In facilities supporting material handling activities, such as warehouses, retail facilities such as grocers, and the like, the physical placement of items within the facility (e.g. the location of each item within the facility) can affect the performance of the facility, for example in terms of the volume of materials handled in a given time frame. Such facilities may be large and complex, with hundreds or thousands of distinct items handled therein, however, complicating accurate assessments of current item placements and facility performance.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
Examples disclosed herein are directed to a method, comprising: obtaining, from an image sensor mounted on a mobile automation apparatus, an image representing a plurality of items on a support structure in a facility; responsive to detection of the items in the image, for each item: obtaining an item region defining an area of the image containing the item; obtaining a performance metric corresponding to the item; encoding the performance metric as a visual attribute; and generating an item overlay using the visual attribute; and controlling a display to present the image, and each of the item overlays placed over the corresponding item regions.
Additional examples disclosed herein are directed to a computing device, comprising: a communications interface, and; a processor configured to: obtain, from an image sensor mounted on a mobile automation apparatus, an image representing a plurality of items on a support structure in a facility; responsive to detection of the items in the image, for each item: obtain an item region defining an area of the image containing the item; obtain a performance metric corresponding to the item; encode the performance metric as a visual attribute; and generate an item overlay using the visual attribute; and control a display to present the image, and each of the item overlays placed over the corresponding item regions.
The client computing device 104 is illustrated in
The system 100 is deployed, in the illustrated example, in a retail facility including a plurality of support structures such as shelf modules 110-1, 110-2, 110-3 and so on (collectively referred to as shelf modules 110 or shelves 110, and generically referred to as a shelf module 110 or shelf 110—this nomenclature is also employed for other elements discussed herein). Each shelf module 110 supports a plurality of products 112, which may also be referred to as items. Each shelf module 110 includes a shelf back 116-1, 116-2, 116-3 and a support surface (e.g. support surface 117-3 as illustrated in
The shelf modules 110 (also referred to as sub-regions of the facility) are typically arranged in a plurality of aisles (also referred to as regions of the facility), each of which includes a plurality of modules 110 aligned end-to-end. In such arrangements, the shelf edges 118 face into the aisles, through which customers in the retail facility, as well as the apparatus 103, may travel. As will be apparent from
The apparatus 103 is equipped with a plurality of navigation and data capture sensors 108, such as image sensors (e.g. one or more digital cameras) and depth sensors (e.g. one or more Light Detection and Ranging (LIDAR) sensors, one or more depth cameras employing structured light patterns, such as infrared light, or the like). The apparatus 103 is deployed within the retail facility and, via communication with the server 101 and use of the sensors 108, navigates autonomously or partially autonomously along a length 119 of at least a portion of the shelves 110.
While navigating among the shelves 110, the apparatus 103 can capture images, depth measurements and the like, representing the shelves 110 and the items 112 supported by the shelves 110 (generally referred to as shelf data or captured data). Navigation may be performed according to a frame of reference 102 established within the retail facility. The apparatus 103 therefore tracks its pose (i.e. location and orientation) in the frame of reference 102.
The server 101 includes a special purpose controller, such as a processor 120, specifically designed to control and/or assist the mobile automation apparatus 103 to navigate the environment and to capture data. The processor 120 is interconnected with a non-transitory computer readable storage medium, such as a memory 122, having stored thereon computer readable instructions for performing various functionality, including control of the apparatus 103 to navigate the modules 110 and capture shelf data, as well as post-processing of the shelf data. The memory 122 can also store data for use in the above-mentioned control of the apparatus 103 and post-processing of captured data, such as a repository 123. The repository 123 can contain, for example, a map of the facility, operational constraints for use in controlling the apparatus 103, the image and/or depth data captured by the apparatus 103, and the like.
The memory 122 includes a combination of volatile memory (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 120 and the memory 122 each comprise one or more integrated circuits. In some embodiments, the processor 120 is implemented as one or more central processing units (CPUs) and/or graphics processing units (GPUs).
The server 101 also includes a communications interface 124 interconnected with the processor 120. The communications interface 124 includes suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the server 101 to communicate with other computing devices—particularly the apparatus 103, the client device 104 and the dock 106—via the links 105 and 107. The links 105 and 107 may be direct links, or links that traverse one or more networks, including both local and wide-area networks. The specific components of the communications interface 124 are selected based on the type of network or other links that the server 101 is required to communicate over. In the present example, as noted earlier, a wireless local-area network is implemented within the retail facility via the deployment of one or more wireless access points. The links 105 therefore include either or both wireless links between the apparatus 103 and the mobile device 104 and the above-mentioned access points, and a wired link (e.g. an Ethernet-based link) between the server 101 and the access point.
The processor 120 can therefore obtain data captured by the apparatus 103 via the communications interface 124 for storage (e.g. in the repository 123) and subsequent processing (e.g. to detect objects such as shelved products in the captured data, and detect status information corresponding to the objects). The server 101 maintains, in the memory 122, an application 125 executable by the processor 120 to perform such subsequent processing. In particular, as discussed in greater detail below, the server 101 is configured, via execution of the instructions of the application 125 by the processor 120, to obtain detected positions of the items 112 in images captured by the apparatus 103, as well as to obtain performance metrics associated with the items 112. The performance metrics, as will be discussed in greater detail below, correspond generally to rates at which the items 112 are dispensed from the facility (e.g. rates of consumption of the items 112).
Having obtained the above information, the application 125 further configures the processor 120 to generate visual representations of the performance metrics, and to detect and present relocation indicators identifying items 112 to be physically repositioned within the facility. Such repositioning may, in turn, increase the performance of the material handling operations within the facility. The server 101 repeats the above functionality periodically based on updated data captured by the apparatus 103, enabling continuous observation of current item locations and corresponding performance metrics.
In some examples, the server 101 can perform the above functions using data retrieved from other subsystems. For example, the server 101 can communicate, via the interface 124, with a performance monitoring subsystem 128, e.g. via a link 130, to retrieve certain forms of performance data. The subsystem 128 can include any one of, or any combination of, a point of sale (PoS) subsystem, a product category management and/or merchandizing planning system, or the like.
The server 101 may also transmit status notifications (e.g. notifications indicating that products are out-of-stock, in low stock or misplaced) to the client device 104 responsive to the determination of product status data. In addition, the server 101 can transmit the above-mentioned visual representations and/or relocation identifiers to the client device 104. The client device 104 includes one or more controllers (e.g. central processing units (CPUs) and/or field-programmable gate arrays (FPGAs) and the like) configured to process notifications and other information received from the server 101. For example, the client device 104 includes a display 132 controllable to present information received from the server 101.
