1. Technical Field of the Invention
The invention relates generally to memory storage devices; and, more particularly, it relates to memory storage devices that operate using streaming information.
2. Description of Related Art
As is known, many varieties of memory storage devices (e.g. disk drives), such as magnetic disk drives are used to provide data storage for a host device, either directly, or through a network such as a storage area network (SAN) or network attached storage (NAS). Typical host devices include stand alone computer systems such as a desktop or laptop computer, enterprise storage devices such as servers, storage arrays such as a redundant array of independent disks (RAID) arrays, storage routers, storage switches and storage directors, and other consumer devices such as video game systems and digital video recorders. These devices provide high storage capacity in a cost effective manner.
Certain devices that employ hard disk drives (HDDs) are sometimes implemented within applications that employ or require streaming information. Some examples of such applications include those that perform playback of some form of digital data (e.g., digital audio or digital video information). One example of a digital audio player is a portable digital audio device that includes some type of HDD that is operable to perform playback of digital audio information that can comport with any of a wide variety of formats or standards. Even another example of such a device that is operable to perform playback of digital data (e.g., digital audio or digital video information) is a device that is designed to perform playback of digital video (e.g., a DVR (Digital Video Recorder) type device). Many modern STBs (Set Top Boxes) that are designed to provide decoded information to a display device (e.g., some type of television) also include some form or memory storage as well. Some devices are stand-alone and operate also to record and/or playback such digital information to a display device.
The speed at which the digital information is provided from the HDD or other storage means within these devices typically is provided at a very fast rate. Oftentimes, the speed at which the digital information is provided from the HDD or other storage means is such that certain error correction decoding approaches are presently incapable to receive, decode, and output the information at those rates. There exists a need in the art for a means by which certain and a wider variety of error correction can be applied to devices that include or interface to memory storage devices that provide digital information in a streaming format.
The present invention is directed to apparatus and methods of operation that are further described in the following Brief Description of the Several Views of the Drawings, the Detailed Description of the Invention, and the claims. Other features and advantages of the present invention will become apparent from the following detailed description of the invention made with reference to the accompanying drawings.
Disk drive unit 100 further includes one or more read/write heads 104 that are coupled to arm 106 that is moved by actuator 108 over the surface of the disk 102 either by translation, rotation or both. A disk controller 130 is included for controlling the read and write operations to and from the drive, for controlling the speed of the servo motor and the motion of actuator 108, and for providing an interface to and from the host device.
Disk controller 130 further includes a processing module 132 and memory module 134. Processing module 132 can be implemented using one or more microprocessors, micro-controllers, digital signal processors, microcomputers, central processing units, field programmable gate arrays, programmable logic devices, state machines, logic circuits, analog circuits, digital circuits, and/or any devices that manipulates signal (analog and/or digital) based on operational instructions that are stored in memory module 134. When processing module 132 is implemented with two or more devices, each device can perform the same steps, processes or functions in order to provide fault tolerance or redundancy. Alternatively, the function, steps and processes performed by processing module 132 can be split between different devices to provide greater computational speed and/or efficiency.
Memory module 134 may be a single memory device or a plurality of memory devices. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static random access memory (SRAM), dynamic random access memory (DRAM), flash memory, cache memory, and/or any device that stores digital information. Note that when the processing module 132 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory module 134 storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Further note that, the memory module 134 stores, and the processing module 132 executes, operational instructions that can correspond to one or more of the steps or a process, method and/or function illustrated herein.
Disk controller 130 includes a plurality of modules, in particular, device controllers 105, processing module 132, memory module 134, read/write channel 140, disk formatter 125, and servo formatter 120 that are interconnected via bus 136 and bus 137. The host interface 150 can be connected to only the bus 137 and communicates with the host device 50. Each of these modules can be implemented in hardware, firmware, software or a combination thereof, in accordance with the broad scope of the present invention. While a particular bus architecture is shown in
In one possible embodiment, one or more modules of disk controller 130 are implemented as part of a system on a chip (SoC) integrated circuit. In an embodiment, this SoC integrated circuit includes a digital portion that can include additional modules such as protocol converters, linear block code encoding and decoding modules, etc., and an analog portion that includes device controllers 105 and optionally additional modules, such as a power supply, etc. In a further embodiment, the various functions and features of disk controller 130 are implemented in a plurality of integrated circuit devices that communicate and combine to perform the functionality of disk controller 130.
