Iterative two dimensional equalization of orthogonal time frequency space modulated signals

Information

  • Patent Grant
  • 10673659
  • Patent Number
    10,673,659
  • Date Filed
    Monday, July 15, 2019
    5 years ago
  • Date Issued
    Tuesday, June 2, 2020
    4 years ago
Abstract
An iterative two dimension equalizer usable in a receiver of orthogonal time frequency space (OTFS) modulated signals is described. In one configuration of the equalizer, a forward path generates, from received time-frequency domain samples and a channel estimate, estimates of data bits and likelihood numbers associated with the estimates of data bits, generated by delay-Doppler domain processing. In the feedback direction, the estimates of data bits are used to generate symbol estimates and autocorrelation matrix estimate in the time domain. In another configuration, a soft symbol mapper is used in the feedback direction for directly generating the feedback input symbol estimate without having to generate estimates of data bits.
Description
TECHNICAL FIELD

The present document relates to wireless communication, and more particularly, to receiver-side processing of orthogonal time frequency space (OTFS) domain modulated signals.


BACKGROUND

Due to an explosive growth in the number of wireless user devices and the amount of wireless data that these devices can generate or consume, current wireless communication networks are fast running out of bandwidth to accommodate such a high growth in data traffic and provide high quality of service to users.


Various efforts are underway in the telecommunication industry to come up with next generation of wireless technologies that can keep up with the demand on performance of wireless devices and networks.


SUMMARY

This document discloses receiver-side techniques for iterative two-dimensional channel equalizer in which input time-frequency domain train of symbols and channel estimates are, in a feed forward path, transformed into delay-Doppler domain and data bits are extracted in the delay-Doppler domain. In the feedback path, the data bit estimates are transformed using a symplectic Fourier transform into time-frequency domain to generate symbol estimates for the next iteration.


In one example aspect, a wireless communication method for recovering information bits from a received signal, by performing iterative two dimensional equalization is disclosed. The method includes receiving, at an iterative equalizer, iteration inputs including a two dimensional estimate of a wireless channel over which the received signal is received, a stream of received symbols, a symbol estimate from a previous iteration, an input autocorrelation matrix estimate from the previous iteration, computing, from the iteration inputs, a Wiener estimate of the stream of received symbols, transforming the Wiener estimate to symbol estimates a two dimensional delay-Doppler grid using a two-dimensional symplectic Fourier transform, estimating likelihoods of the symbol estimates in the two dimensional delay-Doppler grid, and generating estimates of data from the likelihoods.


In another example aspect, a wireless communication method for recovering information bits from a received signal, by performing iterative two dimensional equalization is disclosed. The method includes receiving, at an iterative equalizer, iteration inputs including a two dimensional estimate of a wireless channel over which the received signal is received, a stream of received symbols, a symbol estimate from a previous iteration, an input autocorrelation matrix estimate from the previous iteration, computing, from the iteration inputs, a Wiener estimate of the stream of received symbols, transforming the Wiener estimate to symbol estimates a two dimensional delay-Doppler grid using a two-dimensional symplectic Fourier transform, and processing in a feedback direction, by generating a symbol estimate and an input autocorrelation matrix estimate for a next iteration.


These, and other, features are described in this document.





DESCRIPTION OF THE DRAWINGS

Drawings described herein are used to provide a further understanding and constitute a part of this application. Example embodiments and illustrations thereof are used to explain the technology rather than limiting its scope.



FIG. 1 shows an example communication network.



FIG. 2 shows a flowchart of an example wireless communication reception method.



FIG. 3 shows a flowchart of another example wireless communication reception method.



FIG. 4 shows an example of a wireless transceiver apparatus.



FIG. 5 is a block diagram showing an example 2-D iterative equalizer.



FIG. 6 is a block diagram showing an example of a self-iterative 2-D equalizer.





DETAILED DESCRIPTION

To make the purposes, technical solutions and advantages of this disclosure more apparent, various embodiments are described in detail below with reference to the drawings. Unless otherwise noted, embodiments and features in embodiments of the present document may be combined with each other.


The present-day wireless technologies are expected to fall short in meeting the rising demand in wireless communications. Many industry organizations have started the efforts to standardize next generation of wireless signal interoperability standards. The 5th Generation (5G) effort by the 3rd Generation Partnership Project (3GPP) is one such example and is used throughout the document for the sake of explanation. The disclosed technique could be, however, used in other wireless networks and systems.


Section headings are used in the present document, including the appendices, to improve readability of the description and do not in any way limit the discussion to the respective sections only.



FIG. 1 shows an example communication network 100 in which the disclosed technologies can be implemented. The network 100 may include a base station transmitter that transmits wireless signals s(t) (downlink signals) to one or more receivers 102, the received signal being denoted as r(t), which may be located in a variety of locations, including inside or outside a building and in a moving vehicle. The receivers may transmit uplink transmissions to the base station, typically located near the wireless transmitter. The technology described herein may be implemented at a receiver 102, or in the base station.