Turning now to
The mast 205 also supports at least one depth sensor 209, such as a 3D digital camera capable of capturing both depth data and image data. The apparatus 103 also includes additional depth sensors, such as LIDAR sensors 211. In the present example, the mast 205 supports two LIDAR sensors 211-1 and 211-2. As shown in
The mast 205 also supports a plurality of illumination assemblies 213, configured to illuminate the fields of view of the respective cameras 207. The illumination assemblies 213 may be referred to collectively as an illumination subsystem. That is, the illumination assembly 213-1 illuminates the field of view of the camera 207-1, and so on. The cameras 207 and lidars 211 are oriented on the mast 205 such that the fields of view of the sensors each face a shelf 110 along the length 119 of which the apparatus 103 is traveling. The apparatus 103 is configured to track a pose of the apparatus 103 (e.g. a location and orientation of the center of the chassis 201) in the frame of reference 102, permitting data captured by the apparatus 103 to be registered to the frame of reference 102 for subsequent processing.
Facilities such as retailers may measure facility performance by assessing various performance metrics associated with the items 112. For example, a quantity of each item 112 removed from the shelves 110 (e.g. for purchase by customers) over a given time period (e.g. a week, although both shorter and longer time periods may also be assessed) may be measured. The quantities of items 112 consumed may be combined with item prices, margins, shelf space (e.g. in square feet or other suitable measurement unit) assigned to an item 112, or the like to assess facility performance in financial terms.
Further, the above measurements may be employed to alter the physical placement of items 112 in order to increase facility performance. For example, certain locations, such as higher support surfaces 117 (as opposed to support surfaces 117 closer to the ground), may increase the performance metrics associated with an item placed on such support surfaces. Therefore, the performance of the facility as a whole may be improved by further increasing the performance of already high-performing items. Gathering accurate locations of items 112, however, as well as accurate measurements of performance and selection of items to relocate, is typically a time-consuming manual process. As discussed below, the system 100 enables at least partial automation of this process.
Turning to
At block 305, the server 101 is configured to obtain image data, and in some examples depth data (i.e. one or more point clouds) depicting a support structure such as one or more shelves 110. The image data, in this example, includes a two-dimensional color image previously captured by the apparatus 103, e.g. while traversing an aisle containing shelves 110. The image may be a composite generated from a plurality of 2D images captured by the apparatus 103 as the apparatus 103 traversed the aisle. In other examples, the image data and/or depth data may also be captured prior to block 305 by at least one fixed camera mounted within the facility, in addition to or instead of the apparatus 103.
In examples in which the server 101 receives depth data at block 305, the depth data can include a point cloud containing a plurality of points with coordinates defined in three dimensions, e.g. according to the frame of reference 102, captured by the apparatus 103 during the above-mentioned traversal of the support structures. As with the 2D images mentioned above, the point cloud can be a composite generated from multiple point cloud captures taken as the apparatus 103 traversed the aisle. The images and point cloud obtained at block 305 may be retrieved from the repository 123, for example.
As will be apparent to those skilled in the art, the image obtained at block 305 represents a set of items 112 on the shelves 110. At block 310, the server 101 obtains item regions defining, for each item represented in the image, an area of the image that contains the item. The item regions are obtained in response to detection of the items 112 in the image, e.g. by at least one detection mechanism implemented at the server 101 (e.g. via another application distinct from the application 125) or another computing device. For example, the detection mechanisms can include an item classification mechanism employing a trained classifier (e.g. any suitable machine learning technique, including deep learning mechanisms such as neural networks and the like) to detect image features associated with particular items.
The detection mechanisms can also include a shelf edge detector, configured to return a region of the image corresponding to a shelf edge 118. The shelf edge detector can be based on any suitable combination of edge detection algorithms, for example. The detection mechanisms may also include a label detector, configured to return regions of the image corresponding to labels (e.g. price labels) that identify the items 112. The label detector can, for example, search the image (e.g. within detected shelf edge region(s)) for text and/or barcodes with predefined characteristics such as font sizes, layouts, and the like.
The item regions mentioned above can be derived from the detections of items, shelf edges, and labels. The server 101, via the execution of the application 125, may therefore generate the item regions at block 305 based on the above-mentioned item detections, or the item regions may be previously generated and stored in the repository 123, and retrieved at block 305. The server 101 can retrieve detection data 312 defining the item regions and/or the detection data mentioned above at block 310.
Referring to
Turning to
The item regions 500 are also shown in isolation within a boundary 504 of the image 500 (with the remainder of the image 500 omitted for clarity). Thus, each of the item regions 500-1, 500-2, 500-3, 500-4, 500-5, and 500-6 defines an area within the image 500 representing the maximum extent of the item 112-1, 112-2, 112-3, 112-4, 112-5, and 112-6, respectively. As will be apparent to those skilled in the art, the items 112 do not necessarily currently occupy the entirety of the corresponding item regions 500 (e.g. because some items have been removed for purchase). Each item region 502 is stored by the server 101 along with an item identifier, such as a stock-keeping unit (SKU) or other suitable identifier.
Returning to
In particular, at block 315, the server 101 is configured to select an item for processing. Blocks 320 to 330 of the method 300 are performed for each item, as will be apparent in the discussion below.
In an example performance of block 315, therefore, the item corresponding to the item region 502-1 is selected. At block 320, the server 101 obtains a performance metric corresponding to the selected item. The performance metric can take a wide variety of forms. In some examples, the performance metric is an indication of revenue associated with sales of the item 112-1 over a predefined time period (e.g. a week, a month, or any other suitable time period). In further examples, the performance metric is an indication of profit margin associated with sales of the item 112-1 over the predefined time period. Other performance metrics are also contemplated, however, such as a rate of consumption of the item 112-1 independent of financial information. That is, the performance metric can include an indication of a number of instances of the item 112-1 removed from the module 410 over the time period (and therefore assumed to have been purchased), a weight of the item 112-1 removed, or the like.
Performance metric data 322 can be retrieved from the repository 123 in some examples. In other examples, performance metric data 322 can be retrieved from the PoS subsystem 128, which stores data defining sales at the facility. For example, the server 101 may request sales data from the subsystem 128 using the item identifier associated with the item region 502-1 as well as start and end dates and/or times defining the above-mentioned time period. In other examples, e.g. when the server 101 does not have access to sales data from the subsystem 128, the server 101 can generate the performance metric, as will be discussed in greater detail below.
