The invention relates generally to the field of geophysical prospecting, and more particularly to geophysical data processing. Specifically, the invention is a method for inversion of data acquired from multiple geophysical sources such as seismic sources, involving geophysical simulation that computes the data from many simultaneously-active geophysical sources in one execution of the simulation.
Geophysical inversion [1,2] attempts to find a model of subsurface properties that optimally explains observed data and satisfies geological and geophysical constraints. There are a large number of well known methods of geophysical inversion. These well known methods fall into one of two categories, iterative inversion and non-iterative inversion. The following are definitions of what is commonly meant by each of the two categories:
Two iterative inversion methods commonly employed in geophysics are cost function optimization and series methods. Cost function optimization involves iterative minimization or maximization of the value, with respect to the model M, of a cost function S(M) which is a measure of the misfit between the calculated and observed data (this is also sometimes referred to as the objective function), where the calculated data is simulated with a computer using the current geophysical properties model and the physics governing propagation of the source signal in a medium represented by a given geophysical properties model. The simulation computations may be done by any of several numerical methods including but not limited to finite difference, finite element or ray tracing. Series methods involve inversion by iterative series solution of the scattering equation (Weglein [3]). The solution is written in series form, where each term in the series corresponds to higher orders of scattering. Iterations in this case correspond to adding a higher order term in the series to the solution.
Cost function optimization methods are either local or global [4]. Global methods simply involve computing the cost function S(M) for a population of models {M1, M2, M3, . . . } and selecting a set of one or more models from that population that approximately minimize S(M). If further improvement is desired this new selected set of models can then be used as a basis to generate a new population of models that can be again tested relative to the cost function S(M). For global methods each model in the test population can be considered to be an iteration, or at a higher level each set of populations tested can be considered an iteration. Well known global inversion methods include Monte Carlo, simulated annealing, genetic and evolution algorithms.
Local cost function optimization involves:
As discussed above, iterative inversion is preferred over non-iterative inversion, because it yields more accurate subsurface parameter models. Unfortunately, iterative inversion is so computationally expensive that it is impractical to apply it to many problems of interest. This high computational expense is the result of the fact that all inversion techniques require many compute intensive forward and/or reverse simulations. Forward simulation means computation of the data forward in time, and reverse simulation means computation of the data backward in time. The compute time of any individual simulation is proportional to the number of sources to be inverted, and typically there are large numbers of sources in geophysical data. The problem is exacerbated for iterative inversion, because the number of simulations that must be computed is proportional to the number of iterations in the inversion, and the number of iterations required is typically on the order of hundreds to thousands.
The compute cost of all categories of inversion can be reduced by inverting data from combinations of the sources, rather than inverting the sources individually. This may be called simultaneous source inversion. Several types of source combination are known including: coherently sum closely spaced sources to produce an effective source that produces a wavefront of some desired shape (e.g. a plane wave), sum widely spaces sources, or fully or partially stacking the data before inversion.
The compute cost reduction gained by inverting combined sources is at least partly offset by the fact that inversion of the combined data usually produces a less accurate inverted model. This loss in accuracy is due to the fact that information is lost when the individual sources are summed, and therefore the summed data does not constrain the inverted model as strongly as the unsummed data. This loss of information during summation can be minimized by encoding each shot record before summing Encoding before combination preserves significantly more information in the simultaneous source data, and therefore better constrains the inversion. Encoding also allows combination of closely spaced sources, thus allowing more sources to be combined for a given computational region. Various encoding schemes can be used with this technique including time shift encoding and random phase encoding. The remainder of this Background section briefly reviews various published geophysical simultaneous source techniques, both encoded and non-encoded.
Van Manen [5] suggests using the seismic interferometry method to speedup forward simulation. Seismic interferometry works by placing sources everywhere on the boundary of the region of interest. These sources are modeled individually and the wavefield at all locations for which a Green's function is desired is recorded. The Green's function between any two recorded locations can then be computed by cross-correlating the traces acquired at the two recorded locations and summing over all the boundary sources. If the data to be inverted has a large number of sources and receivers that are within the region of interest (as opposed to having one or the other on the boundary) then this is a very efficient method for computing the desired Green's functions. However, for the seismic data case it is rare that both the source and receiver for the data to be inverted are within the region of interest. Therefore, this improvement has very limited applicability to the seismic inversion problem.
Berkhout [6] and Zhang [7] suggest that inversion in general can be improved by inverting non-encoded simultaneous sources that are summed coherently to produce some desired wave front within some region of the subsurface. For example point source data could be summed with time shifts that are a linear function of the source location to produce a down-going plane wave at some particular angle with respect to the surface. This technique could be applied to all categories of inversion. A problem with this method is that coherent summation of the source gathers necessarily reduces the amount of information in the data. So for example, summation to produce a plane wave removes all the information in the seismic data related to travel time versus source-receiver offset. This information is critical for updating the slowly varying background velocity model, and therefore Berkhout's method is not well constrained. To overcome this problem many different coherent sums of the data (e.g. many plane waves with different propagation directions) could be inverted, but then efficiency is lost since the cost of inversion is proportional to the number of different sums inverted. Such coherently summed sources are called generalized sources. Therefore, a generalized source can either be a point source or a sum of point sources that produces a wave front of some desired shape.
Van Riel [8] suggests inversion by non-encoded stacking or partial stacking (with respect to source-receiver offset) of the input seismic data, then defining a cost function with respect to this stacked data which will be optimized. Thus, this publication suggests improving cost function based inversion using non-encoded simultaneous sources. As was true of the Berkhout's [6] simultaneous source inversion method, the stacking suggested by this method reduces the amount of information in the data to be inverted and therefore the inversion is less well constrained than it would have been with the original data.