A 2-D equalizer may be used to extract data bits that are modulated on symbols received via OTFS modulation.


1. Introduction


A system with N transmit antennas and M receives antennas, is used to pass information over a multipath channel. Information bits, b, are encoded into coded bits, c, using an Forward Error Correction (FEC) code (such as convolutional code, turbo code or LDPC code). These coded bits are grouped into groups of q bits, optionally interleaved and mapped to symbols x in a finite constellation Ω (such as 2q-QAM) multiplexed on a grid on the 2-D Delay Doppler grid. These symbols are transformed by a 2-D Inverse Symplectic Fourier transform to symbols X multiplexed on a reciprocal grid on the time frequency plane. These symbols are OFDM modulated and transmitted over the N antennas. The signal, received in M antennas, is OFDM demodulated and processed as a 2-D Time-Frequency grid in the receiver.


In the 2-D Time-Frequency grid, the channel equation can be written individually for each symbol (or time-frequency point) indexed by (i,j) as

YM×1(i,j)=HM×N(i,j)·XN×1(i,j)+WM×1(i,j)  (1)


where WM×1(i,j) represent a vector of AWGN samples with expectation zero and variance RW. The 2-D equalizer computes estimations of the transmitted symbols {circumflex over (x)} from the received samples Y, the channel estimations H and the noise variance RW. In a non-iterative receiver, the estimated samples are transformed to the Delay-Doppler domain via a 2-D Symplectic Fourier transform and then converted to bit likelihoods, which are passed to FEC decoder to generate estimates, {circumflex over (b)}, on the information bits.


2. Iterative 2-D Equalizer



FIG. 5 is a block diagram of an example embodiment of an iterative 2-D equalizer 501. The 2-D Iterative equalizer, illustrated in FIG. 5, iterates between the 2-D equalizer 503 and the FEC MAP decoder 505, by passing information from one to the other. After several iterations, the MAP decoder outputs estimation on the information bits. In various embodiments, the iteration termination criteria may be based on a total number of iterations, meeting, but not exceeding, a time budget for the iterative process, the improvement in successive iterations falling below a threshold, and so on.


2.1 Example Embodiments of the 2-D Equalizer (503)


In some embodiments, the 2-D equalizer may be implemented as an affine MMSE equalizer, computing the Wiener estimator of X

{circumflex over (X)}=CY+(I−CH)X  (2)


where C=RXYRY−1 and I is the identity matrix. Note that C is a function of RX and RW. For the first iteration there is no prior information on the symbols of X, therefore we set X=0 and RX=I. The 2-D equalizer also computes the variance of the estimation error, denoted as RE.


2.2 2-D SFFT (507)


The estimated symbols and error variances, {circumflex over (X)} and RE respectively, are transformed from the 2-D Time-Frequency grid to the 2-D Delay-Doppler grid via a 2-D Symplectic Fourier transform to {circumflex over (x)} and Re respectively.


2.3 Likelihoods (509)


Likelihoods for the coded bits LE({circumflex over (x)}), are computed from the symbols {circumflex over (x)}. Gaussian distribution may be assumed for {circumflex over (x)} and the likelihoods can be derived from it. The probabilities for this case are










P


(



x
^


x

=
ω

)




e


-

1

R
Z






(


x
^

-

μ


(

ω
,
A

)



)

2







(
3
)







where ωϵΩ is a constellation symbol and

A=1−ReRX−1
RZ=ARe
μ(ω,A)=ωA+(1−A)x  (4)


Note that x is defined in equation (7). For each symbols, the extrinsic coded bits log likelihoods ratio (LLR) can be derived as












L
E



(

x
^

)


i

=

log


(






ω
:


s


(
ω
)


i


=
1





P


(



x
^


x

=
ω

)


·




j

i





P


(
ω
)


j









ω
:


s


(
ω
)



i


=
0





P


(



x
^


x

=
ω

)


·




j

i









P


(
ω
)


j





)






(
5
)







where i,j=0, . . . , q−1, s(ω) is the constellation bits label that is associated with the constellation symbol ω and P(ω)j is defined in equation (6).


2.4 Deinterleaver (511)


The deinterleaver permutes the likelihoods LE({circumflex over (x)}) to L(C). These likelihoods will be used as a priori information for the MAP decoder. In some implementations this deinterleaver might be optional.


2.5 MAP Decoder (505)


The Maximum A Posteriori decoder computes the a posteriori probabilities (APP's) of the information bits and also the extrinsic probabilities for the coded bits, which when using LLRs, are the APP's minus the a priori inputs.


2.6 Interleaver (513)


The interleaver permutes the likelihoods LD(C) to L({circumflex over (x)}). These likelihoods will be used as a priori information for the MAP decoder. Note that in some implementations this interleaver might be optional.