In the present example performance of the method 300, the server 101 is assumed to retrieve the performance metric from the subsystem 128, e.g. as an amount of revenue associated with the item 112-1 over the time period. At block 325, the server 101 is configured to encode the performance metric as a visual attribute. The visual attribute includes at least one of a color value, a transparency value, a pattern selection, and the like. For example, the performance metric can be encoded to a color value by comparing the performance metric to a set of thresholds.
Turning to
Other mechanisms for encoding the performance metrics as visual attributes are also contemplated. For example, rather comparing a performance metric to discrete thresholds, the performance metric may be mapped to a color scale defined by first and second colors each associated with minimal and maximal performance metrics. Each performance metric is therefore assigned a color between the first and second colors according to the position of the performance metric relative to the minimal and maximal performance metrics.
Returning to
At block 335, the server 101 determines whether there remain items 112 to be processed that correspond to the item regions 500 obtained at block 310. Blocks 315, 320, 325, and 330 are repeated until all items for which an item region 502 was obtained have been processed (i.e. to generate a corresponding item overlay).
Following a negative determination at block 335, the server 101 may proceed to block 340. At block 340, the server can generate the above-mentioned relocation indicators. The generation of relocation indicators is optional, and may therefore be omitted. Generation of relocation indicators will be discussed below, and in the present example is therefore omitted.
At block 345, the server 101 is configured to control a display to present the image 500 obtained at block 305, along with the overlay regions generated via successive performances of blocks 315-330. Turning to
The overlay of the image 500 and the regions 604 generated at block 345 may be presented by transmission to the client device 104 (e.g. for presentation on the display 132), by presentation on a display local to the server 101, or the like. At block 345, the server 101 may also present the relocation indicators, when block 340 is performed.
Turning to
At block 810, the server 101 is configured to retrieve a previous occupied portion of the same item region (e.g. the region 502-2). That is, the server 101 retrieves data from a previous performance of block 805, e.g. from the repository 123. The previous version retrieved corresponds to a predefined time period before the image 500 was captured. Turning again to
Returning to
Turning now to
At block 1005, the server 101 selects a support surface to evaluate. In the present example, the method 1000 serves to identify opportunities to relocate high-value items to higher support surfaces 417. The method 1000 therefore begins with the second support surface from the ground, which in the present example is the support surface 417-2.
At block 1010, the server 101 selects a first item 112. The first item is the item 112 that will be compared to a plurality of items on the lowest support surface (i.e. the support surface 417-1 in this example). In this example, the first item is the item 112-1 (corresponding to the overlay region 604-1, which indicates that the item 112-1 is a low-value item). At block 1015, the server 101 selects a second item 112. The second item is selected from the lower support surface 417-1. For example, the second item may be the item 112-4.
At block 1020, the server 101 determines whether the performance metric of the first item is smaller than the performance metric of the second item. In the present example, the determination is affirmative, as the item 112-4 (as indicated by the overlay region 604-4) has a greater value than the item 112-1. Following an affirmative determination at block 1020, the server 101 stores the first and second item as a relocation candidate pair at block 1025, and then proceeds to block 1030.
At block 1030, the server 101 determines whether additional second items remain to be compared to the first item from block 1010. In the present example, the non-active support surface (i.e. the support surface 417-1) contains two more items (the items 112-5, and 112-6), and the determination is therefore affirmative. The server 101 therefore proceeds to block 1015 and selects the next second item, e.g. the item 112-5. The comparison at block 1020 is repeated, and in the present example is negative because the items 112-1 and 112-5 both have low values. In this example, the performance metrics of the items 112 are being compared using the visual attributes described earlier, to simplify the comparison, but in some examples the original performance metrics may be compared, which may lead to a determination that the item 112-1, despite having been assigned a low-value visual attribute, nevertheless has a greater performance metric than the item 112-5.
A third performance of blocks 1015 and 1020 leads to a determination that the item 112-6 has a greater performance metric than the item 112-1. At block 1025 another relocation candidate pair (consisting of the items 112-1, and 112-6) is therefore stored. Following a negative determination at block 1030, because each of the items 112 on the support surface 417-1 have been compared to the item 112-1, the server 101 proceeds to block 1035.
At block 1035, the server 101 selects a relocation indicator for the first item (i.e. the item 112-1 in this example). When there are multiple candidate pairs, as in this example performance, the paired items 112 themselves may be compared. Thus, in this example the items 112-4 and 112-6 are compared in the same manner as block 1020, with the higher-value item being selected. The relocation indicator selected at block 1035 therefore pairs the items 112-1 and 112-6.
At block 1040, the server 101 determines whether any first items remain. That is, the server 101 determines whether any items 112 on the support surface selected at block 1005 remain to be processed. The process above is repeated for each such item, and following a negative determination, at block 1045 the process is once again repeated for each item on the next support surface. In this example, the first determination at block 1045 is negative because only two support surfaces 417 are present. However, if the module 410 included a third support surface 417 above the support surface 417-2, the determination at block 1045 would be affirmative, and each item 112 on the third support surface would be compared with every item on the first and second support surfaces 417-1 and 417-2.
At block 1050, once no further support surfaces 417 remain to be processed, the server 101 returns the selected relocation indicators from successive performances of block 1035, for use in the method 300. Specifically, at block 345 the image 500 may be displayed along with the overlay regions 604 and any relocation indicators arising from the method 1000. Turning to
In other examples, the generation of relocation indicators via the method 1000 may operate on groups of items 112, rather than individual items 112 as described above. For example, at block 1010 the first item selected can instead be selected support surface 117 or 417, containing a group of items 112. The selection at block 1015 therefore includes a second support surface 117 or 417, and the performance metrics compared at block 1020 can include the combined performance metrics for all items 112 on each of the first and second support surfaces.
In other examples, the first selected item can instead include a selected module 110 or 410, and the second selected item can include a second module 110 or 410, such that the performance metrics compared at block 1020 include the combined performance metrics of all items 112 on the selected modules 110 or 410. The relocation indicators generated via the method 1000 can therefore identify pairs of support surfaces, or pairs of modules, to swap (including all items 112 thereon), rather than pairs of individual items 112. First and second groups of items 112 selected for comparison via the method 1000 can also include categories of items 112, which may be specified in metadata associated with the items 112 in the repository 123.
Variations to the above systems and methods are contemplated. For example, at block 305, in addition to the image 500 the server 101 can receive a selection of an area on which to operate. That is, the image 500 may cover a portion of the facility, and the server 101 may receive a selection corresponding to a smaller portion within that portion. In such examples, the server 101 may restrict the remainder of the method 300 to the items 112 within the selected area.
