1. Field of the Invention
The present invention relates generally to suppression of intra-channel and inter-channel interference in coded spread spectrum wireless communication systems with multiple receive antennas. More specifically, the invention takes advantage of the receive diversity afforded by multiple receive antennas in combination with multiple uses of an interference-suppression unit consisting of symbol-estimate weighting, subtractive suppression with a stabilizing step-size, and a mixed-decision symbol estimator.
2. Discussion of the Related Art
In an exemplary wireless multiple-access system, a communication resource is divided into code-space subchannels allocated to different users. A plurality of subchannel signals received by a wireless terminal (e.g., a subscriber unit or a base station) may correspond to different users and/or different subchannels allocated to a particular user.
If a single transmitter broadcasts different messages to different receivers, such as a base station in a wireless communication system serving a plurality of mobile terminals, the channel resource is subdivided in order to distinguish between messages intended for each mobile. Thus, each mobile terminal, by knowing its allocated subchannel(s), may decode messages intended for it from the superposition of received signals. Similarly, abuse station typically separates signals it receives into subchannels in order to differentiate between users.
In a multipath environment, received signals are superpositions of time-delayed and complex-scaled versions of the transmitted signals. Multipath can cause several types of interference. Intra-channel interference occurs when the multipath time-spreading causes subchannels to leak into other subchannels. For example, forward-link subchannels that are orthogonal at the transmitter may not be orthogonal at the receiver. When multiple base stations (or sectors or cells) are active, inter-channel interference may result from unwanted signals received from other base stations. These types of interference can degrade communications by causing a receiver to incorrectly decode received transmissions, thus increasing a receiver's error floor. Interference may degrade communications in other ways. For example, interference may diminish the capacity of a communication system, decrease the region of coverage, and/or decrease maximum data rates. For these reasons, reduction in interference can improve reception of selected signals while addressing the aforementioned limitations due to interference. Multiple receive antennas enable the receiver to process more information, allowing greater interference-reduction than can be accomplished with a single receive antenna.
In code division multiple access (such as used in CDMA 2000, WCDMA, EV-DO (in conjunction with time-division multiple access), and related standards), a set of symbols is sent across a common time-frequency slot of the physical channel and separated by the use of a set of distinct code waveforms, which are usually chosen to be orthogonal (or pseudo-orthogonal for reverse-link transmissions). The code waveforms typically vary in time, with variations introduced by a pseudo-random spreading code (PN sequence). The wireless transmission medium is characterized by a time-varying multi path profile that causes multiple time-delayed replicas of the transmitted waveform to be received, each replica having a distinct amplitude and phase due to path loss, absorption, and other propagation effects. As a result, the received code set is no longer orthogonal. Rather, it suffers from intra-channel interference within a base station and inter-channel interference arising from transmissions in adjacent cells.
In view of the foregoing background, embodiments of the present invention may provide a generalized interference-suppressing receiver for suppressing intra-channel and inter-channel interference in multiple-access coded-waveform transmissions that propagate through frequency-selective communication channels and are received by a plurality of receive antennas. Receiver embodiments may be designed, adapted, and implemented explicitly in software or programmed hardware, or implicitly in standard RAKE-based hardware. Embodiments may be employed in user equipment on the downlink or in a base station on the uplink.
An interference-suppression system configured for suppressing at least one of inter-cell and intra-cell interference in multiple-access communication signals received from a plurality of antennas comprises a front-end processing means coupled to an iterative interference-suppression means.
A front-end processing means is configured for generating initial symbol estimates to be coupled to an iterative interference-suppression means. The front-end processing means may include, by way of example, but without limitation, a combiner configured for combining received signals from each of a plurality of transmission sources across a plurality of antennas for producing combined signals, a despreader configured for resolving the combined signals onto a signal basis for the plurality of transmission sources to produce soft symbol estimates from the plurality of transmission sources, and a symbol estimator configured for performing a mixed decision on each of the soft symbol estimates to generate the initial symbol estimates.
In one embodiment, the front-end processing means may further comprise a synthesizer configured for synthesizing estimated Rake finger signals for each antenna that would be received if weighted symbol decisions were employed at the plurality of transmission sources, and a subtraction module configured for performing per-antenna subtraction of a sum of synthesized Rake finger signals from that antenna's received signal to produce an error signal.
In another embodiment, the front-end processing means may further comprise a despreader configured for resolving each of a plurality of error signals corresponding to each of a plurality of antennas onto a signal basis for the plurality of transmission sources for producing a plurality of resolved error signals, a first combiner configured for combining the resolved error signals across antennas for producing a combined signal, a stabilizing step-size module configured to scale the combined signal by a stabilizing step size for producing a scaled signal, and a second combiner configured for combining the combined signal with a weighted input vector.
An iterative interference-suppression means may include, by way of example, but without limitation, a sequence of interference-suppression units. In one embodiment, each interference-suppression unit is configured for processing signals received by each of the plurality of antennas, whereby constituent signals for each of a plurality of antennas are added back to corresponding scaled error signals to produce error signals for a plurality of transmission sources, followed by resolving the error signals for the plurality of transmission sources across the plurality of antennas onto a signal basis for the plurality of transmission sources.
In one embodiment, each interference-suppression unit may comprise a soft-weighting module configured to apply weights to a plurality of input symbol decisions to produce weighted symbol decisions, a synthesizer corresponding to each antenna of the plurality of antennas and configured for synthesizing constituent signals, a subtractive suppressor configured to perform a per-antenna subtraction of the synthesized signal from the received signal to produce a plurality of per-antenna error signals, a stabilizing step size module configured for scaling the plurality of antenna error signals by a stabilizing step size for producing a plurality of scaled error signals, a combiner configured for combining each of the constituent signals with its corresponding scaled error signal to produce a plurality of interference-suppressed constituents, a resolving module configured for resolving each of the interference-suppressed constituent signals onto a signal basis for a plurality of transmit sources to produce the interference-suppressed input symbol decisions, and a mixed-decision module configured for processing the interference-suppressed symbol decisions to produce the updated symbol decisions.
Embodiments of the invention may be employed in any receiver configured to support the standard offered by the 3rd-Generation Partnership Project 2 (3GPP2) consortium and embodied in a set of documents, including “TR-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems,” “C.S0005-A Upper Layer (Layer 3) Signaling Standard for cdma2000 Spread Spectrum Systems,” and “C.S0024 CDMA2000 High Rate Packet Data Air Interface Specification” (i.e., the CDMA2000 standard).
Receivers and suppression systems described herein may be employed in subscriber-side devices (e.g., cellular handsets, wireless modems, and consumer premises equipment) and/or server-side devices (e.g., cellular base stations, wireless access points, wireless routers, wireless relays, and repeaters). Chipsets for subscriber-side and/or server-side devices may be configured to perform at least some of the receiver and/or suppression functionality of the embodiments described herein.
Various functional elements, separately or in combination as depicted in the figures, may take the form of a microprocessor, digital signal processor, application specific integrated circuit, field programmable gate array, or other logic circuitry programmed or otherwise configured to operate as described herein. Accordingly, embodiments may take the form of programmable features executed by a common processor or a discrete hardware unit.
These and other embodiments of the invention are described with respect to the figures and the following description of the preferred embodiments.
