IVIG MODULATION OF CHEMOKINES FOR TREATMENT OF MULTIPLE SCLEROSIS, ALZHEIMER'S DISEASE, AND PARKINSON'S DISEASE

Information

  • Patent Application
  • 20110177094
  • Publication Number
    20110177094
  • Date Filed
    February 11, 2011
    13 years ago
  • Date Published
    July 21, 2011
    13 years ago
Abstract
The present invention provides methods for providing a prognosis of treatment of diseases associated with inflammatory disease of the brain, including MS, e.g., relapsing-remitting multiple sclerosis (RRMS), Alzheimer's disease, and Parkinson's disease using molecular markers that are shown to be overexpressed or underexpressed in patients treated with intravenous immunoglobulins (IVIG). Also provided are methods to identify compounds that are useful for the treatment or prevention of MS, e.g., relapsing-remitting multiple sclerosis (RRMS), Alzheimer's disease, and Parkinson's disease.
Description
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

NOT APPLICABLE


REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK

NOT APPLICABLE


BACKGROUND OF THE INVENTION

Multiple sclerosis (MS) is the most common autoimmune inflammatory disease of the central nervous system. It is characterized by demyelinating lesions in the white matter of the central nervous system that lead to neurological deficits (Sospedra M. and Martin R., Immunology of Multiple Sclerosis. Annu Rev Immunol., 23:683-747 (2005)). The pathogenesis of the disease is associated with the infiltration of immune cells, mainly activated T cells, into the brain (Sospedra M. and Martin R., Annu Rev Immunol., 23:683-747 (2005)). This infiltration is accompanied by a disruption of the blood-brain barrier (van Horssen J. et al., J Neuropathol Exp Neurol., 66:321-8 (2007)).


Intravenous immunoglobulins (IVIG) have been shown to be effective in the treatment of a number of autoimmune diseases including MS (Sospedra M. and Martin R., Immunology of Multiple Sclerosis. Annu Rev Immunol., 23:683-747 (2005)), but the exact mechanisms of action underlying the immunomodulatory activities of IVIG have not been fully explained. There are several models that try to explain the immunomodulatory efficacy of IVIG in patients suffering from autoimmune and inflammatory diseases (Kazatchkine M. D. et al., Mult Scler, 2:24-6; 33:24-26 (2000); Trebst C. and Stangel M., Curr. Pharm. Design, 12:241-2493 (2006)). These models include Fcγ-receptor-mediated immunomodulation (SOrensen P. S., Neurol Sci, 4:227-230 (2003)), modulation of idiotype/anti-idiotype networks (Samuelsson A. et al., Science, 291:484-6 (2001)), elimination of immunostimulating microbial products (Dalakas M. C., Ann Intern Med, 126:721-30 (1997)) and neutralizing antibodies against cytokines and chemokines (Bayry J. et al., Transfus Clin Biol., 10:165-9 (2003)). IVIG's potential to modify the balance between Th1 and Th2 cell immunoreactivity and to inhibit the formation of antibody/complement complexes have also been demonstrated (Andersson U. et al., Immunol Rev, 139:21-42 (1994); Bayry J. et al., Intravenous immunoglobulin in autoimmune disorders: An insight into the immunregulatory mechanisms).


The beneficial effects of IVIG in patients with MS were shown by a number of open clinical trials (Basta M. et al., Blood, 77:376-80 (1991)) and by four randomized double-blind clinical studies (SOrensen P. S. et al., Eur J Neurol, 9:557-563 (2002); Strasser-Fuchs S. et al., Mult Scler, 2:9-13 (2000); Sorensen P. S. et al., Neurology, 50:1273-1281 (1998); Lewanska M. et al., Eur J Neurol, 9:565-572 (2002)). IVIG decreased the relapse rate in MS patients and the number of gadolinium-enhancing lesions seen on brain magnetic resonance imaging (MRI) (Dudesek A. and Zettl U. K., J Neurol, 253; V/50-V/58)). Furthermore, IVIG was shown to suppress proliferation of activated peripheral T cells (Bayry J. et al., Neurol Sci, 4:217-221 (2003); Stangel M. and Gold R., Nervenarzt, (2005)). Auto-reactive peripheral T cells can cross the blood-brain barrier and are believed to be the main effector cells responsible for brain inflammation (Sospedra M. and Martin R., Annu Rev Immunol., 23:683-747 (2005); Helling N. et al., Immunol Res., 1:27-51 (2002)). Therefore, a modulation of T cell function by IVIG could explain the beneficial therapeutic effect of IVIG seen in MS patients.


Recently, we showed that IVIG is an effective alternative treatment for patients with acute exacerbations in relapsing-remitting multiple sclerosis (RRMS) (Elovaara I. et al., Intravenous Immunoglobulin is effective and well tolerated in the treatment of MS Relapse, manuscript submitted). Because peripheral auto-reactive T cells are believed to be responsible for brain inflammation in MS, we undertook to identify genes that are differentially regulated in peripheral T cells of patients with MS in acute exacerbation that are treated with IVIG. We reasoned that differences in gene expression profiles could provide important information about the potential mechanisms of action of IVIG treatment. Furthermore, changes in gene expression profiles could provide prognostic markers to predict treatment success. Such markers could also help to identify targets for developing new therapeutic agents.


Furthermore, increasing evidence has suggested a role for brain inflammation not only in MS but also in the pathogenesis of Alzheimers' disease and Parkinsons' disease (see, e.g., Wilms et al., Curr. Pharm. Des. 13:1925 (2007)). In particular microglia, the resident innate immune cells, play a major role in inflammatory processes of the brain and are known to be associated not only with MS but also with Alzheimers' disease and in Parkinsons'disease (see, e.g, Yamamoto et al., Am. J. Pathology 166:1475 (2006); Huang et al., FASEB 19:761 (2005); Kim et al., Exp. And Mol. Med. 38:333 (2006)). Thus, the present invention provides new prognostic markers to predict treatment success associated with the administration of intravenous immunoglobulin treatment as well as new therapeutic targets that may be exploited in the treatment of MS, e.g., relapsing-remitting multiple sclerosis (RRMS), Parkinsons' disease or Alzheimers disease.'


BRIEF SUMMARY OF THE INVENTION

The present invention provides methods for providing a prognosis of treatment of multiple sclerosis, Parkinson's disease and Alzheimer's disease using molecular markers that are overexpressed or underexpressed in patients treated with intravenous immunoglobulins (IVIG). Also provided are methods to identify compounds that are useful for the treatment or prevention of multiple sclerosis. In some aspects, the subtype of multiple sclerosis is relapsing-remitting multiple sclerosis (RRMS).


Accordingly, in one embodiment the present invention provides method of providing a prognosis of multiple sclerosis, Parkinson's disease and Alzheimer's disease in a subject treated with intravenous immunoglobulin (IVIG) by contacting a biological sample from the subject treated with IVIG with a reagent that specifically binds to at least one marker selected from any of the nucleic acids and corresponding protein sequences shown in Table 3a, Table 3b, and Table 4, and then determining whether or not the marker is overexpressed or underexpressed in the sample, thus providing a prognosis for MS, Parkinson's disease and Alzheimer's disease in a subject treated with IVIG. In an aspect of this embodiment, the multiple sclerosis is of the relapsing-remitting multiple sclerosis (RRMS) subtype.


In various aspects of this embodiment, the reagent is an antibody, such as a monoclonal antibody. Alternatively, the reagent can be a nucleic acid, including an oligonucleotide or an RT PCR primer set. In other aspects, the sample is a blood sample, which can contain T cells. The sample can also be cerebrospinal fluid. In some aspects of this embodiment, one of the markers is a chemokine. Examples of chemokines include: CXCL3, CXCL5, CCL13, and XCL2.


Another embodiment of the invention provides a method of identifying a compound that prevents or treats multiple sclerosis, Parkinson's disease and Alzheimer's disease by contacting a compound with a sample comprising a cell that expresses a marker selected from any of the nucleic acid and corresponding protein sequences shown in Table 3a, Table 3b, Table 3c, Table 3d, and Table 4, and then determining the functional effect of the compound on the marker, thus identifying a compound that prevents or treats MS, Parkinson's disease and Alzheimer's disease. In an aspect of this embodiment, the multiple sclerosis is of the relapsing-remitting multiple sclerosis (RRMS) subtype.


In various aspects of this embodiment, the functional effect is an increase or decrease in expression of the marker. In other aspects, the functional effect is an increase or decrease in activity of the marker. Examples of compounds used in various aspects of this embodiment include: a small molecule, a siRNA, a ribozyme, an antibody, which can be a monoclonal antibody.


A further embodiment of the invention provides a method of treating or preventing multiple sclerosis, Parkinson's disease and Alzheimer's disease in a subject by administering to the subject an effective amount of an antibody which binds a chemokine, including CXCL5, CXCL3, and CCL13, in which the effective amount is sufficient to inactivate the chemokine or chemokine cell signaling, thus treating or preventing multiple sclerosis, Parkinson's disease and Alzheimer's disease. In an aspect of this embodiment, the multiple sclerosis is of the relapsing-remitting multiple sclerosis (RRMS) subtype.


A yet further embodiment of the invention provides a method of treating or preventing multiple sclerosis, Parkinson's disease and Alzheimer's disease in a subject by administering to the subject an effective amount of an antibody which binds a chemokine receptor, including receptors for CXCL5, CXCL3, and CCL13, in which the effective amount is sufficient to inactivate the function of the chemokine receptor, thus treating or preventing multiple sclerosis, Parkinson's disease and Alzheimer's disease. In an aspect of this embodiment, the multiple sclerosis is of the relapsing-remitting multiple sclerosis (RRMS) subtype.


Another embodiment of this invention provides a method of treating or preventing multiple sclerosis, Parkinson's disease and Alzheimer's disease in a subject by administering to the subject an effective amount of an antibody which binds to a XCL2 chemokine receptor, in which the effective amount is sufficient to activate the XCL2 chemokine receptor, thus treating or preventing multiple sclerosis, Parkinson's disease and Alzheimer's disease. In an aspect of this embodiment, the multiple sclerosis is of the relapsing-remitting multiple sclerosis (RRMS) subtype.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows development of EDSS scores in 10 RRMS patients during treatment with IVIG. Box plots containing the median, 25% and 75% percentile, minimum and maximum, demonstrate the EDSS scores of patients during remission, as well as before and after treatment with IVIG during relapse.



FIG. 2 shows that treatment with IVIG does not alter the cellular composition of cells obtained for isolation of RNA. Relative gene expression data obtained from microarray analysis are presented for CD3, CD4, CD8 and CD14. Gene expression on day 0 was set as 1 and compared with gene expression on day 6 (A) and day 26 (B). Each point represents an individual patient.



FIG. 3 shows real-time PCR demonstrating the expression of representative genes. Box plots containing the median, 25% and 75% percentile, minimum and maximum, demonstrate the relative expression of the indicated genes. Expression of genes was normalized to an endogenous control (glyceraldhyde-3-phosphate dehydrogenase). Real-time PCR experiments were done in triplets and confirmed at least two times on different days.





DETAILED DESCRIPTION OF THE INVENTION

Multiple sclerosis (MS) refers generally to an inflammatory, demyelinating disease that affects the central nervous system (CNS). During the progression of MS, the myelin surrounding the axons of neurons degenerates, resulting in subsequent axonal degeneration. The pathogenesis of MS is believed to involve an autoimmune response in which T cells attack parts of the central nervous system, triggering inflammatory responses, which results in the stimulation of other immune cells and the secretion of soluble factors such as cytokines and antibodies. The inflammatory processes triggered by T cells create leaks in the blood-brain barrier formed by endothelial cells. The leaks in the blood-brain barrier, in turn, cause a number of other damaging effects such as brain swelling, activation of macrophages, and further secretion of cytokines and other proteolytic proteins such as matrix metalloproteinases. The final outcome of these pathological processes is neuronal demyelination. See, e.g., Calabresi, P. A., American Family Physician, 70: 1935-1944 (2004), for review.


As MS progresses, gradual demyelination and transection of neuron axons in patches throughout the brain and spinal cord occur. Thus, the term multiple sclerosis refers to the multiple scars (or scleroses) found on myelin sheaths in affected individuals. This scarring causes symptoms which may vary widely depending upon the extent of scarring and which neuronal pathways are disrupted.


Among the symptoms and manifestations of MS include changes in sensation (hypoesthesia), muscle weakness, abnormal muscle spasms, difficulties in movement; difficulties with coordination and balance (ataxia); problems in speech (dysarthria) or swallowing (dysphagia), visual problems (nystagmus, optic neuritis, or diplopia), fatigue and acute or chronic pain syndromes, bladder and bowel difficulties, cognitive impairment, or emotional symptomatology (e.g., depression).


The most common initial symptoms reported are: changes in sensation in the arms, legs or face (33%), complete or partial vision loss (optic neuritis) (16%), weakness (13%), double vision (7%), unsteadiness when walking (5%), and balance problems (3%). See Navarro et al., Rev Neurol 41: 601-3 (2005); Jongen P., J Neurol Sci 245: 59-62 (2006). In some individuals, the initial MS attack is preceded by infection, trauma, or strenuous physical effort.


A number of diagnostic tests are currently in use for the diagnosis of MS. These include the clinical presentation of two separate episodes of neurologic symptoms characteristic of MS, along with the finding of consistent abnormalities on physical examination. Alternatively, magnetic resonance imaging (MRI) of the brain and spine is often used to evaluate individuals with suspected MS. MRI reveals areas of demyelination as bright lesions on T2-weighted images or FLAIR (fluid attenuated inversion recovery) sequences. Gadolinium contrast can be used to demonstrate active plaques on T1-weighted images.


The testing of cerebrospinal fluid (CSF) can provide evidence of chronic inflammation of the central nervous system, a characteristic of MS. In such a test, the CSF is tested for oligoclonal bands, which are immunoglobulins found in 85% to 95% of people with definite MS. When combined with MRI and clinical data, the presence of oligoclonal bands can help make a definite diagnosis of MS.


Because the brains MS-affected individuals often respond less actively to stimulation of the optic nerve and sensory nerves, the measurement of such brain responses can also be used as a diagnostic tool. These brain responses can be examined using visual evoked potentials (VEPs) and somatosensory evoked potentials (SEPs). Decreased activity on either test can reveal demyelination which may be otherwise asymptomatic. Along with other data, these exams can help uncover the widespread nerve involvement required for a definite diagnosis of MS.


Several subtypes, or patterns of progression, of MS have been described. In 1996, the United States National Multiple Sclerosis Society standardized the following four subtype definitions, as described below.


Relapsing-remitting MS (RRMS) refers to a subtype characterized by unpredictable attacks (relapses) followed by periods of months to years of relative quiet (remission) with no new signs of disease activity. Deficits suffered during the attacks may either resolve or may be permanent. Relapsing-remitting describes the initial course of 85% to 90% of individuals with MS.


Secondary progressive describes around 80% of those with initial relapsing-remitting MS, who then begin to have neurologic decline between their acute attacks without any definite periods of remission. This decline may include new neurologic symptoms, worsening cognitive function, or other deficits. Secondary progressive is the most common type of MS and causes the greatest amount of disability.