Mora [9] proposes inverting data that is the sum of widely spaced sources. Thus, this publication suggests improving the efficiency of inversion using non-encoded simultaneous source simulation. Summing widely spaced sources has the advantage of preserving much more information than the coherent sum proposed by Berkhout. However, summation of widely spaced sources implies that the aperture (model region inverted) that must be used in the inversion must be increased to accommodate all the widely spaced sources. Since the compute time is proportional to the area of this aperture, Mora's method to does not produce as much efficiency gain as could be achieved if the summed sources were near each other.
Ober [10] suggests speeding up seismic migration, a special case of non-iterative inversion, by using simultaneous encoded sources. After testing various coding methods, Ober found that the resulting migrated images had significantly reduced signal-to-noise ratio due to the fact that broad band encoding functions are necessarily only approximately orthogonal. Thus, when summing more than 16 shots, the quality of the inversion was not satisfactory. Since non-iterative inversion is not very costly to begin with, and since high signal-to-noise ratio inversion is desired, this technique is not widely practiced in the geophysical industry.
Ikelle [11] suggests a method for fast forward simulation by simultaneously simulating point sources that are activated (in the simulation) at varying time intervals. A method is also discussed for decoding these time-shifted simultaneous-source simulated data back into the separate simulations that would have been obtained from the individual point sources. These decoded data could then be used as part of any conventional inversion procedure. A problem with Ikelle's method is that the proposed decoding method will produce separated data having noise levels proportional to the difference between data from adjacent sources. This noise will become significant for subsurface models that are not laterally constant, for example from models containing dipping reflectors. Furthermore, this noise will grow in proportion to the number of simultaneous sources. Due to these difficulties Ikelle's simultaneous source approach may result in unacceptable levels of noise if used in inverting a subsurface that is not laterally constant.
What is needed is a more efficient method of iteratively inverting data, without significant reduction in the accuracy of the resulting inversion.
A physical properties model gives one or more subsurface properties as a function of location in a region. Seismic wave velocity is one such physical property, but so are (for example) p-wave velocity, shear wave velocity, several anisotropy parameters, attenuation (q) parameters, porosity, permeability, and resistivity. Referring to the flow chart of
(a) obtaining a group of two or more encoded gathers of the measured geophysical data, wherein each gather is associated with a single generalized source or, using source-receiver reciprocity, with a single receiver, and wherein each gather is encoded with a different encoding signature selected from a set non-equivalent encoding signatures;
(b) summing (4) the encoded gathers in the group by summing all data records in each gather that correspond to a single receiver (or source if reciprocity is used), and repeating for each different receiver, resulting in a simultaneous encoded gather;
(c) assuming a physical properties model 5 of the subsurface region, said model providing values of at least one physical property at locations throughout the subsurface region;
(d) calculating an update 6 to the assumed physical properties model that is more consistent with the simultaneous encoded gather from step (b), said calculation involving one or more encoded simultaneous source forward (or reverse) simulation operations that use the assumed physical properties model and encoded source signatures using the same encoding functions used to encode corresponding gathers of measured data, wherein an entire simultaneous encoded gather is simulated in a single simulation operation;
(e) repeating step (d) at least one more iteration, using the updated physical properties model from the previous iteration of step (d) as the assumed model to produce a further updated physical properties model 7 of the subsurface region that is more consistent with a corresponding simultaneous encoded gather of measured data, using the same encoding signatures for source signatures in the simulation as were used in forming the corresponding simultaneous encoded gather of measured data; and
(f) downloading the further updated physical properties model or saving it to computer storage.
It may be desirable in order to maintain inversion quality or for other reasons to perform the simultaneous encoded-source simulations in step (b) in more than one group. In such case, steps (a)-(b) are repeated for each additional group, and inverted physical properties models from each group are accumulated before performing the model update in step (d). If the encoded gathers are not obtained already encoded from the geophysical survey as described below, then gathers of geophysical data 1 are encoded by applying encoding signatures 3 selected from a set of non-equivalent encoding signatures 2.
In another embodiment, the present invention is a computer-implemented method for inversion of measured geophysical data to determine a physical properties model for a subsurface region, comprising:
(a) obtaining a group of two or more encoded gathers of the measured geophysical data, wherein each gather is associated with a single generalized source or, using source-receiver reciprocity, with a single receiver, and wherein each gather is encoded with a different encoding signature selected from a set non-equivalent encoding signatures;
(b) summing the encoded gathers in the group by summing all data records in each gather that correspond to a single receiver (or source if reciprocity is used), and repeating for each different receiver, resulting in a simultaneous encoded gather;
(c) assuming a physical properties model of the subsurface region, said model providing values of at least one physical property at locations throughout the subsurface region;
(d) simulating a synthetic simultaneous encoded gather corresponding to the simultaneous encoded gather of measured data, using the assumed physical properties model, wherein the simulation uses encoded source signatures using the same encoding functions used to encode the simultaneous encoded gather of measured data, wherein an entire simultaneous encoded gather is simulated in a single simulation operation;
(e) computing a cost function measuring degree of misfit between the simultaneous encoded gather of measured data and the simulated simultaneous encoded gather;
(f) repeating steps (a), (b), (d) and (e) for at least one more cycle, accumulating costs from step (e);
(g) updating the physical properties model by optimizing the accumulated costs;
(h) iterating steps (a)-(g) at least one more time using the updated physical properties model from the previous iteration as the assumed physical properties model in step (c), wherein a different set non-equivalent encoding signatures may be used for each iteration, resulting in a further updated physical properties model; and
(i) downloading the further updated physical properties model or saving it to computer storage.