Embodiments according to the present invention are understood with reference to the following figures.
Various functional elements or steps, separately or in combination, depicted in the figures may take the form of a microprocessor, digital signal processor, application specific integrated circuit, field programmable gate array, or other logic circuitry programmed or otherwise configured to operate as described herein. Accordingly, embodiments may take the form of programmable features executed by a common processor or discrete hardware unit.
The present invention will now be described more folly hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
The following formula represents an analog baseband signal received from multiple base stations by antenna a of a receiver,
ya(t)=Σs=1BΣl=1L
with the following definitions
Multipath components received by each RAKE receiver 101.1-101.A are separated with respect to their originating base stations and processed by a plurality B of constituent-signal analyzers 102.1-102.B. Each constituent-signal analyzer 102.1-102.B comprises a combiner, a despreader, and a symbol estimator, such as combiner 111.s, despreader 112.s, and symbol estimator 113.s in constituent-signal analyzer 102.s.
Signals received from different antennas 100.1-100.A corresponding to an sth originating base station are synchronized, and then combined (e.g., maximal ratio combined) by combiner 111.s to produce an sth diversity-combined signal. The despreader 112.s resolves the sth diversity-combined signal onto subchannel code waveforms, and the symbol estimator 113.s produces initial symbol estimates, which are input to a first interference suppression unit (ICU) 104.1 of a sequence of ICUs 104.1-104.M.
ICU 104.1 mitigates intra-channel and/or inter-channel interference in the estimates in order to produce improved symbol estimates. Successive use of ICUs 104.2-104.M further improves the symbol estimates. The ICUs 104.1-104.M may comprise distinct units, or a single unit configured to perform each iteration.
ysmrc(t)=Σa=1Aya,smrc(t). Equation 3
The combined signal is resolved onto subchannel code waveforms by a plurality K of despreading modules, comprising K code-waveform multipliers 302.1-302.K and integrators 303.1-303.K, to give
as a RAKE/Combine/De-Spread output for the kth subchannel of base stations. A column vector of these outputs is denoted
qs=[qs,1 qs,2 . . . qs,K
for base station s, where the superscript T denotes matrix transpose. Each qs,k is processed by one of a plurality of symbol estimators 304.1-304.K to produce
{circumflex over (b)}s,k[0]=Estimate Symbol {qs,k}, Equation 6
where the superscript [0] indicates the initial symbol estimate produced by front-end processing. Symbol estimators 304.1-304.K may include mixed-decision symbol estimators described in U.S. Patent Application Ser. No. 60/736,204, or other types of symbol estimators. An output vector of symbol estimates for base station s may be formed as
{circumflex over (b)}s,k[0]=[{circumflex over (b)}s,1[0] {circumflex over (b)}s,2[0] . . . {circumflex over (b)}. . . s,K
It should be appreciated that one or more of the functions described with respect to
γs,k[i]{circumflex over (b)}s,k[i] Equation 7
where {circumflex over (b)}s,k[i] is the input symbol estimate, γs,k[i] is its weighting factor, and superscript [i] represents the output of the ith ICU. The superscript [0] represents the output of front-end processing prior to the first ICU. The symbol estimates may be multiplexed (e.g., concatenated) 402 into a single column vector
such that the weighted symbol estimates are given by Γ[i]{circumflex over (b)}[i], where Γ[i] is a diagonal matrix containing the weighting factors along its main diagonal. The weighted symbol estimates are processed by a synthesizer used to synthesize 403.1-403.A constituent signals for each antenna. For each antenna, a synthesized signal represents a noise-free signal that would have been observed at antennas a with the base stations transmitting the weighted symbol estimates Γ[i]{circumflex over (b)}[i] over the multipath channels between base stations 1 through B and the mobile receiver.
For each antenna, a subtraction module performs interference suppression 404.1-404.A on the constituent signals to reduce the amount of intra-channel and inter-channel interference. The interference-suppressed constituents are processed via per-antenna RAKE processing and combining 405.1-405.A to produce combined signals. The combined signals are organized by base station, combined across antennas, resolved onto the subchannel code waveforms, and processed by symbol estimators 406.1-406.B. The terms {circumflex over (b)}s,k[i+1] denote the estimated symbol for the kth subchannel of base stations after processing by the (i+1)th ICU.
Σk=0K
A multipath channel emulator comprising path-delay modules 504.1-504.L and path-gain modules 505.1-505L produces multipath finger constituent signals expressed by
{tilde over (y)}a,s,l[i](t)=αa,s,lΣk=0K
where {tilde over (y)}a,s,l[i] is the lth finger constituent for the channel between base station s and antenna a.
{tilde over (y)}a,s,l[i](t)≡γs,k[i]{circumflex over (b)}s,k[i]Σl=0L
which is the synthesized constituent signal for the kth subchannel of base station s at the ath antenna of the mobile. Note that while Equation 9 and Equation 10 both show a signal with a three-parameter subscript for their left-hand sides, they are different signals; the subscript l (as in Equation 9) will be reserved for a finger constituent and the subscript k (as in Equation 10) will be reserved for a subchannel constituent.
A first processor 600 comprises a plurality B of subtractive suppressors 601.1-601.B configured for processing constituent signals relative to each of a plurality B of base stations.
Suppressor 601.s is illustrated with details that may be common to the other suppressors 601.1-601.B. A combiner 602 sums the constituent signals to produce a synthesized received signal associated with base station s, {tilde over (y)}a,s[i](t)≡Σj=0J
A second processor 610 comprises a combiner 611 configured for combining the synthesized received signals across base stations to produce a combined synthesized receive signal {tilde over (y)}a[i](t)=Σs=1B{tilde over (y)}a,s[i] corresponding to the ath antenna. A subtraction module 612 produces a signal from the difference between the combined synthesized receive signal and the actual received signal to create a residual signal ya(t)−{tilde over (y)}a[i](t). A step size scaling module 613 scales the residual signal with a complex stabilizing step size μa[i]613 to give a scaled residual signal μa[i](ya(t)−{tilde over (y)}a[i](t)). The scaled residual signal is returned to the suppressors 601.1-601.B in the first processor 601 where combiners, such as combiners 603.1-603.J in the suppressor 601.s add the scaled residual signal to the constituent signals to produce a set of interference-suppressed constituents expressed by
za,s,j[i](t)≡{tilde over (y)}a,s,l[i](t)+μa[i](ya (t)−{tilde over (y)}a[i](t)) Equation 11
for an interference-suppressed jth constituent finger or subchannel signal on the ath antenna for base station s. The term μa[i] may be evaluated as shown in U.S. patent application Ser. No. 11/451,932, which describes calculating a step size for a single receive antenna. In one embodiment the same step size may be employed for all antennas, meaning μa[i]=μ[i] for all a.
associated with antenna a and base station s,
In
associated with antenna a and base station s.
For each base station, the MRC signals for antennas are summed 802 to form the overall MRC signal
zsmrc,[i](t)≡Σa=1Aza,smrc,[i](t), Equation 14
which is resolved by code multipliers 803.1-803.K and integrators 804.1-804.K onto the subchannel code waveforms. Symbol estimators 805.1-805.K are employed for producing symbol estimates, such as mixed-decision symbol estimates as described in U.S. patent application Ser. No. 11/451,932.