Primary progressive describes the approximately 10% of individuals who never have remission after their initial MS symptoms. Decline occurs continuously without clear attacks. The primary progressive subtype tends to affect people who are older at disease onset.


Progressive relapsing describes those individuals who, from the onset of their MS, have a steady neurologic decline but also suffer superimposed attacks; and is the least common of all subtypes.


While there is currently no definitive cure for MS, a number of therapies have been developed that are directed toward returning function after an attack, preventing new attacks, or preventing disability. Thus, different therapies are used for patients experiencing acute attacks; those who have the relapsing-remitting subtype; those who have the progressive subtypes; those without a diagnosis of MS who have a demyelinating event; and for managing the various consequences of MS attacks.


The phamacological agents currently in use for MS include interferons, which have been approved for use in relapsing forms of secondary progressive MS; glatiramer acetate, a synthetic medication made of four amino acids that are found in myelin, which stimulates T cells to secrete anti-inflammatory agents that reduce inflammation at lesion sites; mitoxantrone, an agent used to treat progressive, progressive-relapsing, and worsening relapsing-remitting MS; and Natalizumab, a monoclonal antibody that recognizes α4-integrin.


High doses of intravenous corticosteroids, such as methylprednisolone, are frequently administered in the treatment of RRMS and have been shown to be effective at shortening the length of relapsing-remitting symptomatic attacks. As described in greater detail herein, intravenous IgG immunoglobulins have also been used to treat MS.


Similarly to MS, other disease states are associated with brain inflammation, such as Parkinson's disease and Alzheimer's disease, as described above. For example, chemokine CCL13, described herein, activates the chemokine receptor CCR2, which is expressed in microglia and astrocytes. Both of these cell types are associated with Parkinson's disease and Alzheimer's disease. This and other markers described herein are therefore useful for drug assays, diagnostic and prognostic assays, and for therapeutic siRNA and antibody treatment for Alzheimer's disease and Parkinson's disease.


Intravenous immunoglobulins (IVIG) have been successfully used to treat a number of autoimmune diseases of the central nervous system, including multiple sclerosis (MS). However, the underlying mechanisms of action of IVIG have not been fully explained. Accordingly, we have undertaken the identification of gene expression profiles that are associated with the immunomodulatory activity of IVIG in patients with acute exacerbations in relapsing-remitting MS (RRMS). As described below, HU-133 microarrays from Affymetrix were used to study gene expression profiles of peripheral T cells in 10 RRMS patients before and after treatment with IVIG. Patients treated with intravenous methylprednisolone were included as controls. The differential expression of representative genes was confirmed by real-time polymerase chain reaction. All patients were analyzed neurologically and by brain and spinal cord magnetic resonance imaging before and after IVIG therapy.


As shown below in the Examples, 360 genes that were differentially expressed during IVIG treatment were identified. Some encode chemokines such as CXCL3 and CXCL5 that are known to bind to CXCR2, a receptor essential for the regulation of oligodendrocyte migration in the brain. Others encode proteins that are involved in signal transduction, proliferation or apoptosis.


The studies disclosed herein indicate that among the differentially expressed genes the regulation of chemokine expression in peripheral T cells is an important new mechanism of action of IVIG in patients with acute exacerbations in MS. Thus, the genes disclosed herein may serve as diagnostic markers for predicting treatment success in IVIG therapy and provide new molecular targets for drug development.


DEFINITIONS

The term “intravenous IgG” or “IVIG” treatment refers generally to a composition of IgG immunoglobulins administered intravenously to treat a number of conditions such as immune deficiencies, inflammatory diseases, and autoimmune diseases. The IgG immunoglobulins are typically pooled and prepared from serum. Whole antibodies or fragments can be used.


The term “chemokine” refers generally to a family of small cytokines which are secreted by various cells that promote chemotaxis in responsive cells. Chemokines have also gone by the nomenclature of SIS family of cytokines, SIG family of cytokines, SCY family of cytokines, Platelet factor-4 superfamily or intercrines. Cells that are attracted by chemokines follow a signal of increasing chemokine concentration towards the source of the chemokine.


Some members of the chemokine family control cells of the immune system during the process of immune surveillance, such as by directing lymphocytes to the lymph nodes to allow lymphocyte surveillance invasion of pathogens through interaction with antigen-presenting cells residing in these tissues. Such chemokines are known as homeostatic chemokines and are produced and secreted without any need to stimulate their source cell(s). Some chemokines have roles in development by, e.g., promoting angiogenesis or guiding cells to tissues that provide specific signals critical for cellular maturation. Other chemokines are inflammatory and are released from a wide variety of cells in response to bacterial infection, viruses and agents that cause physical damage. The release of inflammatory chemokines is often stimulated by pro-inflammatory cytokines such as interleukin 1. Inflammatory chemokines function mainly as chemoattractants for leukocytes, recruiting monocytes, neutrophils and other effector cells from the blood to sites of infection or tissue damage. Certain inflammatory chemokines activate cells to initiate an immune response or promote wound healing. They are released by many different cell types and serve to guide cells of both innate immune system and adaptive immune system.


Structurally, chemokines are small proteins, with molecular masses of between 8 and 10 kDa. Chemokines also possess conserved amino acids that are important for creating their 3-dimensional or tertiary structure, such as (in most cases) four cysteines that interact with each other in pairs to create a greek key shape that is a characteristic of this class of proteins; intramolecular disulphide bonds typically join the first to third, and the second to fourth cysteine residues, numbered as they appear in the protein sequence of the chemokine.


Members of the chemokine family are categorized into four groups depending on the spacing of their first two cysteine residues. The CC chemokines (or β-chemokines) have two adjacent cysteines near their amino terminus. There have been at least 27 distinct members of this subgroup reported for mammals, called CC chemokine ligands (CCL)-1 to -28. The first two cysteine residues in CXC chemokines (or α-chemokines) are separated by one amino acid, represented by “X”. There have been 17 different CXC chemokines described in mammals, that are subdivided into two categories, those with a specific amino acid sequence (or motif) of Glutamic acid-Leucine-Arginine (ELR) immediately before the first cysteine of the CXC motif (ELR-positive), and those without an ELR motif (ELR-negative). The third group of chemokines is known as the C chemokines (or γ chemokines), and is unlike all other chemokines in that it has only two cysteines; one N-terminal cysteine and one cysteine downstream. A fourth group has three amino acids between the two cysteines and is termed CX3C chemokine (or δ-chemokines).


Chemokine receptors are G protein-coupled receptors containing 7 transmembrane domains that are found on the surface of leukocytes. Approximately 19 different chemokine receptors have been characterized to date, which are divided into four families depending on the type of chemokine they bind; CXCR that bind CXC chemokines, CCR that bind CC chemokines, CX3CR1 that binds the sole CX3C chemokine (CX3CL1), and XCR1 that binds the two XC chemokines (XCL1 and XCL2).


“Chemokine cell signaling” refers generally to the ability of chemokine receptors to associate with G-proteins to transmit cell signals following ligand binding. Activation of G proteins, by chemokine receptors, causes the subsequent activation of phospholipase C (PLC). PLC cleaves a phosphatidylinositol (4,5)-bisphosphate (PIP2) into two second messenger molecules, inositol triphosphate (IP3) and diacylglycerol (DAG) that trigger intracellular signaling events; DAG activates another enzyme called protein kinase C (PKC), and IP3 triggers the release of calcium from intracellular stores. These events promote signaling cascades such as the MAP kinase pathway that generate responses including chemotaxis, degranulation, release of superoxide anions and changes in the avidity of cell adhesion molecules such as integrins within the cell harboring the chemokine receptor.


The term “marker” or “biomarker” refers to a molecule (typically protein, nucleic acid, carbohydrate, or lipid) that is expressed in a cell, expressed on the surface of a cell or secreted by a cell and which is useful for providing a prognosis of relapsing-remitting multiple sclerosis (RRMS) in a subject treated with IVIG. Some of the biomarkers disclosed herein are molecules that are overexpressed in individuals with relapsing-remitting multiple sclerosis (RRMS) treated with IVIG, in comparison to individuals not treated IVIG or in RRMS patients prior to treatment with IVIG, for instance, 1-fold overexpression, 2-fold overexpression, 3-fold overexpression, or more. Alternatively, other biomarkers are molecules that are underexpressed in individuals with relapsing-remitting multiple sclerosis (RRMS) treated with IVIG, in comparison to individuals not treated IVIG or in RRMS patients prior to treatment with IVIG, for instance, 1-fold underexpression, 2-fold underexpression, 3-fold underexpression, or more. Further, a marker can be a molecule that is inappropriately synthesized in individuals with relapsing-remitting multiple sclerosis (RRMS) treated with IVIG, in comparison to individuals not treated IVIG or in RRMS patients prior to treatment with IVIG, for instance, a molecule that contains deletions, additions or mutations in comparison to the molecule expressed on a normal cell.


It will be understood by the skilled artisan that markers may be used singly or in combination with other markers for any of the uses, e.g., prognosis of IVIG treatment of relapsing-remitting multiple sclerosis (RRMS), disclosed herein.


“Biological sample” includes biological fluid samples, such as blood and cerebrospinal fluid, sections of tissues such as biopsy and autopsy samples, and frozen sections taken for histologic purposes. Such samples include blood and blood fractions or products (e.g., serum, plasma, platelets, red blood cells, and the like), cerebrospinal fluid, sputum, cervicovaginal fluid, lymph and tongue tissue, cultured cells, e.g., primary cultures, explants, and transformed cells, stool, urine, etc. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, Mouse; rabbit; or a bird; reptile; or fish.


The terms “overexpress,” “overexpression” or “overexpressed” or “upregulated” interchangeably refer to a protein or nucleic acid (RNA) that is transcribed or translated at a detectably greater level, usually in an IVIG-treated relapsing-remitting multiple sclerosis (RRMS) patient, in comparison to a patient not undergoing IVIG treatment. The term includes overexpression due to transcription, post transcriptional processing, translation, post-translational processing, cellular localization (e.g., organelle, cytoplasm, nucleus, cell surface), and RNA and protein stability, as compared to a control. Overexpression can be detected using conventional techniques for detecting mRNA (i.e., RT-PCR, PCR, hybridization) or proteins (i.e., ELISA, immunohistochemical techniques). Overexpression can be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more in comparison to a normal cell. In certain instances, overexpression is 1-fold, 2-fold, 3-fold, 4-fold or more higher levels of transcription or translation in comparison to a control.


The terms “underexpress,” “underexpression” or “underexpressed” or “downregulated” interchangeably refer to a protein or nucleic acid that is transcribed or translated at a detectably lower level, usually in an IVIG-treated relapsing-remitting multiple sclerosis (RRMS) patient, in comparison to a patient not undergoing IVIG treatment. The term includes underexpression due to transcription, post transcriptional processing, translation, post-translational processing, cellular localization (e.g., organelle, cytoplasm, nucleus, cell surface), and RNA and protein stability, as compared to a control. Underexpression can be detected using conventional techniques for detecting mRNA (i.e., RT-PCR, PCR, hybridization) or proteins (i.e., ELISA, immunohistochemical techniques). Underexpression can be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or less in comparison to a control. In certain instances, underexpression is 1-fold, 2-fold, 3-fold, 4-fold or more lower levels of transcription or translation in comparison to a control.


The term “differentially expressed” or “differentially regulated” refers generally to a protein or nucleic acid that is overexpressed (upregulated) or underexpressed (downregulated) in one sample compared to at least one other sample, generally in an IVIG-treated relapsing-remitting multiple sclerosis (RRMS) patient, in comparison to a patient not undergoing IVIG treatment, in the context of the present invention.


“Therapeutic treatment” refers to drug therapy, hormonal therapy, immunotherapy, and biologic (targeted) therapy.


By “therapeutically effective amount or dose” or “sufficient amount or dose” herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, e.g., Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); Pickar, Dosage Calculations (1999); and Remington: The Science and Practice of Pharmacy, 20th Edition, 2003, Gennaro, Ed., Lippincott, Williams & Wilkins).


The terms “identical” or percent “identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be “substantially identical.” This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.


For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.


A “comparison window,” as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1987-2005, Wiley Interscience)).


A preferred example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990), respectively. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=−4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=−4, and a comparison of both strands.


“Nucleic acid” refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, and complements thereof. The term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).


“RNAi molecule” or an “siRNA” refers to a nucleic acid that forms a double stranded RNA, which double stranded RNA has the ability to reduce or inhibit expression of a gene or target gene when the siRNA expressed in the same cell as the gene or target gene. “siRNA” thus refers to the double stranded RNA formed by the complementary strands. The complementary portions of the siRNA that hybridize to form the double stranded molecule typically have substantial or complete identity. In one embodiment, an siRNA refers to a nucleic acid that has substantial or complete identity to a target gene and forms a double stranded siRNA. The sequence of the siRNA can correspond to the full length target gene, or a subsequence thereof. Typically, the siRNA is at least about 15-50 nucleotides in length (e.g., each complementary sequence of the double stranded siRNA is 15-50 nucleotides in length, and the double stranded siRNA is about 15-50 base pairs in length, preferable about preferably about 20-30 base nucleotides, preferably about 20-25 nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


An “antisense” polynucleotide is a polynucleotide that is substantially complementary to a target polynucleotide and has the ability to specifically hybridize to the target polynucleotide.


Ribozymes are enzymatic RNA molecules capable of catalyzing specific cleavage of RNA. The composition of ribozyme molecules preferably includes one or more sequences complementary to a target mRNA, and the well known catalytic sequence responsible for mRNA cleavage or a functionally equivalent sequence (see, e.g., U.S. Pat. No. 5,093,246, which is incorporated herein by reference in its entirety). Ribozyme molecules designed to catalytically cleave target mRNA transcripts can also be used to prevent translation of subject target mRNAs.


Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)). The term nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide.


A particular nucleic acid sequence also implicitly encompasses “splice variants” and nucleic acid sequences encoding truncated forms of a protein. Similarly, a particular protein encoded by a nucleic acid implicitly encompasses any protein encoded by a splice variant or truncated form of that nucleic acid. “Splice variants,” as the name suggests, are products of alternative splicing of a gene. After transcription, an initial nucleic acid transcript may be spliced such that different (alternate) nucleic acid splice products encode different polypeptides. Mechanisms for the production of splice variants vary, but include alternate splicing of exons. Alternate polypeptides derived from the same nucleic acid by read-through transcription are also encompassed by this definition. Any products of a splicing reaction, including recombinant forms of the splice products, are included in this definition. Nucleic acids can be truncated at the 5′ end or at the 3′ end. Polypeptides can be truncated at the N-terminal end or the C-terminal end. Truncated versions of nucleic acid or polypeptide sequences can be naturally occurring or recombinantly created.


The terms “polypeptide,” “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.


The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.


Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.


“Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence with respect to the expression product, but not with respect to actual probe sequences.


As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.


The following eight groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M). See, e.g., Creighton, Proteins (1984).


A “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include 32P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide.


The term “recombinant” when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.