In another embodiment, the invention is a computer-implemented method for inversion of measured geophysical data to determine a physical properties model for a subsurface region, comprising:
(a) obtaining a group of two or more encoded gathers of the measured geophysical data, wherein each gather is associated with a single generalized source or, using source-receiver reciprocity, with a single receiver, and wherein each gather is encoded with a different encoding signature selected from a set non-equivalent encoding signatures;
(b) summing the encoded gathers in the group by summing all data records in each gather that correspond to a single receiver (or source if reciprocity is used), and repeating for each different receiver, resulting in a simultaneous encoded gather;
(c) assuming a physical properties model of the subsurface region, said model providing values of at least one physical property at locations throughout the subsurface region;
(d) selecting an iterative series solution to a scattering equation describing wave scattering in said subsurface region;
(e) beginning with the first n terms of said series, where n≧1, said first n terms corresponding to the assumed physical properties model of the subsurface region;
(f) computing the next term in the series, said calculation involving one or more encoded simultaneous source forward (or reverse) simulation operations that use the assumed physical properties model and encoded source signatures using the same encoding functions used to encode corresponding gathers of measured data, wherein an entire simultaneous encoded gather is simulated in a single simulation operation and the simulated encoded gather and measured encoded gather are combined in a manner consistent with the iterative series selected in step (d);
(g) updating the model by adding the next term in the series calculated in step (f) to the assumed model;
(h) repeating steps (f) and (g) for at least one time to add at least one more term to the series to further update the physical properties model; and
(i) downloading the further updated physical properties model or saving it to computer storage.
In another embodiment, the invention is a computer-implemented method for inversion of measured geophysical data to determine a physical properties model for a subsurface region, comprising:
(a) obtaining measured geophysical data from a geophysical survey the subsurface region;
(b) assuming an initial physical properties model and inverting it by iterative inversion involving simultaneous simulation of survey data representing a plurality of survey sources (or receivers if source-receiver reciprocity is used) wherein source signatures in the simulation are encoded, resulting in a simulated simultaneous encoded gather of geophysical data, the inversion process involving updating the physical properties model to reduce misfit between the simulated simultaneous encoded gather and a corresponding simultaneous encoded gather formed by summing gathers of measured survey data encoded with the same encoding functions used in the simulation; and
(c) downloading the updated physical properties model or saving it to computer storage.
The present invention and its advantages will be better understood by referring to the following detailed description and the attached drawings in which:
The invention will be described in connection with its preferred embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims.
The present invention is a method for reducing the computational time needed to iteratively invert geophysical data by use of simultaneous encoded-source simulation.
Geophysical inversion attempts to find a model of subsurface elastic properties that optimally explains observed geophysical data. The example of seismic data is used throughout to illustrate the inventive method, but the method may be advantageously applied to any method of geophysical prospecting involving at least one source, activated at multiple locations, and at least one receiver. The data inversion is most accurately performed using iterative methods. Unfortunately iterative inversion is often prohibitively expensive computationally. The majority of compute time in iterative inversion is spent computing forward and/or reverse simulations of the geophysical data (here forward means forward in time and reverse means backward in time). The high cost of these simulations is partly due to the fact that each geophysical source in the input data must be computed in a separate computer run of the simulation software. Thus, the cost of simulation is proportional to the number of sources in the geophysical data (typically on the order of 1,000 to 10,000 sources for a geophysical survey). In this invention, the source signatures for a group of sources are encoded and these encoded sources are simulated in a single run of the software, resulting in a computational speedup proportional to the number of sources computed simultaneously.
As discussed above in the Background section, simultaneous source methods have been proposed in several publications for reducing the cost of various processes for inversion of geophysical data [3, 6, 7, 8, 9]. In a more limited number of cases, simultaneous encoded-source techniques are disclosed for certain purposes [10, 11]. These methods have all been shown to provide increased efficiency, but always at significant cost in reduced quality, usually in the form of lower signal-to-noise ratio when large numbers of simultaneous sources are employed. The present invention mitigates this inversion quality reduction by showing that simultaneous encoded-source simulation can be advantageously used in connection with iterative inversion. Iteration has the surprising effect of reducing the undesirable noise resulting from the use of simultaneous encoded sources. This is considered unexpected in light of the common belief that inversion requires input data of the highest possible quality. In essence, the simultaneous encoded-source technique produces simulated data that appear to be significantly degraded relative to single source simulation (due to the data encoding and summation which has the appearance of randomizing the data), and uses this apparently degraded data to produce an inversion that has, as will be shown below, virtually the same quality as the result that would have been obtained by the prohibitively expensive process of inverting the data from the individual sources. (Each source position in a survey is considered a different “source” for purposes of inversion.)
The reason that these apparently degraded data can be used to perform a high quality iterative inversion is that by encoding the data before summation of sources the information content of the data is only slightly degraded. Since there is only insignificant information loss, these visually degraded data constrain an iterative inversion just as well as conventional sequential source data. Since simultaneous sources are used in the simulation steps of the inversion, the compute time is significantly reduced, relative to conventional sequential source inversion.
Two iterative inversion methods commonly employed in geophysics are cost function optimization and series methods. The present invention can be applied to both of these methods. Simultaneous encoded-source cost function optimization is discussed first.