In some examples, as will be apparent to those skilled in the art, an item 112 may be out of stock when an image is captured. In such examples, to avoid the omission of the relevant item 112 from the processing of the method 300, the server 101 can determine, e.g. at block 310, whether any out of stock (OOS) detections are associated with the image obtained at block 305. When an OOS detection is obtained along with the item detections 312, the server 101 generates a item region for the OOS item based on historical data indicating the location of the item (i.e. from an earlier performance of the method 300). Further, in such examples the server 101 can alter the image 500 prior to display at block 345, e.g. by replacing the portion of the image within the item region 502 with a corresponding portion of an earlier image in which the item 112 is present.
In further examples, the generation of item overlays at block 330 can include the generation of a plurality of overlays for each item 112. For example, the server 101 can be configured to generate a set of overlays for adjacent one-week periods (or any other suitable time period), rather than a single time period as discussed above. That is, the server 101 can retrieve and encode a performance metric for the item 112 for each of a series of contiguous weeks, months, or the like. A separate overlay may then be generated at block 330 for each encoded performance metric. Together, the series of overlays illustrate the variations in performance metrics associated with that item over time.
The server 101 can, at block 345, present the above-mentioned series of overlays in various ways. For example, the server 101 can present an animation containing the series of overlays for each item 112 in the image. For example, the overlays generated for a given time period (e.g. a week) may be presented for a predefined number of video frames, followed by a further predefined number of frames displaying the overlays for the subsequent period of time (e.g. the following week), and so on.
In other examples, the server 101 may generate an additional overlay for each item 112, representing a rate of change of the performance metrics discussed above. That is, a rate of change in the performance metric obtained via successive performances of block 320 can be computed and encoded at block 325. For example, a positive or flat (i.e. zero) rate of change may be encoded as a first visual identifier, while a negative rate of change may be encoded as a second visual identifier. Additional visual identifiers may also be employed for more granular representations of the rate of change. The additional overlay can be presented at block 345, in addition to or instead of the overlays discussed earlier.
Turning to
As will now be apparent to those skilled in the art, the system 100 as described above provides a technical improvement by way of processing image sensor data to determine accurate item locations, from which it computes and displays performance metrics for item location optimization, such as occupancy over time, item relocation indicators, as well as the above-mentioned heat maps.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
It will be appreciated that some embodiments may be comprised of one or more specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.
Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
5209712 | Ferri | May 1993 | A |
5214615 | Bauer | May 1993 | A |
5408322 | Hsu et al. | Apr 1995 | A |
5414268 | McGee | May 1995 | A |
5534762 | Kim | Jul 1996 | A |
5566280 | Fukui et al. | Oct 1996 | A |
5953055 | Huang et al. | Sep 1999 | A |
5988862 | Kacyra et al. | Nov 1999 | A |
6026376 | Kenney | Feb 2000 | A |
6034379 | Bunte et al. | Mar 2000 | A |
6075905 | Herman et al. | Jun 2000 | A |
6115114 | Berg et al. | Sep 2000 | A |
6141293 | Amorai-Moriya et al. | Oct 2000 | A |
6304855 | Burke | Oct 2001 | B1 |
6442507 | Skidmore et al. | Aug 2002 | B1 |
6549825 | Kurata | Apr 2003 | B2 |
6580441 | Schileru-Key | Jun 2003 | B2 |
6711293 | Lowe | Mar 2004 | B1 |
6721769 | Rappaport et al. | Apr 2004 | B1 |
6836567 | Silver et al. | Dec 2004 | B1 |
6995762 | Pavlidis et al. | Feb 2006 | B1 |
7090135 | Patel | Aug 2006 | B2 |
7137207 | Armstrong et al. | Nov 2006 | B2 |
7245558 | Willins et al. | Jul 2007 | B2 |
7248754 | Cato | Jul 2007 | B2 |
7277187 | Smith et al. | Oct 2007 | B2 |
7373722 | Cooper et al. | May 2008 | B2 |
7474389 | Greenberg et al. | Jan 2009 | B2 |
7487595 | Armstrong et al. | Feb 2009 | B2 |
7493336 | Noonan | Feb 2009 | B2 |
7508794 | Feather et al. | Mar 2009 | B2 |
7527205 | Zhu et al. | May 2009 | B2 |
7605817 | Zhang et al. | Oct 2009 | B2 |
7647752 | Magnell | Jan 2010 | B2 |
7693757 | Zimmerman | Apr 2010 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
7751928 | Antony et al. | Jul 2010 | B1 |
7783383 | Eliuk et al. | Aug 2010 | B2 |
7839531 | Sugiyama | Nov 2010 | B2 |
7845560 | Emanuel et al. | Dec 2010 | B2 |
7885865 | Benson et al. | Feb 2011 | B2 |
7925114 | Mai et al. | Apr 2011 | B2 |
7957998 | Riley et al. | Jun 2011 | B2 |
7996179 | Lee et al. | Aug 2011 | B2 |
8009864 | Linaker et al. | Aug 2011 | B2 |
8049621 | Egan | Nov 2011 | B1 |
8091782 | Cato et al. | Jan 2012 | B2 |
8094902 | Crandall et al. | Jan 2012 | B2 |
8094937 | Teoh et al. | Jan 2012 | B2 |
8132728 | Dwinell et al. | Mar 2012 | B2 |
8134717 | Pangrazio et al. | Mar 2012 | B2 |
8189855 | Opalach et al. | May 2012 | B2 |
8199977 | Krishnaswamy et al. | Jun 2012 | B2 |
8207964 | Meadow et al. | Jun 2012 | B1 |
8233055 | Matsunaga et al. | Jul 2012 | B2 |