The phrase “stringent hybridization conditions” refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Probes, “Overview of principles of hybridization and the strategy of nucleic acid assays” (1993). Generally, stringent conditions are selected to be about 5-10° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5×SSC, and 1% SDS, incubating at 42° C., or, 5×SSC, 1% SDS, incubating at 65° C., with wash in 0.2×SSC, and 0.1% SDS at 65° C.


Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary “moderately stringent hybridization conditions” include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 1×SSC at 45° C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and Current Protocols in Molecular Biology, ed. Ausubel, et al., supra.


For PCR, a temperature of about 36° C. is typical for low stringency amplification, although annealing temperatures may vary between about 32° C. and 48° C. depending on primer length. For high stringency PCR amplification, a temperature of about 62° C. is typical, although high stringency annealing temperatures can range from about 50° C. to about 65° C., depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90° C.-95° C. for 30 sec-2 min., an annealing phase lasting 30 sec.-2 min., and an extension phase of about 72° C. for 1-2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.).


“Antibody” refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody will be most critical in specificity and affinity of binding. Antibodies can be polyclonal or monoclonal, derived from serum, a hybridoma or recombinantly cloned, and can also be chimeric, primatized, or humanized.


An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (VL) and variable heavy chain (VH) refer to these light and heavy chains respectively.


Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′2, a dimer of Fab which itself is a light chain joined to VH-CH1 by a disulfide bond. The F(ab)′2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)′2 dimer into an Fab′ monomer. The Fab′ monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990)).


An antibody immunologically reactive with a particular biomarker protein of the present invention can be generated by recombinant methods such as selection of libraries of recombinant antibodies in phage or similar vectors, see, e.g., Huse et al., Science, 246:1275-1281 (1989); Ward et al., Nature, 341:544-546 (1989); and Vaughan et al., Nature Biotech., 14:309-314 (1996), or by immunizing an animal with the antigen or with DNA encoding the antigen.


Methods of preparing polyclonal antibodies are known to the skilled artisan (e.g., Harlow & Lane, 1988, Antibodies: A Laboratory Manual. (Cold Spring Harbor Press)). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.


The antibodies can, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler & Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. Generally, either peripheral blood lymphocytes (“PBLs”) are used if cells of human origin are desired, or spleen cells or lymph node cells are used if nonhuman mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (1986)). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.


Human antibodies can be produced using various techniques known in the art, including phage display libraries (Hoogenboom & Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)). Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, e.g., in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., BioTechnology, 10:779-783 (1992); Lonberg et al., Nature, 368:856-859 (1994); Morrison, Nature, 368:812-13 (1994); Fishwild et al., Nature Biotechnology, 14:845-51 (1996); Neuberger, Nature Biotechnology, 14:826 (1996); Lonberg & Huszar, Inter. Rev. Immunol., 13:65-93 (1995).


In one embodiment, the antibody is conjugated to an “effector” moiety. The effector moiety can be any number of molecules, including labeling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the antibody modulates the activity of the protein.


The nucleic acids of the differentially expressed genes of this invention or their encoded polypeptides refer to all forms of nucleic acids (e.g., gene, pre-mRNA, mRNA) or proteins, their polymorphic variants, alleles, mutants, and interspecies homologs that (as applicable to nucleic acid or protein): (1) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acids, to a polypeptide encoded by a referenced nucleic acid or an amino acid sequence described herein; (2) specifically bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising a referenced amino acid sequence, immunogenic fragments thereof, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid encoding a referenced amino acid sequence, and conservatively modified variants thereof; (4) have a nucleic acid sequence that has greater than about 95%, preferably greater than about 96%, 97%, 98%, 99%, or higher nucleotide sequence identity, preferably over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a reference nucleic acid sequence. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or any mammal. The nucleic acids and proteins of the invention include both naturally occurring or recombinant molecules. Truncated and alternatively spliced forms of these antigens are included in the definition.


The phrase “specifically (or selectively) binds” when referring to a protein, nucleic acid, antibody, or small molecule compound refers to a binding reaction that is determinative of the presence of the protein or nucleic acid, such as the differentially expressed genes of the present invention, often in a heterogeneous population of proteins or nucleic acids and other biologics. In the case of antibodies, under designated immunoassay conditions, a specified antibody may bind to a particular protein at least two times the background and more typically more than 10 to 100 times background. Specific binding to an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with the selected antigen and not with other proteins. This selection may be achieved by subtracting out antibodies that cross-react with other molecules. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).


The phrase “functional effects” in the context of assays for testing compounds that modulate a marker protein includes the determination of a parameter that is indirectly or directly under the influence of a biomarker of the invention, e.g., a chemical or phenotypic effect such as altered chemokine cell signaling. A functional effect therefore includes ligand binding activity, transcriptional activation or repression, the ability of cells to proliferate, the ability to migrate, among others. “Functional effects” include in vitro, in vivo, and ex vivo activities.


By “determining the functional effect” is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a biomarker of the invention, e.g., measuring physical and chemical or phenotypic effects. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index); hydrodynamic (e.g., shape), chromatographic; or solubility properties for the protein; ligand binding assays, e.g., binding to antibodies; measuring inducible markers or transcriptional activation of the marker; measuring changes in enzymatic activity; the ability to increase or decrease cellular proliferation, apoptosis, cell cycle arrest, measuring changes in cell surface markers. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for other genes expressed in chemokine-responsive cells, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β-gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, etc.


“Inhibitors,” “activators,” and “modulators” of the markers are used to refer to activating, inhibitory, or modulating molecules identified using in vitro and in vivo assays of biomarkers responsive to IVIG treatment of relapsing-remitting multiple sclerosis (RRMS). Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of biomarkers responsive to IVIG treatment of relapsing-remitting multiple sclerosis (RRMS). “Activators” are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate activity of biomarkers responsive to IVIG treatment of relapsing-remitting multiple sclerosis (RRMS), e.g., agonists. Inhibitors, activators, or modulators also include genetically modified versions of biomarkers responsive to IVIG treatment of relapsing-remitting multiple sclerosis (RRMS), e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, peptides, cyclic peptides, nucleic acids, antisense molecules, ribozymes, RNAi molecules, small organic molecules and the like. Such assays for inhibitors and activators include, e.g., expressing biomarkers responsive to IVIG treatment of relapsing-remitting multiple sclerosis (RRMS) in vitro, in cells, or cell extracts, applying putative modulator compounds, and then determining the functional effects on activity, as described above.


Samples or assays comprising biomarkers responsive to IVIG treatment of relapsing-remitting multiple sclerosis (RRMS) that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of biomarkers responsive to IVIG treatment of relapsing-remitting multiple sclerosis (RRMS) is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of biomarkers responsive to IVIG treatment of relapsing-remitting multiple sclerosis (RRMS) is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.


The term “test compound” or “drug candidate” or “modulator” or grammatical equivalents as used herein describes any molecule, either naturally occurring or synthetic, e.g., protein, oligopeptide (e.g., from about 5 to about 25 amino acids in length, preferably from about 10 to 20 or 12 to 18 amino acids in length, preferably 12, 15, or 18 amino acids in length), small organic molecule, polysaccharide, peptide, circular peptide, lipid, fatty acid, siRNA, polynucleotide, oligonucleotide, etc., to be tested for the capacity to directly or indirectly modulate biomarkers responsive to IVIG treatment of relapsing-remitting multiple sclerosis (RRMS). The test compound can be in the form of a library of test compounds, such as a combinatorial or randomized library that provides a sufficient range of diversity. Test compounds are optionally linked to a fusion partner, e.g., targeting compounds, rescue compounds, dimerization compounds, stabilizing compounds, addressable compounds, and other functional moieties. Conventionally, new chemical entities with useful properties are generated by identifying a test compound (called a “lead compound”) with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.


A “small organic molecule” refers to an organic molecule, either naturally occurring or synthetic, that has a molecular weight of more than about 50 daltons and less than about 2500 daltons, preferably less than about 2000 daltons, preferably between about 100 to about 1000 daltons, more preferably between about 200 to about 500 daltons.


Prognostic Methods

The present invention provides methods of providing a prognosis of IVIG treatment of multiple sclerosis, including relapsing-remitting multiple sclerosis (RRMS), Alzheimer's disease, or Parkinson's disease by detecting the expression of markers overexpressed or underexpressed in patients treated with IVIG. Providing a prognosis involves determining the level of one or more IVIG responsive biomarker polynucleotides or the corresponding polypeptides in a patient or patient sample and then comparing the level to a baseline or range. Typically, the baseline value is representative of levels of the polynucleotide or nucleic acid in a relapsing-remitting multiple sclerosis (RRMS) patient prior to IVIG treatment, as measured using a biological sample such as a sample of a bodily fluid (e.g., blood or cerebrospinal fluid). Variation of levels of a polynucleotide or corresponding polypeptides of the invention from the baseline range (either up or down) indicates that the patient is benefiting from IVIG treatment of relapsing-remitting multiple sclerosis (RRMS).


As used herein, the term “providing a prognosis” refers to providing a prediction of the probable course and outcome of treatment of a patient suffering from multiple sclerosis, including relapsing-remitting multiple sclerosis (RRMS), Alzheimer's disease, or Parkinson's disease with IVIG. The methods can also be used to devise a suitable alternative or additional therapy for multiple sclerosis, including relapsing-remitting multiple sclerosis (RRMS) treatment, Alzheimer's disease, or Parkinson's disease, e.g., by indicating the failure of IVIG treatment to alleviate multiple sclerosis, including relapsing-remitting multiple sclerosis (RRMS), Alzheimer's disease, or Parkinson's disease. The prognosis can be used to adjust dose or frequency of IVIG administration as well.


Antibody reagents can be used in assays to detect expression levels of the biomarkers of the invention in patient samples using any of a number of immunoassays known to those skilled in the art. Immunoassay techniques and protocols are generally described in Price and Newman, “Principles and Practice of Immunoassay,” 2nd Edition, Grove's Dictionaries, 1997; and Gosling, “Immunoassays: A Practical Approach,” Oxford University Press, 2000. A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used. See, e.g., Self et al., Curr. Opin. Biotechnol., 7:60-65 (1996). The term immunoassay encompasses techniques including, without limitation, enzyme immunoassays (EIA) such as enzyme multiplied immunoassay technique (EMIT), enzyme-linked immunosorbent assay (ELISA), IgM antibody capture ELISA (MAC ELISA), and microparticle enzyme immunoassay (MEIA); capillary electrophoresis immunoassays (CEIA); radioimmunoassays (RIA); immunoradiometric assays (IRMA); fluorescence polarization immunoassays (FPIA); and chemiluminescence assays (CL). If desired, such immunoassays can be automated. Immunoassays can also be used in conjunction with laser induced fluorescence. See, e.g., Schmalzing et al., Electrophoresis, 18:2184-93 (1997); Bao, J. Chromatogr. B. Biomed. Sci., 699:463-80 (1997). Liposome immunoassays, such as flow-injection liposome immunoassays and liposome immunosensors, are also suitable for use in the present invention. See, e.g., Rongen et al., J. Immunol. Methods, 204:105-133 (1997). In addition, nephelometry assays, in which the formation of protein/antibody complexes results in increased light scatter that is converted to a peak rate signal as a function of the marker concentration, are suitable for use in the methods of the present invention. Nephelometry assays are commercially available from Beckman Coulter (Brea, Calif.; Kit #449430) and can be performed using a Behring Nephelometer Analyzer (Fink et al., J. Clin. Chem. Clin. Biochem., 27:261-276 (1989)).


Specific immunological binding of antibodies can be detected directly or indirectly. Direct labels include fluorescent or luminescent tags, metals, dyes, radionuclides, and the like, attached to the antibody. An antibody labeled with iodine-125 (125I) can be used. A chemiluminescence assay using a chemiluminescent antibody specific for the nucleic acid is suitable for sensitive, non-radioactive detection of protein levels. An antibody labeled with fluorochrome is also suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), β-galactosidase, urease, and the like. A horseradish-peroxidase detection system can be used, for example, with the chromogenic substrate tetramethylbenzidine (TMB), which yields a soluble product in the presence of hydrogen peroxide that is detectable at 450 nm. An alkaline phosphatase detection system can be used with the chromogenic substrate p-nitrophenyl phosphate, for example, which yields a soluble product readily detectable at 405 nm. Similarly, a β-galactosidase detection system can be used with the chromogenic substrate o-nitrophenyl-β-D-galactopyranoside (ONPG), which yields a soluble product detectable at 410 nm. An urease detection system can be used with a substrate such as urea-bromocresol purple (Sigma Immunochemicals; St. Louis, Mo.).


A signal from the direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 125I; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, the assays of the present invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.


The antibodies can be immobilized onto a variety of solid supports, such as magnetic or chromatographic matrix particles, the surface of an assay plate (e.g., microtiter wells), pieces of a solid substrate material or membrane (e.g., plastic, nylon, paper), and the like. An assay strip can be prepared by coating the antibody or a plurality of antibodies in an array on a solid support. This strip can then be dipped into the test sample and processed quickly through washes and detection steps to generate a measurable signal, such as a colored spot.


Alternatively, nucleic acid binding molecules such as probes, oligonucleotides, oligonucleotide arrays, and primers can be used in assays to detect differential RNA expression in patient samples, e.g., RT-PCR. In one embodiment, RT-PCR is used according to standard methods known in the art. In another embodiment, PCR assays such as Taqman® assays available from, e.g., Applied Biosystems, can be used to detect nucleic acids and variants thereof. In other embodiments, qPCR and nucleic acid microarrays can be used to detect nucleic acids. Reagents that bind to selected biomarkers can be prepared according to methods known to those of skill in the art or purchased commercially.


Analysis of nucleic acids can be achieved using routine techniques such as Southern analysis, reverse-transcriptase polymerase chain reaction (RT-PCR), or any other methods based on hybridization to a nucleic acid sequence that is complementary to a portion of the marker coding sequence (e.g., slot blot hybridization) are also within the scope of the present invention. Applicable PCR amplification techniques are described in, e.g., Ausubel et al. and Innis et al., supra. General nucleic acid hybridization methods are described in Anderson, “Nucleic Acid Hybridization,” BIOS Scientific Publishers, 1999. Amplification or hybridization of a plurality of nucleic acid sequences (e.g., genomic DNA, mRNA or cDNA) can also be performed from mRNA or cDNA sequences arranged in a microarray. Microarray methods are generally described in Hardiman, “Microarrays Methods and Applications: Nuts & Bolts,” DNA Press, 2003; and Baldi et al., “DNA Microarrays and Gene Expression From Experiments to Data Analysis and Modeling,” Cambridge University Press, 2002.