Because of the linear nature of many of the ICU components, alternative embodiments of the invention may comprise similar components employed in a different order of operation without affecting the overall functionality. In one embodiment, antenna combining and de-spreading may be performed prior to interference suppression, such as illustrated in
In
The output for the kth subchannel of base station s is ∫0Tuk*(t)es[i](t)dt, which is equal to qs,k−{tilde over (q)}s,k[i], where qs,k is defined in Equation 4, and
For each base station, the values qs,k and {tilde over (q)}s,k[i] may be stacked into a vector over the subchannel index k to form qs−{tilde over (q)}s[i]. These likewise may be stacked into a single vector over the base station index s to give q−{tilde over (q)}[i]. This quantity may also be determined explicitly using a matrix multiplication.
An explicit implementation of an ICU is illustrated in
Matrix R is the correlation matrix for all subchannels at the receiver after combining across antennas. It may be evaluated by
R=Σa=1ARa Equation 15
where Ra is the correlation matrix for all subchannels at the ath antenna, and it may be determined as described in U.S. patent application Ser. No. 11/451,932 for a single antenna receiver. The matrix F is either the identity matrix when subchannel constituent signals are employed or the correlation matrix for all subchannels at the transmitter(s) when finger constituent signals are used, such as described in U.S. patent application Ser. No. 11/451,932. This functionality may be represented by the one-step matrix-update equation
{circumflex over (b)}[i+1]=Ψ(μ[i](q−RΓ[i]{circumflex over (b)}[i])+FΓ[i]{circumflex over (b)}[i]), Equation 16
where Ψ(⋅) represents any function that returns a symbol estimate for each element of its argument (including, for example, any of the mixed-decision symbol estimation functions described in U.S. patent application Ser. No. 11/451,932) and all other quantities as previously described.
The stabilizing step size μ[i] may take any of the forms described in U.S. patent application Ser. No. 11/451,932 that depend on the correlation matrix R, the implementation matrix F, and the weighting matrix Γ[i]. Two of these forms μ[i] are implicitly calculable, such as described in U.S. patent application Ser. No. 11/451,932 for a single receive antenna.
The difference-signal vector corresponding to the ath antenna is denoted by βa[i]. The difference-signal vectors for all of the antennas are summed to produce a sum vector β[i]. A sum of the square magnitudes 1105 of the elements of the sum vector (i.e., ∥β[i]∥2) provides a numerator of a ratio from which the stabilizing step size is evaluated. The elements of β[i] are used as transmit symbols in order to synthesize 1106 received signals for each antenna. Synthesized received signals are expressed as
for antenna a, where βs,k[i] is the kth element of β[i]. An integral of the square magnitude of each synthesized signal is calculated 1108.1-1108.A and summed 1109 to produce the denominator of the ratio. The ratio of the numerator and the denominator gives the first version of the step size μ[i].
The corresponding numerator is calculated by scaling 1154 symbol estimates produced at the ith iteration by the square of the soft weights (as contained in the diagonal matrix (Γ[i])2). The resulting scaled vector is used to synthesize 1155 received signals for all of the antennas. The synthesized signals and the received signals are processed by a parallel bank of processors 1156.1-1156.A, each corresponding to a particular antenna. The functionality of each processor 1156.1-1156.A may be equivalent to the processor 1101.a shown in
Explicit versions of both versions of the step size are given, respectively, by
wherein all quantities shown are as previously defined.
Another form of the step size in U.S. patent application Ser. No. 11/451,932 depends only on the path gains, and may be generalized to multiple receive antennas according to
where μ[i] is fixed for every ICU and C and p are non-negative constants.
Embodiments of the invention are also applicable to the reverse-link, such as described for the single receive antenna in U.S. patent application Ser. No. 11/451,932. The primary difference (when compared to the forward-link) is that subchannels from distinct transmitters experience different multipath channels and, thus, the receiver must accommodate each subchannel with its own RAKE/Combiner/De-Spreader, and channel emulation must take into account that, in general, every subchannel sees its own channel. Such modifications are apparent to those knowledgeable in the art.
Embodiments of the invention may be realized in hardware or software and there are several modifications that can be made to the order of operations and structural flow of the processing. Those skilled in the art should recognize that method and apparatus embodiments described herein may be implemented in a variety of ways, including implementations in hardware, software, firmware, or various combinations thereof. Examples of such hardware may include Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), general-purpose processors, Digital Signal Processors (DSPs), and/or other circuitry. Software and/or firmware implementations of the invention may be implemented via any combination of programming languages, including Java, C, C++, Matlab™, Verilog, VHDL, and/or processor specific machine and assembly languages.
Computer programs (i.e., software and/or firmware) implementing the method of this invention may be distributed to users on a distribution medium such as a SIM card, a USB memory interface, or other computer-readable memory adapted for interfacing with a consumer wireless terminal. Similarly, computer programs may be distributed to users via wired or wireless network interfaces. From there, they will often be copied to a hard disk or a similar intermediate storage medium. When the programs are to be run, they may be loaded either from their distribution medium or their intermediate storage medium into the execution memory of a wireless terminal, configuring an onboard digital computer system (e.g. a microprocessor) to act in accordance with the method of this invention. All these operations are well known to those skilled in the art of computer systems.