When the drive unit 100 is manufactured, disk formatter 125 writes a plurality of servo wedges along with a corresponding plurality of servo address marks at equal radial distance along the disk 102. The servo address marks are used by the timing generator for triggering the “start time” for various events employed when accessing the media of the disk 102 through read/write heads 104.
A variety of applications of HDD or other memory storage devices can include and benefit from various aspects of the invention. Generally speaking, those applications that operate using streaming information can benefit significantly. By employing the ability to operate the decoding processing within a different clock domain that the clock domain in which streaming information is provided from the HDD or other memory storage device allows the ability to use a wide variety of error correction codes that would not be feasible or practical if the decoding processing is required to operate at the same rate at which the streaming information is provided from the HDD or other memory storage device.
Also, within such applications that operate using streaming information, the rate at which the information typically needs to be provided to an output device (e.g., a user device such as an apparatus that is operable to playback digital audio data or digital video data) is generally much less than the rate at which information is provided from the HDD or other memory storage device. The information provided from the disk (e.g., the HDD or other memory storage device) may be referred to as ‘bursty’ since the information generally needs to be provided at a much faster rate than needed when it comes to provide the streaming information to an output device (e.g., a user device that is operable to playback digital audio data or digital video data).
The rate at which the bursty information is provided from the HDD or other memory storage device is oftentimes referred to as the disk rate, and this disk rate is generally much larger than the rate at which information needs to be provided to an output device. Nevertheless, a typical prior art approach is to provide some form of HDD or other memory storage device within these applications that still provides streaming information at a very high rate (i.e., a very high disk rate). Because of this, the remaining components within the processing path (i.e., the decoding aspects particularly) is also constrained to operate at that same high rate. In other words, within the prior art, the typical approach is to require all subsequent modules and/or functional blocks that operate to process streaming information provided from a HDD or other memory storage device at the very same rate at which the streaming information is provided from the HDD or other memory storage device.
This requirement is oftentimes very difficult to meet, and it also prohibits the use of anything in the processing path that cannot meet the very high speed processing requirements dictated by the requirement to operate at the very high disk rate.
In a possible embodiment, wireless communication device 53 is capable of communicating via a wireless telephone network such as a cellular, personal communications service (PCS), general packet radio service (GPRS), global system for mobile communications (GSM), and integrated digital enhanced network (iDEN) or other wireless communications network capable of sending and receiving telephone calls. Further, wireless communication device 53 is capable of communicating via the Internet to access email, download content, access websites, and provide steaming audio and/or video programming. In this fashion, wireless communication device 53 can place and receive telephone calls, text messages such as emails, short message service (SMS) messages, pages and other data messages that can include attachments such as documents, audio files, video files, images and other graphics.
In one possible embodiment, disk drive unit 100 can include a small form factor magnetic hard disk whose disk 102 has a diameter 1.8″ or smaller that is incorporated into or otherwise used by television to provide general storage or storage of audio content such as motion picture expert group (MPEG) audio layer 3 (MP3) files or Windows Media Architecture (WMA) files, video content such as MPEG4 files (or data comporting to any other form of MPEG standard including the various versions of video standards therein), JPEG (joint photographic expert group) files, bitmap files and files stored in other graphics formats, emails, webpage information and other information downloaded from the Internet, address book information, and/or any other type of information that may be stored in a digital format.
In other possible embodiments, disk drive unit 100 can include a magnetic hard disk whose disk 102 that has a diameter of another size including a size that is typical to a HDD or other memory storage device employed in the art within such audio or video data storage means such as those employed within DVRs (Digital Video Recorders).
In one possible embodiment, disk drive unit 100 can include a small form factor magnetic hard disk whose disk 102 has a diameter 1.8″ or smaller that is incorporated into or otherwise used by television to provide general storage or storage of audio content such as motion picture expert group (MPEG) audio layer 3 (MP3) files or Windows Media Architecture (WMA) files, video content such as MPEG4 files (or data comporting to any other form of MPEG standard including the various versions of video standards therein), JPEG (joint photographic expert group) files, bitmap files and files stored in other graphics formats, emails, webpage information and other information downloaded from the Internet, address book information, and/or any other type of information that may be stored in a digital format.