Iterative Cost Function Optimization
Cost function optimization is performed by minimizing the value, with respect to a subsurface model M, of a cost function S(M) (sometimes referred to as an objective function), which is a measure of misfit between the observed (measured) geophysical data and corresponding data calculated by simulation of the assumed model. A simple cost function S often used in geophysical inversion is:
where
The gathers in Equation 1 can be any type of gather that can be simulated in one run of a forward modeling program. For seismic data, the gathers correspond to a seismic shot, although the shots can be more general than point sources [6]. For point sources, the gather index g corresponds to the location of individual point sources. For plane wave sources, g would correspond to different plane wave propagation directions. This generalized source data, ψobs, can either be acquired in the field or can be synthesized from data acquired using point sources. The calculated data ψcalc on the other hand can usually be computed directly by using a generalized source function when forward modeling (e.g. for seismic data, forward modeling typically means solution of the anisotropic visco-elastic wave propagation equation or some approximation thereof). For many types of forward modeling, including finite difference modeling, the computation time needed for a generalized source is roughly equal to the computation time needed for a point source. The model M is a model of one or more physical properties of the subsurface region. Seismic wave velocity is one such physical property, but so are (for example) p-wave velocity, shear wave velocity, several anisotropy parameters, attenuation (q) parameters, porosity, and permeability. The model M might represent a single physical property or it might contain many different parameters depending upon the level of sophistication of the inversion. Typically, a subsurface region is subdivided into discrete cells, each cell being characterized by a single value of each parameter.
Equation 1 can be simplified to:
where the sum over receivers and time samples is now implied and,
δ(M,g,wg)=ψcalc(M,g,wg)−ψobs(g,wg) (3)
One major problem with iterative inversion is that computing ψcalc takes a large amount of computer time, and therefore computation of the cost function, S, is very time consuming Furthermore, in a typical inversion project this cost function must be computed for many different models M.
The computation time for ψcalc is proportional to the number of gathers (for point source data this equals the number of sources), Ng, which is on the order of 10,000 to 100,000 for a typical seismic survey. The present invention greatly reduces the time needed for geophysical inversion by showing that S(M) can be well approximated by computing ψcalc for many encoded generalized sources which are activated simultaneously. This reduces the time needed to compute ψcalc by a factor equal to the number of simultaneous sources. A more detailed version of the preceding description of the technical problem being addressed follows.
The cost function in Equation 2 is replaced with the following:
where a summation over receivers and time samples is implied as in Equation 2 and:
defines a sum over gathers by sub groups of gathers,
The outer summation in Equation 5 is over groups of simultaneous generalized sources corresponding to the gather type (e.g. point sources for common shot gathers). The inner summation, over g, is over the gathers that are grouped for simultaneous computation. For some simulation methods, such as finite difference modeling, the computation of the model for summed sources (the inner sum over gεG) can be performed in the same amount of time as the computation for a single source. Thus, Equation 5 can be computed in a time that is Ng/NG times faster than Equation 2. In the limiting case, all gathers are computed simultaneously (i.e. G contains all Ng sources and NG=1) and one achieves a factor of Ng speedup.
This speedup comes at the cost that Ssim(M) in Equation 5 is not in general as suitable a cost function for inversion as is S(M) defined in Equation 2. Two requirements for a high quality cost function are:
One cannot in general develop a cost function for data inversion that has no local minima. So it would be unreasonable to expect Ssim(M) to have no local minima as desired by requirement 2 above. However, it is at least desirable that Ssim(M) has a local minima structure not much worse than S(M). According to the present invention, this can be accomplished by a proper choice of encoding signatures.
When the cost function uses an L2-Norm, choosing the encoding signatures to be random phase functions gives a simultaneous source cost function that has a local minima structure similar to the sequential source cost function. This can be seen by developing a relationship between Ssim(M) to S(M) as follows. First, Equation 5 is specialized to the L2-Norm case:
The square within the sum over groups can be expanded as follows:
By choosing the cg so that they have constant amplitude spectra, the first term in Equation 7 is simply S(M), yielding:
Equation 8 reveals that Ssim(M) is equal S(M) plus some cross terms. Note that due to the implied sum over time samples, the cross terms |δ(M,g,cgwg)∥δ(M,g′, cg′wg′)| are really cross correlations of the residual from two different gathers. This cross correlation noise can be spread out over the model by choosing the encoding functions cg such that cg and cg′ are different realizations of random phase functions. Other types of encoding signatures may also work. Thus, with this choice of the cg, Ssim(M) is approximately equal to S(M). Therefore, the local minima structure of Ssim(M) is approximately equal to S(M).
In practice, the present invention can be implemented according to the flow charts shown in
There are many techniques for inverting data. Most of these techniques require computation of a cost function, and the cost functions computed by this invention provide a much more efficient method of performing this computation. Many types of encoding functions cg can be used to ensure that Ssim(M) is approximately equal to S(M) including but not limited to:
It should be noted that the simultaneous encoded-source technique can be used for many types of inversion cost function. In particular it could be used for cost functions based on other norms than L2 discussed above. It could also be used on more sophisticated cost functions than the one presented in Equation 2, including regularized cost functions. Finally, the simultaneous encoded-source method could be used with any type of global or local cost function inversion method including Monte Carlo, simulated annealing, genetic algorithm, evolution algorithm, gradient line search, conjugate gradients and Newton's method.
Iterative Series Inversion
Besides cost function optimization, geophysical inversion can also be implemented using iterative series methods. A common method for doing this is to iterate the Lippmann-Schwinger equation [3]. The Lippmann-Schwinger equation describes scattering of waves in a medium represented by a physical properties model of interest as a perturbation of a simpler model. The equation is the basis for a series expansion that is used to determine scattering of waves from the model of interest, with the advantage that the series only requires calculations to be performed in the simpler model. This series can also be inverted to form an iterative series that allows the determination of the model of interest, from the measured data and again only requiring calculations to be performed in the simpler model. The Lippmann-Schwinger equation is a general formalism that can be applied to all types of geophysical data and models, including seismic waves. This method begins with the two equations:
LG=−I (9)
L0G0=−I (10)
where L, L0 are the actual and reference differential operators, G and G0 are the actual and reference Green's operators respectively and I is the unit operator. Note that G is the measured point source data, and G0 is the simulated point source data from the initial model. The Lippmann-Schwinger equation for scattering theory is:
G=G0+G0VG (11)
where V=L−L0 from which the difference between the true and initial models can be extracted.