The functions of the various elements shown in the drawings, including functional blocks labeled as “modules” may be provided through the use of dedicated hardware, as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be performed by a single dedicated processor, by a shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “module” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor OSP hardware, read-only memory (ROM) for storing software, random access memory (RAM), and non-volatile storage. Other hardware, conventional and/or custom, may also be included. Similarly, the function of any component or device described herein may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
The method and system embodiments described herein merely illustrate particular embodiments of the invention. It should be appreciated that those skilled in the art will be able to devise various arrangements, which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are intended to be only for pedagogical purposes to aid the reader in understanding the principles of the invention. This disclosure and its associated references are to be construed as applying without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
This application is a continuation of U.S. patent application Ser. No. 14/922,600, entitled “Iterative Interference Suppressor for Wireless Multiple-Access Systems with Multiple Receive Antennas,” filed Oct. 26, 2015, now U.S. Pat. No. 9,425,855, which is a continuation of U.S. patent application Ser. No. 14/520,626, entitled “Iterative Interference Suppressor for Wireless Multiple-Access Systems with Multiple Receive Antennas,” filed Oct. 22, 2014, now U.S. Pat. No. 9,172,456, which is a continuation of U.S. patent application Ser. No. 13/896,952, entitled “Iterative Interference Suppressor for Wireless Multiple-Access Systems with Multiple Receive Antennas,” filed May 17, 2013, now U.S. Pat. No. 8,879,658, which is a continuation of U.S. patent application Ser. No. 13/372,483, entitled “Iterative Interference Suppressor for Wireless Multiple-Access Systems with Multiple Receive Antennas,” filed Feb. 13, 2012, now U.S. Pat. No. 8,446,975, which is a continuation of U.S. patent application Ser. No. 12/916,389, entitled “Iterative Interference Canceler for Wireless Multiple-Access Systems with Multiple Receive Antennas,” filed Oct. 29, 2010, now U.S. Pat. No. 8,121,176, which is a continuation of U.S. patent application Ser. No. 11/491,674, entitled “An Iterative Interference Canceller for Wireless Multiple-Access Systems with Multiple Receive Antennas,” filed Jul. 24, 2006, now U.S. Pat. No. 7,826,516, which (1) is a Continuation in Part of U.S. patent application Ser. No. 11/451,932, filed Jun. 13, 2006, and entitled “Iterative Interference Cancellation Using Mixed Feedback Weights and Stabilizing Step Sizes,” now U.S. Pat. No. 7,711,075 and (2) claims priority to U.S. Patent Application Ser. No. 60/736,204, filed Nov. 15, 2005, and entitled “Iterative Interference Cancellation Using Mixed Feedback Weights and Stabilizing Step Sizes,” which incorporates by reference (a) U.S. patent application Ser. No. 11/100,935, filed Apr. 7, 2005, entitled “Construction of Projection Operators for Interference Cancellation,” published as U.S. Patent Application Publication Number US 2005/0180364 A1, (b) U.S. patent application Ser. No. 11/233,636, filed Sep. 23, 2005, entitled “Optimal Feedback Weighting for Soft-Decision Cancellers,” published as U.S. Patent Application Publication Number US 2006/0227909 A1, and (c) U.S. patent application Ser. No. 11/266,928, filed Nov. 4, 2005, entitled “Soft Weighted Subtractive Cancellation for CDMA Systems,” now U.S. Pat. No. 7,876,810. The entirety of each of the foregoing patents, published patent applications and patent applications is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3742201 | Groginsky | Jun 1973 | A |
4088955 | Baghdady | May 1978 | A |
4309769 | Taylor, Jr. | Jan 1982 | A |
4359738 | Lewis | Nov 1982 | A |
4601046 | Halpern et al. | Jul 1986 | A |
4665401 | Garrard et al. | May 1987 | A |
4670885 | Parl et al. | Jun 1987 | A |
4713794 | Byington et al. | Dec 1987 | A |
4780885 | Paul et al. | Oct 1988 | A |
4856025 | Takai | Aug 1989 | A |
4893316 | Janc et al. | Jan 1990 | A |
4922506 | McCallister et al. | May 1990 | A |
4933639 | Barker | Jun 1990 | A |
4965732 | Roy, III et al. | Oct 1990 | A |
5017929 | Tsuda | May 1991 | A |
5099493 | Zeger et al. | Mar 1992 | A |
5105435 | Stilwell | Apr 1992 | A |
5109390 | Gilhousen et al. | Apr 1992 | A |
5119401 | Tsujimoto | Jun 1992 | A |
5136296 | Roettger et al. | Aug 1992 | A |
5151919 | Dent | Sep 1992 | A |
5218359 | Minamisono | Jun 1993 | A |
5218619 | Dent | Jun 1993 | A |
5220687 | Ichikawa et al. | Jun 1993 | A |
5224122 | Bruckert | Jun 1993 | A |
5237586 | Bottomley | Aug 1993 | A |
5263191 | Kickerson | Nov 1993 | A |
5271042 | Borth et al. | Dec 1993 | A |
5280472 | Gilhousen et al. | Jan 1994 | A |
5305349 | Dent | Apr 1994 | A |
5325394 | Bruckert | Jun 1994 | A |
5343493 | Karimullah | Aug 1994 | A |
5343496 | Honig et al. | Aug 1994 | A |
5347535 | Karasawa et al. | Sep 1994 | A |
5353302 | Bi | Oct 1994 | A |
5377183 | Dent | Dec 1994 | A |
5386202 | Cochran et al. | Jan 1995 | A |
5390207 | Fenton et al. | Feb 1995 | A |
5394110 | Mizoguchi | Feb 1995 | A |
5396256 | Chiba et al. | Mar 1995 | A |
5423045 | Kannan | Jun 1995 | A |
5437055 | Wheatley, III | Jul 1995 | A |
5440265 | Cochran et al. | Aug 1995 | A |
5448600 | Lucas | Sep 1995 | A |
5467368 | Takeuchi | Nov 1995 | A |
5481570 | Winters | Jan 1996 | A |
5506865 | Weaver, Jr. | Apr 1996 | A |
5513176 | Dean et al. | Apr 1996 | A |
5533011 | Dean et al. | Jul 1996 | A |
5553062 | Schilling et al. | Sep 1996 | A |
5553098 | Cochran et al. | Sep 1996 | A |
5568411 | Batruni | Oct 1996 | A |
5602833 | Zehavi | Feb 1997 | A |