8265895 | Willins et al. | Sep 2012 | B2 |
8277396 | Scott et al. | Oct 2012 | B2 |
8284988 | Sones et al. | Oct 2012 | B2 |
8423431 | Rouaix et al. | Apr 2013 | B1 |
8429004 | Hamilton et al. | Apr 2013 | B2 |
8463079 | Ackley et al. | Jun 2013 | B2 |
8479996 | Barkan et al. | Jul 2013 | B2 |
8520067 | Ersue | Aug 2013 | B2 |
8542252 | Perez et al. | Sep 2013 | B2 |
8571314 | Tao et al. | Oct 2013 | B2 |
8599303 | Stettner | Dec 2013 | B2 |
8630924 | Groenevelt et al. | Jan 2014 | B2 |
8660338 | Ma et al. | Feb 2014 | B2 |
8743176 | Stettner et al. | Jun 2014 | B2 |
8757479 | Clark et al. | Jun 2014 | B2 |
8812226 | Zeng | Aug 2014 | B2 |
8923893 | Austin et al. | Dec 2014 | B2 |
8939369 | Olmstead et al. | Jan 2015 | B2 |
8954188 | Sullivan et al. | Feb 2015 | B2 |
8958911 | Wong et al. | Feb 2015 | B2 |
8971637 | Rivard | Mar 2015 | B1 |
8989342 | Liesenfelt et al. | Mar 2015 | B2 |
9007601 | Steffey et al. | Apr 2015 | B2 |
9037287 | Grauberger et al. | May 2015 | B1 |
9064394 | Trundle | Jun 2015 | B1 |
9070285 | Ramu et al. | Jun 2015 | B1 |
9129277 | Macintosh | Sep 2015 | B2 |
9135491 | Morandi et al. | Sep 2015 | B2 |
9159047 | Winkel | Oct 2015 | B2 |
9171442 | Clements | Oct 2015 | B2 |
9247211 | Zhang et al. | Jan 2016 | B2 |
9329269 | Zeng | May 2016 | B2 |
9349076 | Liu et al. | May 2016 | B1 |
9367831 | Besehanic | Jun 2016 | B1 |
9380222 | Clayton et al. | Jun 2016 | B2 |
9396554 | Williams et al. | Jul 2016 | B2 |
9400170 | Steffey | Jul 2016 | B2 |
9424482 | Patel et al. | Aug 2016 | B2 |
9517767 | Kentley et al. | Dec 2016 | B1 |
9542746 | Wu et al. | Jan 2017 | B2 |
9549125 | Goyal et al. | Jan 2017 | B1 |
9562971 | Shenkar et al. | Feb 2017 | B2 |
9565400 | Curlander et al. | Feb 2017 | B1 |
9589353 | Mueller-Fischer et al. | Mar 2017 | B2 |
9600731 | Yasunaga et al. | Mar 2017 | B2 |
9600892 | Patel et al. | Mar 2017 | B2 |
9612123 | Levinson et al. | Apr 2017 | B1 |
9639935 | Douady-Pleven et al. | May 2017 | B1 |
9697429 | Patel et al. | Jul 2017 | B2 |
9766074 | Roumeliotis et al. | Sep 2017 | B2 |
9778388 | Connor | Oct 2017 | B1 |
9791862 | Connor | Oct 2017 | B1 |
9805240 | Zheng et al. | Oct 2017 | B1 |
9811754 | Schwartz | Nov 2017 | B2 |
9827683 | Hance et al. | Nov 2017 | B1 |
9880009 | Bell | Jan 2018 | B2 |
9928708 | Lin et al. | Mar 2018 | B2 |
9953420 | Wolski et al. | Apr 2018 | B2 |
9980009 | Jiang et al. | May 2018 | B2 |
9994339 | Colson et al. | Jun 2018 | B2 |
9996818 | Ren et al. | Jun 2018 | B1 |
10019803 | Venable et al. | Jul 2018 | B2 |
10111646 | Nycz et al. | Oct 2018 | B2 |
10121072 | Kekatpure | Nov 2018 | B1 |
10127438 | Fisher et al. | Nov 2018 | B1 |
10197400 | Jesudason et al. | Feb 2019 | B2 |
10210603 | Venable et al. | Feb 2019 | B2 |
10229386 | Thomas | Mar 2019 | B2 |
10248653 | Blassin et al. | Apr 2019 | B2 |
10265871 | Hance et al. | Apr 2019 | B2 |
10289990 | Rizzolo et al. | May 2019 | B2 |
10336543 | Sills et al. | Jul 2019 | B1 |
10349031 | DeLuca | Jul 2019 | B2 |
10352689 | Brown et al. | Jul 2019 | B2 |
10373116 | Medina et al. | Aug 2019 | B2 |
10394244 | Song et al. | Aug 2019 | B2 |
20010031069 | Kondo et al. | Oct 2001 | A1 |
20010041948 | Ross et al. | Nov 2001 | A1 |
20020006231 | Jayant et al. | Jan 2002 | A1 |
20020097439 | Braica | Jul 2002 | A1 |
20020146170 | Rom | Oct 2002 | A1 |
20020158453 | Levine | Oct 2002 | A1 |
20020164236 | Fukuhara et al. | Nov 2002 | A1 |
20030003925 | Suzuki | Jan 2003 | A1 |
20030094494 | Blanford et al. | May 2003 | A1 |
20030174891 | Wenzel et al. | Sep 2003 | A1 |
20040021313 | Gardner et al. | Feb 2004 | A1 |
20040131278 | imagawa et al. | Jul 2004 | A1 |
20040240754 | Smith et al. | Dec 2004 | A1 |
20050016004 | Armstrong et al. | Jan 2005 | A1 |
20050114059 | Chang et al. | May 2005 | A1 |
20050213082 | DiBernardo et al. | Sep 2005 | A1 |
20050213109 | Schell et al. | Sep 2005 | A1 |
20060032915 | Schwartz | Feb 2006 | A1 |
20060045325 | Zavadsky et al. | Mar 2006 | A1 |
20060106742 | Bochicchio et al. | May 2006 | A1 |
20060285486 | Roberts et al. | Dec 2006 | A1 |
20070036398 | Chen | Feb 2007 | A1 |
20070074410 | Armstrong et al. | Apr 2007 | A1 |
20070272732 | Hindmon | Nov 2007 | A1 |
20080002866 | Fujiwara | Jan 2008 | A1 |
20080025565 | Zhang et al. | Jan 2008 | A1 |
20080027591 | Lenser et al. | Jan 2008 | A1 |
20080077511 | Zimmerman | Mar 2008 | A1 |
20080159634 | Sharma et al. | Jul 2008 | A1 |
20080164310 | Dupuy et al. | Jul 2008 | A1 |
20080175513 | Lai et al. | Jul 2008 | A1 |
20080181529 | Michel et al. | Jul 2008 | A1 |
20080238919 | Pack | Oct 2008 | A1 |
20080294487 | Nasser | Nov 2008 | A1 |
20090009123 | Skaff | Jan 2009 | A1 |
20090024353 | Lee et al. | Jan 2009 | A1 |
20090057411 | Madej et al. | Mar 2009 | A1 |
20090059270 | Opalach et al. | Mar 2009 | A1 |
20090060349 | Linaker | Mar 2009 | A1 |
20090063306 | Fano et al. | Mar 2009 | A1 |
20090063307 | Groenovelt et al. | Mar 2009 | A1 |
20090074303 | Filimonova et al. | Mar 2009 | A1 |
20090088975 | Sato et al. | Apr 2009 | A1 |
20090103773 | Wheeler et al. | Apr 2009 | A1 |
20090125350 | Lessing et al. | May 2009 | A1 |
20090125535 | Basso et al. | May 2009 | A1 |
20090152391 | McWhirk | Jun 2009 | A1 |
20090160975 | Kwan | Jun 2009 | A1 |
20090192921 | Hicks | Jul 2009 | A1 |
20090206161 | Olmstead | Aug 2009 | A1 |
20090236155 | Skaff | Sep 2009 | A1 |
20090252437 | Li et al. | Oct 2009 | A1 |
20090287587 | Bloebaum et al. | Nov 2009 | A1 |
20090323121 | Valkenburg et al. | Dec 2009 | A1 |
20100017407 | Beniyama et al. | Jan 2010 | A1 |
20100026804 | Tanizaki et al. | Feb 2010 | A1 |
20100070365 | Siotia et al. | Mar 2010 | A1 |