Equation 11 is solved iteratively for V by first expanding it in a series (assuming G=G0 for the first approximation of G and so forth) to get:
G=G0+G0VG0+G0VG0VG0+ . . . (12)
Then V is expanded as a series:
V=V(1)+V(2)+V(3)+ . . . (13)
where V(n) is the portion of V that is nth order in the residual of the data (here the residual of the data is G—G0 measured at the surface). Substituting Equation 13 into Equation 12 and collecting terms of the same order yields the following set of equations for the first 3 orders:
G−G0=G0V(1)G0 (14)
0=G0V(2)G0+G0V(1)G0V(1)G0 (15)
0=G0V(3)G0+G0V(1)G0V(2)G0+G0V(2)G0V(1)G0+G0V(1)G0V(1)G0V(1)G0 (16)
and similarly for higher orders in V. These equations may be solved iteratively by first solving Equation 14 for V(1) by inverting G0 on both sides of V(1) to yield:
V(1)=G0−1(G−G0)G0−1 (17)
V(1) from Equation 17 is then substituted into Equation 15 and this equation is solved for V(2) to yield:
V(2)=−G0−1G0V(1)G0V(1)G0G0−1 (18)
and so forth for higher orders of V.
Equation 17 involves a sum over sources and frequency which can be written out explicitly as:
where Gs is the measured data for source s, G0s is the simulated data through the reference model for source s and G0s−1 can be interpreted as the downward extrapolated source signature from source s. Equation 17 when implemented in the frequency domain can be interpreted as follows: (1) Downward extrapolate through the reference model the source signature for each source (the G0s−1 term), (2) For each source, downward extrapolate the receivers of the residual data through the reference model (the G0−1(Gs−G0s) term), (3) multiply these two fields then sum over all sources and frequencies. The downward extrapolations in this recipe can be carried out using geophysical simulation software, for example using finite differences.
The simultaneous encoded-source technique can be applied to Equation 17 as follows:
where a choice has been made to encode by applying the phase function φs(ω) which depends on the source and may depend on the frequency w. As was the case for Equation 17, Equation 18 can be implemented by: (1) Encoding and summing the measured data (the first summation in brackets), (2) Forward simulating the data that would be acquired from simultaneous encoded sources using the same encoding as in step 1 (the second term in the brackets, (3) Subtract the result for step 2 from the result from step 1, (4) Downward extrapolate the data computed in step 3 (the first G0−1 term applied to the bracketed term), (5) Downward extrapolate the simultaneous encoded sources encoded with the same encoding as in step 1, (6) Multiply these two fields and sum over all frequencies. Note that in this recipe the simulations are all performed only once for the entire set of simultaneous encoded sources, as opposed to once for each source as was the case for Equation 17. Thus, Equation 18 requires much less compute time than Equation 17.
Separating the summations over s and s′ into portions where s=s′ and s≠s′ in Equation 18 gives:
The first term in Equation 19 may be recognized as Equation 17 and therefore:
{tilde over (V)}(1)=V(1)+crossterms (20)
The cross terms in Equation 19 will be small if φs≈φs′ when s≈s′. Thus, as was the case for cost function optimization, the simultaneous encoded-source method speeds up computation of the first term of the series and gives a result that is similar to the much more expensive sequential source method. The same simultaneous encoded-source technique can be applied to higher order terms in the series such as the second and third-order terms in Equations 15 and 16.
Further Considerations
The present inventive method can also be used in conjunction with various types of generalized source techniques, such as those suggested by Berkhout [6]. In this case, rather than encoding different point source gather signatures, one would encode the signatures for different synthesized plane waves.
A primary advantage of the present invention is that it allows a larger number of gathers to be computed simultaneously. Furthermore, this efficiency is gained without sacrificing the quality of the cost function. The invention is less subject to noise artifacts than other simultaneous source techniques because the inversion's being iterative implies that the noise artifacts will be greatly suppressed as the global minimum of the cost function is approached.
Some variations on the embodiments described above include:
While the invention includes many embodiments, a typical embodiment might include the following features:
1. The input gathers are common point source gathers.
2. The encoding signatures 30 and 110 are changed between iterations.
3. The encoding signatures 30 and 110 are chosen to be random phase signatures from Romero et. al. [12]. Such a signature can be made simply by making a sequence that consists of time samples which are a uniform pseudo-random sequence.
4. In step 40, the gathers are encoded by convolving each trace in the gather with that gather's encoding signature.
5. In step 130, the forward modeling is performed with a finite difference modeling code in the space-time domain.
6. In step 140, the cost function is computed using an L2 norm.
Conventional sequential point source data (corresponding to item 10 in
The flow outlined in
To compute a cost function, the base model is perturbed and seismic data are simulated from this perturbed model. For this example the model was perturbed by changing the depth of the rectangular anomaly. The depth of the anomaly was perturbed over a range of −400 to +400 m relative to its depth in the base model. One perturbation of that model is shown in
For each perturbation of the base model a single gather of simultaneous encoded-source data was simulated to yield a gather of traces similar to the base data shown in
Two things are immediately noticeable upon inspection of
The factor of 256 computational time reduction of the simultaneous encoded-source cost function, along with similar quality of the two cost functions for seismic inversion, leads to the conclusion that for this example the simultaneous encoded-source cost function is strongly preferred. The perturbed models represent the various model guesses that might be used in a real exercise in order to determine which gives the closest fit, as measured by the cost function, to the measured data.