In other possible embodiments, disk drive unit 100 can include a magnetic hard disk whose disk 102 that has a diameter of another size including a size that is typical to a HDD or other memory storage device employed in the art within such audio or video data storage means such as those employed within DVRs (Digital Video Recorders).
The audio device 56 can be coupled to another device that includes disk drive unit 100, or disk drive unit 100 can be implemented within the audio device 56 (i.e., integrated into the audio device 56).
In one possible embodiment, disk drive unit 100 can include a small form factor magnetic hard disk whose disk 102 has a diameter 1.8″ or smaller that is incorporated into or otherwise used by television to provide general storage or storage of audio content such as motion picture expert group (MPEG) audio layer 3 (MP3) files or Windows Media Architecture (WMA) files, video content such as MPEG4 files (or data comporting to any other form of MPEG standard including the various versions of video standards therein), JPEG (joint photographic expert group) files, bitmap files and files stored in other graphics formats, emails, webpage information and other information downloaded from the Internet, address book information, and/or any other type of information that may be stored in a digital format.
In other possible embodiments, disk drive unit 100 can include a magnetic hard disk whose disk 102 that has a diameter of another size as well. While the audio device 56 may be incapable to perform playback of the non-audio content of digital stored within the disk drive unit 100 included therein, the disk drive unit 100 can nevertheless store that information.
While a variety of types of devices have been illustrated and described above that are operable store and playback digital data that is provided in a streaming format, it is also noted any other type of device that includes a HDD or other memory storage device in which streaming information is provided there from can also employ various aspects of the invention.
Referring to the system 400, memory storage means 410 (e.g., a HDD) is operable to provide streaming information 401 at a first rate (e.g., a first frequency shown as f1). The streaming information 401 is provided to a buffer 420. In this diagram, all operations to the left of the buffer 420 operate within a first clock domain 411, and all operations to the right of the buffer 420 operate within a second clock domain 412. The buffer 420 is operable to perform this decoupling of the rate at which the streaming information 401 is provided from the memory storage means 410.
Streaming information 402 is provided from the buffer 420 at a second rate (e.g., a second frequency shown as f2). The second rate at which the streaming information 402 is provided from the buffer 420 allows for a decoder 430 to perform a much wider variety and type of error correction codes (at an acceptably low and/or reasonable cost) than the prior art allows. By decoupling of the rate at which the streaming information 401 is provided from the memory storage means 410, the decoder 430 is operable to process at a relatively much slower rate, and this allows for the error of error correction codes that generally take a relatively long to decode (or are expensive to decode fast). That is to say, certain error correction codes require processing that takes longer and therefore cannot keep up with the first rate at which the streaming information 401 is provided from the memory storage means 410. However, by using the buffer 430, the first clock domain 411 can be decoupled from the second clock domain 412, and the decoder 430 is operable to perform the decoding processing at relatively much slower rates than the first rate at which the streaming information 401 is provided from the memory storage means 410.
After the decoder 430 has performed the decoding of the streaming information 402 provided from the buffer 420, the decoded information can be provided to a host device 440. The host device 440 can be a user device such as any device that is operable to perform playback of streaming digital information.
Referring to the system 500, memory storage means 510 (e.g., a HDD) is operable to provide streaming information 501 at a first rate (e.g., a first frequency shown as f1). This embodiment is analogous to the embodiment of the previous diagram, however, a de-interleaver (π−1) 515 is interposed between the memory storage means 510 and a buffer 520. The data within the memory storage means 510 is physically interleaved therein. This allows for the ability to generate streaming information 502 at a second rate (e.g., a second frequency shown as f2) in another manner than provided within the previous embodiment.
In this embodiment of the system 500, if the interleaving of the information is actually on the media (e.g., the disk of an HDD), then the buffer 520 can be smaller when compared to the buffer 420 of the previous embodiment. The de-interleaver (π−1) 515 can be viewed as operable to skip over (e.g., not read) many of the sectors from disk. It follows that periodic ‘bursts’ of information are provided from disk, and these are the desired sectors. The undesired sectors can be ignored and consequently will not fill up the buffer 520; this allows for a relatively smaller buffer to be employed in such an embodiment.