Analysis of nucleic acid markers and their variants can be performed using techniques known in the art including, without limitation, microarrays, polymerase chain reaction (PCR)-based analysis, sequence analysis, and electrophoretic analysis. A non-limiting example of a PCR-based analysis includes a Taqman® allelic discrimination assay available from Applied Biosystems. Non-limiting examples of sequence analysis include Maxam-Gilbert sequencing, Sanger sequencing, capillary array DNA sequencing, thermal cycle sequencing (Sears et al., Biotechniques, 13:626-633 (1992)), solid-phase sequencing (Zimmerman et al., Methods Mol. Cell Biol., 3:39-42 (1992)), sequencing with mass spectrometry such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS; Fu et al., Nat. Biotechnol., 16:381-384 (1998)), and sequencing by hybridization. Chee et al., Science, 274:610-614 (1996); Drmanac et al., Science, 260:1649-1652 (1993); Drmanac et al., Nat. Biotechnol., 16:54-58 (1998). Non-limiting examples of electrophoretic analysis include slab gel electrophoresis such as agarose or polyacrylamide gel electrophoresis, capillary electrophoresis, and denaturing gradient gel electrophoresis. Other methods for detecting nucleic acid variants include, e.g., the INVADER® assay from Third Wave Technologies, Inc., restriction fragment length polymorphism (RFLP) analysis, allele-specific oligonucleotide hybridization, a heteroduplex mobility assay, single strand conformational polymorphism (SSCP) analysis, single-nucleotide primer extension (SNUPE) and pyrosequencing.


A detectable moiety can be used in the assays described herein. A wide variety of detectable moieties can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Suitable detectable moieties include, but are not limited to, radionuclides, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), autoquenched fluorescent compounds that are activated by tumor-associated proteases, enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, and the like.


Useful physical formats comprise surfaces having a plurality of discrete, addressable locations for the detection of a plurality of different markers. Such formats include microarrays and certain capillary devices. See, e.g., Ng et al., J. Cell Mol. Med., 6:329-340 (2002); U.S. Pat. No. 6,019,944. In these embodiments, each discrete surface location may comprise antibodies to immobilize one or more markers for detection at each location. Surfaces may alternatively comprise one or more discrete particles (e.g., microparticles or nanoparticles) immobilized at discrete locations of a surface, where the microparticles comprise antibodies to immobilize one or more markers for detection.


Analysis can be carried out in a variety of physical formats. For example, the use of microtiter plates or automation could be used to facilitate the processing of large numbers of test samples. Alternatively, single sample formats could be developed to facilitate a prognosis in a timely fashion.


Alternatively, the antibodies or nucleic acid probes of the invention can be applied to sections of patient biopsies immobilized on microscope slides. The resulting antibody staining or in situ hybridization pattern can be visualized using any one of a variety of light or fluorescent microscopic methods known in the art.


In another format, the various markers of the invention also provide reagents for in vivo imaging such as, for instance, the imaging of labeled regents that detect the nucleic acids or encoded proteins of the biomarkers of the invention. For in vivo imaging purposes, reagents that detect the presence of proteins encoded by IVIG-responsive relapsing-remitting multiple sclerosis (RRMS) biomarkers, such as antibodies, may be labeled using an appropriate marker, such as a fluorescent marker.


Preparations and Administration of IVIG

IVIG compositions comprising whole antibodies have been described for the treatment of certain autoimmune conditions. (See, e.g., U.S. Patent Publication US 2002/0114802, US 2003/0099635, and US 2002/0098182.) The IVIG compositions disclosed in these references include polyclonal antibodies.


Immunoglobulin preparations according to the present invention can be prepared from any suitable starting materials. For example, immunoglobulin preparations can be prepared from donor serum or monoclonal or recombinant immunoglobulins. In a typical example, blood is collected from healthy donors. Usually, the blood is collected from the same species of animal as the subject to which the immunoglobulin preparation will be administered (typically referred to as “homologous” immunoglobulins). The immunoglobulins are isolated from the blood by suitable procedures, such as, for example, Cohn fractionation, ultracentrifugation, electrophoretic preparation, ion exchange chromatography, affinity chromatography, immunoaffinity chromatography, polyethylene glycol fractionation, or the like. (See, e.g., Cohn et al., J. Am. Chem. Soc. 68:459-75 (1946); Oncley et al., J. Am. Chem. Soc. 71:541-50 (1949); Barundern et al., Vox Sang. 7:157-74 (1962); Koblet et al., Vox Sang. 13:93-102 (1967); U.S. Pat. Nos. 5,122,373 and 5,177,194; the disclosures of which are incorporated by reference herein.)


In certain embodiments, immunoglobulin is prepared from gamma globulin-containing products produced by the alcohol fractionation and/or ion exchange and affinity chromatography methods well known to those skilled in the art. Purified Cohn Fraction II is commonly used. The starting Cohn Fraction II paste is typically about 95 percent IgG and is comprised of the four IgG subtypes. The different subtypes are present in Fraction II in approximately the same ratio as they are found in the pooled human plasma from which they are obtained. The Fraction II is further purified before formulation into an administrable product. For example, the Fraction II paste can be dissolved in a cold purified aqueous alcohol solution and impurities removed via precipitation and filtration. Following the final filtration, the immunoglobulin suspension can be dialyzed or diafiltered (e.g., using ultrafiltration membranes having a nominal molecular weight limit of less than or equal to 100,000 daltons) to remove the alcohol. The solution can be concentrated or diluted to obtain the desired protein concentration and can be further purified by techniques well known to those skilled in the art.


Preparative steps can be used to enrich a particular isotype or subtype of immunoglobulin. For example, protein A, protein G or protein H sepharose chromatography can be used to enrich a mixture of immunoglobulins for IgG, or for specific IgG subtypes. (See generally Harlow and Lane, Using Antibodies, Cold Spring Harbor Laboratory Press (1999); Harlow and Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory Press (1988); U.S. Pat. No. 5,180,810.)


Commercial sources of immunoglobulins can also be used. Such sources include but are not limited to: Gammagard S/D® (Baxter Healthcare); BayRho-D® products (Bayer Biological); Gamimune N®, 5% (Bayer Biological); Gamimune N®, 5% Solvent/Detergent Treated (Bayer Biological); Gamimune N®, 10% (Bayer Biological); Sandoglobulin I.V.® (Novartis); Polygam S/D® (American Red Cross); Venoglobulin-S® 5% Solution Solvent Detergent Treated (Alpha Therapeutic); Venoglobulin-S® 10% Solution Solvent Detergent/Treated (Alpha Therapeutic); and VZIG® (American Red Cross). The commercial source of immunoglobulin preparation for use in the methods of the present invention is not critical.


An alternative approach is to use fragments of antibodies, such as Fc fragments of immunoglobulins. An Fc preparation comprises Fc fragments of immunoglobulins. The term “Fc fragment” refers to a portion of an immunoglobulin heavy chain constant region containing at least one heavy chain constant region domain (e.g., CH2, CH3 and/or CH4) or an antigenic portion thereof, but excluding the variable regions of the immunoglobulin. (As used herein, a variable region refers to region of the immunoglobulin that binds to an antigen, but excludes the CH1 and CL domains.) The Fc preparation can contain entire Fc fragments and/or portions thereof (e.g., one or more heavy chain constant region domains or portions thereof containing an epitope(s) bound by the rheumatoid factors). An Fc fragment optionally can include an immunoglobulin hinge region, a heavy chain CH1 domain, and/or a heavy chain CH1 domain joined to a light chain CL domain.


An Fc preparation includes Fc fragments of at least one Fc isotype and can contain a mixture of immunoglobulin Fc fragments of different isotypes (e.g., IgA, IgD, IgE, IgG and/or IgM). The Fc preparation also can contain predominantly (at least 60%, at least 75%, at least 90%, at least 95%, or at least 99%) Fc fragments from one immunoglobulin isotype, and can contain minor amounts of the other subtypes. For example, an Fc preparation can contain at least at least about 75%, at least about 90%, at least about 95%, or at least about 99% IgG Fc fragments. In addition, the Fc preparation can comprise a single IgG subtype or a mixture two or more of IgG Fc subtypes. Suitable IgG subtypes include IgG1, IgG2, IgG3, and IgG4. In a specific embodiment, the Fc preparation comprises IgG1 Fc fragments.


An Fc preparation is substantially free of F(ab′)2 fragments (i.e., heavy and light chain variable and first constant regions and a portion of the hinge region, which can be produced by pepsin digestion of the antibody molecule), Fab′ fragments (i.e., Fab′ fragments which can be generated by reducing the disulfide bridges of the F(ab′)2 fragment), or Fab fragments (i.e., which can be generated by treating the antibody molecule with papain and a reducing agent). In this context, “substantially free” means the Fc preparation contains less than about 30%, less than about 20%, less than about 10%, less than about 5%, or less than about 1% F(ab′)2, Fab′ or Fab fragments. In another embodiment, the Fc preparation contains Fc fragments which are essentially free of F(ab′)2, Fab′ or Fab fragments. The Fc preparations are typically substantially free of whole (i.e., full length) immunoglobulins. In this context, “substantially free” means less than about 25%, or less than about 10%, or less than about 5%, or less than about 2%, less than about 1% or are free of full length immunoglobulins.


Immunoglobulins can be cleaved at any suitable time during preparation to separate the Fc fragments from the Fab, F(ab′) and/or F(ab′)2 fragments, as applicable. A suitable enzyme for cleavage is, for example, papain, pepsin or plasmin. (See, e.g., Harlow and Lane, Using Antibodies, Cold Spring Harbor Laboratory Press (1999); Plan and Makula, Vox Sanguinis 28:157-75 (1975).) After cleavage, the Fc portions can be separated from the Fab F(ab′) and/or F(ab′)2 fragments by, for example, affinity chromatography, ion exchange chromatography, gel filtration, or the like. In a specific example, immunoglobulins are digested with papain to separate the Fc fragment from the Fab fragments. The digestion mixture is then subjected to cationic exchange chromatography to separate the Fc fragments from the Fab fragments.


Immunoglobulin or Fc fragments can also be prepared from hybridomas or other culture system which express monoclonal antibody. (See, e.g., Kohler and Milstein, Nature 256:495-97 (1975); Hagiwara and Yuasa, Hum. Antibodies Hybridomas 4:15-19 (1993); Kozbor et al., Immunology Today 4:72 (1983); Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96 (1985).) Human monoclonal antibodies can be obtained, for example, from human hybridomas (see, e.g., Cote et al., Proc. Natl. Acad. Sci. USA 80:2026-30 (1983)) or by transforming human B cells with EBV virus in vitro (see, e.g., Cole et al., supra). Monoclonal antibodies produced from hybridomas can be purified and the Fc fragments separated from the Fab, F(ab′) and/or F(ab)2 fragments as described herein or as known to the skilled artisan.


Immunoglobulin or Fc fragments also can be produced recombinantly, such as from eukaryotic cell culture systems. For example, an Fc fragment of an immunoglobulin can be recombinantly produced by Chinese hamster ovary (CHO) cells transfected with a vector containing a DNA sequence encoding the Fc fragment. Methods for creating such recombinant mammalian cells are described in, for example, Sambrook and Russell, Molecular Cloning, A Laboratory Manual, 3rd ed. (Cold Spring Harbor Laboratory Press (New York) 2001) and Ausubel et al., Short Protocols in Molecular Biology, 4th ed. (John Wiley & Sons, Inc. (New York) 1999) and are known to the skilled artisan. Recombinant Fc can also be produced in other mammalian cell lines, such as baby hamster kidney (BHK) cells. Methods of culturing recombinant cells to produce recombinant proteins are also known to the art.


A variety of other expression systems can be utilized to express recombinant immunoglobulins or Fc fragments. These include, but are not limited to, insect cell systems and microorganisms such as yeast or bacteria which have been transfected or transformed with an expression cassette encoding the desired Fc fragment. In certain embodiments, the microorganism optionally can be engineered to reproduce glycosylation patterns of mammalian or human Fc fragments.


In certain embodiments, further preparative steps can be used in order to render an immunoglobulin or Fc preparation safe for use in the methods according to the present invention. Such steps can include, for example, treatment with solvent/detergent, pasteurization and sterilization. Additional preparative steps may be used in order to ensure the safety of an Fc preparation. Such preparative steps can include, for example, enzymatic hydrolysis, chemical modification via reduction and alkylation, sulfonation, treatment with β-propiolactone, treatment at low pH, or the like. Descriptions of suitable methods can also be found in, for example, U.S. Pat. Nos. 4,608,254; 4,687,664; 4,640,834; 4,814,277; 5,864,016; 5,639,730 and 5,770,199; Romer et al., Vox Sang. 42:62-73 (1982); Romer et al., Vox Sang. 42:74-80 (1990); and Rutter, J. Neurosurg. Psychiat. 57 (Suppl.):2-5 (1994) (the disclosures of which are incorporated by reference herein).


An effective amount of an immunoglobulin or Fc preparation is administered to the subject generally by intravenous means. The term “effective amount” refers to an amount of an immunoglobulin or Fc preparation that results in an improvement or remediation of RRMS in the subject. An effective amount to be administered to the subject can be determined by a physician with consideration of individual differences in age, weight, disease severity and response to the therapy. In certain embodiments, an immunoglobulin or Fc preparation can be administered to a subject at about 5 mg/kilogram to about 500 mg/kilogram each day. In additional embodiments, an mmunoglobulin or Fc preparation can be administered in amounts of at least about 10 mg/kilogram, at last 15 mg/kilogram, at least 20 mg/kilogram, at least 25 mg/kilogram, at least 30 mg/kilogram or at least 50 mg/kilogram. In additional embodiments, an mmunoglobulin or Fc preparation can be administered to a subject at doses up to about 100 mg/kilogram, to about 150 mg/kilogram, to about 200 mg/kilogram, to about 250 mg/kilogram, to about 300 mg/kilogram, to about 400 mg/kilogram each day. In other embodiments, the doses of the mmunoglobulin or Fc preparation can be greater or less. Immunoglobulin or Fc preparations can be administered in one or more doses per day.


In accordance with the present invention, the time needed to complete a course of the treatment can be determined by a physician and may range from as short as one day to more than a month. In certain embodiments, a course of treatment can be from 1 to 6 months.


Compositions, Kits and Integrated Systems

The invention provides compositions, kits and integrated systems for practicing the assays described herein using antibodies specific for the polypeptides or nucleic acids specific for the polynucleotides of the invention.


Kits for carrying out the diagnostic assays of the invention typically include a probe that comprises an antibody or nucleic acid sequence that specifically binds to polypeptides or polynucleotides of the invention, and a label for detecting the presence of the probe. The kits may include several antibodies or polynucleotide sequences encoding polypeptides of the invention, e.g., a cocktail of antibodies that recognize the proteins encoded by the biomarkers of the invention.


Methods to Identify Compounds

A variety of methods may be used to identify compounds that prevent or treat multiple sclerosis, including relapsing-remitting multiple sclerosis (RRMS), Alzheimer's disease, or Parkinson's disease. Typically, an assay that provides a readily measured parameter is adapted to be performed in the wells of multi-well plates in order to facilitate the screening of members of a library of test compounds as described herein. Thus, in one embodiment, an appropriate number of cells, e.g., T cells, can be plated into the cells of a multi-well plate, and the effect of a test compound on the expression of an IVIG-responsive relapsing-remitting multiple sclerosis (RRMS) biomarker can be determined.