2.7 Symbol Mapper (515)


The symbol mapper estimates the probabilities of each constellation symbol ωϵΩ from the likelihoods values L({circumflex over (x)}):












P


(
ω
)



j




1
2



(

1
+


(


2
·


s


(
ω
)


j


-
1

)

·

tanh


(



L


(

x
^

)


j

2

)




)














P


(
ω
)







j
=
0


q
-
1









P


(
ω
)


j







(
6
)







These probabilities are used for computing the expectation of the constellation and the variance:











x
_

=




i
=
0


q
-
1




ω
·

P


(
ω
)












R
x

=





i
=
0


q
-
1





ωω
H



P


(
ω
)




-


x
_




x
_

H








(
7
)







2.8 2-D SFFT−1 (517)


The 2-D Delay-Doppler domain symbols' expectation and variance x and RX are transformed to X and RX in the 2-D Time-Frequency domain using a 2-D Inverse Symplectic Fourier transform to transform from the delay-Doppler domain to the Time-Frequency domain. These are used as priors to the 2-D Equalizer in the next iteration. In some embodiments, the 2-D transforms used by operation 507 and 517 may be swapped. In other words, an inverse SFFT may be used in the operation 507, while an SFFT may be used in the operation 517.


In some embodiments, the iterative 2-D Equalizer may be operated so that the receiver gets side information about some resource elements in the time-frequency grid that have been “erased” (e.g., not transmitted, or not useable) and the receiver can ignore them. The receiver may skip equalization for these resources and just uses directly the prior estimates as outputs for the equalizer. In this case, Eq (2) simply becomes for these resources: {circumflex over (X)}=X.


3. Self-Iterative 2-D Equalizer (600)


In the scheme 600, shown in FIG. 6, the 2-D equalizer 503 generates symbols estimations {circumflex over (x)} and Re in the 2-D Delay-Doppler domain in a similar way to the one described in the previous section. However, these estimates are fed directly to the soft symbol mapper 615 to generate along with 2-D inverse Symplectic Fourier transform 517, new priors for the 2-D equalizer 503. After a number of iterations, with termination criteria described as before, these estimations are converted to coded bits likelihoods and passed to the FEC decoder 605 to generate estimation of the information bits.


As depicted in the flowchart of FIG. 2, a wireless communication method 200 for recovering information bits from a received signal, by performing iterative two dimensional equalization includes receiving (202), at an iterative equalizer, iteration inputs including a two dimensional estimate of a wireless channel over which the received signal is received, a stream of received symbols, a symbol estimate from a previous iteration, an input autocorrelation matrix estimate from the previous iteration, computing (204), from the iteration inputs, a Wiener estimate of the stream of received symbols, transforming (206) the Wiener estimate to symbol estimates a two dimensional delay-Doppler grid using a two-dimensional symplectic Fourier transform, which may be a fast SFFT or a fast SFFT−1, estimating (208) likelihoods of the symbol estimates in the two dimensional delay-Doppler grid, and generating (210) estimates of data from the likelihoods. Various embodiments and options are further described in the description associated with FIG. 5. For example, as described with respect to operations 507 and 517, in some embodiments, two-dimensional symplectic Fourier transforms that are inverse of each other may be used in these operations. In other words, 507 may correspond to an SFFT while 517 may correspond to an inverse SFFT or vice versa.


In some embodiments the generating the estimate may include deinterleaving the likelihoods and performing error correction. As depicted in the example embodiment in FIG. 5, in some embodiments, the feedback direction processing may include generating a symbol estimate and an input autocorrelation matrix estimate for a next iteration of the method 200. The processing in the feedback direction may include performing soft symbol mapping using the likelihoods resulting in intermediate symbol estimates and an intermediate autocorrelation estimate, and generating the symbol estimate and the input autocorrelation matrix estimate by transforming, using an inverse of the two-dimensional symplectic Fourier transform, the intermediate symbol estimates and the intermediate autocorrelation estimate. In various embodiments, the two-dimensional symplectic Fourier transform may be SFFT or SFFT−1.


In some embodiments, the receiver that implements the method 200 may get side information about some resource elements in the time-frequency grid that have been “erased” (not transmitted, or not useable) and the receiver can ignore them. The receiver may then skip the equalization for them and just uses directly the prior estimates as outputs for the equalizer. In this case, Eq (2) simply becomes for these resources: {circumflex over (X)}=X.



FIG. 3 illustrates a flowchart example for a wireless communication method 300 for recovering information bits from a received signal, by performing iterative two dimensional equalization is disclosed. The method 300 includes receiving (302), at an iterative equalizer, iteration inputs including a two dimensional estimate of a wireless channel over which the received signal is received, a stream of received symbols, a symbol estimate from a previous iteration, an input autocorrelation matrix estimate from the previous iteration, computing (304), from the iteration inputs, a Wiener estimate of the stream of received symbols, transforming (306) the Wiener estimate to symbol estimates a two dimensional delay-Doppler grid using a two-dimensional symplectic Fourier transform, and processing (308) in a feedback direction, by generating a symbol estimate and an input autocorrelation matrix estimate for a next iteration. Various embodiments and options are further described in the description associated with FIG. 6.