After undergoing the de-interleaving within the de-interleaver (π−1) 515, the now-de-interleaved streaming information 501 is provided to the buffer 520. The buffer is operable to generate the logical streaming information which is the streaming information 502. In this diagram, all operations to the left of the buffer 520 operate within a first clock domain 511, and all operations to the right of the buffer 520 operate within a second clock domain 512. The buffer 520 is operable to perform this decoupling of the rate at which the streaming information 501 is provided from the memory storage means 510.
Streaming information 502 (i.e., which is a logical stream of information generated from the de-interleaved version of the streaming information 501) is provided from the buffer 520 at a second rate (e.g., a second frequency shown as f2). The second rate at which the streaming information 502 is provided from the buffer 520 allows for a decoder 530 to perform a much wider variety and type of error correction codes than the prior art allows. By decoupling of the rate at which the streaming information 501 is provided from the memory storage means 510, the decoder 530 is operable to process at a relatively much slower rate, and this allows for the error of error correction codes that generally take a relatively long to decode. That is to say, certain error correction codes require processing that takes longer and therefore cannot keep up with the first rate at which the streaming information 501 is provided from the memory storage means 510. However, by using the buffer 520, the first clock domain 511 can be decoupled from the second clock domain 512, and the decoder 530 is operable to perform the decoding processing at relatively much slower rates than the first rate at which the streaming information 501 is provided from the memory storage means 510.
After the decoder 530 has performed the decoding of the streaming information 502 provided from the buffer 520, the decoded information can be provided to a host device 540. The host device 540 can be a user device such as any device that is operable to perform playback of streaming digital information.
Depending on the particular interleaving employed when physically interleaving the data sectors on the disk, an appropriately implemented de-interleaver (π−1) is employed to generate logical streaming information that has a rate at which decoding processing can be implemented thereon at a relatively much slower rate than that which the interleaved streaming information 601 is provided from disk. In other words, the physical interleaving of the interleaved streaming information 601 on the disk allows for the formation of one or more logical streaming information such that the rate of that logical streaming information is relatively less than the rate at which the interleaved streaming information 601 is provided from disk.
A few possible embodiments of de-interleaving are shown here, and these embodiments are exhaustive of a very wide variety of possible interleaving/de-interleaving approaches that are possible.
Looking at the de-interleaver (π−1) 615, is can be seen that from the interleaved streaming information 601 that includes information p0, p1, p2, . . . , and so on, logical streaming information 602 (that includes p0, p3, p6, p9, . . . , and so on) is generated there from. As can be seen, a first data sector (p0) is taken from the interleaved streaming information 601, then two subsequent data sectors are skipped, and then a fourth data sector (p3) is taken from the interleaved streaming information 601, and so on according to the operation of the de-interleaver (π−1) 615.
Looking at the de-interleaver (π−1) 616, is can be seen that from the interleaved streaming information 601 that includes information p0, p1, p2, . . . , and so on, logical streaming information 603 (that includes p1, p4, p7, p10, . . . , and so on) is generated there from. As can be seen, a second data sector (p1) is taken from the interleaved streaming information 601, then two subsequent data sectors are skipped, and then a fifth data sector (p4) is taken from the interleaved streaming information 601, and so on according to the operation of the de-interleaver (π−1) 616.
Looking at the de-interleaver (π−1) 617, is can be seen that from the interleaved streaming information 601 that includes information p0, p1, p2, . . . , and so on, logical streaming information 604 (that includes p2, p5, p8, p11, . . . , and so on) is generated there from. As can be seen, a third data sector (p2) is taken from the interleaved streaming information 601, then two subsequent data sectors are skipped, and then a sixth data sector (p5) is taken from the interleaved streaming information 601, and so on according to the operation of the de-interleaver (π−1) 617.
In some embodiments, a single de-interleaver (π−1) can be re-used and employed to perform the operations of each of the de-interleaver (π−1) 615, de-interleaver (π−1) 616, and de-interleaver (π−1) 617.
