1. Field of the Invention
The present invention relates to an ITO transparent substrate with a high resistance at a low-temperature sputtering process and a method for producing the same, and particularly relates to a layer of metal oxide doped ITO, and mated with multiple depositing layers that overlap each other.
2. Description of the Related Art
In the optoelectronical raw material industry, ITO (layer) with high resistance is an important raw material and the process of producing the ITO layer is a key component of producing a panel. As the raw material industry is becoming more and more important, the requirements of high yield, precise control, low cost, and fast fabrication method for the row material production are increasing in importance also. The high-resistance ITO layer can be applied to touchpanel techniques, such as capacitive touchpanels and resistive touchpanels.
As is commonly known, the ITO layer plays a major role in touchpanels. For example, in resistive touchpanels, an ITO layer with high resistance replaces conductive glass or plastics with low resistance. In regard to capacitive touchpanels, an ITO layer with high resistance is necessary thereto. Therefore, the ITO layer with high light transmittance and high resistance are preferable to the touchpanel applications.
As showed in
Reference is made to
A cross-sectional profile of the capacitive touchpanel is shown in
Therefore, an ITO transparent substrate being generally multi-layered that has a high resistance produced via a low-temperature sputtering process that can be formed quickly and reliably is greatly desired by the panel producing industry. In particular, a substrate made of polymer materials, (such as PMMA,) or glass, is needed in order to provide the desired stable characteristics.
An ITO transparent substrate with a high resistance at a low-temperature sputtering process and a method for producing the same are provided. The substrate has a stable nature and is easily manufactured. Conventional fabrication equipment, with some alterations and improvements can be used to produce the substrate of the present invention.
The ITO transparent substrate with a high, stable resistance such as a resistive touchpanel of above 800 ohm/sq or a capacitive touchpanel of above 1500 ohm/sq at a low-temperature sputtering process is provided. The method includes steps of providing some refraction layers on a substrate base and further covered by a metallic oxide doped ITO top layer in order to be highly transparent and anti-reflective. A production line can be applied to the conventional manufacturing process, which is free of complex methods and procedures.
The method for producing an ITO transparent substrate includes: providing a transparent substrate base; sputtering the transparent substrate base with plasma, which is composed of ITO target mixed with metallic oxide target in order to produce at least one film. The ITO transparent substrate includes a transparent substrate base, and at least one film with metallic oxide doped ITO on the substrate base.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed. Other advantages and features of the invention will be apparent from the following description, drawings and claims.
The various objects and advantages of the present invention will be more readily understood from the following detailed description when read in conjunction with the appended drawings, in which:
Reference is made to
In a second embodiment, the substrate base 10 is heated above 300° C. (the predetermined temperature) but the curing process is omitted to produce a stable resistance thereof. In addition, the substrate base 10 can be PMMA or other plastic materials (such as polymer materials) but with lower heated temperature.
Furthermore, at least one silicon-oxide layer is piled with the film 24, which is produced by sputtered with ITO mixed with metallic-oxide (such as Nb2O5) target, shown in
With reference in
The mixed plasma is generated by a dual gun sputtering system or a single mixed gun sputtering system. In addition, the substrate base 10 can be processed in workstations continuously connected to one another in order to guarantee a delay time controlled for a predetermined range. The transparent substrate base 10 is made of a polymer material or a glass material. Furthermore, the steps mentioned are implemented in a clean room. The transparent substrate base 10 is transited between workstations via a conveyer belt or an automatic trolley. Experimentally, these embodiments according to the present invention can provide stable resistance.
There are some advantages to the present invention:
1. The amount of Nb2O5 in ITO can vary the resistance thereof.
2. ITO with Nb2O5 can be further processed with another material to achieve high transmission.
3. The resistance thereof is more stable than that of the layer made only of ITO.
4. Not only Nb2O5 but also non-conductive metallic oxide material or non-metallic oxide material can be adapted thereto.
Although the present invention has been described with reference to the preferred embodiments thereof, it will be understood that the invention is not limited to the details thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.