FIG. 4 shows an example of a wireless transceiver apparatus 500. The apparatus 500 may be used to implement method 200 or 300. The apparatus 500 includes a processor 502, a memory 504 that stores processor-executable instructions and data during computations performed by the processor. The apparatus 500 includes reception and/or transmission circuitry 506, e.g., including radio frequency operations for receiving or transmitting signals.


It will be appreciated that techniques for wireless data reception are disclosed by performing iterative 2D channel equalization in the delay-Doppler domain.


The disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.


A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a standalone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.


The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).


Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.


While this patent document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.


Only a few examples and implementations are disclosed. Variations, modifications, and enhancements to the described examples and implementations and other implementations can be made based on what is disclosed.

Claims
  • 1. A wireless communication method for recovering information bits from a received signal, by performing iterative equalization, comprising: receiving, at an iterative equalizer, iteration inputs including a two-dimensional estimate of a wireless channel over which the received signal is received, a stream of received symbols, and at least one symbol estimate from a previous iteration;performing, based on the iteration inputs, an affine minimum mean-squared error (MMSE) equalization operation on the stream of received symbols to generate a first stream of estimated symbols;transforming, using a two-dimensional symplectic Fourier transform, the first stream of estimated symbols from a two-dimensional time-frequency grid to a second stream of estimated symbols in a two-dimensional delay-Doppler grid; andgenerating, based on the second stream of estimated symbols in the two-dimensional delay-Doppler grid, estimates of the information bits.
  • 2. The method of claim 1, wherein the iteration inputs further include an input autocorrelation matrix estimate from the previous iteration.
  • 3. The method of claim 1, further comprising: generating a plurality of likelihoods for the second stream of estimated symbols.
  • 4. The method of claim 3, wherein the plurality of likelihoods is based on a variance of an estimation error for the second stream of estimated symbols.
  • 5. The method of claim 3, wherein generating the estimates of the information bits comprises: deinterleaving the plurality of likelihoods; andperforming a forward error correction (FEC) operation on an output of the deinterleaving.
  • 6. The method of claim 5, wherein the FEC operation is based on a convolutional code, a turbo code or a low-density parity-check (LDPC) code.
  • 7. The method of claim 1, wherein the two-dimensional symplectic Fourier transform is a symplectic fast Fourier transform (SFFT).
  • 8. A wireless transceiver apparatus comprising a processor, transmission and reception circuitry and a memory, the apparatus configured to perform a method for recovering information bits from a received signal, the method comprising: receiving, at an iterative equalizer, iteration inputs including a two-dimensional estimate of a wireless channel over which the received signal is received, a stream of received symbols, and at least one symbol estimate from a previous iteration;performing, based on the iteration inputs, an affine minimum mean-squared error (MMSE) equalization operation on the stream of received symbols to generate a first stream of estimated symbols;transforming, using a two-dimensional symplectic Fourier transform, the first stream of estimated symbols from a two-dimensional time-frequency grid to a second stream of estimated symbols in a two-dimensional delay-Doppler grid; andgenerating, based on the second stream of estimated symbols in the two-dimensional delay-Doppler grid, estimates of the information bits.
  • 9. The apparatus of claim 8, wherein the iteration inputs further include an input autocorrelation matrix estimate from the previous iteration.
  • 10. The apparatus of claim 8, further comprising: generating a plurality of likelihoods for the second stream of estimated symbols.
  • 11. The apparatus of claim 10, wherein the plurality of likelihoods is based on a variance of an estimation error for the second stream of estimated symbols.
  • 12. The apparatus of claim 10, wherein generating the estimates of the information bits comprises: deinterleaving the plurality of likelihoods; andperforming a forward error correction (FEC) operation on an output of the deinterleaving, wherein the FEC operation is based on a convolutional code, a turbo code or a low-density parity-check (LDPC) code.
  • 13. The apparatus of claim 8, wherein the two-dimensional symplectic Fourier transform is a symplectic fast Fourier transform (SFFT).
  • 14. The apparatus of claim 8, wherein a number of iterations performed by the iterative equalizer is based on a total number of iterations, a time budget for recovering the information bits from the received signal, or a comparison of an improvement in successive iterations to a threshold.
  • 15. A non-transitory computer readable storage medium having instructions stored thereupon, the instructions, when executed by a processor, causing the processor to implement a method for recovering information bits from a received signal by performing iterative equalization, comprising: instructions for receiving, at an iterative equalizer, iteration inputs including a two-dimensional estimate of a wireless channel over which the received signal is received, a stream of received symbols, and at least one symbol estimate from a previous iteration;instructions for performing, based on the iteration inputs, an affine minimum mean-squared error (MMSE) equalization operation on the stream of received symbols to generate a first stream of estimated symbols;instructions for transforming, using a two-dimensional symplectic Fourier transform, the first stream of estimated symbols from a two-dimensional time-frequency grid to a second stream of estimated symbols in a two-dimensional delay-Doppler grid; andinstructions for generating, based on the second stream of estimated symbols in the two-dimensional delay-Doppler grid, estimates of the information bits.
  • 16. The non-transitory computer readable storage medium of claim 15, wherein the iteration inputs further include an input autocorrelation matrix estimate from the previous iteration.
  • 17. The non-transitory computer readable storage medium of claim 15, further comprising: generating a plurality of likelihoods for the second stream of estimated symbols.
  • 18. The non-transitory computer readable storage medium of claim 17, wherein the plurality of likelihoods is based on a variance of an estimation error for the second stream of estimated symbols.
  • 19. The non-transitory computer readable storage medium of claim 17, wherein generating the estimates of the information bits comprises: deinterleaving the plurality of likelihoods; andperforming an forward error correction (FEC) operation on an output of the deinterleaving, wherein the FEC operation is based on a convolutional code, a turbo code or a low-density parity-check (LDPC) code.
  • 20. The non-transitory computer readable storage medium of claim 15, wherein the two-dimensional symplectic Fourier transform is a symplectic fast Fourier transform (SFFT).
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent document is a continuation of U.S. patent application Ser. No. 16/148,922, entitled “ITERATIVE TWO DIMENSIONAL EQUALIZATION OF ORTHOGONAL TIME FREQUENCY SPACE MODULATED SIGNALS”, filed on Oct. 1, 2018, which is a continuation of PCT Application No. PCT/US2017/025578, entitled “ITERATIVE TWO DIMENSIONAL EQUALIZATION OF ORTHOGONAL TIME FREQUENCY SPACE MODULATED SIGNALS”, filed on Mar. 31, 2017, which claims priority to U.S. Provisional Application Ser. No. 62/317,420, entitled “ITERATIVE TWO DIMENSIONAL EQUALIZATION OF ORTHOGONAL TIME FREQUENCY SPACE MODULATED SIGNALS”, filed on Apr. 1, 2016. The entire contents of the aforementioned patent applications are incorporated by reference herein.