Looking at the lower right hand side of this diagram (which operates according to the de-interleaver (π−1) 615), the sector read operations are performed according to a first rate or frequency, shown as f1, as indicated by reference numeral 691. Then, after undergoing the de-interleaving as provided by the de-interleaver (π−1) 615 and any appropriate buffering/memory management as indicated by the reference numeral 692 to generate the appropriate logical streaming information 602, then the decoding processing 693 is performed at a second rate or frequency, shown as f2, that is generally much less than the first rate or frequency, shown as f1, at which the interleaved streaming information 601 is provided from disk.
This physical interleaving of the data sectors on disk and the de-interleaving of the interleaved streaming information 601 (i.e., by using an appropriate de-interleaver (π−1) and any appropriate buffering/memory management) that is provided from disk is yet another means by which information can be provided from a disk at a first rate or within a first clock domain, and then the decoding processing of that streaming information can be performed at a second rate or within a second clock domain.
Referring to the system 700, streaming information 701 is provided from memory storage means 710 (e.g. a HDD or other storage means) at a first rate. Generally, this first rate at which the streaming information 701 is provided from the memory storage means 710 is at the disk rate, which can generally be viewed as being the rate at which information is streamed out of the actual storage media (e.g., from the disk of a HDD).
An analog front end (AFE) 720 receives information from the memory storage means 710 and performs any appropriate analog processing therein. It is also noted that an alternative embodiment could include a de-interleaver (π−1) 710a interposed between the memory storage means 710 and the AFE 720. The operation of the de-interleaver (π−1) 710a would change the average rate of the information down to the required rate, but the data would still burst over.
For example, at a minimum, the AFE 720 is operable to perform digital sampling of the streaming information 701 using an analog to digital converter (ADC) 721. In some embodiments, the AFE 720 is also operable to perform filtering 722, scaling 723, and/or any other analog processing 724 that is desired or appropriate in a particular application. The now digital version of the streaming information 701 is then provided to a digital front end (DFE) which can provide any one or more of a variety of digital signal processing operations including any one or more of equalization using an equalizer 731, filtering using some digital filtering means such as a finite impulse response (FIR) filter 732, timing recovery 733, any gain adjustment or scaling using such a means or an automatic gain controller (AGC) 734, and/or any other digital processing 735 that is desired or appropriate in a particular application.
In addition, it is noted that a relatively high bandwidth feedback control channel 730a (when compared to the next embodiment) can be implemented from the DFE 730 to the AFE 720 to allow the adjustment/modification of any one or more of operational parameters employed within any processing module or process within the AFE 730. For example, scaling 723 within the AFE 720 (before ADC sampling) could be adjusted based on the results of the DFE 730.
The digital and now-digital signal processed version of the streaming information 701 is then provided to a buffer 740. The buffer 740 can be implemented using any of a wide variety of means including SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), some other buffering means or combination thereof. In this diagram, all operations to the left of the buffer 740 operate within a first clock domain 711, and all operations to the right of the buffer 740 operate within a second clock domain 712. All operations within the first clock domain 711 can all be performed in synchronization with the disk rate. All operations within the second clock domain 712 can all be performed in synchronization with a rate at which a user device is designed to receive streaming information.
The buffer 740 is operable to perform this decoupling of the rate at which the streaming information 701 is provided from the memory storage means 710. Streaming information 702 is provided from the buffer 740 at a second rate (e.g., a second frequency shown as f2). The second rate at which the streaming information 702 is provided from the buffer 740 allows for the use of a much wider variety and type of error correction codes than the prior art allows. While a variety of codes and decoding approaches can be employed, this embodiment includes a soft ISI (Inter-Symbol Interference) decoder 750 that is operable to receive the streaming information 702 and to generate soft information 751 there from. In some embodiments, this soft information 751 is generated in a format of LLRs (log likelihood ratios). The soft ISI decoder 750 is operable to generate at least one soft decision within the soft information 751, and an LDPC (Low Density Parity Check) decoder 760 is operable to process the at least one soft decision within the soft information 751 thereby making a best estimate 761 of the streaming information 702 that is provided from the buffer 740.