5606560 | Malek | Feb 1997 | A |
5644592 | Divsalar et al. | Jul 1997 | A |
5761237 | Petersen | Feb 1998 | A |
5736964 | Ghosh et al. | Apr 1998 | A |
5787130 | Kotzin et al. | Jul 1998 | A |
5844521 | Stephens et al. | Dec 1998 | A |
5859613 | Otto | Jan 1999 | A |
5872540 | Casabona et al. | Feb 1999 | A |
5872776 | Yang | Feb 1999 | A |
5894500 | Bruckert et al. | Apr 1999 | A |
5926761 | Reed et al. | Jul 1999 | A |
5930229 | Yoshida et al. | Jul 1999 | A |
5953369 | Suzuki | Sep 1999 | A |
5978413 | Bender | Nov 1999 | A |
5995499 | Hottinen et al. | Nov 1999 | A |
6002727 | Uesugi | Dec 1999 | A |
6014373 | Schilling et al. | Jan 2000 | A |
6018317 | Dogan et al. | Jan 2000 | A |
6032056 | Reudink | Feb 2000 | A |
6088383 | Suzuki et al. | Jul 2000 | A |
6101385 | Monte et al. | Aug 2000 | A |
6104712 | Robert et al. | Aug 2000 | A |
6115409 | Upadhyay et al. | Sep 2000 | A |
6127973 | Choi et al. | Oct 2000 | A |
6131013 | Bergstrom et al. | Oct 2000 | A |
6137788 | Sawahashi et al. | Oct 2000 | A |
6141332 | Lavean | Oct 2000 | A |
6154443 | Huang et al. | Nov 2000 | A |
6157685 | Tanaka et al. | Dec 2000 | A |
6157842 | Karlsson et al. | Dec 2000 | A |
6157847 | Buehrer et al. | Dec 2000 | A |
6161209 | Moher | Dec 2000 | A |
6163696 | Bi et al. | Dec 2000 | A |
6166690 | Lin et al. | Dec 2000 | A |
6172969 | Kawakami et al. | Jan 2001 | B1 |
6175587 | Madhow et al. | Jan 2001 | B1 |
6175588 | Visotsky et al. | Jan 2001 | B1 |
6177906 | Petrus | Jan 2001 | B1 |
6185716 | Riggle | Feb 2001 | B1 |
6192067 | Toda et al. | Feb 2001 | B1 |
6201799 | Huang et al. | Mar 2001 | B1 |
6208683 | Mizuguchi et al. | Mar 2001 | B1 |
6215812 | Young et al. | Apr 2001 | B1 |
6219376 | Zhodzishsky et al. | Apr 2001 | B1 |
6222828 | Ohlson et al. | Apr 2001 | B1 |
6230180 | Mohamed | May 2001 | B1 |
6233229 | Ranta et al. | May 2001 | B1 |
6233459 | Sullivan et al. | May 2001 | B1 |
6240124 | Wiedeman et al. | May 2001 | B1 |
6252535 | Kober et al. | Jun 2001 | B1 |
6256336 | Rademacher et al. | Jul 2001 | B1 |
6259688 | Schilling et al. | Jul 2001 | B1 |
6263208 | Chang et al. | Jul 2001 | B1 |
6266529 | Chheda | Jul 2001 | B1 |
6275186 | Kong | Aug 2001 | B1 |
6278726 | Mesecher et al. | Aug 2001 | B1 |
6282231 | Norman et al. | Aug 2001 | B1 |
6282233 | Yoshida | Aug 2001 | B1 |
6285316 | Nir et al. | Sep 2001 | B1 |
6285319 | Rose | Sep 2001 | B1 |
6285861 | Bonaccorso et al. | Sep 2001 | B1 |
6301289 | Bejjani et al. | Oct 2001 | B1 |
6304618 | Hafeez et al. | Oct 2001 | B1 |
6307901 | Yu et al. | Oct 2001 | B1 |
6308072 | Labedz et al. | Oct 2001 | B1 |
6310704 | Dogan et al. | Oct 2001 | B1 |
6317453 | Chang | Nov 2001 | B1 |
6320919 | Khayrallah et al. | Nov 2001 | B1 |
6321090 | Soliman | Nov 2001 | B1 |
6324159 | Mennekens et al. | Nov 2001 | B1 |
6327471 | Song | Dec 2001 | B1 |
6330460 | Wong et al. | Dec 2001 | B1 |
6333947 | van Heeswyk et al. | Dec 2001 | B1 |
6351235 | Stilp | Feb 2002 | B1 |
6351642 | Corbett et al. | Feb 2002 | B1 |
6359874 | Dent | Mar 2002 | B1 |
6362760 | Kober et al. | Mar 2002 | B2 |
6385264 | Bottomley | Mar 2002 | B1 |
6377607 | Ling | Apr 2002 | B1 |
6377636 | Paulraj et al. | Apr 2002 | B1 |
6380879 | Kober et al. | Apr 2002 | B2 |
6396804 | Odenwalder | May 2002 | B2 |
6404760 | Holtzman et al. | Jun 2002 | B1 |
6414949 | Boulanger | Jul 2002 | B1 |
6426973 | Madhow et al. | Jul 2002 | B1 |
6430216 | Kober | Aug 2002 | B1 |
6449246 | Barton et al. | Sep 2002 | B1 |
6459693 | Park et al. | Oct 2002 | B1 |
6466611 | Bachu | Oct 2002 | B1 |
6496534 | Shimizu et al. | Dec 2002 | B1 |
6501788 | Wang et al. | Dec 2002 | B1 |
6515980 | Bottomley | Feb 2003 | B1 |
6522683 | Smee | Feb 2003 | B1 |
6529495 | Aazhang et al. | Mar 2003 | B1 |
6535554 | Webster et al. | Mar 2003 | B1 |
6546043 | Kong | Apr 2003 | B1 |
6570909 | Kansakoski et al. | May 2003 | B1 |
6570919 | Lee | May 2003 | B1 |
6574270 | Madkour et al. | Jun 2003 | B1 |
6580771 | Kenney | Jun 2003 | B2 |
6584115 | Suzuki | Jun 2003 | B1 |
6590888 | Ohshima | Jul 2003 | B1 |
6594318 | Sindhushayana | Jul 2003 | B1 |
6647078 | Thomas et al. | Nov 2003 | B1 |
6678508 | Koilpillai et al. | Jan 2004 | B1 |
6680727 | Butler et al. | Jan 2004 | B2 |
6687723 | Ding | Feb 2004 | B1 |
6690723 | Gosse | Feb 2004 | B1 |
6711219 | Thomas | Mar 2004 | B2 |
6714585 | Wang et al. | Mar 2004 | B1 |
6724809 | Reznik | Apr 2004 | B2 |
6741634 | Kim | May 2004 | B1 |
6754340 | Ding | Jun 2004 | B1 |
6798737 | Dabak et al. | Sep 2004 | B1 |
6798850 | Wedin | Sep 2004 | B1 |
6801565 | Bottomley et al. | Oct 2004 | B1 |
6829313 | Xu | Dec 2004 | B1 |
6839390 | Mills | Jan 2005 | B2 |
6850772 | Mottier | Feb 2005 | B2 |
6882678 | Kong et al. | Apr 2005 | B2 |
6909742 | Leonsoky | Jun 2005 | B1 |
6912250 | Adireddy | Jun 2005 | B1 |
6931052 | Fuller | Aug 2005 | B2 |
6947481 | Citta et al. | Sep 2005 | B1 |
6947506 | Mills | Sep 2005 | B2 |
6956893 | Frank et al. | Oct 2005 | B2 |
6959065 | Sparrman et al. | Oct 2005 | B2 |
6963546 | Misra et al. | Nov 2005 | B2 |
6975669 | Ling et al. | Dec 2005 | B2 |
6975671 | Sindhushayana et al. | Dec 2005 | B2 |
6986096 | Chaudhuri et al. | Jan 2006 | B2 |
6993070 | Berthet et al. | Jan 2006 | B1 |
6996385 | Messier et al. | Feb 2006 | B2 |
7010073 | Black et al. | Mar 2006 | B2 |
7020175 | Frank | Mar 2006 | B2 |
7027533 | Abe et al. | Apr 2006 | B2 |
7035316 | Smee et al. | Apr 2006 | B2 |
7035354 | Karnin et al. | Apr 2006 | B2 |
7039095 | Takahashi | May 2006 | B2 |
7042929 | Pan et al. | May 2006 | B2 |
7051268 | Sindhushayana et al. | May 2006 | B1 |
7054354 | Gorokhov et al. | May 2006 | B2 |
7069050 | Yoshida | Jun 2006 | B2 |
7072628 | Agashe et al. | Jul 2006 | B2 |
7092464 | Mills | Aug 2006 | B2 |
7133435 | Papasakellariou et al. | Nov 2006 | B2 |
7200183 | Olson | Apr 2007 | B2 |
7209511 | Dent | Apr 2007 | B2 |
7298805 | Walton et al. | Nov 2007 | B2 |