US Referenced Citations (175)
Number Name Date Kind
4754493 Coates Jun 1988 A
5083135 Nagy et al. Jan 1992 A
5182642 Gersdorff et al. Jan 1993 A
5623511 Bar-David et al. Apr 1997 A
5831977 Dent Nov 1998 A
5872542 Simons et al. Feb 1999 A
5956624 Hunsinger et al. Sep 1999 A
6212246 Hendrickson Apr 2001 B1
6289063 Duxbury Sep 2001 B1
6356555 Rakib et al. Mar 2002 B1
6388621 Lynch May 2002 B1
6426983 Rakib et al. Jul 2002 B1
6608864 Strait Aug 2003 B1
6631168 Izumi Oct 2003 B2
6704366 Combes et al. Mar 2004 B1
6956814 Campanella Oct 2005 B1
7010048 Shattil Mar 2006 B1
7327812 Auer Feb 2008 B2
7392018 Ebert et al. Jun 2008 B1
7689049 Monro Mar 2010 B2
7773685 Tirkkonen et al. Aug 2010 B2
7864877 Hottinen Jan 2011 B2
8229017 Lee et al. Jul 2012 B1
8259845 Dent Sep 2012 B2
8401131 Fety et al. Mar 2013 B2
8547988 Hadani et al. Oct 2013 B2
8619892 Vetter et al. Dec 2013 B2
8717210 Eldar et al. May 2014 B2
8879378 Rakib et al. Nov 2014 B2
8892048 Turner Nov 2014 B1
8976851 Hadani et al. Mar 2015 B2
9031141 Hadani et al. May 2015 B2
9071285 Hadani et al. Jun 2015 B2
9071286 Hadani et al. Jun 2015 B2
9083483 Rakib et al. Jul 2015 B1
9083595 Rakib et al. Jul 2015 B2
9130638 Hadani et al. Sep 2015 B2
9282528 Hashimoto Mar 2016 B2
9294315 Hadani et al. Mar 2016 B2
9444514 Hadani et al. Sep 2016 B2
9548840 Hadani et al. Jan 2017 B2
9553984 Krause et al. Jan 2017 B2
9590779 Hadani et al. Mar 2017 B2
9634719 Rakib et al. Apr 2017 B2
9660851 Hadani et al. May 2017 B2
9668148 Hadani et al. May 2017 B2
9712354 Hadani et al. Jul 2017 B2
9729281 Hadani et al. Aug 2017 B2
20010031022 Petrus et al. Oct 2001 A1
20010033614 Hudson Oct 2001 A1
20010046205 Easton et al. Nov 2001 A1
20020001308 Heuer Jan 2002 A1
20020034191 Shattil Mar 2002 A1
20020181388 Jain et al. Dec 2002 A1
20020181390 Mody et al. Dec 2002 A1
20020181607 Izumi Dec 2002 A1
20030073464 Giannakis et al. Apr 2003 A1
20030185295 Yousef Oct 2003 A1
20030235147 Walton et al. Dec 2003 A1
20040044715 Aldroubi et al. Mar 2004 A1
20040174812 Murakami et al. Sep 2004 A1
20040189581 Sako et al. Sep 2004 A1
20040218523 Varshney et al. Nov 2004 A1
20050157778 Trachewsket et al. Jul 2005 A1
20050157820 Wongwirawat et al. Jul 2005 A1
20050180517 Abe Aug 2005 A1
20050207334 Hadad Sep 2005 A1
20050251844 Martone et al. Nov 2005 A1
20060008021 Bonnet Jan 2006 A1
20060039270 Strohmer et al. Feb 2006 A1
20070014272 Palanki et al. Jan 2007 A1
20070038691 Candes et al. Feb 2007 A1
20070078661 Sriram et al. Apr 2007 A1
20070104283 Han et al. May 2007 A1
20070110131 Guess et al. May 2007 A1
20070211952 Faber et al. Sep 2007 A1
20070237181 Cho et al. Oct 2007 A1
20070253465 Muharemovic et al. Nov 2007 A1
20070253504 Hasegawa Nov 2007 A1
20080043857 Dias et al. Feb 2008 A1
20080117999 Kadous et al. May 2008 A1
20080186843 Ma et al. Aug 2008 A1
20080187062 Pan et al. Aug 2008 A1
20080232504 Ma et al. Sep 2008 A1
20080310383 Kowalski Dec 2008 A1
20090080403 Hamdi Mar 2009 A1
20090092259 Jot et al. Apr 2009 A1
20090103593 Bergamo Apr 2009 A1
20090122854 Zhu et al. May 2009 A1
20090161804 Chrabieh et al. Jun 2009 A1
20090204627 Hadani Aug 2009 A1
20090222226 Baraniuk et al. Sep 2009 A1
20090303961 Popovic et al. Dec 2009 A1
20100001901 Baraniuk et al. Jan 2010 A1
20100008432 Kim et al. Jan 2010 A1
20100027608 Priotti Feb 2010 A1
20100111138 Hosur et al. May 2010 A1
20100142476 Jiang et al. Jun 2010 A1
20100187914 Rada et al. Jul 2010 A1
20100238787 Guey Sep 2010 A1
