apparatus 103), while the cameras 207 and LIDAR sensors 211 are side-facing (i.e. capture data alongside the apparatus 103, in a direction perpendicular to the direction of travel). In other examples, the apparatus 103 includes additional sensors, such as one or more RFID readers, temperature sensors, and the like.


The mast 205 also supports a plurality of illumination assemblies 213, configured to illuminate the fields of view of the respective cameras 207. The illumination assemblies 213 may be referred to collectively as an illumination subsystem. That is, the illumination assembly 213-1 illuminates the field of view of the camera 207-1, and so on. The cameras 207 and lidars 211 are oriented on the mast 205 such that the fields of view of the sensors each face a shelf 110 along the length 119 of which the apparatus 103 is traveling. The apparatus 103 is configured to track a pose of the apparatus 103 (e.g. a location and orientation of the center of the chassis 201) in the frame of reference 102, permitting data captured by the apparatus 103 to be registered to the frame of reference 102 for subsequent processing.


Facilities such as retailers may measure facility performance by assessing various performance metrics associated with the items 112. For example, a quantity of each item 112 removed from the shelves 110 (e.g. for purchase by customers) over a given time period (e.g. a week, although both shorter and longer time periods may also be assessed) may be measured. The quantities of items 112 consumed may be combined with item prices, margins, shelf space (e.g. in square feet or other suitable measurement unit) assigned to an item 112, or the like to assess facility performance in financial terms.


Further, the above measurements may be employed to alter the physical placement of items 112 in order to increase facility performance. For example, certain locations, such as higher support surfaces 117 (as opposed to support surfaces 117 closer to the ground), may increase the performance metrics associated with an item placed on such support surfaces. Therefore, the performance of the facility as a whole may be improved by further increasing the performance of already high-performing items. Gathering accurate locations of items 112, however, as well as accurate measurements of performance and selection of items to relocate, is typically a time-consuming manual process. As discussed below, the system 100 enables at least partial automation of this process.


Turning to FIG. 3, a method 300 of item placement detection and optimization is illustrated. The method 300 will be discussed in conjunction with its performance in the system 100, and in particular by the server 101. In other examples, however, at least some of the functionality implemented via the method 300 can be performed by another computing device, such as the apparatus 103.


At block 305, the server 101 is configured to obtain image data, and in some examples depth data (i.e. one or more point clouds) depicting a support structure such as one or more shelves 110. The image data, in this example, includes a two-dimensional color image previously captured by the apparatus 103, e.g. while traversing an aisle containing shelves 110. The image may be a composite generated from a plurality of 2D images captured by the apparatus 103 as the apparatus 103 traversed the aisle. In other examples, the image data and/or depth data may also be captured prior to block 305 by at least one fixed camera mounted within the facility, in addition to or instead of the apparatus 103.


In examples in which the server 101 receives depth data at block 305, the depth data can include a point cloud containing a plurality of points with coordinates defined in three dimensions, e.g. according to the frame of reference 102, captured by the apparatus 103 during the above-mentioned traversal of the support structures. As with the 2D images mentioned above, the point cloud can be a composite generated from multiple point cloud captures taken as the apparatus 103 traversed the aisle. The images and point cloud obtained at block 305 may be retrieved from the repository 123, for example.


As will be apparent to those skilled in the art, the image obtained at block 305 represents a set of items 112 on the shelves 110. At block 310, the server 101 obtains item regions defining, for each item represented in the image, an area of the image that contains the item. The item regions are obtained in response to detection of the items 112 in the image, e.g. by at least one detection mechanism implemented at the server 101 (e.g. via another application distinct from the application 125) or another computing device. For example, the detection mechanisms can include an item classification mechanism employing a trained classifier (e.g. any suitable machine learning technique, including deep learning mechanisms such as neural networks and the like) to detect image features associated with particular items.


The detection mechanisms can also include a shelf edge detector, configured to return a region of the image corresponding to a shelf edge 118. The shelf edge detector can be based on any suitable combination of edge detection algorithms, for example. The detection mechanisms may also include a label detector, configured to return regions of the image corresponding to labels (e.g. price labels) that identify the items 112. The label detector can, for example, search the image (e.g. within detected shelf edge region(s)) for text and/or barcodes with predefined characteristics such as font sizes, layouts, and the like.


The item regions mentioned above can be derived from the detections of items, shelf edges, and labels. The server 101, via the execution of the application 125, may therefore generate the item regions at block 305 based on the above-mentioned item detections, or the item regions may be previously generated and stored in the repository 123, and retrieved at block 305. The server 101 can retrieve detection data 312 defining the item regions and/or the detection data mentioned above at block 310.


Referring to FIG. 4, an example shelf module 410 is illustrated, with support surfaces 417-1 and 417-2 terminating in aisle-facing shelf edges 418-1 and 418-2, which are substantially as described above in connection with the support surfaces 117 and shelf edges 118. Each support surface 417 supports various items 112. The shelf module 410 also supports, e.g. on the shelf edges 418, a plurality of labels 404 each identifying a corresponding item 112. As will be apparent from FIG. 4, the positions of the labels 404 define spaces on the support surfaces 417 for each item 112. The image obtained at block 305 encompasses a field of view 400, and therefore represents the shelf module 410 and the items 112 thereon.


Turning to FIG. 5, an image 500 representing the shelf module 410 and items 112 encompassed within the field of view 400 is illustrated. FIG. 5 also illustrates an item region 502-1 defining an area of the image 500 containing an item 112-1. More specifically, in this example the item region 502-1 defines the maximum extent of an area containing the item 112-1, e.g. assuming the item 112-1 is fully stocked. The item region 502-1 extends from the shelf edge 418-2 to an upper structure 502 of the module 410, and from a left edge of the label 404-1 identifying the item 112-1 to a left edge of the adjacent label 404-2, which identifies an item 112-2. The remaining item regions define similar areas for the other items 112 in the image 500.


The item regions 500 are also shown in isolation within a boundary 504 of the image 500 (with the remainder of the image 500 omitted for clarity). Thus, each of the item regions 500-1, 500-2, 500-3, 500-4, 500-5, and 500-6 defines an area within the image 500 representing the maximum extent of the item 112-1, 112-2, 112-3, 112-4, 112-5, and 112-6, respectively. As will be apparent to those skilled in the art, the items 112 do not necessarily currently occupy the entirety of the corresponding item regions 500 (e.g. because some items have been removed for purchase). Each item region 502 is stored by the server 101 along with an item identifier, such as a stock-keeping unit (SKU) or other suitable identifier.