7324584 | Vigneron | Jan 2008 | B1 |
7394879 | Narayan | Jul 2008 | B2 |
7397842 | Bottomley et al. | Jul 2008 | B2 |
7397843 | Grant et al. | Jul 2008 | B2 |
7430253 | Olson | Sep 2008 | B2 |
7463609 | Scharf | Dec 2008 | B2 |
7477710 | Narayan | Jan 2009 | B2 |
7535969 | Catreux et al. | May 2009 | B2 |
7577186 | Thomas | Aug 2009 | B2 |
7623602 | Guess et al. | Nov 2009 | B2 |
7733941 | McCloud | Jun 2010 | B2 |
7826516 | Guess et al. | Nov 2010 | B2 |
8121176 | Guess et al. | Feb 2012 | B2 |
8446975 | Guess et al. | May 2013 | B2 |
8462901 | Guess | Jun 2013 | B2 |
8879658 | Guess et al. | Nov 2014 | B2 |
9172456 | Guess et al. | Oct 2015 | B2 |
9270325 | Guess | Feb 2016 | B2 |
9425855 | Guess | Aug 2016 | B2 |
20010003443 | Velazquez et al. | Jun 2001 | A1 |
20010017883 | Tirola et al. | Aug 2001 | A1 |
20010020912 | Naruse et al. | Sep 2001 | A1 |
20010021646 | Antonucci et al. | Sep 2001 | A1 |
20010028677 | Wang | Nov 2001 | A1 |
20010046266 | Rakib et al. | Nov 2001 | A1 |
20010053143 | Li et al. | Dec 2001 | A1 |
20020001299 | Petch et al. | Jan 2002 | A1 |
20020009156 | Hottinen et al. | Jan 2002 | A1 |
20020021747 | Sequeira | Feb 2002 | A1 |
20020051433 | Affes et al. | May 2002 | A1 |
20020060999 | Ma | May 2002 | A1 |
20020118781 | Thomas et al. | Aug 2002 | A1 |
20020131534 | Ariyoshi et al. | Sep 2002 | A1 |
20020154717 | Shima | Oct 2002 | A1 |
20020159507 | Flaig et al. | Oct 2002 | A1 |
20020172173 | Schilling et al. | Nov 2002 | A1 |
20020176488 | Kober | Nov 2002 | A1 |
20020186761 | Corbatan | Dec 2002 | A1 |
20030005009 | Usman | Jan 2003 | A1 |
20030012264 | Papasakellariou et al. | Jan 2003 | A1 |
20030035468 | Corbaton | Feb 2003 | A1 |
20030035469 | Frank et al. | Feb 2003 | A1 |
20030050020 | Erceg | Mar 2003 | A1 |
20030053526 | Reznik | Mar 2003 | A1 |
20030067968 | Papasakellariou | Apr 2003 | A1 |
20030086479 | Naguib | May 2003 | A1 |
20030095590 | Fuller | May 2003 | A1 |
20030156630 | Sriram | Aug 2003 | A1 |
20030198201 | Ylitalo | Oct 2003 | A1 |
20030210667 | Zhengdi | Nov 2003 | A1 |
20030219085 | Endres | Nov 2003 | A1 |
20040001537 | Zhang et al. | Jan 2004 | A1 |
20040008765 | Chung | Jan 2004 | A1 |
20040013190 | Jayaraman | Jan 2004 | A1 |
20040017867 | Thomas | Jan 2004 | A1 |
20040076224 | Onggosanusi et al. | Apr 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040116078 | Rooyen et al. | Jun 2004 | A1 |
20040136445 | Olson et al. | Jul 2004 | A1 |
20040146024 | Li et al. | Jul 2004 | A1 |
20040146093 | Olson | Jul 2004 | A1 |
20040161065 | Buckley | Aug 2004 | A1 |
20040165675 | Ito et al. | Aug 2004 | A1 |
20040190601 | Papadimitriou | Sep 2004 | A1 |
20040196892 | Reznik | Oct 2004 | A1 |
20040248515 | Molev Shteiman | Dec 2004 | A1 |
20040264552 | Smee | Dec 2004 | A1 |
20050002445 | Dunyak et al. | Jan 2005 | A1 |
20050013349 | Chae et al. | Jan 2005 | A1 |
20050084045 | Stewart | Apr 2005 | A1 |
20050101259 | Tong et al. | May 2005 | A1 |
20050111408 | Skillermark et al. | May 2005 | A1 |
20050111566 | Park et al. | May 2005 | A1 |
20050129107 | Park | Jun 2005 | A1 |
20050152267 | Song et al. | Jul 2005 | A1 |
20050157811 | Bjerke et al. | Jul 2005 | A1 |
20050163196 | Currivan et al. | Jul 2005 | A1 |
20050180364 | Nagarajan et al. | Aug 2005 | A1 |
20050185729 | Mills | Aug 2005 | A1 |
20050195889 | Grant | Aug 2005 | A1 |
20050190868 | Khandekar et al. | Sep 2005 | A1 |
20050201499 | Jonsson | Sep 2005 | A1 |
20050213529 | Chow et al. | Sep 2005 | A1 |
20050223049 | Regis | Oct 2005 | A1 |
20050243908 | Heo | Nov 2005 | A1 |
20050259770 | Chen | Nov 2005 | A1 |
20050265465 | Hosur | Dec 2005 | A1 |
20060007895 | Coralli et al. | Jan 2006 | A1 |
20060013289 | Hwang | Jan 2006 | A1 |
20060047842 | McElwain | Mar 2006 | A1 |
20060078042 | Lee et al. | Apr 2006 | A1 |
20060083202 | Kent et al. | Apr 2006 | A1 |
20060125689 | Narayan et al. | Jun 2006 | A1 |
20060126703 | Karna | Jun 2006 | A1 |
20060141933 | Smee et al. | Jun 2006 | A1 |
20060141934 | Pfister et al. | Jun 2006 | A1 |
20060141935 | Hou et al. | Jun 2006 | A1 |
20060142041 | Tomasin et al. | Jun 2006 | A1 |
20060153283 | Scharf | Jul 2006 | A1 |
20060215781 | Lee et al. | Sep 2006 | A1 |
20060227730 | McCloud | Oct 2006 | A1 |
20060227854 | McCloud | Oct 2006 | A1 |
20060227909 | Thomas et al. | Oct 2006 | A1 |
20060229051 | Narayan | Oct 2006 | A1 |
20060245509 | Khan et al. | Nov 2006 | A1 |
20060251156 | Grant et al. | Nov 2006 | A1 |
20070153935 | Yang et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
4201439 | Jul 1993 | DE |
4326843 | Feb 1995 | DE |
4343959 | Jun 1995 | DE |
0558910 | Jan 1993 | EP |
0610989 | Jan 1994 | EP |
1179891 | Feb 2002 | EP |
2280575 | Feb 1995 | GB |
2000-13360 | Jan 2000 | JP |
WO 9312590 | Jun 1995 | WO |
WO 2001089107 | Nov 2001 | WO |
WO 02080432 | Oct 2002 | WO |
Entry |
---|
Response dated May 6, 2010 to Non-Final Office Action dated Dec. 14, 2009 re U.S. Appl. No. 11/266,928. 43 Pages. |
Wang, Xiaodong et al., “Space-Time Multiuser Detection in Muitipath CDMA Channels”, IEEE Transactions on Signal Processing, vol. 47, No. 9, Sep. 1999. 19 Pages. |
Marinkovic, Slavica et al., “Space-Time Iterative and Multistage Receiver Structures for CDMA Mobile Communications Systems”, IEEE Journal on Selected Areas in Communications, vol. 19, No. 8, Aug. 2001. 11 Pages. |
Javaweera, Sudharman K. et al., “A Rake-Based Iterative Receiver for Space-Time Block-Coded Multipath CDMA”, IEEE Transactions on Signal Processing, vol. 52, No. 3, Mar. 2004. 11 Pages. |
Mohamed, Nermin A. et al., “A Low-Complexity Combined Antenna Array and Interference Cancellation DS-CDMA Receiver in Multipath Fading Channels”, IEEE Journal on Selected Areas in Communications, vol. 20, No. 2, Feb. 2002. 9 Pages. |
Response dated May 13, 2010 to final Office Action dated Apr. 19, 2010 re U.S. Appl. No. 11/272,411 includes Terminal Disclaimer. 6 Pages. |