The compounds to be tested can be any small chemical compound, or a macromolecule, such as a protein, sugar, nucleic acid or lipid. Typically, test compounds will be small chemical molecules and peptides. Essentially any chemical compound can be used as a test compound in this aspect of the invention, although most often compounds that can be dissolved in aqueous or organic (especially DMSO-based) solutions are used. The assays are designed to screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays). It will be appreciated that there are many suppliers of chemical compounds, including Sigma (St. Louis, Mo.), Aldrich (St. Louis, Mo.), Sigma-Aldrich (St. Louis, Mo.), Fluka Chemika-Biochemica Analytika (Buchs Switzerland) and the like.


In one preferred embodiment, high throughput screening methods are used which involve providing a combinatorial chemical or peptide library containing a large number of potential therapeutic compounds. Such “combinatorial chemical libraries” or “ligand libraries” are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. In this instance, such compounds are screened for their ability to reduce or increase the expression of the relapsing-remitting multiple sclerosis (RRMS) biomarkers of the invention.


A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical “building blocks” such as reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.


Preparation and screening of combinatorial chemical libraries are well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Pat. No. 5,010,175, Furka, Int. J. Pept. Prot. Res., 37:487-493 (1991) and Houghton et al., Nature, 354:84-88 (1991)). Other chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to: peptoids (e.g., PCT Publication No. WO 91/19735), encoded peptides (e.g., PCT Publication No. WO 93/20242), random bio-oligomers (e.g., PCT Publication No. WO 92/00091), benzodiazepines (e.g., U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., PNAS USA, 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara et al., J. Amer. Chem. Soc., 114:6568 (1992)), nonpeptidal peptidomimetics with glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc., 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al., J. Amer. Chem. Soc., 116:2661 (1994)), oligocarbamates (Cho et al., Science, 261:1303 (1993)), and/or peptidyl phosphonates (Campbell et al., J. Org. Chem., 59:658 (1994)), nucleic acid libraries (see Ausubel, Berger and Sambrook, all supra), peptide nucleic acid libraries (see, e.g., U.S. Pat. No. 5,539,083), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology, 14(3):309-314 (1996) and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., Science, 274:1520-1522 (1996) and U.S. Pat. No. 5,593,853), small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN, January 18, page 33 (1993); isoprenoids, U.S. Pat. No. 5,569,588; thiazolidinones and metathiazanones, U.S. Pat. No. 5,549,974; pyrrolidines, U.S. Pat. Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Pat. No. 5,506,337; benzodiazepines, U.S. Pat. No. 5,288,514, and the like).


Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville Ky., Symphony, Rainin, Woburn, Mass., 433A Applied Biosystems, Foster City, Calif., 9050 Plus, Millipore, Bedford, Mass.). In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, Mo., ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, Pa., Martek Biosciences, Columbia, Md., etc.).


In the high throughput assays of the invention, it is possible to screen up to several thousand different modulators or ligands in a single day. In particular, each well of a microtiter plate can be used to run a separate assay against a selected potential modulator, or, if concentration or incubation time effects are to be observed, every 5-10 wells can test a single modulator. Thus, a single standard microtiter plate can assay about 96 modulators. If 1536 well plates are used, then a single plate can easily assay from about 100- about 1500 different compounds. It is possible to assay many plates per day; assay screens for up to about 6,000, 20,000, 50,000, or 100,000 or more different compounds is possible using the integrated systems of the invention.


Methods to Inhibit or Activate Biomarker Proteins or Biomarker Receptor Function Using Antibodies

Because the biomarkers of the present invention are overexpressed or underexpressed in response to IVIG treatment of multiple sclerosis, Alzheimer's disease, or Parkinson's disease, the biomarker proteins or their cellular receptors, may serve as targets for multiple sclerosis therapy using antibodies. In the case of, for instance, of chemokines, such as CXCL5, CXCL3, and CCL13, whose expression is decreased upon treatment of RRMS with IVIG, antibodies that bind to and inactivate these chemokines or their receptors can be used in the treatment of multiple sclerosis, Alzheimer's disease, or Parkinson's disease. Alternatively, in the case of chemokines, such as XCL2, whose expression is increased upon IVIG treatment, antibodies may be generated which bind to and activate XCL2 receptors, thus mimicking the effect of XCL2 binding.


The antibodies described above may be formulated into pharmaceutical compositions comprising a carrier suitable for the desired delivery method. Suitable carriers include any material which when combined with the antibody does not interfere with function of the antibody and is non-reactive with the subject's immune systems. Examples include, but are not limited to, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Remington's Pharmaceutical Sciences, 20th ed., 2003).


Antibody formulations may be administered via any route capable of delivering the antibodies to an individual suffering from multiple sclerosis. Potentially effective routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intradermal, and the like. One preferred route of administration is by intravenous injection. A preferred formulation for intravenous injection comprises the antibodies in a solution of preserved bacteriostatic water, sterile unpreserved water, and/or diluted in polyvinylchloride or polyethylene bags containing 0.9% sterile Sodium Chloride for Injection, USP. The antibody preparation may be lyophilized and stored as a sterile powder, preferably under vacuum, and then reconstituted in bacteriostatic water containing, for example, benzyl alcohol preservative, or in sterile water prior to injection.


Treatment will generally involve the repeated administration of antibody preparations via an acceptable route of administration such as intravenous injection (IV), at an effective dose. Dosages will depend upon various factors generally appreciated by those of skill in the art, including without limitation the type, stage, the severity, grade, or stage of multiple sclerosis, the binding affinity and half life of the antibody used, the degree of biomarker or receptor expression in the patient, the desired steady-state antibody concentration level, frequency of treatment, and the influence of any other agents used in combination with the treatment method of the invention. Typical daily doses may range from about 0.1 to 100 mg/kg. Doses in the range of 10-500 mg mAb per week may be effective and well tolerated, although even higher weekly doses may be appropriate and/or well tolerated. The principal determining factor in defining the appropriate dose is the amount of a particular antibody necessary to be therapeutically effective in a particular context. Repeated administrations may be required in order to achieve longer lasting remission in RRMS. Initial loading doses may be higher. The initial loading dose may be administered as an infusion. Periodic maintenance doses may be administered similarly, provided the initial dose is well tolerated.


Methods to Inhibit Marker Protein Expression Using Nucleic Acids

A variety of nucleic acids, such as antisense nucleic acids, siRNAs or ribozymes, may be used to inhibit the function of the markers of this invention. Ribozymes that cleave mRNA at site-specific recognition sequences can be used to destroy target mRNAs, particularly through the use of hammerhead ribozymes. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. Preferably, the target mRNA has the following sequence of two bases: 5′-UG-3′. The construction and production of hammerhead ribozymes is well known in the art.


Gene targeting ribozymes necessarily contain a hybridizing region complementary to two regions, each of at least 5 and preferably each 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 contiguous nucleotides in length of a target mRNA. In addition, ribozymes possess highly specific endoribonuclease activity, which autocatalytically cleaves the target sense mRNA.


With regard to antisense, siRNA or ribozyme oligonucleotides, phosphorothioate oligonucleotides can be used. Modifications of the phosphodiester linkage as well as of the heterocycle or the sugar may provide an increase in efficiency. Phosphorothioate is used to modify the phosphodiester linkage. An N3′-P5′ phosphoramidate linkage has been described as stabilizing oligonucleotides to nucleases and increasing the binding to RNA. Peptide nucleic acid (PNA) linkage is a complete replacement of the ribose and phosphodiester backbone and is stable to nucleases, increases the binding affinity to RNA, and does not allow cleavage by RNAse H. Its basic structure is also amenable to modifications that may allow its optimization as an antisense component. With respect to modifications of the heterocycle, certain heterocycle modifications have proven to augment antisense effects without interfering with RNAse H activity. An example of such modification is C-5 thiazole modification. Finally, modification of the sugar may also be considered. 2′-O-propyl and 2′-methoxyethoxy ribose modifications stabilize oligonucleotides to nucleases in cell culture and in vivo.


Inhibitory oligonucleotides can be delivered to a cell by direct transfection or transfection and expression via an expression vector. Appropriate expression vectors include mammalian expression vectors and viral vectors, into which has been cloned an inhibitory oligonucleotide with the appropriate regulatory sequences including a promoter to result in expression of the antisense RNA in a host cell. Suitable promoters can be constitutive or development-specific promoters. Transfection delivery can be achieved by liposomal transfection reagents, known in the art (e.g., Xtreme transfection reagent, Roche, Alameda, Calif.; Lipofectamine formulations, Invitrogen, Carlsbad, Calif.). Delivery mediated by cationic liposomes, by retroviral vectors and direct delivery are efficient. Another possible delivery mode is targeting using antibody to cell surface markers for the target cells.


For transfection, a composition comprising one or more nucleic acid molecules (within or without vectors) can comprise a delivery vehicle, including liposomes, for administration to a subject, carriers and diluents and their salts, and/or can be present in pharmaceutically acceptable formulations. Methods for the delivery of nucleic acid molecules are described, for example, in Gilmore, et al., Curr Drug Delivery (2006) 3:147-5 and Patil, et al., AAPS Journal (2005) 7:E61-E77, each of which are incorporated herein by reference. Delivery of siRNA molecules is also described in several U.S. Patent Publications, including for example, 2006/0019912; 2006/0014289; 2005/0239687; 2005/0222064; and 2004/0204377, the disclosures of each of which are hereby incorporated herein by reference. Nucleic acid molecules can be administered to cells by a variety of methods known to those of skill in the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, by electroporation, or by incorporation into other vehicles, including biodegradable polymers, hydrogels, cyclodextrins (see, for example Gonzalez et al., 1999, Bioconjugate Chem., 10, 1068-1074; Wang et al., International PCT publication Nos. WO 03/47518 and WO 03/46185), poly(lactic-co-glycolic)acid (PLGA) and PLCA microspheres (see for example U.S. Pat. No. 6,447,796 and US Patent Application Publication No. 2002/130430), biodegradable nanocapsules, and bioadhesive microspheres, or by proteinaceous vectors (O'Hare and Normand, International PCT Publication No. WO 00/53722). In another embodiment, the nucleic acid molecules of the invention can also be formulated or complexed with polyethyleneimine and derivatives thereof, such as polyethyleneimine-polyethyleneglycol-N-acetylgalactosamine (PEI-PEG-GAL) or polyethyleneimine-polyethyleneglycol-tri-N-acetylgalactosamine (PEI-PEG-triGAL) derivatives.


Examples of liposomal transfection reagents of use with this invention include, for example: CellFectin, 1:1.5 (M/M) liposome formulation of the cationic lipid N,NI,NII,NIII-tetramethyl-N,NI,NII,NIII-tetrapalmit-y-spermine and dioleoyl phosphatidylethanolamine (DOPE) (GIBCO BRL); Cytofectin GSV, 2:1 (M/M) liposome formulation of a cationic lipid and DOPE (Glen Research); DOTAP (N-[1-(2,3-dioleoyloxy)-N,N,N-tri-methyl-ammoniummethylsulfate) (Boehringer Manheim); Lipofectamine, 3:1 (M/M) liposome formulation of the polycationic lipid DOSPA and the neutral lipid DOPE (GIBCO BRL); and (5) siPORT (Ambion); HiPerfect (Qiagen); X-treme GENE (Roche); RNAicarrier (Epoch Biolabs) and TransPass (New England Biolabs).


In some embodiments, antisense, siRNA, or ribozyme sequences are delivered into the cell via a mammalian expression vector. For example, mammalian expression vectors suitable for siRNA expression are commercially available, for example, from Ambion (e.g., pSilencer vectors), Austin, Tex.; Promega (e.g., GeneClip, siSTRIKE, SiLentGene), Madison, Wis.; Invitrogen, Carlsbad, Calif.; InvivoGen, San Diego, Calif.; and Imgenex, San Diego, Calif. Typically, expression vectors for transcribing siRNA molecules will have a U6 promoter.


In some embodiments, antisense, siRNA, or ribozyme sequences are delivered into cells via a viral expression vector. Viral vectors suitable for delivering such molecules to cells include adenoviral vectors, adeno-associated vectors, and retroviral vectors (including lentiviral vectors). For example, viral vectors developed for delivering and expressing siRNA oligonucleotides are commercially available from, for example, GeneDetect, Bradenton, Fla.; Ambion, Austin, Tex.; Invitrogen, Carlsbad, Calif.; Open BioSystems, Huntsville, Ala.; and Imgenex, San Diego, Calif.


EXAMPLES

The following examples are offered to illustrate, but not to limit the claimed invention.


Example 1
Methods and Materials
Patients Involved in the Study

10 consecutive patients with acute MS relapse as rated on McDonald's criteria (McDonald W. I. et al., Ann Neurol, 50:121-27 (2001)) were included. The diagnosis of definite MS was based on McDonald's criteria (Kurtzke J. F., Neurology, 33:1444-1452 (1983)). The EDSS (Dastidar P. et al., Med Biol Eng Comput, 37:104-7 (1999)) and volumetric brain MRI were evaluated at baseline (at relapse immediately before treatment) and 3 weeks after completion of IVIG therapy (Elovaara I. et al., Intravenous Immunoglobulin is effective and well tolerated in the treatment of MS Relapse, Manuscript submitted). The primary outcome measure of the study was a change in the EDSS score from baseline to week 3 after the start of IVIG therapy on day 21. Secondary outcome measures were changes in the volumes of T1-, T2-, Flair- and gadolinium (Gd)-enhanced lesions, the number of Gd-enhanced lesions, and brain volumes (Elovaara I. et al., Intravenous Immunoglobulin is effective and well tolerated in the treatment of MS Relapse, Manuscript submitted; Dastidar P. et al., Med Biol Eng Comput, 37:104-7 (1999)). Patients' characteristics are listed in Table 1. Before entry into the study each patient signed a form of consent. The study was approved by the Ethics Committee of Tampere University, Tampere, Finland.


Patients who received treatment with immunosuppressants in the preceding nine months or patients who received corticosteroids in the preceding 8 weeks were excluded. All patients received 0.4 g/kg/day Endobulin (Baxter AG, Vienna, Austria) for 5 days. Clinical evaluation of the patients was done before treatment with IVIG, 1 day after completion of therapy on day 6 as well as 3 weeks after the beginning of therapy on day 21. Clinical evaluation included neurological examination, determination of the EDSS score, arm index and ambulation index. A control group of five patients received standard treatment of IVMP 100 mg/day for 3 days.