20100082194 | Yabushita et al. | Apr 2010 | A1 |
20100091094 | Sekowski | Apr 2010 | A1 |
20100118116 | Tomasz et al. | May 2010 | A1 |
20100131234 | Stewart et al. | May 2010 | A1 |
20100141806 | Uemura et al. | Jun 2010 | A1 |
20100171826 | Hamilton et al. | Jul 2010 | A1 |
20100208039 | Setettner | Aug 2010 | A1 |
20100214873 | Somasundaram et al. | Aug 2010 | A1 |
20100235033 | Yamamoto et al. | Sep 2010 | A1 |
20100241289 | Sandberg | Sep 2010 | A1 |
20100295850 | Katz et al. | Nov 2010 | A1 |
20100315412 | Sinha et al. | Dec 2010 | A1 |
20100326939 | Clark et al. | Dec 2010 | A1 |
20110047636 | Stachon et al. | Feb 2011 | A1 |
20110052043 | Hyung et al. | Mar 2011 | A1 |
20110093306 | Nielsen et al. | Apr 2011 | A1 |
20110137527 | Simon et al. | Jun 2011 | A1 |
20110168774 | Magal | Jul 2011 | A1 |
20110172875 | Gibbs | Jul 2011 | A1 |
20110216063 | Hayes | Sep 2011 | A1 |
20110242286 | Pace et al. | Oct 2011 | A1 |
20110254840 | Halstead | Oct 2011 | A1 |
20110286007 | Pangrazio et al. | Nov 2011 | A1 |
20110288816 | Thierman | Nov 2011 | A1 |
20110310088 | Adabala et al. | Dec 2011 | A1 |
20120019393 | Wolinsky et al. | Jan 2012 | A1 |
20120022913 | VolKmann et al. | Jan 2012 | A1 |
20120051730 | Cote et al. | Mar 2012 | A1 |
20120069051 | Hagbi et al. | Mar 2012 | A1 |
20120075342 | Choubassi et al. | Mar 2012 | A1 |
20120133639 | Kopf et al. | May 2012 | A1 |
20120307108 | Forutanpour | Jun 2012 | A1 |
20120169530 | Padmanabhan et al. | Jul 2012 | A1 |
20120179621 | Moir et al. | Jul 2012 | A1 |
20120185112 | Sung et al. | Jul 2012 | A1 |
20120194644 | Newcombe et al. | Aug 2012 | A1 |
20120197464 | Wang et al. | Aug 2012 | A1 |
20120201466 | Funayama et al. | Aug 2012 | A1 |
20120209553 | Doytchinov et al. | Aug 2012 | A1 |
20120236119 | Rhee et al. | Sep 2012 | A1 |
20120249802 | Taylor | Oct 2012 | A1 |
20120250978 | Taylor | Oct 2012 | A1 |
20120269383 | Bobbitt et al. | Oct 2012 | A1 |
20120287249 | Choo et al. | Nov 2012 | A1 |
20120323620 | Hofman et al. | Dec 2012 | A1 |
20130030700 | Miller et al. | Jan 2013 | A1 |
20130090881 | Janardhanan et al. | Apr 2013 | A1 |
20130119138 | Winkel | May 2013 | A1 |
20130132913 | Fu et al. | May 2013 | A1 |
20130134178 | Lu | May 2013 | A1 |
20130138246 | Gutmann et al. | May 2013 | A1 |
20130138534 | Herwig | May 2013 | A1 |
20130142421 | Silver et al. | Jun 2013 | A1 |
20130144565 | Miller et al. | Jun 2013 | A1 |
20130154802 | O'Haire et al. | Jun 2013 | A1 |
20130156292 | Chang et al. | Jun 2013 | A1 |
20130162806 | Ding et al. | Jun 2013 | A1 |
20130176398 | Bonner et al. | Jul 2013 | A1 |
20130178227 | Vartanian et al. | Jul 2013 | A1 |
20130182114 | Zhang et al. | Jul 2013 | A1 |
20130226344 | Wong et al. | Aug 2013 | A1 |
20130228620 | Ahem et al. | Sep 2013 | A1 |
20130235165 | Gharib et al. | Sep 2013 | A1 |
20130236089 | Litvak et al. | Sep 2013 | A1 |
20130278631 | Border et al. | Oct 2013 | A1 |
20130299306 | Jiang et al. | Nov 2013 | A1 |
20130299313 | Baek, IV et al. | Nov 2013 | A1 |
20130300729 | Grimaud | Nov 2013 | A1 |
20130303193 | Dharwada et al. | Nov 2013 | A1 |
20130321418 | Kirk | Dec 2013 | A1 |
20130329013 | Metois et al. | Dec 2013 | A1 |
20130341400 | Lancaster-Larocque | Dec 2013 | A1 |
20140002597 | Taguchi et al. | Jan 2014 | A1 |
20140003655 | Gopalkrishnan et al. | Jan 2014 | A1 |
20140003727 | Lortz et al. | Jan 2014 | A1 |
20140016832 | Kong et al. | Jan 2014 | A1 |
20140019311 | Tanaka | Jan 2014 | A1 |
20140025201 | Ryu et al. | Jan 2014 | A1 |
20140028837 | Gao et al. | Jan 2014 | A1 |
20140047342 | Breternitz et al. | Feb 2014 | A1 |
20140049616 | Stettner | Feb 2014 | A1 |
20140052555 | MacIntosh | Feb 2014 | A1 |
20140086483 | Zhang et al. | Mar 2014 | A1 |
20140098094 | Neumann et al. | Apr 2014 | A1 |
20140100813 | Shaowering | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140129027 | Schnittman | May 2014 | A1 |
20140156133 | Cullinane et al. | Jun 2014 | A1 |
20140161359 | Magri et al. | Jun 2014 | A1 |
20140192050 | Qiu et al. | Jul 2014 | A1 |
20140195374 | Bassemir et al. | Jul 2014 | A1 |
20140214547 | Signorelli et al. | Jul 2014 | A1 |
20140214600 | Argue et al. | Jul 2014 | A1 |
20140267614 | Ding et al. | Sep 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20140277691 | Jacobus et al. | Sep 2014 | A1 |
20140277692 | Buzan et al. | Sep 2014 | A1 |
20140300637 | Fan et al. | Oct 2014 | A1 |
20140344401 | Varney et al. | Nov 2014 | A1 |
20140351073 | Murphy et al. | Nov 2014 | A1 |
20140369607 | Patel et al. | Dec 2014 | A1 |
20150015602 | Beaudoin | Jan 2015 | A1 |
20150019391 | Kumar et al. | Jan 2015 | A1 |
20150029339 | Kobres et al. | Jan 2015 | A1 |
20150039458 | Reid | Feb 2015 | A1 |
20150088618 | Basir et al. | Mar 2015 | A1 |
20150088703 | Yan | Mar 2015 | A1 |
20150092066 | Geiss et al. | Apr 2015 | A1 |
20150106403 | Haverinen et al. | Apr 2015 | A1 |
20150117788 | Patel et al. | Apr 2015 | A1 |
20150139010 | Jeong et al. | May 2015 | A1 |
20150154467 | Feng et al. | Jun 2015 | A1 |
20150161793 | Takahashi | Jun 2015 | A1 |
20150170256 | Pettyjohn et al. | Jun 2015 | A1 |
20150181198 | Baele et al. | Jun 2015 | A1 |
20150212521 | Pack et al. | Jul 2015 | A1 |
20150245358 | Schmidt | Aug 2015 | A1 |
20150262116 | Katircioglu et al. | Sep 2015 | A1 |
20150279035 | Wolski et al. | Oct 2015 | A1 |
20150298317 | Wang et al. | Oct 2015 | A1 |
20150310601 | Rodriguez et al. | Oct 2015 | A1 |
20150352721 | Wicks et al. | Dec 2015 | A1 |
20150363625 | Wu et al. | Dec 2015 | A1 |
20150363758 | Wu et al. | Dec 2015 | A1 |
20150365660 | Wu et al. | Dec 2015 | A1 |