20100277308 Potkonjak Nov 2010 A1
20100303136 Ashikhmin et al. Dec 2010 A1
20100322349 Lee et al. Dec 2010 A1
20110007789 Garmany Jan 2011 A1
20110110532 Svendsen May 2011 A1
20110116489 Grandhi May 2011 A1
20110116516 Hwang et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110131463 Gunnam Jun 2011 A1
20110216808 Tong et al. Sep 2011 A1
20110286502 Adachi et al. Nov 2011 A1
20110287778 Levin et al. Nov 2011 A1
20110292971 Hadani et al. Dec 2011 A1
20110293030 Rakib et al. Dec 2011 A1
20110299379 Sesia et al. Dec 2011 A1
20110305267 Rius et al. Dec 2011 A1
20120021769 Lindoff et al. Jan 2012 A1
20120051457 Ma et al. Mar 2012 A1
20120140716 Baldemair et al. Jun 2012 A1
20120170684 Yim et al. Jul 2012 A1
20120201322 Rakib et al. Aug 2012 A1
20120213098 Sun Aug 2012 A1
20120235795 Liao et al. Sep 2012 A1
20120269201 Atungsiri et al. Oct 2012 A1
20120272117 Stadelmeier et al. Oct 2012 A1
20120320994 Loghin et al. Dec 2012 A1
20130021977 Yang et al. Jan 2013 A1
20130058390 Haas et al. Mar 2013 A1
20130077579 Cho et al. Mar 2013 A1
20130083661 Gupta et al. Apr 2013 A1
20130121497 Smaragdis et al. May 2013 A1
20130230010 Kim et al. Sep 2013 A1
20130260787 Hashimoto Oct 2013 A1
20130279627 Wu et al. Oct 2013 A1
20130315133 Wang et al. Nov 2013 A1
20140143639 Loghin et al. May 2014 A1
20140161154 Hadani et al. Jun 2014 A1
20140169385 Hadani et al. Jun 2014 A1
20140169406 Hadani et al. Jun 2014 A1
20140169433 Hadani et al. Jun 2014 A1
20140169436 Hadani et al. Jun 2014 A1
20140169437 Hadani et al. Jun 2014 A1
20140169441 Hadani et al. Jun 2014 A1
20140247803 Arambepola et al. Sep 2014 A1
20140348252 Siohan et al. Nov 2014 A1
20140364128 Lee et al. Dec 2014 A1
20150117395 Hadani et al. Apr 2015 A1
20150326273 Rakib et al. Nov 2015 A1
20150327085 Hadani et al. Nov 2015 A1
20150382231 Jabbar et al. Dec 2015 A1
20160043835 Hadani et al. Feb 2016 A1
20160135132 Donepudi et al. May 2016 A1
20160182269 Hadani et al. Jun 2016 A1
20160191217 Hadani et al. Jun 2016 A1
20160191280 Hadani et al. Jun 2016 A1
20160254889 Shattil Sep 2016 A1
20160277225 Frenne et al. Sep 2016 A1
20160309345 Tehrani et al. Oct 2016 A1
20160380743 Rakib Dec 2016 A1
20160381576 Hadani et al. Dec 2016 A1
20170012749 Rakib et al. Jan 2017 A1
20170012810 Rakib et al. Jan 2017 A1
20170019297 Rakib Jan 2017 A1
20170033899 Rakib et al. Feb 2017 A1
20170040711 Rakib et al. Feb 2017 A1
20170078054 Hadani et al. Mar 2017 A1
20170099122 Hadani et al. Apr 2017 A1
20170099607 Hadani et al. Apr 2017 A1
20170149594 Rakib May 2017 A1
20170149595 Rakib et al. May 2017 A1
20170201354 Hadani et al. Jul 2017 A1
20170207817 Hadani et al. Jul 2017 A1
20170222700 Hadani et al. Aug 2017 A1
20170230215 Rakib et al. Aug 2017 A1
20170244524 Hadani et al. Aug 2017 A1
Foreign Referenced Citations (18)
Number Date Country
1235720 Nov 1999 CN
101682316 Mar 2010 CN
101939935 Jan 2011 CN
1432168 Jun 2004 EP
2011127910 Jun 2011 JP
2007004297 Jan 2007 WO
2011137699 Nov 2011 WO
2011150315 Dec 2011 WO
2013148546 Oct 2013 WO
2014004585 Jan 2014 WO
2016014596 Jan 2016 WO
2016014598 Jan 2016 WO
2016176642 Nov 2016 WO
2016183230 Nov 2016 WO
2016183240 Nov 2016 WO
2016209848 Dec 2016 WO
2017003952 Jan 2017 WO
2017011478 Jan 2017 WO
Non-Patent Literature Citations (69)
Entry
Office Action for U.S. Appl. No. 13/117,119, dated Aug. 5, 2013, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/117,119, dated Feb. 28, 2014, 13 pages.