TABLE 1







Characteristics of patients included in the study











IVMP Patients


Characteristics
IVIG Patients
(controls)





Number of patients
10
5


Age (years, average ± SD)

40 ± 10.6

35.3 ± 8.8 


Sex (male vs female)
3 vs 7
0 vs 5


Disease duration (years,
5.6 ± 3.5
5.2 ± 3.6


average ± SD)


Time current vs previous
17.6 ± 21.0

5 ± 3.2



relapse (months, average ± SD)


EDSS score during remission
 2.3 ± 0.95
3.2 ± 2.4


(average ± SD)


EDSS score at acute relapse
3.7 ± 1.1
4.2 ± 2.0


(average ± SD)









MRI Analysis

Brain MRI examinations were done using a 1.5 Tesla MRI unit (Philips Gyroscan ACS NT Intera, Best, Netherlands) as described (Kurtzke J. F., Neurology, 33:1444-1452 (1983)). The MRI protocol included sagittal T1 localizer, axial fluid attenuated inversion recovery (FLAIR), T1 magnetization transfer contrast (MTC), T1 spin echo (SE), T2 turbo spin echo (TSE) (3 mm thick and 0 mm gap) and gadolinium-enhanced T1 MTC sequences. T1 axial SE (3 mm thick and 0 mm gap) and axial FLAIR (5 mm thick and 1 mm gap) sequences were used for volumetric analyses of plaques. Computerized semiautomatic segmentation and volumetric analyses were done using Anatomatic software operating in a Windows environment. The inter- and intra-observer variability of the volumetric results has been reported elsewhere (Dastidar P. et al., Med Biol Eng Comput, 37:104-7 (1999); Heinonen T. et al., J Med Eng Technol, 22:173-8 (1998)). The volumetric accuracy of the Anatomatic program was analyzed as described (Dastidar P. et al., Med Biol Eng Comput, 37:104-7 (1999)). Good head repositioning was controlled using the same head coil, the same anatomic locations and the same pack of images in different MRI sequences. Whole spinal cords were scanned separating into upper and lower parts. The same scanner was used for all MRI examinations.


Preparation of RNA Samples

Blood samples were obtained using Vacutainer CPTTM Cell Preparation Tubes (Becton Dickinson, Franklin Lakes, N.J.). Peripheral blood mononuclear cells (PBMC) were separated from peripheral blood within 60 min after blood sampling using density gradient (Lymphoprep, Nycomed, Roskilde, DK) centrifugation according to the manufacturer's protocol. The cells were separated into T cells and non-T cells using a mixture of non-stimulating anti-CD4+ and anti-CD8+ magnetic Dynabeads (Dynal Biotech, Oslo, N) at 4° C. Cell pellets obtained from 5×106 cells were thoroughly mixed with 1 ml TRIzol (Invitrogen, Carlsbad, Calif.). Aliquots were frozen and stored at −80° C. until further processing. Total RNA was isolated according to the manufacturer's protocol. RNA pellets were dissolved in nuclease-free water (Invitrogen, Carlsbad, Calif.) and stored at −80° C.


Microarray Analysis

The HU-133A Genechip (Affymetrix, Santa Clara, Calif.) containing approximately 33,000 human genes was used. 5 μg of total RNA were transcribed, labelled and hybridized in vitro on the array according to the manufacturer's protocol (see Affymetrix.com). The quality of the RNA was checked before in vitro processing using a Bioanalyzer (Agilent Technologies, Palo Alto, Calif.).


Statistical Analysis of Gene Expression Data

Statistical analysis of gene expression data was done at the Microarray Facility Tübingen, Eberhard-Karls-University Tübingen, Germany. The Affymetrix CHP files were imported into Genespring 7.1 for statistical data analysis. The signals of each array were divided by the median of all signals of the arrays from time point zero. Subsequently, a “per-gene” normalization was done by dividing all signals of a gene by the median signal of this gene. Thus the signals of each gene start at time point zero around 1 and display values greater than 1 upon increase and vice versa. The signals were log-transformed, and fold change and p-values (Welch's t-test) (Han T. et al., BMC bioinformatics, 7:9 (2006)) were calculated for each gene in pair-wise comparisons. Probe sets with a fold change of more than 2 and a p-value of less than 0.05 were identified in volcano plots and called statistically significant.


Real Time Polymerase Chain Reaction

The gene expression data obtained by microarray analysis for four representative genes were confirmed by quantitative real-time polymerase chain reaction (PCR). For this purpose, 1 μg of total T cell RNA was used for reverse transcription into cDNA according to the manufacturer's protocol (MBI Fermentas, Burlington, Canada). For each sample to be analyzed, 100 mg cDNA were dissolved in 5 μl nuclease-free water (Invitrogen, Carlsbad, Calif.) and quantitatively analyzed using different TaqMan Assays-on-Demand and the ABPrism 7000 (both from Applied Biosystems, Foster City, Calif.). Data were analyzed using the ̂̂CT-method, which is commonly used for relative quantification (Livak K. J. and Schmittgen T. D., Methods, 25:402-40 (2001)). For normalization of expression data human glyceraldhyde-3 phosphate dehydrogenase was included as a housekeeping gene. For verification of normalization, a second housekeeping gene, β-2 microglobulin, was used as a control (data not shown).


Example 2
Clinical Outcome of Treatment of Subjects with IVIG

Analysis of the clinical outcome of the study showed that a 5-day course of IVIG therapy resulted in a significant reduction of the EDSS score in all 10 patients (FIG. 1). The effectiveness of the IVIG therapy was supported by an improvement of most MRI variables (Table 2). Although similar effects were observed in the control group that received standard treatment with IVMP (Table 2), the changes in MRI variables in the control group did not reach statistical significance. Treatment with IVIG was safe and well-tolerated.









TABLE 2





MRI analysis of brain abnormalities before


and after treatment with IVIG and IVMP




















Before IVIG
After IVIG




Lesion vol cm3
Lesion vol cm3



Parameter
mean ± SE
mean ± SE







T1
1.76 ± 0.55
1.73 ± 0.59 



T2
5.49 ± 1.09
5.08 ± 1.03* 



Flair
15.76 ± 2.23 
14.09 ± 1.94** 



Gd-enhanced
0.32 ± 0.27
0.21 ± 0.24**



Brain volume
1124.94 ± 40.61 
1120.31 ± 40.72  



Gd + lesion N
2.83 ± 0.71
2.00 ± 0.60**



EDSS score
3.8 ± 0.3
2.6 ± 0.2**








Before IVMP
After IVMP




Lesion vol cm3
Lesion vol cm3



Parameter
mean ± SE
mean ± SE







T1
1.41 ± 0.60
1.64 ± 0.84



T2
11.15 ± 4.59 
9.83 ± 4.17



Flair
24.37 ± 8.19 
23.18 ± 8.05 



Gd-enhanced
0.70 ± 0.39
0.63 ± 0.37



Brain volume
1056.32 ± 47.78 
1045.07 ± 52.53 



Gd + lesion N
3.0 ± 1.5
2.7 ± 1.4



EDSS score
4.2 ± 2.0
3.3 ± 2.4







*p < 0.05;



**p < 0.01



EDSS = Kurtzke's Expanded Disability Status Scale



Gd = Gadolinium-enhanced lesion volumes






Example 3
Treatment with IVIG does not Significantly Alter the Cellular Composition of Cells Obtained for Isolation of RNA

PBMCs obtained from peripheral blood were separated into T cells and non-T cells using a mixture of non-stimulating anti-CD4+ and anti-CD8+ magnetic Dynabeads at 4° C. This procedure was chosen to prevent stimulation of T cells during cell separation. To ensure that potential differences in gene expression profiles are not due to differences in the cellular composition of the different samples, we compared the expression of genes that encode CD3, CD4, CD8 and CD14 between samples obtained at different time points for each patient. Our results show that the cellular composition of the samples obtained from each patient on different days is similar (FIGS. 2A, 2B). No statistically significant differences were observed.


Example 4
Analysis of Gene Expression Data Obtained from Patients Treated with IVIG

Statistic analysis of gene expression data included all results obtained from microarray analysis done at three different time points (before treatment, 1 day and 21 days after beginning of treatment) and included all 10 patients treated with IVIG. The analysis revealed that 360 genes in peripheral T cells were significantly changed in expression during the course of IVIG treatment. The expression of 91 of these genes changed between day 0 and day 6, the expression of 147 genes changed between day 0 and day 21, and the expression of 122 genes changed between day 6 and day 21.


Statistical analysis of the control-patient group treated with IVMP showed differential expression of 583 genes, with the majority (218 genes) being changed between day 0 and day 6.


Tables 3a-3d present the 20 most significant changes in gene expression observed in patients treated with IVIG and IVMP.









TABLE 3a







10 genes that were most extensively up-regulated in peripheral T cells of patients during IVIG therapy











Fold Change
Time Point
Gene Title
Gene Symbol
Ref Seq ID














4.37
21 vs 6
Transcriptional regulating factor 1
TRERF1
NM_018415


4.26
21 vs 0
chromosome 19 open reading frame 28
C19orf28
NM_174983


4
6 vs 0
cyclin-dependent kinase inhibitor 1C (p57, Kip2)
CDKN1C
NM_000076


3.86
21 vs 6
breast cancer 1, early onset
BRCA1
NM_007294


3.83
6 vs 0
Clone 23555 mRNA sequence




3.54
21 vs 6





3.52
21 vs 6
SH3-domain binding protein 4
SH3BP4
NM_014521


3.5
6 vs 0
collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)
COL3A1
NM_000090


3.41
21 vs 0
UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 2
B3GALT2
NM_003783


3.36
21 vs 6
glycosylphosphatidylinositol specific phospholipase D1
GPLD1
NM_001503
















TABLE 3b







10 genes that were most extensively down-regulated in peripheral T cells of patients during IVIG therapy











Fold Change
Time Point
Gene Title
Gene Symbol
Ref Seq ID














−4.82
6 vs 0
myotubularin related protein 7
MTMR7
NM_004686


−3.96
6 vs 0
transmembrane protein with EGF-like and two follistatin-like domains 1
TMEFF1
NM_003692


−3.9
21 vs 0
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13 kDa
NDUFA5
NM_005000


−3.89
21 vs 6
collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)
COL3A1
NM_000090


−3.59
21 vs 6
FAT tumor suppressor homolog 2 (Drosophila)
FAT2
NM_001447


−3.57
21 vs 6
DNA damage repair and recombination protein RAD52 pseudogene




−3.34
21 vs 0
chemokine (C-X-C motif) ligand 5
CXCL5
NM_002994


−3.34
21 vs 0
mesenchymal stem cell protein DSC43
LOC51333
NM_016643


−3.26
21 vs 6
natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)
NPR3
NM_000908


−3.22
21 vs 6
early growth response 2 (Krox-20 homolog, Drosophila)
EGR2
NM_000399





Table 3a/b: Timepoints: 6 vs) represents genes with a different expression between day 0 and day 6; 21 vs 0 represents genes with a differential expression between day 21 and day 0; and 21 vs 6 refers to genes with a change in expression between day 6 and day 21.













TABLE 3c







10 genes that were most extensively up-regulated in peripheral T cells of patients during IVMP therapy











Fold Change
Time Point
Gene Title
Gene Symbol
Ref Seq ID














15.94
21 vs 6
leukocyte immunoglobulin-like receptor, subfamily A (without TM domain), member 4
ILT7
NM_012276


9.26
21 vs 6
prostaglandin D2 synthase 21 kDa (brain)
PTGDS
NM_000954


8.91
21 vs 6
Periostin, osteoblast specific factor
POSTN
NM_006475


8.64
21 vs 6
wingless-type MMTV integration site family, member 5A
WNT5A
NM_003392


8.31
21 vs 6
prostaglandin D2 synthase 21 kDa (brain) /// prostaglandin D2 synthase 21 kDa (brain)
PTGDS
NM_000954


7.94
21 vs 6
cyclin-dependent kinase inhibitor 1C (p57, Kip2)
CDKN1C
NM_000076


7.41
21 vs 6
cyclin-dependent kinase inhibitor 1C (p57, Kip2)
CDKN1C
NM_000076


7.33
6 vs 0
defensin, alpha 1, myeloid-related sequence /// defensin, alpha 3, neutrophil-specific
DEFA1 ///
NM_005217


6.48
6 vs 0
POU domain, class 1, transcription factor 1 (Pit1, growth hormone factor 1)
POU1F1
NM_000306


6
6 vs 0
cadherin 13, H-cadherin (heart)
CDH13
NM_001257
















TABLE 3d







10 genes that were most extensively down-regulated in peripheral blood cells of patients during IVMP therapy











Fold Change
Time Point
Gene Title
Gene Symbol
Ref Seq ID














−11.52
6 vs 0
leukocyte immunoglobulin-like receptor, subfamily A (without TM domain), member 4
ILT7
NM_012276


−9.73
6 vs 0
tripartite motif-containing 58
TRIM58
NM_015431


−9.11
21 vs 6
Zwilch
FLJ10036
NM_017975


−8.24
21 vs 0
Integrin, alpha 1
PELO
NM_015946


−7.86
21 vs 0
zinc finger protein 6 (CMPX1)
ZNF6
NM_021998


−7.36
21 vs 6
intersectin 1 (SH3 domain protein)
ITSN1
NM_003024


−7.3
21 vs 6
phorbol-12-myristate-13-acetate-induced protein 1
PMA1P1
NM_021127


−7.28
21 vs 0
transmembrane protein 47
TMEM47
NM_031442


−6.84
6 vs 0





−6.82
6 vs 0
prostaglandin D2 synthase 21 kDa (brain)
PTGDS
NM_000954





Table 3c/d: Timepoints: 6 vs 0 represents genes with a differential expression between day 0 and day 6; 21 vs 0 represents genes with a differential expression between day 21 and day 0; and 21 vs 6 refers to genes with a change in expression between day 6 and day 21.






Genes mostly affected in expression by IVIG treatment include genes that encode proteins that regulate cell cycle (transcriptional regulating factor 1, TRERF1; cyclin-dependent kinase inhibitor 1C, CDKN1C; breast cancer 1, BRCA 1; SH3-domain binding protein 4, SH3BP4); but also proteins that regulate inflammation [chemokine (C-X-C motif) ligand 5, CXCL5], cell adhesion (FAT tumor suppressor homolog 2, FAT2) or cell differentiation (early growth response, EGR2). Other genes included in the list encode proteins that are involved in electron transport, phosphorylation, glycosylation, skeletal development or proteins that have not yet been defined in function.


Other genes of interest that were differentially regulated upon IVIG treatment encoded proteins involved in immune regulation such as interleukin 11 (IL11), chemokine (C motif) ligand 2 (XCL2), prostaglandin E receptor 4 (PTGER4), caspase 2 (CASP2), killer cell immunoglobin-like receptor, two domains, short cytoplasmic tail 1 (KIR2DS1), mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2), chemokine (C-X-C motif) ligand 5 (CXCL5), chemokine (C-X-C motif) ligand 3 (CXCL3), C-type lectin domain family 4, member E (CLEC4E), chemokine (C-C motif) ligand 13 (CCL13) and alpha-fetoprotein (AFP) (see Table 4).









TABLE 4







Genes differentially expressed under IVIG treatment that encode proteins involved in immune regulation


(note that accession number for CLEC4E should be NM_014358, not NM_013458 in Table 4).











Fold Change
Time Point
Gene Title
Gene Symbol
Ref Seq ID














2.00
6 vs 0
interleukin 11
IL11
NM_000641


2.38
21 vs 0
chemokine (C motif) ligand 2
XCL2
NM_003175


2.28
21 vs 0
prostaglandin E receptor 4 (subtype EP4)
PTGER4
NM_000958


2.02
21 vs 0
caspase 2, apoptosis-related cysteine protease (neural precursor cell expressed)
CASP2
NM_032982


2.37
21 vs 6
killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 1
KIR2DS1
NM_014512


2.35
21 vs 0
mitogen-activated protein kinase kinase kinase kinase 2
MAP4K2
NM_004579


−3.34
21 vs 0
chemokine (C-X-C motif) ligand 5
CXCL5
NM_002994


−2.46
21 vs 0
chemokine (C-X-C motif) ligand 3
CXCL3
NM_002090


−2.26
21 vs 0
C-type lectin domain family 4, member E
CLEC4E
NM_013458


−3.06
21 vs 6
chemokine (C-C motif) ligand 13
CCL13
NM_005408


−2.53
21 vs 6
alpha-fetoprotein
AFP
NM_001134





Table 4: Timepoints: 6 vs 0 represents genes with a differential expression between day 0 and day 6; 21 vs 0 represents genes with a differential expression between day 21 and day 0; and 21 vs 6 refers to genes with a change in expression between day 6 and day 21.