After the LDPC decoder 760 has performed the decoding of the streaming information 702 provided from the buffer 740, the decoded information can be provided to a host device 770. The host device 770 can be a user device such as any device that is operable to perform playback of streaming digital information.
Referring to the system 800, this embodiment is analogous to the previous embodiment with at least one difference being that the DFE 830 of
Looking at the diagram, the streaming information 801 is provided from memory storage means 810 (e.g. a HDD or other storage means) at a first rate. Generally, this first rate at which the streaming information 801 is provided from the memory storage means 810 is at the disk rate, which can generally be viewed as being the rate at which information is streamed out of the actual storage media (e.g., from the disk of a HDD).
An analog front end (AFE) 820 receives information from the memory storage means 810 and performs any appropriate analog processing therein. It is also noted that an alternative embodiment could include a de-interleaver (π−1) 810a interposed between the memory storage means 810 and the AFE 820. The operation of the de-interleaver (π−1) 810a would change the average rate of the information down to the required rate, but the data would still burst over.
For example, at a minimum, the AFE 820 is operable to perform digital sampling of the streaming information 801 using an analog to digital converter (ADC) 821. In some embodiments, the AFE 820 is also operable to perform filtering 822, scaling 823, and/or any other analog processing 824 that is desired or appropriate in a particular application.
The AFE signal processed version of the streaming information 801 is then provided to a buffer 840. The buffer 840 can be implemented using any of a wide variety of means including SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), some other buffering means or combination thereof. In this diagram, all operations to the left of the buffer 840 operate within a first clock domain 811, and all operations to the right of the buffer 840 operate within a second clock domain 812. All operations within the first clock domain 811 can all be performed in synchronization with the disk rate. All operations within the second clock domain 812 can all be performed in synchronization with a rate at which a user device is designed to receive streaming information.
The buffer 840 is operable to perform this decoupling of the rate at which the streaming information 801 is provided from the memory storage means 810. Streaming information 802 is provided from the buffer 840 at a second rate (e.g., a second frequency shown as f2) to a DFE 830. The second rate at which the streaming information 802 is provided from the buffer 840 allows for the use of a much wider variety and type of error correction codes than the prior art allows.
The DFE 830 can then provide any one or more of a variety of digital signal processing operations on streaming information 802 including any one or more of equalization using an equalizer 831, filtering using some digital filtering means such as a finite impulse response (FIR) filter 832, timing recovery 833, any gain adjustment or scaling using such a means or an automatic gain controller (AGC) 834, and/or any other digital processing 835 that is desired or appropriate in a particular application.
In addition, it is noted that a relatively lower bandwidth feedback (when compared to the previous embodiment) control channel 830a can be implemented from the DFE 830 to the AFE 820 to allow the adjustment/modification of any one or more of operational parameters employed within any processing module or process within the AFE 830. For example, scaling 823 within the AFE 820 (before ADC sampling) could be adjusted based on the results of the DFE 830.
While a variety of codes and decoding approaches can be employed, this embodiment includes a soft ISI (Inter-Symbol Interference) decoder 850 that is operable to receive the DFE processed version of the streaming information 802 and to generate soft information 851 there from. In some embodiments, this soft information 851 is generated in a format of LLRs (log likelihood ratios). The soft ISI decoder 850 is operable to generate at least one soft decision within the soft information 851, and an LDPC (Low Density Parity Check) decoder 860 is operable to process the at least one soft decision within the soft information 851 thereby making a best estimate 861 of the streaming information 802 that is provided from the buffer 840. It is also noted that in some embodiments, the soft ISI decoder 850 can itself be implemented as part of the DFE 830.
After the LDPC decoder 860 has performed the decoding of the streaming information 802 provided from the buffer 840, the decoded information can be provided to a host device 870. The host device 870 can be a user device such as any device that is operable to perform playback of streaming digital information.
It is also noted that alternative embodiments (e.g., modifications of
Referring to the system 900, certain portions of this embodiment are analogous to the embodiment depicted in
As within other embodiment, in this diagram, all operations to the left of the buffer 940 operate within a first clock domain 911, and all operations to the right of the buffer 940 operate within a second clock domain 912. All operations within the first clock domain 911 can all be performed in synchronization with the disk rate. All operations within the second clock domain 912 can all be performed in synchronization with a rate at which a user device is designed to receive streaming information.