Returning to FIG. 3, having obtained the item regions 500, the server 101 is configured to obtain a performance metric for each item detected in the image (i.e. for each item region 502). The server 101 is further configured to process the performance metrics to generate overlay data for the image and/or relocation indicators identifying items to relocate, e.g. from one support surface 417 to another.


In particular, at block 315, the server 101 is configured to select an item for processing. Blocks 320 to 330 of the method 300 are performed for each item, as will be apparent in the discussion below.


In an example performance of block 315, therefore, the item corresponding to the item region 502-1 is selected. At block 320, the server 101 obtains a performance metric corresponding to the selected item. The performance metric can take a wide variety of forms. In some examples, the performance metric is an indication of revenue associated with sales of the item 112-1 over a predefined time period (e.g. a week, a month, or any other suitable time period). In further examples, the performance metric is an indication of profit margin associated with sales of the item 112-1 over the predefined time period. Other performance metrics are also contemplated, however, such as a rate of consumption of the item 112-1 independent of financial information. That is, the performance metric can include an indication of a number of instances of the item 112-1 removed from the module 410 over the time period (and therefore assumed to have been purchased), a weight of the item 112-1 removed, or the like.


Performance metric data 322 can be retrieved from the repository 123 in some examples. In other examples, performance metric data 322 can be retrieved from the PoS subsystem 128, which stores data defining sales at the facility. For example, the server 101 may request sales data from the subsystem 128 using the item identifier associated with the item region 502-1 as well as start and end dates and/or times defining the above-mentioned time period. In other examples, e.g. when the server 101 does not have access to sales data from the subsystem 128, the server 101 can generate the performance metric, as will be discussed in greater detail below.


In the present example performance of the method 300, the server 101 is assumed to retrieve the performance metric from the subsystem 128, e.g. as an amount of revenue associated with the item 112-1 over the time period. At block 325, the server 101 is configured to encode the performance metric as a visual attribute. The visual attribute includes at least one of a color value, a transparency value, a pattern selection, and the like. For example, the performance metric can be encoded to a color value by comparing the performance metric to a set of thresholds.


Turning to FIG. 6, a set of encoding data 600 is illustrated, defining three visual attributes. In other examples, fewer than three, or more than three visual attributes may be defined. For example, an upper threshold (e.g. a predefined revenue threshold) corresponds to a first color (represented as diagonal hatching), such that any items 112 with performance metrics exceeding the upper threshold are encoded as the first color. The set 600 also includes a lower threshold, such that any items 112 with performance metrics below the lower threshold are encoded as a second color (represented in FIG. 6 as sparse points). Further, the set 600 includes an intermediate visual attribute definition, such that items 112 with performance metrics falling below the upper threshold and above the lower threshold are assigned a third color (represented in FIG. 6 as dense points).


Other mechanisms for encoding the performance metrics as visual attributes are also contemplated. For example, rather comparing a performance metric to discrete thresholds, the performance metric may be mapped to a color scale defined by first and second colors each associated with minimal and maximal performance metrics. Each performance metric is therefore assigned a color between the first and second colors according to the position of the performance metric relative to the minimal and maximal performance metrics.


Returning to FIG. 3, at block 330, the server 101 is configured to generate an item overlay corresponding to the item selected at block 315. In particular, the item overlay can have the same dimensions as the corresponding item region 502, as well as the visual attribute(s) encoded at block 325. The right side of FIG. 6 illustrates overlay regions 604, corresponding to the item regions 500 of FIG. 5 and assigned colors (represented as the above-mentioned patterns) based on encoding of their respective performance metrics via the encoding data 600. That is, the regions overlay 604-3 and 604-6 are assigned the first color, the overlay regions 604-2 and 604-4 are assigned the third color, and the region 502-1 and 500-5 are assigned the second color. As will now be apparent, FIG. 6 illustrates multiple performances of blocks 320-330.


At block 335, the server 101 determines whether there remain items 112 to be processed that correspond to the item regions 500 obtained at block 310. Blocks 315, 320, 325, and 330 are repeated until all items for which an item region 502 was obtained have been processed (i.e. to generate a corresponding item overlay).


Following a negative determination at block 335, the server 101 may proceed to block 340. At block 340, the server can generate the above-mentioned relocation indicators. The generation of relocation indicators is optional, and may therefore be omitted. Generation of relocation indicators will be discussed below, and in the present example is therefore omitted.


At block 345, the server 101 is configured to control a display to present the image 500 obtained at block 305, along with the overlay regions generated via successive performances of blocks 315-330. Turning to FIG. 7, the image 500 is shown with the overlay regions 604 overlaid thereon. As seen by comparing FIGS. 5 and 7, the overlay regions 604 define the same areas as the item regions 500. Further, the overlay regions 604 have the visual attributes defined by the set of encoding data 600 discussed above. FIG. 7, in other words, illustrates a heat map depicting performance metrics associated with the items 112 via color and/or pattern, or other suitable visual attributes.


The overlay of the image 500 and the regions 604 generated at block 345 may be presented by transmission to the client device 104 (e.g. for presentation on the display 132), by presentation on a display local to the server 101, or the like. At block 345, the server 101 may also present the relocation indicators, when block 340 is performed.


Turning to FIG. 8, a method 800 for generating performance metrics at block 320 is illustrated. As noted above, the performance metrics in the form of sales data may not be available to the server 101 in some examples. The server 101 can therefore generate performance metrics from the image 500 and item detections. In particular, at block 805, the server 101 obtains an occupied portion of the item region. For example, along with the item regions 500, the server 101 may obtain (e.g. at block 310) item bounding boxes, indicating the portion(s) of each item region 502 that are actually occupied by the relevant item. For example, turning to FIG. 9, the item region 502-2 is illustrated, along with an occupied region 900a that corresponds to the item 112-2 shown in FIG. 5. The server 101 can determine the occupied portion, for example, by determine a fraction of the area of the region 502-2 represented by the region 900a. In the present example, that fraction is about 20%. In other embodiments, in which depth data is also available, an occupied portion of a volume corresponding to the item region 502-2 may be determined.