Example 5
Comparison of Gene Expression Data Obtained from Patients Treated with IVIG and Patients Treated with IVMP

When gene expression data obtained from patients treated with IVIG were compared with gene expression data obtained from patients treated with IVMP, 17 genes were identified that significantly changed in expression in both groups of patients (Table 5). Most of the proteins that are encoded by these 17 genes regulate cell cycle (HABP4, STAT1, CDKN1, SH3BP4 and ORC1L). These results indicate that cell cycle regulation might be a mechanism of therapeutic effectiveness that both drugs have in common. The other genes that were found to be differentially regulated were only found in one of the two treatment groups and, therefore, reflect mechanisms of action that are specific for only one of the two drugs.









TABLE 5







Intersection of genes differentially expressed under both IVIG treatment and IVMP treatment










Gene Title
Gene Symbol
GO Biological Process Description
Ref Seq ID





cadherin 5, type 2, VE-cadherin
CDH5
cell adhesion /// homophilic cell adhesion
NM_001795


(vascular epithelium)


hyaluronan binding protein 4
HABP4

NM_014282


signal transducer and activator
STAT1
regulation of cell cycle /// transcription /// regulation of transcription, DNA-
NM_007315


of transcription 1, 91 kDa

dependent /// transcription from RNA polymerase II promoter /// caspase




activation /// intracellular signaling cascade /// I-kappaB kinase/NF-kappaB




cascade /// tyrosine phosp


cyclin-dependent kinase
CDKN1C
regulation of cyclin dependent protein kinase activity /// G1 phase of
NM_000076


inhibitor 1C (p57, Kip2)

mitotic cell cycle /// cell cycle /// cell cycle arrest /// negative regulation of




cell proliferation /// negative regulation of cell cycle


actinin, alpha 2
ACTN2

NM_001103


histone 1, H2bh
HIST1H2BH
nucleosome assembly /// nucleosome assembly /// chromosome
NM_003524




organization and biogenesis (sensu Eukaryota)


SH3-domain binding protein 4
SH3BP4
endocytosis /// cell cycle
NM_014521


origin recognition complex,
ORC1L
DNA replication /// DNA replication initiation
NM_004153


subunit 1-like (yeast)


KIAA0644 gene product
KIAA0644

NM_014817


Heparan sulfate (glucosamine)
HS3ST1

NM_005114


3-O-sulfotransferase 1


ropporin, rhophilin associated
ROPN1B
cytokinesis /// signal transduction /// Rho protein signal transduction ///
NM_001012337


protein 1B

spermatogenesis /// acrosome reaction /// fusion of sperm to egg plasma




membrane /// cell-cell adhesion /// sperm motility


outer dense fiber of sperm
ODF2

NM_002540


tails 2







unknown protein




1-acylglycerol-3-phosphate
AGPAT7
metabolism
NM_153613


O-acetyltransferase 7


zinc finger protein 804A
ZNF804A

NM_194250


TRAF-type zinc finger domain
TRAFD1

NM_006700


containing 1









Example 6
Confirmation of Gene Expression Data Obtained with Microarray Analysis by Real-Time PCR

Data obtained with microarray analysis were confirmed by quantitative real-time PCR. For this purpose, 4 genes were selected that encoded proteins known to regulate immune regulation (see Table 4): PTGER4, CXCL5, IL11 and CASP2. Results of real-time PCR are shown in FIG. 3A-D. Results obtained with real-time PCR confirm the data obtained with microarray analysis (FIG. 3A-D, and Tables 3 and 4).


Discussion

The present study was designed to identify genes that are differentially expressed in peripheral T cells of patients with RRMS in acute exacerbation after treatment with IVIG. Peripheral T cells (CD4+ and CD8+ T cells) have been shown to be involved in the disease pathogenesis, in particular in the process of demyelination and axonal damage (Stinissen P. et al., Mult Scler., 4:203-11 (1998)). This is supported by a recent study in which a number of genes in peripheral blood cells of MS patients were shown to be differentially expressed compared with those in healthy twins (Särkijärvi S. et al., BMC Medical Genetics, 7:11 (2006)).


Statistical data analysis revealed 360 genes that were at least 2-fold up- or down-regulated in all patients following IVIG treatment. The effect of IVIG treatment was most prominent at 21 days after the beginning of IVIG treatment. Genes mostly affected in expression by IVIG treatment included genes that encode proteins that regulate cell cycle, signal transduction, transcription, inflammation, cell-cell interactions and apoptosis. These processes are likely to be involved in the pathogenesis of MS. When we compared the effects on gene expression caused by IVIG treatment with the effects caused by IVMP treatment, we found 583 genes to be differentially regulated upon IVMP treatment. The majority of these genes was altered in expression at day 6 compared to day 0 after the beginning of therapy. These results indicate that IVMP might be a faster acting drug than IVIG.


We identified 17 genes that were significantly changed in expression in both groups of patients. Most of the proteins that are encoded by these 17 genes regulate cell cycle. These results strongly suggest that the regulation of cell proliferation, in particular the regulation of T cell proliferation, is a mechanism of action that both drugs have in common. These results agree with published data that indicate that IVIG suppresses the proliferation of activated T cells when given to patients with MS (Andersson U. et al., Immunol Rev, 139:21-42 (1994); Bayry J. et al., Intravenous immunoglobulin in autoimmune disorders: An insight into the immunregulatory mechanisms).


An important mechanism of action of IVIG in MS seems to be the modulation of chemokine expression. This conclusion is based on our findings that a number of genes that encode chemokines (CXCL3, CXCL5, CCL13 and XCL2) are differentially expressed upon IVIG treatment. These changes in gene expression were not found in patients treated with IVMP. Therefore, we believe that the modulation of chemokine expression in peripheral T cells might be a specific mechanism of action of IVIG in MS. Several studies have shown that chemokines and chemokine receptors are involved in the pathogenesis of MS (Trebst C. and Ransohoff R. M., Arch Neurol, 58:1975-80 (2001)). Chemokines have been shown to mediate trafficking of immune cells across the blood-brain barrier and to direct migration of immune cells towards sites of active lesions (Szczucinski A. and Losy J., Acta Neurol Scand, 115:137-146 (2007)). Moreover, chemokines were detected in active lesions and were found to be elevated in the cerebrospinal fluid of patients with MS during relapse (Sindern E. et al., J Neuroimmunol, 131:186-90 (2002)). Two of the chemokines (CXCL3 and CXCL5) that were significantly down-regulated in our study are known to specifically interact with the chemokine receptor CXCR2 (Omari K. et al., Brain, 128:1003-1015 (2005)). Previous studies have shown that CXCR2 is not only expressed on peripheral blood cells such as granulocytes, monocytes or lymphocytes (Murdoch C. et al., Brain, 128:1003-1015 (2005(?)); Murphy P. M. et al., Pharmacol Rev., 52:145-76 (2000)) but also on oligodendrocytes in the brain. Oligodendrocytes are most essential for the myelination of axons in the white matter of the Central Nervous System and for remyelination after demyelination of axons during inflammation in MS (Blakemore W. F., J Neurol Sci., (2007)). Recently it was shown that CXCR2 expressed on oligodendrocytes is essential for the development and maintenance of the oligodendrocyte lineage, myelination and white matter in the vertebrate CNS (Tsai H. H. et al., Cell, 110:373-83 (2002); Padovani-Claudio D. et al., Glia, 54:471-483 (2006)). The regulation of oligodendrocyte development and migration depends on the localized expression of the chemokine CXCL1 and its interaction with CXCR2 expressed on oligodendrocyte precursor cells and oligodendrocytes (Padovani-Claudio D. et al., Glia, 54:471-483 (2006)). Any event that disrupts the interaction between CXCL1 and CXCR2 expressed on oligodendrocytes or the signalling induced by this interaction could therefore cause a disruption of the remyelination processes in MS patients. Based on these findings we propose the following hypothesis for a new mechanism of action of IVIG in RRMS patients during relapse. Peripheral T cells and monocytes enter the CNS in response to chemokines produced by the inflammation in the brain. The disrupted blood-brain barrier (Man S. et al., Brain Pathol., 17:243-50 (2007)) facilitates this process. Both T cells and monocytes produce chemokines in the brain that interfere with the tightly regulated activity of oligodendrocyte precursor cells and oligodendrocytes. This interference could be caused by either a desensitization of the CXCR2 receptor expressed on oligodendrocytes or by interference with the interaction between locally expressed CXCL1 and CXCR2 on oligodendrocytes. IVIG down-regulates the expression of chemokines in peripheral T cells, monocytes or both. Consequently, the interference of chemokines produced by these cells with the function of oligodendrocytes would be prevented and the natural process of remyelination induced by oligodendrocytes would be re-established. It remains to be shown whether IVIG might not only modulate the expression of chemokines in peripheral T cells but also the expression of chemokines in cells of the CNS, e.g., in astrocytes.


The aim of our study was to identify genes that are likely to be associated with T cell responses in MS. The strategy that we used for positive cell selection does not exclude the possibility that some of the identified genes are associated with peripheral monocytes rather than T cells. This has to be taken into consideration when interpreting the above data. The genes that we found to be differentially expressed under IVIG treatment will be confirmed in a second clinical trial with a larger study group. Differentially expressed genes can be used as diagnostic markers for the therapeutic efficacy of IVIG treatment. Furthermore, some of the proteins encoded by the genes of interest will provide suitable targets for future drug development.


It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.












INFORMAL SEQUENCE LISTING
















SEQ ID NO: 1: Homo sapiens transcriptional regulating factor 1 (TRERF1)



(NM_018415)


ctctgctcgc cccccatctc accccccaag cggatactgg tcttctcgtc ggattgccca





tgcacttgtt gcagaaacag ccaaggccct ggctgtggag aatgctgaag gaagaagacg





cagaagcagg acgaccctga aagattcagc ctcttcatcc tcaaacaggt cgcttctcgg





gagttcttgg tgttggaata ttttacagca aagcagtcga ccaggcctcc tcttcccacc





tgtccagcag catgaaagca gcatgattgg ccgaccgcag gagaagcccc cagaaccagg





cccccaactc agccatctgc ggaggtcaag gtgtgagcga cgtctcctca ccacagtgct





gtgtggtcta tacctcagcc agggagagga tgtgaaaccc cccgccctgc acatgagtgg





tacaggccaa caggaacacc tggctccagc cacgttcaca gacatgtcag ccgtggagta





gtgctgacac ttttctctca gcttctcagg gtttcagtcc ttttgggttt ggtttattta





ccttttttat ggttttgtgg ctggacgttc acaaccaagg cagacagcat gggtgaccag





caactgtaca agaccaacca tgtggcccat ggtagtgaga accttttcta ccaacagcca





ccacttggcg tccacagcgg gctgagccca ctgatggcta ccaatacacc tactcccagg





ccagcgagat ccggacccag aagcttacca gcggtgtctt acacaagctg gactctttca





cccaggtgtt tgccaaccaa aacctgcgaa ttcaggtcaa caatatggcc caggtgctgc





acactcagtc agcagtgatg gatggagccc ctgacagtgc tctccgccag ctgctgtctc





agaagcccat ggagccccca gcaccggcta tcccttcccg ctaccagcag gtgccccagc





agcctcaccc tggtttcact ggtgggctgt ccaaaccagc tcttcaggtc gggcagcacc





ctacccaagg gcacctgtat tatgactacc agcagcctct ggctcaggtg ccagtgcagg





gaggacagcc actgcaggcc ccacagatgc tgtcacagca catgcaacag atgcagcagc





accagtatta cccaccgcag caacagcagc aagccgggca acagcgtatc tccatgcaag





aaatacagac gcagccgcaa caaattcgcc catcacagcc acagccgccg ccacagcagc





agcagccgca gcagctacag ctgcagcagc ggcagggttc aatgcagata cctcagtatt





atcagcccca acccatgatg cagcacttgc aagagcagca gcagcaacag atgcacctgc





agcctccttc ttatcacagg gaccctcacc agtatacccc agagcaggca cacactgtcc





agctgattcc cctgggctcc atgtcccagt actactacca ggagccccag cagccctaca





gccaccccct ttaccagcag agccacctgt cccagcacca gcagcgtgag gacagtcagc





tgaagaccta ctctagtgac agacaggccc aggccatgct gagctcccat ggggacctgg





ggcctcctga cacaggaatg ggagacccag cgagctcaga tctgacccgg gtcagcagca





ccctccccca tcgccccctc ctatccccca gtgggatcca cctcaacaac atggggcctc





agcatcagca gctgtctccc agtgccatgt ggccccagat gcacctacct gatgggagag





cccagccagg gtcccctgag tcaagtggcc aacccaaagg agcgtttggg gagcagtttg





atgccaagaa caagctgaca tgctccatct gcctgaagga gttcaagaac ctgcctgccc





tgaatggcca catgcggtcc cacgggggaa tgagggcctc ccccaacctc aaacaggaaa





tccccaggaa gcatcagccg agtgtgccca aagccgagga gcccctcaag accgtgcagg





agaagaaaaa gttccggcac cggtcggaac ctctcttcat cccgccgccg ccctcctaca





acccgaaccc cgctgcctcc tactcgggcg ccaccctgta ccagagccag ctgcgctccc





cgcgcgtcct cggggaccac ctgctcctgg accccaccca cgagctgccc ccttacacgc





ccccacccat gctgagcccg gtgcgccagg gctcggggct cttcagcaat gtcctcatct





ccggccacgg ccctggcgcc cacccgcagc tgcccctgac gcccctgacg cccacaccac





gggtgctgct gtgtcgctcc aacagcatcg atggcagcaa cgtgacggtc accccagggc





ctggagagca gactgtagat gttgaaccac gcatcaacat tggcttgaga ttccaagcag





aaatccctga actccaagat atctctgccc tggcccagga cacacacaag gccacactgg





tatggaagcc ctggccagaa ctagaaaacc atgacctcca gcaaagagtg gagaatcttc





tgaatttgtg ctgttccagt gcattgccag gtggagggac caattctgaa tttgctttgc





actctctgtt tgaggccaaa ggtgatgtga tggttgctct ggaaatgctg ctactgcgga





agcctgtcag gttaaaatgt catcctttag caaattacca ctatgccggt tcggacaagt





ggacctccct agaaagaaaa ctgtttaaca aagcactagc cacttacagc aaagacttta





tttttgtaca gaagatggtg aagtccaaga cggtggctca gtgcgtggag tactactaca





cgtggaaaaa gatcatgcgg ctggggcgga aacaccggac acgcctggca gaaatcatcg





acgattgtgt gacaagtgaa gaagaagaag agttagagga ggaggaggag gaggacccgg





aagaagatag gaaatccaca aaagaagaag agagtgaggt gccgaagtcc ccggagccac





cacccgtccc cgtcctggct cccacggagg ggccgcccct gcaggccctg ggccagccct





caggctcctt catctgtgaa atgcccaact gtggggctga ctgtagatgt catgtcactc





cctttcttcc ccaggtgttc agctcccgac aggcactgaa tggccatgcc cgcatccacg





ggggcaccaa ccaggtgacc aaggcccgag gtgccatccc ctctgggaag cagaagcctg





gtggcaccca gagtgggtac tgttcggtaa agagctcacc ctctcacagc accaccagcg





gcgagacaga ccccaccacc atcttcccct gcaaggagtg tggcaaagtc ttcttcaaga





tcaaaagccg aaatgcacac atgaaaactc acaggcagca ggaggaacaa cagaggcaaa





aggctcagaa ggcggctttt gcagctgaga tggcagccac gattgagagg actacggggc





ccgtgggggc gccggggctg ctgcccctgg accagctgag tctgatcaaa cccatcaagg





atgtggacat cctcgacgac gacgtcgtcc agcagttggg aggtgtcatg gaagaggctg





aagttgtgga caccgatctt ctcttggatg atcaagattc agtcttgctt cagggtgacg





cagaactata aagccctgtg tgtcacttag agacagtgaa aacccacggc ctccatcttc





attaatcagg aaacctggac tgcctgcttg ttttgtaacc cttttaaact acctgtttta





aaagtggtca ttttattcag gtttagaaaa aaaaatccta tttcttttcc ttttatttaa





aaaaatttgt ttttgtgggg ggttgggggg aataaataat tggcacaact aaaaaaaaaa aa





SEQ ID NO: 2 Homo sapiens transcriptional regulating factor 1 (TRERF1)