Finally, to demonstrate the importance of encoding the gathers before summing,
The foregoing application is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined in the appended claims. Persons skilled in the art will readily recognize that in preferred embodiments of the invention, at least some of the steps in the present inventive method are performed on a computer, i.e. the invention is computer implemented. In such cases, the resulting updated physical properties model may either be downloaded or saved to computer storage.
This application is a continuation of U.S. application Ser. No. 12/441,685, now U.S. Pat. No. 8,121,823 filed 17 Mar. 2009, which is the national stage of PCT/US2007/019724 that published as WO 2008/042081 and was filed on 11 Sep. 2007, which claims the benefit of U.S. Provisional Application No. 60/847,696, filed on Sep. 28, 2006, each of which is incorporated herein by reference, in its entirety, for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3812457 | Weller | May 1974 | A |
3864667 | Bahjat | Feb 1975 | A |
4159463 | Silverman | Jun 1979 | A |
4168485 | Payton et al. | Sep 1979 | A |
4545039 | Savit | Oct 1985 | A |
4562540 | Devaney | Dec 1985 | A |
4575830 | Ingram et al. | Mar 1986 | A |
4594662 | Devaney | Jun 1986 | A |
4636956 | Vannier et al. | Jan 1987 | A |
4675851 | Savit et al. | Jun 1987 | A |
4686654 | Savit | Aug 1987 | A |
4707812 | Martinez | Nov 1987 | A |
4715020 | Landrum, Jr. | Dec 1987 | A |
4766574 | Whitmore et al. | Aug 1988 | A |
4780856 | Becquey | Oct 1988 | A |
4823326 | Ward | Apr 1989 | A |
4924390 | Parsons et al. | May 1990 | A |
4953657 | Edington | Sep 1990 | A |
4969129 | Currie | Nov 1990 | A |
4982374 | Edington et al. | Jan 1991 | A |
5260911 | Mason et al. | Nov 1993 | A |
5677893 | de Hoop et al. | Oct 1997 | A |
5715213 | Allen | Feb 1998 | A |
5717655 | Beasley | Feb 1998 | A |
5719821 | Sallas et al. | Feb 1998 | A |
5721710 | Sallas et al. | Feb 1998 | A |
5790473 | Allen | Aug 1998 | A |
5798982 | He et al. | Aug 1998 | A |
5822269 | Allen | Oct 1998 | A |
5838634 | Jones et al. | Nov 1998 | A |
5852588 | de Hoop et al. | Dec 1998 | A |
5878372 | Tabarovsky et al. | Mar 1999 | A |
5920828 | Norris et al. | Jul 1999 | A |
5924049 | Beasley et al. | Jul 1999 | A |
5999488 | Smith | Dec 1999 | A |
5999489 | Lazaratos | Dec 1999 | A |
6014342 | Lazaratos | Jan 2000 | A |
6021094 | Ober et al. | Feb 2000 | A |
6028818 | Jeffryes | Feb 2000 | A |
6058073 | VerWest | May 2000 | A |
6125330 | Robertson et al. | Sep 2000 | A |
6219621 | Hornbostel | Apr 2001 | B1 |
6311133 | Lailly et al. | Oct 2001 | B1 |
6317695 | Zhou et al. | Nov 2001 | B1 |
6327537 | Ikelle | Dec 2001 | B1 |
6374201 | Grizon et al. | Apr 2002 | B1 |
6388947 | Washbourne et al. | May 2002 | B1 |
6480790 | Calvert et al. | Nov 2002 | B1 |
6522973 | Tonellot et al. | Feb 2003 | B1 |
6545944 | de Kok | Apr 2003 | B2 |
6549854 | Malinverno et al. | Apr 2003 | B1 |
6574564 | Lailly et al. | Jun 2003 | B2 |
6577955 | Guillaume | Jun 2003 | B2 |
6662147 | Fournier et al. | Dec 2003 | B1 |
6665615 | Van Riel et al. | Dec 2003 | B2 |
6687619 | Moerig et al. | Feb 2004 | B2 |
6687659 | Shen | Feb 2004 | B1 |
6704245 | Becquey | Mar 2004 | B2 |
6714867 | Meunier | Mar 2004 | B2 |
6754590 | Moldoveanu | Jun 2004 | B1 |
6766256 | Jeffryes | Jul 2004 | B2 |
6826486 | Malinverno | Nov 2004 | B1 |
6836448 | Robertsson et al. | Dec 2004 | B2 |
6842701 | Moerig et al. | Jan 2005 | B2 |
6859734 | Bednar | Feb 2005 | B2 |
6876928 | Van Riel et al. | Apr 2005 | B2 |
6882938 | Vaage et al. | Apr 2005 | B2 |
6901333 | Van Riel et al. | May 2005 | B2 |
6903999 | Curtis et al. | Jun 2005 | B2 |
6944546 | Xiao et al. | Sep 2005 | B2 |
6947843 | Fisher et al. | Sep 2005 | B2 |
6999880 | Lee | Feb 2006 | B2 |
7046581 | Calvert | May 2006 | B2 |
7050356 | Jeffryes | May 2006 | B2 |
7072767 | Routh et al. | Jul 2006 | B2 |
7092823 | Lailly et al. | Aug 2006 | B2 |
7110900 | Adler et al. | Sep 2006 | B2 |
7230879 | Herkenhoff et al. | Jun 2007 | B2 |
7271747 | Baraniuk et al. | Sep 2007 | B2 |
7330799 | Lefebyre et al. | Feb 2008 | B2 |
7373251 | Hamman et al. | May 2008 | B2 |
7373252 | Sherrill et al. | May 2008 | B2 |
7376046 | Jeffryes | May 2008 | B2 |
7436734 | Krohn | Oct 2008 | B2 |
7480206 | Hill | Jan 2009 | B2 |
7584056 | Koren | Sep 2009 | B2 |
7599798 | Beasley et al. | Oct 2009 | B2 |
7602670 | Jeffryes | Oct 2009 | B2 |
7646924 | Donoho | Jan 2010 | B2 |
7672194 | Jeffryes | Mar 2010 | B2 |
7675815 | Saenger et al. | Mar 2010 | B2 |