At block 810, the server 101 is configured to retrieve a previous occupied portion of the same item region (e.g. the region 502-2). That is, the server 101 retrieves data from a previous performance of block 805, e.g. from the repository 123. The previous version retrieved corresponds to a predefined time period before the image 500 was captured. Turning again to FIG. 9, a portion of an earlier image, showing four instances of the item 112-2 is also shown. The four instances of the item 112-2 define an occupied region 900b, representing about 80% of the item region 502-2. In other words, during the time period separating the capture operations that yielded the two depictions of the item region 502-2 shown in FIG. 9, three instances of the item 112-2 have been consumed


Returning to FIG. 8, at block 815 the server 101 generates a consumption rate based on the current occupied portion (e.g. about 20% in the above example), the previous occupied portion (e.g. about 80% in the above example), and the time period separating the current and previous occupied regions. For example, if the time period is five days, the consumption rate is 12% per day. In some embodiments, item dimension data and/or facing detection data enables the server 101 to determine a number of items (e.g. 3 items per five days).


Turning now to FIG. 10, generation of item relocation indicators will be discussed in greater detail. As will be apparent to those skilled in the art, the performance metrics of the items 112 (e.g. the revenue generated by the items 112 may depend in part on the positioning of the items 112 within the facility. In particular, the height of the support surface 417 on which an item 112 is placed may affect the performance metric of that item 112, with support surfaces 417 further above the ground increasing performance metrics compared to support surfaces 417 closer to the ground. In other words, it may be advantageous to place items 112 with greater performance metrics on support surfaces 417 with higher values (i.e. further above the ground), in order to further increase the performance of such items 112. The server 101 can be configured, at block 340, to perform a method 1000 to identify pairs of items 112 to relocate by swapping locations with one another, e.g. in order to place higher-value items 112 on higher support surfaces 417. The performance of the method 1000 will be discussed in conjunction with the image 500 and overlays 604 described earlier.


At block 1005, the server 101 selects a support surface to evaluate. In the present example, the method 1000 serves to identify opportunities to relocate high-value items to higher support surfaces 417. The method 1000 therefore begins with the second support surface from the ground, which in the present example is the support surface 417-2.


At block 1010, the server 101 selects a first item 112. The first item is the item 112 that will be compared to a plurality of items on the lowest support surface (i.e. the support surface 417-1 in this example). In this example, the first item is the item 112-1 (corresponding to the overlay region 604-1, which indicates that the item 112-1 is a low-value item). At block 1015, the server 101 selects a second item 112. The second item is selected from the lower support surface 417-1. For example, the second item may be the item 112-4.


At block 1020, the server 101 determines whether the performance metric of the first item is smaller than the performance metric of the second item. In the present example, the determination is affirmative, as the item 112-4 (as indicated by the overlay region 604-4) has a greater value than the item 112-1. Following an affirmative determination at block 1020, the server 101 stores the first and second item as a relocation candidate pair at block 1025, and then proceeds to block 1030.


At block 1030, the server 101 determines whether additional second items remain to be compared to the first item from block 1010. In the present example, the non-active support surface (i.e. the support surface 417-1) contains two more items (the items 112-5, and 112-6), and the determination is therefore affirmative. The server 101 therefore proceeds to block 1015 and selects the next second item, e.g. the item 112-5. The comparison at block 1020 is repeated, and in the present example is negative because the items 112-1 and 112-5 both have low values. In this example, the performance metrics of the items 112 are being compared using the visual attributes described earlier, to simplify the comparison, but in some examples the original performance metrics may be compared, which may lead to a determination that the item 112-1, despite having been assigned a low-value visual attribute, nevertheless has a greater performance metric than the item 112-5.


A third performance of blocks 1015 and 1020 leads to a determination that the item 112-6 has a greater performance metric than the item 112-1. At block 1025 another relocation candidate pair (consisting of the items 112-1, and 112-6) is therefore stored. Following a negative determination at block 1030, because each of the items 112 on the support surface 417-1 have been compared to the item 112-1, the server 101 proceeds to block 1035.


At block 1035, the server 101 selects a relocation indicator for the first item (i.e. the item 112-1 in this example). When there are multiple candidate pairs, as in this example performance, the paired items 112 themselves may be compared. Thus, in this example the items 112-4 and 112-6 are compared in the same manner as block 1020, with the higher-value item being selected. The relocation indicator selected at block 1035 therefore pairs the items 112-1 and 112-6.


At block 1040, the server 101 determines whether any first items remain. That is, the server 101 determines whether any items 112 on the support surface selected at block 1005 remain to be processed. The process above is repeated for each such item, and following a negative determination, at block 1045 the process is once again repeated for each item on the next support surface. In this example, the first determination at block 1045 is negative because only two support surfaces 417 are present. However, if the module 410 included a third support surface 417 above the support surface 417-2, the determination at block 1045 would be affirmative, and each item 112 on the third support surface would be compared with every item on the first and second support surfaces 417-1 and 417-2.


At block 1050, once no further support surfaces 417 remain to be processed, the server 101 returns the selected relocation indicators from successive performances of block 1035, for use in the method 300. Specifically, at block 345 the image 500 may be displayed along with the overlay regions 604 and any relocation indicators arising from the method 1000. Turning to FIG. 11, the image 500 and overlay regions 604 are illustrated, along with a relocation indicator 1100 suggesting a swap of the items 112-1 and 112-6. If such a swap is executed, subsequent performances of the method 300 enable the server 101 to assess the impact of such a swap on the performance metrics of the items 112-1 and 112-6.


In other examples, the generation of relocation indicators via the method 1000 may operate on groups of items 112, rather than individual items 112 as described above. For example, at block 1010 the first item selected can instead be selected support surface 117 or 417, containing a group of items 112. The selection at block 1015 therefore includes a second support surface 117 or 417, and the performance metrics compared at block 1020 can include the combined performance metrics for all items 112 on each of the first and second support surfaces.


In other examples, the first selected item can instead include a selected module 110 or 410, and the second selected item can include a second module 110 or 410, such that the performance metrics compared at block 1020 include the combined performance metrics of all items 112 on the selected modules 110 or 410. The relocation indicators generated via the method 1000 can therefore identify pairs of support surfaces, or pairs of modules, to swap (including all items 112 thereon), rather than pairs of individual items 112. First and second groups of items 112 selected for comparison via the method 1000 can also include categories of items 112, which may be specified in metadata associated with the items 112 in the repository 123.


Variations to the above systems and methods are contemplated. For example, at block 305, in addition to the image 500 the server 101 can receive a selection of an area on which to operate. That is, the image 500 may cover a portion of the facility, and the server 101 may receive a selection corresponding to a smaller portion within that portion. In such examples, the server 101 may restrict the remainder of the method 300 to the items 112 within the selected area.