Notice of Allowance and Fee(s) Due dated May 28, 2010 for U.S. Appl. No. 11/272,411. 7 pages. |
Lin, Kun; Zhao, Kan; Chui, Edmund; Krone, Andrew; and Nohrden, Jim; “Digital Filters for High Performance Audio Delta-sigma Analog-to-Digital and Digital-to-Analog Conversions,” Proceedings of ICSP '96, Crystal Semiconductor Corporation. Austin, TX, US. 5 pages. |
Response dated Aug. 17, 2010 to the Final Office Action dated Jun. 28, 2010, re U.S. Appl. No. 11/266,928. 47 pages. |
PCT Notification of Transmittal of International Search Report and Written Opinion of International Searching Authority dated Sep. 21, 2007, re Int'l Application No. PCT/US 06/36018. 10 pages. |
Advisory Action Before the Filing of an Appeal Brief Office Action for reply filed Aug. 17, 2010, dated Sep. 1, 2010, in re U.S. Appl. No. 11/266,928. 2 pages. |
Office Action dated May 6, 2007, dated Jun. 28, 2010, re U.S. Appl. No. 11/266,928. 17 pages. |
Notice of Allowance and Fees Due dated Nov. 30, 2010 for U.S. Appl. No. 11/266,928 includes excerpt from Response to Final Office Action and Examiner's comments. 21 Pages. |
Mitra, et al., “Adaptive Decorrelating Detectors for CDMA Systems,” accepted for Wireless Communications Journal, accepted May 1995. 25 pages. |
Schneider, “Optimum Detection of Code Division Multiplexed Signals,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, No. 1, Jan. 1979. |
Mitra, et al., “Adaptive Receiver Algorithms for Near-Far Resistant CDMA,” IEEE Transactions on Communications, Apr. 1995. |
Lupas, et al., “Near-Far Resistance of Multiuser Detectors in Asynchronous Channels,” IEEE transactions on Communications, vol. 38, No. 4, Apr. 1990. |
Lupas, et al., “Linear Multiuser Detectors for Synchronous Code-Division Multiple-Access Channels,” IEEE Transactions on Information Theory, vol. 35, No. 1, Jan. 1989. |
Kohno, et al., “Cancellation Techniques of Co-Channel Interference in Asynchronous Spread Spectrum Multiple Access Systems,” May 1983, vol. J 56-A, No. 5. |
Garg, et al., “Wireless and Personal Communications Systems,” Prentice Hall, Upper Saddle River, NJ, US, 1996. pp. 79-151. |
Cheng, et al., “Spread-Spectrum Code Acquisition in the Presence of Doppler Shift and Data Modulation,” IEEE Transactions on Communications, vol. 38, No. 2, Feb. 1990. |
Behrens, et al., “Parameter Estimation in the Presence of Low Rank Noise,” pp. 341-344, Maple Press, 1988. |
Best, “Phase-Locked Loops—Design, Simulation, and Applications,” McGraw-Hill, 1999. pp. 251-287. |
Iltis, “Multiuser Detection of Quasisynchronous CDMA Signals Using Linear Decorrelators,” IEEE Transactions on Communications, vol. 44, No. 11, Nov. 1996. |
Rappaport, “Wireless Communications—Principles & Practice,” Prentice Hall, Upper Saddle River, NJ, US. 1996, pp. 518-533. |
Scharf, et al., “Matched Subspace Detectors,” IEEE Transactions on Signal Processing, vol. 42, No. 8, Aug. 1994. |
Price, et al., “A Communication Technique for Multipath Channels,” Proceedings of the IRE, vol. 46, The institute of Radio Engineers, New York, NY, US, 1958. 16 pages. |
Affes, et al., “Interference Subspace Rejection: A Framework for Multiuser Detection in Wideband CDMA,” IEEE Journal on Selected Areas in Communications, vol. 20, No. 2, Feb. 2002. |
Schlegel et al., “Coded Asynchronous CDMA and its Efficient Detection,” IEEE Transactions on information Theory, vol. 44, No. 7, Nov. 1998. |
Xie, et al., “A Family of Suboptimum Detectors for Coherent Multiuser Communications,” IEEE Journal on Selected Areas in Communications, vol. 8, No. 4, May 1990. |
Viterbi, “Very Low Rate Convolutional Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels,” vol. 8, No. 4, May 1990. |
Viterbi, “CDMA—Principles of Spread Spectrum Communication,” Addison-Wesley, Reading, MA, US. 1995, pp. 11-75 and 179-233. |
Verdu, “Mimimum Probability of Error for Asynchronous Gaussian Multiple-Access Channels,” IEEE Transactions on Information Theory, vol. IT-32, No. 1, Jan. 1986. |
Kalpan, “Understanding GPS—Principles and Applications,” Artech House, Norwood MA, 1996, pp. 83-236. |
Scharf, “Statistical Signal Processing—Detection, Estimation, and Time Series Analysis,” Addison-Wesley, Reading, MA, US. 1990, pp. 23-75 and 103-178. |
Stimson, “Introduction to Airborne Radar,” 2nd Edition, SciTech Publishing, Mendham, NJ, US. 1998, pp. 163-176 and 473-491. 40 pages. |
Behrens et al., “Signal Processing Applications of Oblique Projection Operators,” IEEE Transactions on Signal Processing, vol. 42, No. 6, Jun. 1994, pp. 1413-1424. |
Alexander, et al., “A Linear Receiver for Coded Multiuser CDMA,” IEEE transactions on Communications, vol. 45, No. 5, May 1997. |
Schlegel et al., “Multiuser Projection Receivers,” IEEE Journal on Selected Areas in Communications, vol. 14, No. 8, Oct. 1996. 9 pages. |
Halper et al., “Digital-to-Analog Conversion by Pulse-Count Modulation Methods,” IEEE Transactions on Instrumentation and Measurement, vol. 45, No. 4, Aug. 1996. |
Ortega, et al., “Analog to Digital and Digital to Analog Conversion Based on Stochastic Logic,” IEEE 0-7803-3026-9/95, 1995. 5 pages. |
Frankel et al., “High-performance photonic analogue-digital converter,” Electronic Letters, Dec. 4, 1997, vol. 33, No. 25, pp. 2096-2097. 2 pages. |
Thomas, “Thesis for the Doctor of Philosophy Degree,” UMI Dissertation Services, Jun. 28, 1996.Ann Arbor, MI, US. |
Schlegel et al, “Projection Receiver: A New Efficient Multi-User Detector,” IEEE 0-7803-2509-5/95, 1995, 5 pages. |
Behrens, “Subspace Signal Processing in Structured Noise,” UMI Dissertation Services, Ann Arbor, MI, US. Jun. 1990. 117 pages. |
Non-Final Office Action dated Jul. 31, 2008 for U.S. Appl. No. 11/100,935, filed Apr. 7, 2005. |
Response to Notice to File Corrected Application Papers dated May 19, 2010 re U.S. Appl. No. 12/731,960 (63 Pages). |