7679990 | Herkenhoff et al. | Mar 2010 | B2 |
7715985 | Van Manen et al. | May 2010 | B2 |
7725266 | Sirgue et al. | May 2010 | B2 |
7835072 | Izumi | Nov 2010 | B2 |
7840625 | Candes et al. | Nov 2010 | B2 |
20020099504 | Cross et al. | Jul 2002 | A1 |
20020120429 | Ortoleva | Aug 2002 | A1 |
20040186667 | Lee | Sep 2004 | A1 |
20040199330 | Routh et al. | Oct 2004 | A1 |
20060235666 | Assa et al. | Oct 2006 | A1 |
20070274155 | Ikelle | Nov 2007 | A1 |
20080306692 | Singer et al. | Dec 2008 | A1 |
20090248308 | Luling | Oct 2009 | A1 |
20090259406 | Khadhraoui et al. | Oct 2009 | A1 |
20100008184 | Hegna et al. | Jan 2010 | A1 |
20100018718 | Krebs et al. | Jan 2010 | A1 |
20100142316 | Keers et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
1 094 338 | Apr 2001 | EP |
1 746 443 | Jan 2007 | EP |
2 390 712 | Jan 2004 | GB |
2 391 665 | Feb 2004 | GB |
WO 2007046711 | Apr 2007 | WO |
WO 2008042081 | Apr 2008 | WO |
WO 2008123920 | Oct 2008 | WO |
WO 2009067041 | May 2009 | WO |
WO 2009117174 | Sep 2009 | WO |
Entry |
---|
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I—Chapter 7—Surface Waves in a Vertically Heterogenous Medium,” W.H. Freeman and Co., pp. 259-318. |
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I,” W.H. Freeman and Co., p. 173. |
Becquey, M. et al. (2002), “Pseudo-Random Coded Simultaneous Vibroseismics,” SEG Int'l. Expo. & 72nd Ann. Meeting, 4 pgs. |
Beylkin, G. (1985), “Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,” J. Math. Phys. 26, pp. 99-108. |
Beasley, C.J. (1998), “A new look at simultaneous sources,” SEG Int'l. Expo. & 68th Ann. Meeting, Expanded Abstracts, pp. 133-136. |
Beaty, K.S. et al. (2003), “Repeatability of multimode Rayleigh-wave dispersion studies,” Geophysics 68(3), pp. 782-790. |
Beaty, K.S. et al. (2002), “Simulated annealing inversion of multimode Rayleigh wave dispersion waves for geological structure,” Geophys. J. Int. 151, pp. 622-631. |
Berkhout, A.J. (1987), “Applied Seismic Wave Theory,” Elsevier Science Publishers, p. 142. |
Berkhout, A.J. (1992), “Areal shot record technology,” Journal of Seismic Exploration 1, pp. 251-264. |
Bonomi, E. et al. (2006), “Wavefield migration plus Monte Carlo imaging of 3D prestack seismic data,” Geophysical Prospecting 54, pp. 505-514. |
Bunks, C., et al. (1995), “Multiscale seismic waveform inversion,” Geophysics 60, pp. 1457-1473. |
Chavent, G. et al. (1999), “An optimal true-amplitude least-squares prestack depth-migration operator,” Geophysics 64(2), pp. 508-515. |
Dziewonski A. et al. (1981), “Preliminary Reference Earth Model”, Phys. Earth Planet. Int. 25(4), pp. 297-356. |
Ernst, F.E. et al. (2000), “Tomography of dispersive media,” J. Acoust. Soc. Am 108(1), pp. 105-116. |
Ernst, F.E. et al. (2002), “Removal of scattered guided waves from seismic data,” Geophysics 67(4), pp. 1240-1248. |
Esmersoy, C. (1990), “Inversion of P and SV waves from multicomponent offset vertical seismic profiles”, Geophysics 55(1), pp. 39-50. |
Fallat, M.R. (1999), “Geoacoustic inversion via local, global, and hybrid algorithms,” J. of the Acoustical Society of America 105, pp. 3219-3230. |
Fichtner, A. et al. (2006), “The adjoint method in seismology I. Theory,” Physics of the Earth and Planetary Interiors 157, pp. 86-104. |
Forbriger, T. (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation,” Geophys. J. Int. 153, pp. 719-734. |
Gibson, B. et al. (1984), “Predictive deconvolution and the zero-phase source,” Geophysics 49(4), pp. 379-397. |
Griewank, A. (1992), “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation,” 1 Optimization Methods and Software, pp. 35-54. |
Griewank, A. et al. (2000), “Algorithm 799: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,” 26 ACM Transactions on Mathematical Software, pp. 19-45. |
Griewank, A. et al. (1990), “Algorithm 755: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software 22(2), pp. 131-167. |
Holschneider, J. et al. (2005), “Characterization of dispersive surface waves using continuous wavelet transforms,” Geophys. J. Int. 163, pp. 463-478. |
Igel, H. et al. (1996), “Waveform inversion of marine seismograms for P-impedance and Poisson's ratio,” downloaded from CiteSeerx at citeseerx.ist.psu.edu, pp. 17-43. |
Jackson, D.R. et al. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), pp. 171-181. |
Jing, X. et al. (2000), “Encoding multiple shot gathers in prestack migration,” SEG Int'l. Expo. & 70th Ann. Meeting, Expanded Abstracts, pp. 786-789. |
Kennett, B.L.N. (1991), “The removal of free surface interactions from three-component seismograms”, Geophys. J. Int. 104, pp. 153-163. |