The buffer 940 is operable to perform this decoupling of the rate at which the streaming information 901 is provided from the memory storage means. Streaming information 902 is provided from the buffer 940 at a second rate (e.g., a second frequency shown as f2). The second rate at which the streaming information 902 is provided from the buffer 940 allows for the use of a much wider variety and type of error correction codes than the prior art allows.
In the particular application in which the streaming information 901 has been encoded using an LDPC code, the properties of LDPC codes allow for a great deal of parallel implementation in the functional blocks and operations within the second clock domain 912. For example, a de-multiplexor (DEMUX) 901 is operable to perform de-serialization of the streaming information 902 into a plurality of streams each having a reduced rate. For example, if the streaming information 902 has a rate of f2, and if the DEMUX 901 partitions the streaming information 902 into “n” streams, then each stream can have a rate as low as f2/n as shown by reference numeral 903.
Each path in which an individual stream is processed to the right hand side of the DEMUX 901 can include a soft ISI decoder and an LDPC decoder just as within the embodiment of
Referring to the system 1000, certain portions of this embodiment are analogous to the embodiment depicted in
As within other embodiment, in this diagram, all operations to the left of the buffer 1040 operate within a first clock domain 1011, and all operations to the right of the buffer 1040 operate within a second clock domain 1012. All operations within the first clock domain 1011 can all be performed in synchronization with the disk rate. All operations within the second clock domain 1012 can all be performed in synchronization with a rate at which a user device is designed to receive streaming information.
The buffer 1040 is operable to perform this decoupling of the rate at which the streaming information 1001 is provided from the memory storage means. Streaming information 1002 is provided from the buffer 1040 at a second rate (e.g., a second frequency shown as f2) and then delivered to a DFE 1030. Again, the second rate at which the streaming information 1002 is provided from the buffer 1040 allows for the use of a much wider variety and type of error correction codes than the prior art allows.
In the particular application in which the streaming information 1001 has been encoded using an LDPC code, the properties of LDPC codes allow for a great deal of parallel implementation in the functional blocks and operations within the second clock domain 1012. For example, after undergoing processing by the DFE 1030, the now-digitally processed streaming information 1002 is provided to a DEMUX 1001 that is operable to perform de-serialization of the digitally processed streaming information 1002 into a plurality of streams each having a reduced rate. For example, if the streaming information 1002 has a rate of f2, and if the DEMUX 1001 partitions the streaming information 1002 into “n” streams, then each stream can have a rate as low as f2/n as shown by reference numeral 1003.
Each path in which an individual stream is processed to the right hand side of the DEMUX 1001 can include a soft ISI decoder and an LDPC decoder just as within the embodiment of
Referring to the system 1100, this embodiment is analogous to the previous embodiment of
As within other embodiment, in this diagram, all operations to the left of the buffer 1140 operate within a first clock domain 1111, and all operations to the right of the buffer 1140 operate within a second clock domain 112.
Looking at
All operations within the first clock domain 1111 can all be performed in synchronization with the disk rate. All operations within the second clock domain 1112 can all be performed in synchronization with a rate at which a user device is designed to receive streaming information.
The buffer 1140 is operable to perform this decoupling of the rate at which the streaming information 1101 is provided from the memory storage means. Streaming information 1102 is provided from the buffer 1140 at a second rate (e.g., a second frequency shown as f2) and then delivered to a DEMUX 1101. Again, the second rate at which the streaming information 1102 is provided from the buffer 1140 allows for the use of a much wider variety and type of error correction codes than the prior art allows.
In the particular application in which the streaming information 1101 has been encoded using an LDPC code, the properties of LDPC codes allow for a great deal of parallel implementation in the functional blocks and operations within the second clock domain 1112. For example, the DEMUX 1101 is operable to perform de-serialization of the streaming information 1102 into a plurality of streams each having a reduced rate. For example, if the streaming information 1102 has a rate of f2, and if the DEMUX 1101 partitions the streaming information 1102 into “n” streams, then each stream can have a rate as low as f2/n as shown by reference numeral 1103.