20150379704 | Chandrasekar et al. | Dec 2015 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160044862 | Kocer | Feb 2016 | A1 |
20160061591 | Pangrazio et al. | Mar 2016 | A1 |
20160070981 | Sasaki et al. | Mar 2016 | A1 |
20160092943 | Vigier et al. | Mar 2016 | A1 |
20160012588 | Taguchi et al. | Apr 2016 | A1 |
20160104041 | bowers et al. | Apr 2016 | A1 |
20160107690 | Oyama et al. | Apr 2016 | A1 |
20160112628 | Super et al. | Apr 2016 | A1 |
20160114488 | Mascorro Medina et al. | Apr 2016 | A1 |
20160129592 | Saboo et al. | May 2016 | A1 |
20160132815 | Itoko et al. | May 2016 | A1 |
20160150217 | Popov | May 2016 | A1 |
20160156898 | Ren et al. | Jun 2016 | A1 |
20160163067 | Williams et al. | Jun 2016 | A1 |
20160171336 | Schwartz | Jun 2016 | A1 |
20160171429 | Schwartz | Jun 2016 | A1 |
20160171707 | Schwartz | Jun 2016 | A1 |
20160185347 | Lefevre et al. | Jun 2016 | A1 |
20160191759 | Somanath et al. | Jun 2016 | A1 |
20160224927 | Pettersson | Aug 2016 | A1 |
20160253735 | Scudillo et al. | Sep 2016 | A1 |
20160253844 | Petrovskaya et al. | Sep 2016 | A1 |
20160260054 | High et al. | Sep 2016 | A1 |
20160271795 | Vicenti | Sep 2016 | A1 |
20160313133 | Zang et al. | Oct 2016 | A1 |
20160328618 | Patel et al. | Nov 2016 | A1 |
20160353099 | Thomson et al. | Dec 2016 | A1 |
20160364634 | Davis et al. | Dec 2016 | A1 |
20170004649 | Collet Romea et al. | Jan 2017 | A1 |
20170011281 | Dijkman et al. | Jan 2017 | A1 |
20170011308 | Sun et al. | Jan 2017 | A1 |
20170032311 | Rizzolo et al. | Feb 2017 | A1 |
20170041553 | Cao et al. | Feb 2017 | A1 |
20170054965 | Raab et al. | Feb 2017 | A1 |
20170066459 | Singh | Mar 2017 | A1 |
20170074659 | Giurgiu et al. | Mar 2017 | A1 |
20170109940 | Guo et al. | Apr 2017 | A1 |
20170150129 | Pangrazio | May 2017 | A1 |
20170178060 | Schwartz | Jun 2017 | A1 |
20170193434 | Shah et al. | Jul 2017 | A1 |
20170219338 | Brown et al. | Aug 2017 | A1 |
20170219353 | Alesiani | Aug 2017 | A1 |
20170227645 | Swope et al. | Aug 2017 | A1 |
20170227647 | Baik | Aug 2017 | A1 |
20170228885 | Baumgartner | Aug 2017 | A1 |
20170261993 | Venable et al. | Sep 2017 | A1 |
20170262724 | Wu et al. | Sep 2017 | A1 |
20170280125 | Brown et al. | Sep 2017 | A1 |
20170286773 | Skaff et al. | Oct 2017 | A1 |
20170286901 | Skaff | Oct 2017 | A1 |
20170323253 | Enssle et al. | Nov 2017 | A1 |
20170323376 | Glaser et al. | Nov 2017 | A1 |
20170337508 | Bogolea et al. | Nov 2017 | A1 |
20180001481 | Shah et al. | Jan 2018 | A1 |
20180005035 | Bogolea et al. | Jan 2018 | A1 |
20180005176 | Williams et al. | Jan 2018 | A1 |
20180020145 | Kotfis et al. | Jan 2018 | A1 |
20180051991 | Hong | Feb 2018 | A1 |
20180053091 | Savvides et al. | Feb 2018 | A1 |
20180053305 | Gu et al. | Feb 2018 | A1 |
20180101813 | Paat et al. | Apr 2018 | A1 |
20180108134 | Venable et al. | Apr 2018 | A1 |
20180114183 | Howell | Apr 2018 | A1 |
20180130011 | Jacobsson | May 2018 | A1 |
20180143003 | Clayton et al. | May 2018 | A1 |
20180174325 | Fu et al. | Jun 2018 | A1 |
20180201423 | Drzewiecki et al. | Jul 2018 | A1 |
20180204111 | Zadeh et al. | Jul 2018 | A1 |
20180251253 | Taira et al. | Sep 2018 | A1 |
20180281191 | Sinyayskiy et al. | Oct 2018 | A1 |
20180293442 | Fridental et al. | Oct 2018 | A1 |
20180313956 | Rzeszutek et al. | Nov 2018 | A1 |
20180314260 | Jen et al. | Nov 2018 | A1 |
20180314908 | Lam | Nov 2018 | A1 |
20180315007 | Kingsford et al. | Nov 2018 | A1 |
20180315065 | Zhang et al. | Nov 2018 | A1 |
20180315173 | Phan et al. | Nov 2018 | A1 |
20180315865 | Haist et al. | Nov 2018 | A1 |
20180370727 | Hance et al. | Dec 2018 | A1 |
20190057588 | Savvides et al. | Feb 2019 | A1 |
20190065861 | Savvides et al. | Feb 2019 | A1 |
20190073554 | Rzeszutek | Mar 2019 | A1 |
20190073559 | Rzeszutek et al. | Mar 2019 | A1 |
20190077015 | Shibasaki et al. | Mar 2019 | A1 |
20190087663 | Yamazaki et al. | Mar 2019 | A1 |
20190094876 | Moore et al. | Mar 2019 | A1 |
20190108606 | Komiyama | Apr 2019 | A1 |
20190180150 | Taylor et al. | Jun 2019 | A1 |
20190197728 | Yamao | Jun 2019 | A1 |
20190236530 | Cantrell et al. | Aug 2019 | A1 |
20190304132 | Yoda et al. | Oct 2019 | A1 |
20190392212 | Sawhney et al. | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2835830 | Nov 2012 | CA |
3028156 | Jan 2018 | CA |
104200086 | Dec 2014 | CN |
107067382 | Aug 2017 | CN |
766098 | Apr 1997 | EP |
1311993 | May 2007 | EP |
2309378 | Apr 2011 | EP |
2439487 | Apr 2012 | EP |
2472475 | Jul 2012 | EP |
2562688 | Feb 2013 | EP |
2662831 | Nov 2013 | EP |
2693362 | Feb 2014 | EP |
2323238 | Sep 1998 | GB |
2330265 | Apr 1999 | GB |
101234798 | Jan 2009 | KR |
1020190031431 | Mar 2019 | KR |
WO 9923600 | May 1999 | WO |
WO 2003002935 | Jan 2003 | WO |
WO 2003025805 | Mar 2003 | WO |
WO 2006136958 | Dec 2006 | WO |
WO 2007042251 | Apr 2007 | WO |
WO 2008057504 | May 2008 | WO |
WO 2008154611 | Dec 2008 | WO |
WO 2012103199 | Aug 2012 | WO |
WO 2012103202 | Aug 2012 | WO |
WO 2012154801 | Nov 2012 | WO |
WO 2013165674 | Nov 2013 | WO |
WO 2014066422 | May 2014 | WO |
WO 2014092552 | Jun 2014 | WO |
WO 2014181323 | Nov 2014 | WO |
WO 2015127503 | Sep 2015 | WO |
WO 2016020038 | Feb 2016 | WO |
WO 2018018007 | Jan 2018 | WO |
WO 2018204308 | Nov 2018 | WO |
WO 2018204342 | Nov 2018 | WO |
WO 2019023249 | Jan 2019 | WO |
Entry |
---|
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017. |
Olson, Clark F., etal. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010. |
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970. |
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, pp. 176. |
Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009). |