D. Guo, et al., “Linear parallel interference cancellation in long-code CDMA,” IEEE J. Selected Areas Commun., Dec. 1999, pp. 2074-2081, vol. 17., No. 12. |
D. Guo, et al., “MMSE-based linear parallel interference cancellation in CDMA,” inProceedings of IEEE Int. Symp. Spread Spectrum Techniques and Appl., Sep. 1998, pp. 917-921. |
L. Rassmussen, et al., “Convergence behaviour of linear parallel cancellation in CDMA,” IEEE Global Telecom. Conf. (San Antonio, Texas), Dec. 2001, pp. 3148-2152. |
D. Guo, et al., “A Matrix-Algebraic Approach to Linear Parallel Interference Cancellation in CDMA,” IEEE Trans. Commun., Jan. 2000, pp. 152-161, vol. 48., No. 1. |
L. Rasmussen, et al., “Ping-Pong Effects in Linear Parallel Interference Cancellation for CDMA,” IEEE Trans. Wireless Commun., Mar. 2003, pp. 357-363, vol. 2., No. 2. |
T. Lin, et al., “Iterative Multiuser Coding with Maximal Ratio Combining,” Australian Workshop on Commun. Theory, (Newcastle, Australia), Feb. 2004, pp. 42-46. |
T. Lin et al., “Truncated Maximal Ratio Combining for Iterative Multiuser Decoding,” Australian Workshop on Commun. Theory, (Brisbane, Australia), Feb. 2005. |
X. Wang, et al., “Iterative (Turbo) Soft Interference Cancellation and Decoding for Coded CDMA,” IEEE Transactions on Communications, Jul. 1999, pp. 1046-1061, vol. 47, No. 7. |
D. Divsalar, et al., “Improved Parallel Interference Cancellation for CDMA,” IEEE Trans. on Comm., Feb. 1998, pp. 258-268, vol. 46, No. 2. |
M. Ali-Hackl, et al., “Error Vector Magnitude as a Figure of Merit for CDMA Receiver Design,” The 5th European Wireless Conf., Feb. 2004. |
J. Robler, et al., “Matched-Filter-and MMSE-Based Iterative Equalization with Soft Feedback for QPSK Transmission,” International Zurich Seminar on Broadband Communications (IZS '02) pp. 19-1-19-6, Feb. 2002. |
Lin, et al., Digital Filters for High Performance Audio Delta-sigma Analog-to-digital and Digital-to-analog Conversions, Proceedings of ICSP, Crystal Semiconductor Corporation, 1996, Austin, TX, US. |
D. Brown, et al., “On the Performance of Linear Parallel Interference Cancellation,” IEEE Trans. Information Theory, V. 47, No. 5, Jul. 2001, pp. 1957-1970. |
M. Kobayashi, et al., “Successive Interference Cancellation with SISO Decoding and EM Channel Estimation,” IEEE J. Sel. Areas Comm., V. 19, No. 8, Aug. 2001, pp. 1450-1460. |
J. Proakis, Digital Communications (4th ed. 2000), pp. 622-626, 956-959. |
P. Naidu, Modern Digital Signal Procesing: An Introduction (2003), pp. 124-126. |
S. Verdu, Multiuser Detection (1998), pp. 291-306. |
G. Xue, et al., “Adaptive Multistage Parallel Interference Cancellation for CDMA over Multipath Fading Channels,” IEEE J. on Selected Areas in Comm. Oct. 1999, V. 17, No. 10. |
K. Hooli, et al., “Chip-Level Channel Equalization in WCDMA Downlink,” Eurasip J. on Applied Signal Processing 2002:8, pp. 757-770. |
L. Rasmussen, et al., “A Matrix-Algebraic Approach to Successive Interference Cancellation in CDMA,” IEEE Trans. Comm, Jan. 2000, V. 48, No. 1, pp. 145-151. |
P. Tan, et al., “Linear interference Cancellation in CDMA Based on Iterative Techniques for Linear Equation Systems,” IEEE Trans. Comm., Dec. 2000, V. 48, No. 12, pp. 2099-2108. |
A. Yener, et al., “CDMA Multiuser Detection: A Nonlinear Programming Approach,” IEEE Trans. Comm, Jun. 2002, V. 50, No. 6, pp. 1016-1024. |
A. Persson, et al., “Time-Frequency Localization CDMA for Downlink Multi-Carrier Systems,” 2002 IEEE 7th Int. Symp. Spread Spectrum, 2002, vol. 1, pp. 118-122. |
H. Ping, et al., “Decision-Feedback Blind Adaptive Multiuser Detector for Synchronous CDMA System,” IEEE Trans. Veh. Tech., Jan. 2000, V. 49, No. 1, pp. 159-166. |
H. Dai, et al., “Iterative Space-Time Processing for Multiuser Detection in Multipath CDMA Channels,” IEEE Trans. Signal Proc., Sep. 2002, V. 50, N. 6. |
Y. Guo, “Advanced MIMO-CDMA Receiver for Interference Suppression: Algorithms, System-on-Chip Architecture and Design Methodology,” PhD Thesis, Rice U., May 2005, pp. 165-185. |
S. Kim, et al., “Adaptive Weighted Parallel Interference Cancellation for CDMA Systems,” Electronic Letters, Oct. 29, 1998, V. 34, N. 22. |
H. Yan, et al., “Paralle Interference Cancellation for Uplink Multirate Overlay CDMA Channels,” IEEE Trans. Comm. V. 53, No. 1, Jan. 2005, pp. 152-161. |
J. Winters, “Optimal Combining in Digital Mobile Radio with Cochannel Interference,” IEEE J. Selected Areas in Comm., V SAC-2, No. 4, Jul. 1984, pp. 538-539. |
D. Athanasios, et al., “SNR Estimation Algorighms in AWGN for HiperLAN/2 Transceiver,” MWCN 2005 Morocco, Sep. 19-21, 2005. |
D. Divsalar, “Improved Parallel Interference Cancellation for CDMA,” IEEE Trans., Comm., V. 46, No. 2, Feb. 1998, pp. 258-268. |
T. Lim, S. Roy, “Adaptive filters in multiuser (MU) CDMA detection,” Wireless Networks 4 (1998) pp. 307-318. |
D. Guo, et al., “A Matrix-Algebraic Approach to Linear Parallel Interference Cancellation in CDMA,” IEEE TRans. Comm., V. 48, No. 1, Jan. 2000, pp. 152-161. |
L. Rasmussen, et al., “A Matrtix-Algebraic Approach to Successive Interference Cancellation in CDMA,” IEEE Trans. Comm., V. 48, No. 1, Jan. 2000, pp. 145-151. |
D. Guo, et al., “Linear Parallel Interference Cancellation in Long-Code CDMA Multiuser Detection,” IEEE J. Sel. Areas Comm., V. 17, No. 12, Dec. 1999, pp. 2074-2081. |
Number | Date | Country | |
---|---|---|---|
20160359522 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
60736204 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14922600 | Oct 2015 | US |
Child | 15242876 | US | |
Parent | 14520626 | Oct 2014 | US |
Child | 14922600 | US | |
Parent | 13896952 | May 2013 | US |
Child | 14520626 | US | |
Parent | 13372483 | Feb 2012 | US |
Child | 13896952 | US | |
Parent | 12916389 | Oct 2010 | US |
Child | 13372483 | US | |
Parent | 11491674 | Jul 2006 | US |
Child | 12916389 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11451932 | Jun 2006 | US |
Child | 11491674 | US |