Each path in which an individual stream is processed to the right hand side of the DEMUX 1101 can include a reduced size DFE, a soft ISI decoder, and an LDPC decoder just as within previous embodiment that include a single DFE, a single soft ISI decoder, and a single LDPC decoder. Specifically, in this diagram, a first processing stream includes a DFE 1131, a soft ISI decoder 1151, and an LDPC decoder 1161, and an n-th processing stream includes a DFE 1132, a soft ISI decoder 1152 and an LDPC decoder 1162. Looking at one stream, DEMUX 1101 is operable to provide the steaming information 1103 to the DFE 1132. Then, the soft ISI decoder 1152 is operable to generate at least one soft decision within the soft information 1151, and the LDPC decoder 1162 is operable to process the at least one soft decision within the soft information 1151 thereby making a best estimate of portion of the streaming information 1103 that is provided from the DEMUX 1101. A MUX 1102 then operates to combine (e.g., serialize) all of the best estimates generated for each of the n streams into a single best estimate 1161. This decoded information (i.e., the best estimate 1161, which is the best estimate of the streaming information 1102) can be provided to a host device 1170. The host device 1170 can be a user device such as any device that is operable to perform playback of streaming digital information.
Referring to the method 1200, the method 1200 begins by receiving information that is streamed from storage media of a HDD at a first rate, as shown in a block 1210. The method 1200 then continues by buffering the information thereby enabling the outputting of the information from the buffer at a second rate, as shown in a block 1220. This buffering/queuing of the information can be performed using any of a variety of means, including SRAM, DRAM, other memory means, and/or any combination thereof. The method 1200 then continues by performing error correction decoding processing on the information at the second rate thereby making a best estimate of the information, as shown in a block 1230.
In some embodiments, the method 1200 also involves providing the decoded information to a host device as shown in a block 1240. Within the block 1240, the host device can be a user device such as any device that is operable to perform playback of streaming digital information. Then, the method 1200 can also involve playing back the decoded into using the host device, as shown in a block 1250.
Referring to the method 1300, this embodiment is somewhat analogous to the previous embodiment with a difference being that streaming information is provided from a storage media on which it is physically interleaved thereon.
The method 1300 begins by information that is streamed from storage media of a HDD at a first rate, as shown in a block 1310. The information is physically interleaved on the storage media of the HDD. The method 1300 then continues by de-interleaving the streaming information as shown in a block 1315. The operation of the block 1315 can be viewed as involving generating one or more logical streams from the streaming information received from the storage media of the HDD.
The method 1300 then continues by buffering the information thereby enabling the outputting of the information from the buffer at a second rate, as shown in a block 1320. This buffering/queuing of the information can be performed using any of a variety of means, including SRAM, DRAM, other memory means, and/or any combination thereof. The method 1300 then continues by performing error correction decoding processing on the information at the second rate thereby making a best estimate of the information, as shown in a block 1330.
In some embodiments, the method 1300 also involves providing the decoded information to a host device as shown in a block 1340. Within the block 1340, the host device can be a user device such as any device that is operable to perform playback of streaming digital information. Then, the method 1300 can also involve playing back the decoded into using the host device, as shown in a block 1350.
It is also noted that the methods described within the preceding figures may also be performed within any appropriate system and/or apparatus designs without departing from the scope and spirit of the invention.
In view of the above detailed description of the invention and associated drawings, other modifications and variations will now become apparent. It should also be apparent that such other modifications and variations may be effected without departing from the spirit and scope of the invention.
The present U.S. Utility patent application claims priority pursuant to 35 U.S.C. § 119(e) to the following U.S. Provisional patent application which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility patent application for all purposes: 1. U.S. Provisional Application Ser. No. 60/860,121, entitled “Iterative code system for streaming HDDs,” (Attorney Docket No. BP5585), filed 11-20-2006, pending. The following U.S. Utility patent application is hereby incorporated herein by reference in its entirety and is made part of the present U.S. Utility patent application for all purposes: 1. U.S. Utility patent application Ser. No. 02-27-2007, entitled “Iterative code system for streaming HDDs,” (Attorney Docket No. BP5585), filed 11/711,506, pending.
Number | Date | Country | |
---|---|---|---|
60860121 | Nov 2006 | US |