In some examples, as will be apparent to those skilled in the art, an item 112 may be out of stock when an image is captured. In such examples, to avoid the omission of the relevant item 112 from the processing of the method 300, the server 101 can determine, e.g. at block 310, whether any out of stock (OOS) detections are associated with the image obtained at block 305. When an OOS detection is obtained along with the item detections 312, the server 101 generates a item region for the OOS item based on historical data indicating the location of the item (i.e. from an earlier performance of the method 300). Further, in such examples the server 101 can alter the image 500 prior to display at block 345, e.g. by replacing the portion of the image within the item region 502 with a corresponding portion of an earlier image in which the item 112 is present.


In further examples, the generation of item overlays at block 330 can include the generation of a plurality of overlays for each item 112. For example, the server 101 can be configured to generate a set of overlays for adjacent one-week periods (or any other suitable time period), rather than a single time period as discussed above. That is, the server 101 can retrieve and encode a performance metric for the item 112 for each of a series of contiguous weeks, months, or the like. A separate overlay may then be generated at block 330 for each encoded performance metric. Together, the series of overlays illustrate the variations in performance metrics associated with that item over time.


The server 101 can, at block 345, present the above-mentioned series of overlays in various ways. For example, the server 101 can present an animation containing the series of overlays for each item 112 in the image. For example, the overlays generated for a given time period (e.g. a week) may be presented for a predefined number of video frames, followed by a further predefined number of frames displaying the overlays for the subsequent period of time (e.g. the following week), and so on.



FIG. 12 illustrates a series of three sets of overlays 1200a, 1200b, and 1200c, corresponding to encoded performance metrics for the items 112 for three successive periods of time (e.g. equal periods, such as successive weeks). The sets 1200 may be presented at block 345 in an animation, for example. As seen in FIG. 12, all but one of the overlays remain unchanged over the successive time periods. The overlays 604-3a, 604-3b, and 604-3c, however, illustrate a decreasing performance metric associated with the underlying item 112.


In other examples, the server 101 may generate an additional overlay for each item 112, representing a rate of change of the performance metrics discussed above. That is, a rate of change in the performance metric obtained via successive performances of block 320 can be computed and encoded at block 325. For example, a positive or flat (i.e. zero) rate of change may be encoded as a first visual identifier, while a negative rate of change may be encoded as a second visual identifier. Additional visual identifiers may also be employed for more granular representations of the rate of change. The additional overlay can be presented at block 345, in addition to or instead of the overlays discussed earlier.


Turning to FIG. 13, an example set of overlays 1300 is shown, in which each overlay illustrates the rate of change in performance metrics over the series from FIG. 12. That is, the overlays 1300 depict a performance metric trend over time (e.g. an occupancy trend), derived via the performance of the method 300. Thus, while all but one of the overlays 1300 employs a first visual identifier, indicating no change or positive change in this example, the overlay 1304-3 employs a second visual identifier, indicating a negative rate of change.


As will now be apparent to those skilled in the art, the system 100 as described above provides a technical improvement by way of processing image sensor data to determine accurate item locations, from which it computes and displays performance metrics for item location optimization, such as occupancy over time, item relocation indicators, as well as the above-mentioned heat maps.


In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.


The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.


Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.


It will be appreciated that some embodiments may be comprised of one or more specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.


Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. A method, comprising: obtaining, from an image sensor disposed in a facility, an image representing a plurality of items on a support structure in the facility;responsive to detection of the items in the image, for each item: obtaining an item region defining an area of the image containing the item;obtaining a performance metric corresponding to the item;encoding the performance metric as a visual attribute; andgenerating an item overlay using the visual attribute; andcontrolling a display to present the image and each of the item overlays placed over the corresponding item regions.
  • 2. The method of claim 1, wherein obtaining the performance metric includes retrieving the performance metric from a repository.
  • 3. The method of claim 2, wherein the performance metric includes an indication of revenue associated with the item over a time period.
  • 4. The method of claim 1, wherein the item region defines a maximum capacity for the item on the support structure.
  • 5. The method of claim 4, wherein obtaining the performance metric includes: obtaining an occupied portion of the item region;retrieving a previous occupied portion of the item region from a previously captured image; andbased on the occupied portion, the previous occupied portion, and a time period separating the image and the previous captured image, generating a rate of consumption for the item.
  • 6. The method of claim 1, further comprising: generating, based on a comparison of the performance metrics for at least a first item and a second item, a relocation indicator defining updated placements for the first item and the second item on the support structure; andpresenting the relocation indicator with the image and the item overlays.
  • 7. The method of claim 1, wherein encoding the performance metric as a visual attribute includes selecting a color corresponding to the performance metric.
  • 8. The method of claim 7, wherein encoding the performance metric as a visual attribute includes comparing the performance metric to an upper threshold corresponding to a first color, and a lower threshold corresponding to a second color.
  • 9. The method of claim 1, further comprising, for each item: determining a rate of change of the performance metric;encoding the rate of change as an additional visual attribute; andgenerating an additional item overlay using the additional visual attribute.
  • 10. A computing device, comprising: a communications interface, and;a processor configured to: obtain, from an image sensor disposed in a facility, an image representing a plurality of items on a support structure in the facility;responsive to detection of the items in the image, for each item: obtain an item region defining an area of the image containing the item;obtain a performance metric corresponding to the item;encode the performance metric as a visual attribute; andgenerate an item overlay using the visual attribute; andcontrol a display to present the image and each of the item overlays placed over the corresponding item regions.
  • 11. The computing device of claim 10, wherein the processor is configured to obtain the performance metric includes by retrieving the performance metric from a repository.
  • 12. The computing device of claim 11, wherein the performance metric includes an indication of revenue associated with the item over a time period.
  • 13. The computing device of claim 10, wherein the item region defines a maximum capacity for the item on the support structure.
  • 14. The computing device of claim 13, wherein the processor is configured to obtain the performance metric by: obtaining an occupied portion of the item region;retrieving a previous occupied portion of the item region from a previously captured image; andbased on the occupied portion, the previous occupied portion, and a time period separating the image and the previous captured image, generating a rate of consumption for the item.
  • 15. The computing device of claim 10, wherein the processor is further configured to: generate, based on a comparison of the performance metrics for at least a first item and a second item, a relocation indicator defining updated placements for the first item and the second item on the support structure; andcontrol the display to present the relocation indicator with the image and the item overlays.
  • 16. The computing device of claim 10, wherein the processor is configured, to encode the performance metric as a visual attribute, to select a color corresponding to the performance metric.
  • 17. The computing device of claim 16, wherein the processor is configured, to encode the performance metric as a visual attribute, to compare the performance metric to an upper threshold corresponding to a first color, and a lower threshold corresponding to a second color.
  • 18. The computing device of claim 10, wherein the processor is further configured to: determine a rate of change of the performance metric;encode the rate of change as an additional visual attribute; andgenerate an additional item overlay using the additional visual attribute.
  • 19. A system, comprising: a communications interface;an image sensor; anda processor coupled to the communications interface and the image sensor, the processor configured to: obtain, from the image sensor, an image representing a plurality of items on a support structure in the facility;responsive to detection of the items in the image, for each item;obtain an item region defining an area of the image containing the item;obtain a performance metric corresponding to the item;encode the performance metric as a visual attribute; andgenerate an item overlay using the visual attribute; andcommunicate the image and each of the item overlays placed over the corresponding item regions to a display.
  • 20. The system of claim 19, wherein the image sensor is a fixed position camera disposed in a facility.
  • 21. The system of claim 19, wherein the image sensor is disposed on a mobile automation apparatus configured to navigate the facility.
  • 22. The system of claim 19, wherein the processor determines an occupancy trend of the item on the support structure as the performance metric based on the image from the image sensor and encodes the occupancy trend as the visual attribute.
  • 23. The system of claim 19, wherein the processor causes the display to display a heat map of the item overlays on the support structure.
  • 24. The system of claim 23, wherein the heat map is one of a color heat map and a pattern heat map.
US Referenced Citations (407)
Number Name Date Kind
5209712 Ferri May 1993 A
5214615 Bauer May 1993 A
5408322 Hsu et al. Apr 1995 A
5414268 McGee May 1995 A
5534762 Kim Jul 1996 A
5566280 Fukui et al. Oct 1996 A
5953055 Huang et al. Sep 1999 A
5988862 Kacyra et al. Nov 1999 A