Banelli, P. et al., “Modulation Formats and Waveforms for 5G Networks: Who Will Be the Heir of OFDM?,” IEEE Signal Processing Magazine, vol. 81, pp. 80-93, Nov. 2014.
El Hattachi, R. et al., “NGMN 5G Initiative White Paper,” NGMN Alliance, Feb. 17, 2015. [Online]. Available: hittps://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf, 125 pages.
Rusek, F. et al., “Scaling Up MIMO, Opportunities and Challenges with Very Large Arrays,” IEEE Signal Processing Magazine, pp. 40-60 (2013).
Vodafone, “Cellular Internet of Things: Architectural Aspects,” RP-150869, 3GPP RAN#68, Malmo, Sweden (Jun. 9, 2015), 19 pages.
Supplementary European Search Report for European Application No. 11787483.4, dated Sep. 9, 2014, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2011/038302, dated Nov. 15, 2011, 8 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2011/038302, dated Dec. 4, 2012, 7 pages.
Office Action for U.S. Appl. No. 13/117,124, dated Feb. 22, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/117,124, dated Aug. 8, 2013, 10 pages.
Office Action for U.S. Appl. No. 14/605,957, dated Jun. 22, 2017, 6 pages.
Supplementary European Search Report for European Application No. 13809004.8, dated Apr. 14, 2016, 8 pages.
Communication Pursuant to Article 94(3) EPC for European Application No. 13809004.8, dated Feb. 17, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/927,087, dated Feb. 25, 2015, 9 pages.
Office Action for U.S. Appl. No. 13/927,087, dated Nov. 12, 2014, 14 pages.
Gurevich, S. et al. “Group Representation Design of Digital Signals and Sequences,” S.W. Golomb et al. (eds.), SETA 2008, LNCS 5203, pp. 153-166, Springer-Verlag Berlin Heidelberg (2008).
International Search Report and Written Opinion for International Application No. PCT/US2013/047723, dated Oct. 29, 2013, 17 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2013/047723, dated Dec. 31, 2014, 15 pages.
Notice of Allowance for U.S. Appl. No. 13/927,088, dated Feb. 18, 2015, 7 pages.
Office Action for U.S. Appl. No. 13/927,088, dated Nov. 28, 2014, 13 pages.
Notice of Allowance for U.S. Appl. No. 13/927,086, dated Dec. 26, 2014, 8 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 13/927,086, dated Mar. 19, 2015, 4 pages.
Office Action for U.S. Appl. No. 13/927,086, dated Oct. 14, 2014, 10 pages.
Office Action for U.S. Appl. No. 13/927,089, dated Dec. 24, 2014, 13 pages.
Office Action for U.S. Appl. No. 13/927,089, dated Aug. 14, 2015, 7 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 13/927,091, dated Jun. 11, 2015, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/927,091, dated Apr. 24, 2015, 8 pages.
Office Action for U.S. Appl. No. 13/927,091, dated Jan. 27, 2015, 15 pages.
Office Action for U.S. Appl. No. 13/927,092, dated Oct. 8, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/927,092, dated Oct. 24, 2014, 7 pages.
Office Action for U.S. Appl. No. 13/927,095, dated Apr. 30, 2015, 11 pages.
Office Action for U.S. Appl. No. 13/927,095, dated Nov. 4, 2015, 9 pages.
Office Action for U.S. Appl. No. 13/927,095, dated Jun. 1, 2016, 10 pages.
Office Action for U.S. Appl. No. 14/717,886, dated Apr. 19, 2016, 10 pages.
Office Action for U.S. Appl. No. 14/709,377, dated Dec. 11, 2015, 12 pages.
Office Action for U.S. Appl. No. 14/709,377, dated Jul. 13, 2016, 17 pages.
Examination Report No. 1 for Australian Application No. 2013239970, dated Dec. 8, 2015, 3 pages.