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, Oct. 2013) (Year: 2013). |
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333. |
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551. |
Puwein, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks,” in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011. |
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php. |
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php]. |
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981). |
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation—A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009). |
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook_20100903_draft.pdf]. |
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint,” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253. |
Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=p. |
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013). |
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference on, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010). |
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated May 13, 2020 for GB Patent Application No. 1917864.9. |
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014. |
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015). |
Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, pp. 90-99 (2010). |
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (Jun. 21, 2017). |
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221. |
Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328. |
Kaimo Lin et al., “SEAGULL: Seam-guided Local Alignment for Parallax-tolerant Image Stitching”, Retrieved on Nov. 16, 2020 [http://publish.illinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf]. |
Julio Zaragoza et al., “As-Projective-as-Possible Image Stitching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346. |
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc. |
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn. |
“Swift Dimension” Trademark Omniplanar, Copyright 2014. |
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006. |
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641. |
Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applicatoins (DICTA), Nov. 23-25, 2015, pp. 1-8. |
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012. |
Bohm, Multi-Image Fusion for Occlusion-Free Façade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004). |
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114. |
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700. |
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013. |
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE. |
Cleveland Jonas et al: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017). |
Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984. |
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009. |
Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France, [hal-01097361]. |
Douillard, Bertrand, et al. “On the segmentation of 3D LIDAR point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011. |
Dubois, M., et al., A comparison of geometric and energy-based point cloud semantic segmentation methods, European Conference on Mobile Robots (ECMR), p. 88-93, 25-27, Sep. 2013. |
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972). |
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178. |
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013. |
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference on, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010). |
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984. |
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009. |
Hackel et al., “Contour Detection in unstructured 3D point clouds,” IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 1-9. |
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, V191, pp. 148-160 (2016). |
Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013). |
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017. |
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/028183 dated Jul. 24, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020. |
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n 3, Mar. 2016)(Year: 2016). |
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578. |
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121. |
Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986. |
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013). |
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada. |
Lecking et al: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008). |
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985. |
Li et al., “An improved RANSAC for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017). |
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945. (Year:2009). |
Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 3-7, 2010, pp. 300-307. |
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011). |
Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328. |
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25. |
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 I9, pp. 1-20 (2016). |
Norriof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641. |
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014. |
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016. |
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016. |
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017. |
Number | Date | Country | |
---|---|---|---|
20220138671 A1 | May 2022 | US |