6026376 Kenney Feb 2000 A
6034379 Bunte et al. Mar 2000 A
6075905 Herman et al. Jun 2000 A
6115114 Berg et al. Sep 2000 A
6141293 Amorai-Moriya et al. Oct 2000 A
6304855 Burke Oct 2001 B1
6442507 Skidmore et al. Aug 2002 B1
6549825 Kurata Apr 2003 B2
6580441 Schileru-Key Jun 2003 B2
6711293 Lowe Mar 2004 B1
6721769 Rappaport et al. Apr 2004 B1
6836567 Silver et al. Dec 2004 B1
6995762 Pavlidis et al. Feb 2006 B1
7090135 Patel Aug 2006 B2
7137207 Armstrong et al. Nov 2006 B2
7245558 Willins et al. Jul 2007 B2
7248754 Cato Jul 2007 B2
7277187 Smith et al. Oct 2007 B2
7373722 Cooper et al. May 2008 B2
7474389 Greenberg et al. Jan 2009 B2
7487595 Armstrong et al. Feb 2009 B2
7493336 Noonan Feb 2009 B2
7508794 Feather et al. Mar 2009 B2
7527205 Zhu et al. May 2009 B2
7605817 Zhang et al. Oct 2009 B2
7647752 Magnell Jan 2010 B2
7693757 Zimmerman Apr 2010 B2
7726575 Wang et al. Jun 2010 B2
7751928 Antony et al. Jul 2010 B1
7783383 Eliuk et al. Aug 2010 B2
7839531 Sugiyama Nov 2010 B2
7845560 Emanuel et al. Dec 2010 B2
7885865 Benson et al. Feb 2011 B2
7925114 Mai et al. Apr 2011 B2
7957998 Riley et al. Jun 2011 B2
7996179 Lee et al. Aug 2011 B2
8009864 Linaker et al. Aug 2011 B2
8049621 Egan Nov 2011 B1
8091782 Cato et al. Jan 2012 B2
8094902 Crandall et al. Jan 2012 B2
8094937 Teoh et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8189855 Opalach et al. May 2012 B2
8199977 Krishnaswamy et al. Jun 2012 B2
8207964 Meadow et al. Jun 2012 B1
8233055 Matsunaga et al. Jul 2012 B2
8265895 Willins et al. Sep 2012 B2
8277396 Scott et al. Oct 2012 B2
8284988 Sones et al. Oct 2012 B2
8423431 Rouaix et al. Apr 2013 B1
8429004 Hamilton et al. Apr 2013 B2
8463079 Ackley et al. Jun 2013 B2
8479996 Barkan et al. Jul 2013 B2
8520067 Ersue Aug 2013 B2
8542252 Perez et al. Sep 2013 B2
8571314 Tao et al. Oct 2013 B2
8599303 Stettner Dec 2013 B2
8630924 Groenevelt et al. Jan 2014 B2
8660338 Ma et al. Feb 2014 B2
8743176 Stettner et al. Jun 2014 B2
8757479 Clark et al. Jun 2014 B2
8812226 Zeng Aug 2014 B2
8923893 Austin et al. Dec 2014 B2
8939369 Olmstead et al. Jan 2015 B2
8954188 Sullivan et al. Feb 2015 B2
8958911 Wong et al. Feb 2015 B2
8971637 Rivard Mar 2015 B1
8989342 Liesenfelt et al. Mar 2015 B2
9007601 Steffey et al. Apr 2015 B2
9037287 Grauberger et al. May 2015 B1
9064394 Trundle Jun 2015 B1
9070285 Ramu et al. Jun 2015 B1
9129277 Macintosh Sep 2015 B2
9135491 Morandi et al. Sep 2015 B2
9159047 Winkel Oct 2015 B2
9171442 Clements Oct 2015 B2
9247211 Zhang et al. Jan 2016 B2
9329269 Zeng May 2016 B2
9349076 Liu et al. May 2016 B1
9367831 Besehanic Jun 2016 B1
9380222 Clayton et al. Jun 2016 B2
9396554 Williams et al. Jul 2016 B2
9400170 Steffey Jul 2016 B2
9424482 Patel et al. Aug 2016 B2
9517767 Kentley et al. Dec 2016 B1
9542746 Wu et al. Jan 2017 B2
9549125 Goyal et al. Jan 2017 B1
9562971 Shenkar et al. Feb 2017 B2
9565400 Curlander et al. Feb 2017 B1
9589353 Mueller-Fischer et al. Mar 2017 B2
9600731 Yasunaga et al. Mar 2017 B2
9600892 Patel et al. Mar 2017 B2
9612123 Levinson et al. Apr 2017 B1
9639935 Douady-Pleven et al. May 2017 B1
9697429 Patel et al. Jul 2017 B2
9766074 Roumeliotis et al. Sep 2017 B2
9778388 Connor Oct 2017 B1
9791862 Connor Oct 2017 B1
9805240 Zheng et al. Oct 2017 B1
9811754 Schwartz Nov 2017 B2
9827683 Hance et al. Nov 2017 B1
9880009 Bell Jan 2018 B2
9928708 Lin et al. Mar 2018 B2
9953420 Wolski et al. Apr 2018 B2
9980009 Jiang et al. May 2018 B2
9994339 Colson et al. Jun 2018 B2
9996818 Ren et al. Jun 2018 B1
10019803 Venable et al. Jul 2018 B2
10111646 Nycz et al. Oct 2018 B2
10121072 Kekatpure Nov 2018 B1
10127438 Fisher et al. Nov 2018 B1
10197400 Jesudason et al. Feb 2019 B2
10210603 Venable et al. Feb 2019 B2
10229386 Thomas Mar 2019 B2
10248653 Blassin et al. Apr 2019 B2
10265871 Hance et al. Apr 2019 B2
10289990 Rizzolo et al. May 2019 B2
10336543 Sills et al. Jul 2019 B1
10349031 DeLuca Jul 2019 B2
10352689 Brown et al. Jul 2019 B2
10373116 Medina et al. Aug 2019 B2
10394244 Song et al. Aug 2019 B2
20010031069 Kondo et al. Oct 2001 A1
20010041948 Ross et al. Nov 2001 A1
20020006231 Jayant et al. Jan 2002 A1
20020097439 Braica Jul 2002 A1
20020146170 Rom Oct 2002 A1
20020158453 Levine Oct 2002 A1
20020164236 Fukuhara et al. Nov 2002 A1
20030003925 Suzuki Jan 2003 A1
20030094494 Blanford et al. May 2003 A1
20030174891 Wenzel et al. Sep 2003 A1
20040021313 Gardner et al. Feb 2004 A1
20040131278 imagawa et al. Jul 2004 A1
20040240754 Smith et al. Dec 2004 A1
20050016004 Armstrong et al. Jan 2005 A1
20050114059 Chang et al. May 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20060032915 Schwartz Feb 2006 A1
20060045325 Zavadsky et al. Mar 2006 A1
20060106742 Bochicchio et al. May 2006 A1
20060285486 Roberts et al. Dec 2006 A1
20070036398 Chen Feb 2007 A1
20070074410 Armstrong et al. Apr 2007 A1
20070272732 Hindmon Nov 2007 A1
20080002866 Fujiwara Jan 2008 A1
20080025565 Zhang et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080077511 Zimmerman Mar 2008 A1
20080159634 Sharma et al. Jul 2008 A1
20080164310 Dupuy et al. Jul 2008 A1
20080175513 Lai et al. Jul 2008 A1
20080181529 Michel et al. Jul 2008 A1
20080238919 Pack Oct 2008 A1
20080294487 Nasser Nov 2008 A1
20090009123 Skaff Jan 2009 A1
20090024353 Lee et al. Jan 2009 A1
20090057411 Madej et al. Mar 2009 A1
20090059270 Opalach et al. Mar 2009 A1
20090060349 Linaker Mar 2009 A1
20090063306 Fano et al. Mar 2009 A1
20090063307 Groenovelt et al. Mar 2009 A1
20090074303 Filimonova et al. Mar 2009 A1
20090088975 Sato et al. Apr 2009 A1
20090103773 Wheeler et al. Apr 2009 A1
20090125350 Lessing et al. May 2009 A1
20090125535 Basso et al. May 2009 A1
20090152391 McWhirk Jun 2009 A1
20090160975 Kwan Jun 2009 A1
20090192921 Hicks Jul 2009 A1
20090206161 Olmstead Aug 2009 A1
20090236155 Skaff Sep 2009 A1
20090252437 Li et al. Oct 2009 A1
20090287587 Bloebaum et al. Nov 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20100017407 Beniyama et al. Jan 2010 A1
20100026804 Tanizaki et al. Feb 2010 A1
20100070365 Siotia et al. Mar 2010 A1
20100082194 Yabushita et al. Apr 2010 A1
20100091094 Sekowski Apr 2010 A1
20100118116 Tomasz et al. May 2010 A1
20100131234 Stewart et al. May 2010 A1
20100141806 Uemura et al. Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100208039 Setettner Aug 2010 A1
20100214873 Somasundaram et al. Aug 2010 A1
20100235033 Yamamoto et al. Sep 2010 A1
20100241289 Sandberg Sep 2010 A1
20100295850 Katz et al. Nov 2010 A1
20100315412 Sinha et al. Dec 2010 A1
20100326939 Clark et al. Dec 2010 A1
20110047636 Stachon et al. Feb 2011 A1
20110052043 Hyung et al. Mar 2011 A1
20110093306 Nielsen et al. Apr 2011 A1
20110137527 Simon et al. Jun 2011 A1
20110168774 Magal Jul 2011 A1
20110172875 Gibbs Jul 2011 A1
20110216063 Hayes Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110288816 Thierman Nov 2011 A1
20110310088 Adabala et al. Dec 2011 A1
20120019393 Wolinsky et al. Jan 2012 A1