Krebs, J.R. (2008), “Full-wavefield seismic inversion using encoded sources,” Geophysics 74(6), pp. WCC177-WCC188. |
Krohn, C.E. (1984), “Geophone ground coupling,” Geophysics 49(6), pp. 722-731. |
Kulesh, M. et al. (2008), “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet-based Frequency-velocity Analysis,” Pure Applied Geophysics 165, pp. 255-270. |
Lecomte, I. (2008), “Resolution and illumination analyses in PSDM: A ray-based approach,” The Leading Edge, pp. 650-663. |
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whiley & Sons, New York, pp. 1-18. |
Liao, Q. et al. (1995), “2.5D full-wavefield viscoacoustic inversion,” Geophysical Prospecting 43, pp. 1043-1059. |
Nazarian, S. et al. (1983), “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems,” Transport Res. Record 930, pp. 38-45. |
Mora, P. (1987), “Nonlinear two-dimensional elastic inversion of multi-offset seismic data,” Geophysics 52, pp. 1211-1228. |
Neelamani, R., (2008), “Simultaneous sourcing without compromise,” 70th Annual Int'l. Conf. and Exh., EAGE, 5 pgs. |
Ostmo, S. et al. (2002), “Finite-difference iterative migration by linearized waveform inversion in the frequency domain,” SEG Int;'l. Exp. & 72nd Ann. Meeting, 4 pgs. |
Plessix, R.E. et al. (2004), “Frequency-domain finite-difference amplitude preserving migration,” Geophys. J Int. 157, pp. 975-987. |
Park, C.B. et al. (1999), “Multichannel analysis of surface waves,” Geophysics 64(3), pp. 800-808. |
Porter, R.P. (1989), “Generalized holography with application to inverse scattering and inverse source problems,” In E. Wolf, editor, Progress in Optics XXVII, Elsevier, pp. 317-397. |
Pratt, R.G. et al. (1998), “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion,” Geophys. J. Int. 133, pp. 341-362. |
Rayleigh, J.W.S. (1899), “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil. Mag. 47, pp. 375-384. |
Ridzal, d. et al. (2011), “Application of Random Projection of Parameter Estimation,” SIAM Optimization, Darmstadt, May 17, 2011, p. 1-15. |
Ridzal, d. et al. (2011), “Application of Random Projection of Parameter Estimation,” SIAM Optimization, Darmstadt, May 17, 2011, p. 15-20. |
Ridzal, d. et al. (2011), “Application of Random Projection of Parameter Estimation,” SIAM Optimization, Darmstadt, May 17, 2011, p. 21-25. |
Ridzal, d. et al. (2011), “Application of Random Projection of Parameter Estimation,” SIAM Optimization, Darmstadt, May 17, 2011, p. 26-30. |
Romero, L.A. (2000), “Phase encoding of shot records in prestack migration,” Geophysics 65, pp. 426-436. |
Ryden, N. et al. (2006), “Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra,” Geophysics 71(4), pp. R49-R58. |
Shen, P. et al. (2003), “Differential semblance velocity analysis by wave-equation migration,” 73rd Ann. Meeting of Society of Exploration Geophysicists, 4 pgs. |
Sheriff, R.E.et al. (1982), “Exploration Seismology,” pp. 134-135. |
Shih, R.-C. et al. (1996), “Iterative pre-stack depth migration with velocity analysis,” Terrestrial, Atmospheric & Oceanic Sciences 7(2), pp. 149-158. |
Shin, C. et al. (2001), “Waveform inversion using a logarithmic wavefield,” Geophysics 49, pp. 592-606. |
Sirque, L. (2004), “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies,” Geophysics 69, pp. 231-248. |
Tarantola, A. (1984), “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49, pp. 1259-1266. |
Tarantola, A. (1988), “Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation,” Pure and Applied Geophysics 128, pp. 365-399. |
Trantham, E.C. (1994), “Controlled-phase acquisition and processing,” SEG Expanded Abstracts 13, pp. 890-894. |
van Manen, D.J. et al. (2005), “Making wave by time reversal,” SEG Int'l. Expo. And 75th Ann. Meeting, Expanded Abstracts, pp. 1763-1766. |
Weglein, A.B. (2003), “Inverse scattering series seismic exploration,” Inverse Problems 19, pp. R27-R83. |
Xia, J. et al. (2004), “Utilization of high-frequency Rayleigh waves in near-surface geophysics,” The Leading Edge, pp. 753-759. |
Zhang, Yu (2005), “Delayed-shot 3D depth migration,” Geophysics 70, pp. E21-E28. |
Ziolkowski, A. (1991), “Why don't we measure seismic signatures?,” Geophysics 56(2), pp. 190-201. |
European Search Report, dated Mar. 17, 2007, RS 114505. |
International Search Report & Written Opinion, dated Mar. 27, 2008, PCT/US2007/019724. |
Number | Date | Country | |
---|---|---|---|
20120109612 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
60847696 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12441685 | US | |
Child | 13345314 | US |