“AT&T Annual Report 2014,” Opening Our Network [Online]. Retrieved from the Internet: Sep. 22, 2016. <URL: http://www.att.com/Investor/ATT_Annual/2014/att_introduces_new_concepts_for_telecom_network_html>, 5 pages.
CATT, “UL ACK/NACK transmission methods for LTE-A,” 3GPP TSG RAN WG1 Meeting #60bis, R1-102453, Beijing, China, Apr. 12-16, 2010, 8 pages.
Toskala, A. et al., “Physical Layer,” Chapter 5 In: “LTE for UMTS: OFDMA and SC-FDMA Based Radio Access,” Holma, H. et al. (eds.), John Wiley & Sons, Ltd., United Kingdom, 2009, pp. 83-135.
Mecklenbrauker, W., “A Tutorial on Non-Parametric Bilinear Time-Frequency Signal Representations,” In: Time and Frequency Representation of Signals and Systems, Longo, G. et al. (eds.), Springer-Verlag Wien, vol. 309, pp. 11-68 (1989).
Nehorai, A. et al., “MURI: Adaptive waveform design for full spectral dominance (2005-2010),” AFOSR FA9550-05-1-0443, Final Report, [online], Mar. 11, 2011 Retrieved on May 11, 2013, Retrieved from the Internet <URL: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA565420>, 103 pages.
Office Action for Japanese Application No. 2015-518647, dated Jul. 7, 2015, 10 pages.
Office Action for U.S. Appl. No. 14/754,596, dated Apr. 19, 2016, 18 pages.
Office Action for U.S. Appl. No. 14/809,129, dated Jul. 19, 2016, 5 pages.
Office Action for U.S. Appl. No. 15/617,962, dated Sep. 6, 2017, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/050825, dated Feb. 8, 2017, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/052524, dated Dec. 20, 2016, 8 pages.
Office Action for U.S. Appl. No. 15/374,995, dated Aug. 7, 2017, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2017/025797, dated Jun. 21, 2017, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/030259, dated Aug. 4, 2016, 13 pages.
Office Action for U.S. Appl. No. 15/152,464, dated Apr. 6, 2017, 10 pages.
Examination Report No. 1 for Australian Application No. 2013280487, dated May 2, 2016, 3 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/031928, dated Oct. 7, 2016, 10 pages.
Office Action for U.S. Appl. No. 15/188,946, dated May 8, 2017, 14 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/038584, dated Sep. 26, 2016, 8 pages.
Office Action for U.S. Appl. No. 15/187,668, dated Feb. 16, 2017, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/031909, dated Aug. 11, 2016, 13 pages.
Office Action for U.S. Appl. No. 15/194,494, dated May 5, 2017, 16 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/039662, dated Nov. 29, 2016, 14 pages.
Office Action for U.S. Appl. No. 15/436,653, dated Jun. 2, 2017, 10 pages.
Office Action for U.S. Appl. No. 15/208,545, dated Aug. 21, 2017, 15 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/041940, dated Oct. 20, 2016, 8 pages.
Supplementary European Search Report for European Application No. 13768150.8, dated Oct. 30, 2015, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2013/033652, dated Jun. 12, 2013, 8 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/041417, dated Oct. 1, 2015, 7 pages.
Office Action for U.S. Appl. No. 14/805,407, dated Dec. 14, 2016, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/041420, dated Oct. 1, 2015, 6 pages.
Related Publications (1)
Number Date Country
20190342126 A1 Nov 2019 US
Provisional Applications (1)
Number Date Country
62317420 Apr 2016 US
Continuations (2)
Number Date Country
Parent 16148922 Oct 2018 US
Child 16512055 US
Parent PCT/US2017/025578 Mar 2017 US
Child 16148922 US