20120022913 VolKmann et al. Jan 2012 A1
20120051730 Cote et al. Mar 2012 A1
20120069051 Hagbi et al. Mar 2012 A1
20120075342 Choubassi et al. Mar 2012 A1
20120133639 Kopf et al. May 2012 A1
20120307108 Forutanpour Jun 2012 A1
20120169530 Padmanabhan et al. Jul 2012 A1
20120179621 Moir et al. Jul 2012 A1
20120185112 Sung et al. Jul 2012 A1
20120194644 Newcombe et al. Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120201466 Funayama et al. Aug 2012 A1
20120209553 Doytchinov et al. Aug 2012 A1
20120236119 Rhee et al. Sep 2012 A1
20120249802 Taylor Oct 2012 A1
20120250978 Taylor Oct 2012 A1
20120269383 Bobbitt et al. Oct 2012 A1
20120287249 Choo et al. Nov 2012 A1
20120323620 Hofman et al. Dec 2012 A1
20130030700 Miller et al. Jan 2013 A1
20130090881 Janardhanan et al. Apr 2013 A1
20130119138 Winkel May 2013 A1
20130132913 Fu et al. May 2013 A1
20130134178 Lu May 2013 A1
20130138246 Gutmann et al. May 2013 A1
20130138534 Herwig May 2013 A1
20130142421 Silver et al. Jun 2013 A1
20130144565 Miller et al. Jun 2013 A1
20130154802 O'Haire et al. Jun 2013 A1
20130156292 Chang et al. Jun 2013 A1
20130162806 Ding et al. Jun 2013 A1
20130176398 Bonner et al. Jul 2013 A1
20130178227 Vartanian et al. Jul 2013 A1
20130182114 Zhang et al. Jul 2013 A1
20130226344 Wong et al. Aug 2013 A1
20130228620 Ahem et al. Sep 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130236089 Litvak et al. Sep 2013 A1
20130278631 Border et al. Oct 2013 A1
20130299306 Jiang et al. Nov 2013 A1
20130299313 Baek, IV et al. Nov 2013 A1
20130300729 Grimaud Nov 2013 A1
20130303193 Dharwada et al. Nov 2013 A1
20130321418 Kirk Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130341400 Lancaster-Larocque Dec 2013 A1
20140002597 Taguchi et al. Jan 2014 A1
20140003655 Gopalkrishnan et al. Jan 2014 A1
20140003727 Lortz et al. Jan 2014 A1
20140016832 Kong et al. Jan 2014 A1
20140019311 Tanaka Jan 2014 A1
20140025201 Ryu et al. Jan 2014 A1
20140028837 Gao et al. Jan 2014 A1
20140047342 Breternitz et al. Feb 2014 A1
20140049616 Stettner Feb 2014 A1
20140052555 MacIntosh Feb 2014 A1
20140086483 Zhang et al. Mar 2014 A1
20140098094 Neumann et al. Apr 2014 A1
20140100813 Shaowering Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140129027 Schnittman May 2014 A1
20140156133 Cullinane et al. Jun 2014 A1
20140161359 Magri et al. Jun 2014 A1
20140192050 Qiu et al. Jul 2014 A1
20140195374 Bassemir et al. Jul 2014 A1
20140214547 Signorelli et al. Jul 2014 A1
20140214600 Argue et al. Jul 2014 A1
20140267614 Ding et al. Sep 2014 A1
20140267688 Aich et al. Sep 2014 A1
20140277691 Jacobus et al. Sep 2014 A1
20140277692 Buzan et al. Sep 2014 A1
20140300637 Fan et al. Oct 2014 A1
20140344401 Varney et al. Nov 2014 A1
20140351073 Murphy et al. Nov 2014 A1
20140369607 Patel et al. Dec 2014 A1
20150015602 Beaudoin Jan 2015 A1
20150019391 Kumar et al. Jan 2015 A1
20150029339 Kobres et al. Jan 2015 A1
20150039458 Reid Feb 2015 A1
20150088618 Basir et al. Mar 2015 A1
20150088703 Yan Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150106403 Haverinen et al. Apr 2015 A1
20150117788 Patel et al. Apr 2015 A1
20150139010 Jeong et al. May 2015 A1
20150154467 Feng et al. Jun 2015 A1
20150161793 Takahashi Jun 2015 A1
20150170256 Pettyjohn et al. Jun 2015 A1
20150181198 Baele et al. Jun 2015 A1
20150212521 Pack et al. Jul 2015 A1
20150245358 Schmidt Aug 2015 A1
20150262116 Katircioglu et al. Sep 2015 A1
20150279035 Wolski et al. Oct 2015 A1
20150298317 Wang et al. Oct 2015 A1
20150310601 Rodriguez et al. Oct 2015 A1
20150352721 Wicks et al. Dec 2015 A1
20150363625 Wu et al. Dec 2015 A1
20150363758 Wu et al. Dec 2015 A1
20150365660 Wu et al. Dec 2015 A1
20150379704 Chandrasekar et al. Dec 2015 A1
20160026253 Bradski et al. Jan 2016 A1
20160044862 Kocer Feb 2016 A1
20160061591 Pangrazio et al. Mar 2016 A1
20160070981 Sasaki et al. Mar 2016 A1
20160092943 Vigier et al. Mar 2016 A1
20160012588 Taguchi et al. Apr 2016 A1
20160104041 bowers et al. Apr 2016 A1
20160107690 Oyama et al. Apr 2016 A1
20160112628 Super et al. Apr 2016 A1
20160114488 Mascorro Medina et al. Apr 2016 A1
20160129592 Saboo et al. May 2016 A1
20160132815 Itoko et al. May 2016 A1
20160150217 Popov May 2016 A1
20160156898 Ren et al. Jun 2016 A1
20160163067 Williams et al. Jun 2016 A1
20160171336 Schwartz Jun 2016 A1
20160171429 Schwartz Jun 2016 A1
20160171707 Schwartz Jun 2016 A1
20160185347 Lefevre et al. Jun 2016 A1
20160191759 Somanath et al. Jun 2016 A1
20160224927 Pettersson Aug 2016 A1
20160253735 Scudillo et al. Sep 2016 A1
20160253844 Petrovskaya et al. Sep 2016 A1
20160260054 High et al. Sep 2016 A1
20160271795 Vicenti Sep 2016 A1
20160313133 Zang et al. Oct 2016 A1
20160328618 Patel et al. Nov 2016 A1
20160353099 Thomson et al. Dec 2016 A1
20160364634 Davis et al. Dec 2016 A1
20170004649 Collet Romea et al. Jan 2017 A1
20170011281 Dijkman et al. Jan 2017 A1
20170011308 Sun et al. Jan 2017 A1
20170032311 Rizzolo et al. Feb 2017 A1
20170041553 Cao et al. Feb 2017 A1
20170054965 Raab et al. Feb 2017 A1
20170066459 Singh Mar 2017 A1
20170074659 Giurgiu et al. Mar 2017 A1
20170109940 Guo et al. Apr 2017 A1
20170150129 Pangrazio May 2017 A1
20170178060 Schwartz Jun 2017 A1
20170193434 Shah et al. Jul 2017 A1
20170219338 Brown et al. Aug 2017 A1
20170219353 Alesiani Aug 2017 A1
20170227645 Swope et al. Aug 2017 A1
20170227647 Baik Aug 2017 A1
20170228885 Baumgartner Aug 2017 A1
20170261993 Venable et al. Sep 2017 A1
20170262724 Wu et al. Sep 2017 A1
20170280125 Brown et al. Sep 2017 A1
20170286773 Skaff et al. Oct 2017 A1
20170286901 Skaff Oct 2017 A1
20170323253 Enssle et al. Nov 2017 A1
20170323376 Glaser et al. Nov 2017 A1
20170337508 Bogolea et al. Nov 2017 A1
20180001481 Shah et al. Jan 2018 A1
20180005035 Bogolea et al. Jan 2018 A1
20180005176 Williams et al. Jan 2018 A1
20180020145 Kotfis et al. Jan 2018 A1
20180051991 Hong Feb 2018 A1
20180053091 Savvides et al. Feb 2018 A1
20180053305 Gu et al. Feb 2018 A1
20180101813 Paat et al. Apr 2018 A1
20180108134 Venable et al. Apr 2018 A1
20180114183 Howell Apr 2018 A1
20180130011 Jacobsson May 2018 A1
20180143003 Clayton et al. May 2018 A1
20180174325 Fu et al. Jun 2018 A1
20180201423 Drzewiecki et al. Jul 2018 A1
20180204111 Zadeh et al. Jul 2018 A1
20180251253 Taira et al. Sep 2018 A1
20180281191 Sinyayskiy et al. Oct 2018 A1
20180293442 Fridental et al. Oct 2018 A1
20180313956 Rzeszutek et al. Nov 2018 A1
20180314260 Jen et al. Nov 2018 A1
20180314908 Lam Nov 2018 A1
20180315007 Kingsford et al. Nov 2018 A1
20180315065 Zhang et al. Nov 2018 A1
20180315173 Phan et al. Nov 2018 A1
20180315865 Haist et al. Nov 2018 A1
20180370727 Hance et al. Dec 2018 A1
20190057588 Savvides et al. Feb 2019 A1
20190065861 Savvides et al. Feb 2019 A1
20190073554 Rzeszutek Mar 2019 A1
20190073559 Rzeszutek et al. Mar 2019 A1
20190077015 Shibasaki et al. Mar 2019 A1
20190087663 Yamazaki et al. Mar 2019 A1
20190094876 Moore et al. Mar 2019 A1
20190108606 Komiyama Apr 2019 A1
20190180150 Taylor et al. Jun 2019 A1
20190197728 Yamao Jun 2019 A1
20190236530 Cantrell et al. Aug 2019 A1
20190304132 Yoda et al. Oct 2019 A1
20190392212 Sawhney et al. Dec 2019 A1
Foreign Referenced Citations (36)
Number Date Country
2835830 Nov 2012 CA
3028156 Jan 2018 CA
104200086 Dec 2014 CN
107067382 Aug 2017 CN
766098 Apr 1997 EP
1311993 May 2007 EP
2309378 Apr 2011 EP
2439487 Apr 2012 EP
2472475 Jul 2012 EP
2562688 Feb 2013 EP
2662831 Nov 2013 EP
2693362 Feb 2014 EP
2323238 Sep 1998 GB
2330265 Apr 1999 GB
101234798 Jan 2009 KR
1020190031431 Mar 2019 KR
WO 9923600 May 1999 WO
WO 2003002935 Jan 2003 WO
WO 2003025805 Mar 2003 WO
WO 2006136958 Dec 2006 WO
WO 2007042251 Apr 2007 WO
WO 2008057504 May 2008 WO
WO 2008154611 Dec 2008 WO
WO 2012103199 Aug 2012 WO
WO 2012103202 Aug 2012 WO
WO 2012154801 Nov 2012 WO
WO 2013165674 Nov 2013 WO
WO 2014066422 May 2014 WO
WO 2014092552 Jun 2014 WO
WO 2014181323 Nov 2014 WO
WO 2015127503 Sep 2015 WO
WO 2016020038 Feb 2016 WO
WO 2018018007 Jan 2018 WO
WO 2018204308 Nov 2018 WO
WO 2018204342 Nov 2018 WO
WO 2019023249 Jan 2019 WO
Non-Patent Literature Citations (92)
Entry
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017.
Olson, Clark F., etal. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010.
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970.
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, pp. 176.
Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009).
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, Oct. 2013) (Year: 2013).
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333.
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551.
Puwein, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks,” in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011.
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php.
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php].
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981).
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation—A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009).
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook_20100903_draft.pdf].
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint,” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253.
Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=p.
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013).
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference on, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010).
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated May 13, 2020 for GB Patent Application No. 1917864.9.
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014.
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015).
Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, pp. 90-99 (2010).
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (Jun. 21, 2017).
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221.
Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328.
Kaimo Lin et al., “SEAGULL: Seam-guided Local Alignment for Parallax-tolerant Image Stitching”, Retrieved on Nov. 16, 2020 [http://publish.illinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf].
Julio Zaragoza et al., “As-Projective-as-Possible Image Stitching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346.
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc.
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn.
“Swift Dimension” Trademark Omniplanar, Copyright 2014.
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006.
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641.
Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applicatoins (DICTA), Nov. 23-25, 2015, pp. 1-8.
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012.
Bohm, Multi-Image Fusion for Occlusion-Free Façade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004).
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114.
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700.
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013.
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE.
Cleveland Jonas et al: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017).
Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984.
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009.
Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France, [hal-01097361].
Douillard, Bertrand, et al. “On the segmentation of 3D LIDAR point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011.
Dubois, M., et al., A comparison of geometric and energy-based point cloud semantic segmentation methods, European Conference on Mobile Robots (ECMR), p. 88-93, 25-27, Sep. 2013.
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972).
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178.
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013.
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference on, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010).
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984.
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009.
Hackel et al., “Contour Detection in unstructured 3D point clouds,” IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 1-9.
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, V191, pp. 148-160 (2016).
Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013).
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/028183 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020.
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n 3, Mar. 2016)(Year: 2016).
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578.
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121.
Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986.
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013).
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada.
Lecking et al: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008).
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985.
Li et al., “An improved RANSAC for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017).
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945. (Year:2009).
Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 3-7, 2010, pp. 300-307.
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011).
Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328.
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25.
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 I9, pp. 1-20 (2016).
Norriof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641.
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014.
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016.
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016.
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017.
Related Publications (1)
Number Date Country
20220138671 A1 May 2022 US