(NP_060885.1)


MAQVLHTQSAVMDGAPDSALRQLLSQKPMEPPAPAIPSRYQQVPQQPHPGFTGGLSKPALQVGQHPTQGHLYYDY





QQPLAQVPVQGGQPLQAPQMLSQHMQQMQQHQYYPPQQQQQAGQQRISMQEIQTQPQQIRPSQPQPPPQQQQPQQ





LQLQQRQGSMQIPQYYQPQPMMQHLQEQQQQQMHLQPPSYHRDPHQYTPEQAHTVQLIPLGSMSQYYYQEPQQPY





SHPLYQQSHLSQHQQREDSQLKTYSSDRQAQAMLSSHGDLGPPDTGMGDPASSDLTRVSSTLPHRPLLSPSGIHL





NNMGPQHQQLSPSAMWPQMHLPDGRAQPGSPESSGQPKGAFGEQFDAKNKLTCSICLKEFKNLPALNGHMRSHGG





MRASPNLKQEIPRKHQPSVPKAEEPLKTVQEKKKFRHRSEPLFIPPPPSYNPNPAASYSGATLYQSQLRSPRVLG





DHLLLDPTHELPPYTPPPMLSPVRQGSGLFSNVLISGHGPGAHPQLPLTPLTPTPRVLLCRSNSIDGSNVTVTPG





PGEQTVDVEPRINIGLRFQAEIPELQDISALAQDTHKATLVWKPWPELENHDLQQRVENLLNLCCSSALPGGGTN





SEFALHSLFEAKGDVMVALEMLLLRKPVRLKCHPLANYHYAGSDKWTSLERKLFNKALATYSKDFIFVQKMVKSK





TVAQCVEYYYTWKKIMRGRKHRTRLAEIIDDCVTSEEEEELEEEEEEDPEEDRKSTKEEESEVPKSPEPPPVPVL





APTEGPPLQALGQPSGSFICEMPNCGADCRCHVTPFLPQVFSSRQALNGHARIHGGTNQVTKARGAIPSGKQKPG





GTQSGYCSVKSSPSHSTTSGEDPTTIFPCKECGKVFFKIKSRNAHMKTHRQQEEQQRQKAQKAAFAAEMAATIER





TTGPVGAPGLLPLDQLSLIKPIKDVDILDDDVVQQLGGVMEEAEVVDTDLLLDDQDSVLLQGDAEL





SEQ ID NO: 3 Homo sapiens chromosome 19 open reading frame 28


(C19orf28) (NM_174983)


tggggcggac gcggcggacg tgggtgaggg cgcggccgta agagagcggg acgcggggtg





cccggcgcgt ggtgggggtc cccggcgcct gcccccacgg cacccaagaa ggcctggcca





gggtaccctc cgcggagccc gggggtgggg ggcgcgggcc cggcgccgcg atgggcccgg





gacccccagc ggccggagcg gcgccgtccc cgcggccgct gtccctggtg gcgcggctga





gctacgccgt gggccacttc ctcaacgacc tgtgcgcgtc catgtggttc acctacctgc





tgctctacct gcactcggtg cgcgcctaca gctcccgcgg cgcggggctg ctgctgctgc





tgggccaggt ggccgacggg ctgtgcacac cgctcgtggg ctacgaggcc gaccgcgccg





ccagctgctg cgcccgctac ggcccgcgca aggcctggca cctggtcggc accgtctgcg





tcctgctgtc cttccccttc atcttcagcc cctgcctggg ctgtggggcg gccacgcccg





agtgggctgc cctcctctac tacggcccgt tcatcgtgat cttccagttt ggctgggcct





ccacacagat ctcccacctc agcctcatcc cggagctcgt caccaacgac catgagaagg





tggagctcac ggcactcagg tatgcgttca ccgtggtggc caacatcacc gtctacggcg





ccgcctggct cctgctgcac ctgcagggct cgtcgcgggt ggagcccacc caagacatca





gcatcagcga ccagctgggg ggccaggacg tgcccgtgtt ccggaacctg tccctgctgg





tggtgggtgt cggcgccgtg ttctcactgc tattccacct gggcacccgg gagaggcgcc





ggccgcatgc ggaggagcca ggcgagcaca cccccctgtt ggcccctgcc acggcccagc





ccctgctgct ctggaagcac tggctccggg agccggcttt ctaccaggtg ggcatactgt





acatgaccac caggctcatc gtgaacctgt cccagaccta catggccatg tacctcacct





actcgctcca cctgcccaag aagttcatcg cgaccattcc cctggtgatg tacctcagcg





gcttcttgtc ctccttcctc atgaagccca tcaacaagtg cattgggagg aacatgacct





acttctcagg cctcctggtg atcctggcct ttgccgcctg ggtggcgctg gcggagggac





tgggtgtggc cgtgtacgca gcggctgtgc tgctgggtgc tggctgtgcc accatcctcg





tcacctcgct ggccatgacg gccgacctca tcggtcccca cacgaacagc ggagcgttcg





tgtacggctc catgagcttc ttggataagg tggccaatgg gctggcagtc atggccatcc





agagcctgca cccttgcccc tcagagctct gctgcagggc ctgcgtgagc ttttaccact





gggcgatggt ggctgtgacg ggcggcgtgg gcgtggccgc tgccctgtgt ctctgtagcc





tcctgctgtg gccgacccgc ctgcgacgct gggaccgtga tgcccggccc tgactcctga





cagcctcctg cacctgtgca agggaactgt ggggacgcac gaggatgccc cccagggcct





tggggaaaag cccccactgc ccctcactct tctctggacc cccaccctcc atcctcaccc





agctcccggg ggtggggtcg ggtgagggca gcagggatgc ccgccaggga cttgcaagga





ccccctgggt tttgagggtg tcccattctc aactctaatc catcccagcc ctctggagga





tttggggtgc ccctctcggc agggaacagg aagtaggaat cccagaaggg tctgggggaa





ccctaaccct gagctcagtc cagttcaccc ctcacctcca gcctgggggt ctccagacac





tgccagggcc ccctcaggac ggctggagcc tggaggagac agccacgggg tggtgggctg





ggcctggacc ccaccgtggt gggcagcagg gctgcccggc aggcttggtg gactctgctg





gcagcaaata aagagatgac ggcaaaaaaa aaaaaaaa





SEQ ID NO: 4 Homo sapiens chromosome 19 open reading frame 28


(C19orf28) (NP_778148.2)


MGPGPPAAGAAPSPRPLSLVARLSYAVGHFLNDLCASMWFTYLLLYLHSVRAYSSRGAGLLLLLGQVADGLCTPL





VGYEADRAASCCARYGPRKAWHLVGTVCVLLSFPFIFSPCLGCGAATPEWAALLYYGPFIVIFQFGWASTQISHL





SLIPELVTNDHEKVELTALRYAFTVVANITVYGAAWLLLHLQGSSRVEPTQDISISDQLGGQDVPVFRNLSLLVV





GVGAVFSLLFHLGTRERRRPHAEEPGEHTPLLAPATAQPLLLWKHWLREPAFYQVGILYMTTRLIVNLSQTYMAM





YLTYSLHLPKKFIATIPLVMYLSGFLSSFLMKPINKCIGRNMTYFSGLLVILAFAAWVALAEGLGVAVYAAAVLL





GAGCATILVTSLAMTADLIGPHTNSGAFVYGSMSFLDKVANGLAVMAIQSLHPCPSELCCRACVSFYHWAMVAVT





GGVGVAAALCLCSLLLWPTRLRRWDRDARP





SEQ ID NO: 5 Homo sapiens cyclin-dependent kinase inhibitor 1C (p57, Kip2)


(NM_000076)


gaattccggg cacccctcga gcgagcgagc tagccagcag gcatcgaggg ggcgcggctg





ccgtccggac gagacaggcg aacccgacgc agaagagtcc accaccggac agtcaggtag





ccgccgcgtc cctcgcacac gcagagtcgg gcggcgcggg gtctcccttg cgcccggcct





ccgccctctc ctcctctcct ttccccttct tctcgctgtc ctctcctctc tcgctgcccg





cgtttgcgca gccccgggcc atgtccgacg cgtccctccg cagcacatcc acgatggagc





gtcttgtcgc ccgtgggacc ttcccagtac tagtgcgcac cagcgcctgc cgcagcctct





tcgggccggt ggaccacgag gagctgagcc gcgagctgca ggcccgcctg gccgagctga





acgccgagga ccagaaccgc tgggattacg acttccagca ggacatgccg ctgcggggcc





ctggacgcct gcagtggacc gaagtggaca gcgactcggt gcccgcgttc taccgcgaga





cggtgcaggt ggggcgctgc cgcctgctgc tggcgccgcg gcccgtcgcg gtcgcggtgg





ctgtcagccc gcccctcgag ccggccgctg agtccctcga cggcctcgag gaggcgccgg





agcagctgcc tagtgtcccg gtcccggccc cggcgtccac cccgccccca gtcccggtcc





tggctccagc cccggccccg gctccggctc cggtcgcggc tccggtcgcg gctccggtcg





cggtcgcggt cctggccccg gccccggccc cggccccggc tccggctccg gccccggctc





cagtcgcggc cccggcccca gccccggccc cggccccggc cccggccccc gccccggccc





cggccccgga cgcggcgcct caagagagcg ccgagcaggg cgcgaaccag gggcagcgcg





gccaggagcc tctcgctgac cagctgcact cggggatttc gggacgtccc gcggccggca





ccgcggccgc cagcgccaac ggcgcggcga tcaagaagct gtccgggcct ctgatctccg





atttcttcgc caagcgcaag agatcagcgc ctgagaagtc gtcgggcgat gtccccgcgc





cgtgtccctc tccaagcgcc gcccctggcg tgggctcggt ggagcagacc ccgcgcaaga





ggctgcggtg agccaattta gagcccaaag agccccgagg gaacctgccg gggcagcgga





cgttggaagg gcgctgggcc tcggctggga ccgttcatgt agcagcaacc ggcggcggct





gccgcagagc agcgttcggt tttgttttta aattttgaaa actgtgcaat gtattaataa





cgtcttttta tatctaaatg tattctgcac gagaaggtac actggtccca aagtgtaaag





ctttaagagt catttatata aaatgtttaa tctctgctga aactcagtac aaaaaaaccg





ggattccggc c





SEQ ID NO: 6 Homo sapiens cyclin-dependent kinase inhibitor 1C (p57, Kip2)


(NP_000067.1)


MSDASLRSTSTMERLVARGTFPVLVRTSACRSLFGPVDHEELSRELQARLAELNAEDQNRWDYDFQQDMPLRGPG





RLQWTEVDSDSVPAFYRETVQVGRCRLLLAPRPVAVAVAVSPPLEPAAESLDGLEEAPEQLPSVPVPAPASTPPP





VPVLAPAPAPAPAPVAAPVAAPVAVAVLAPAPAPAPAPAPAPAPVAAPAPAPAPAPAPAPAPAPAPDAAPQESAE





QGANQGQRGQEPLADQLHSGISGRPAAGTAAASANGAAIKKLSGPLISDFFAKRKRSAPEKSSGDVPAPCPSPSA





APGVGSVEQTPRKRLR





SEQ ID NO: 7 Homo sapiens breast cancer 1, early onset (BRCA1) (NM_007294)


cttagcggta gccccttggt ttccgtggca acggaaaagc gcgggaatta cagataaatt





aaaactgcga ctgcgcggcg tgagctcgct gagacttcct ggacggggga caggctgtgg





ggtttctcag ataactgggc ccctgcgctc aggaggcctt caccctctgc tctgggtaaa





gttcattgga acagaaagaa atggatttat tgctcttcg cgttgaagaa gtacaaaatg





tcattaatgc tatgcagaaa atcttagagt gtcccatctg tctggagttg atcaaggaac





ctgtctccac aaagtgtgac cacatatttt gcaaattttg catgctgaaa cttctcaacc





agaagaaagg gccttcacag tgtcctttat gtaagaatga tataaccaaa aggagcctac





aagaaagtac gagatttagt caacttgttg aagagctatt gaaaatcatt tgtgcttttc





agcttgacac aggtttggag tatgcaaaca gctataattt tgcaaaaaag gaaaataact





ctcctgaaca tctaaaagat gaagtttcta tcatccaaag tatgggctac agaaaccgtg





ccaaaagact tctacagagt gaacccgaaa atccttcctt gcaggaaacc agtctcagtg





tccaactctc taaccttgga actgtgagaa ctctgaggac aaagcagcgg atacaacctc





aaaagacgtc tgtctacatt gaattgggat ctgattcttc tgaagatacc gttaataagg





caacttattg cagtgtggga gatcaagaat tgttacaaat cacccctcaa ggaaccaggg





atgaaatcag tttggattct gcaaaaaagg ctgcttgtga attttctgag acggatgtaa





caaatactga acatcatcaa cccagtaata atgatttgaa caccactgag aagcgtgcag





ctgagaggca tccagaaaag tatcagggta gttctgtttc aaacttgcat gtggagccat





gtggcacaaa tactcatgcc agctcattac agcatgagaa cagcagttta ttactcacta





aagacagaat gaatgtagaa aaggctgaat tctgtaataa aagcaaacag cctggcttag





caaggagcca acataacaga tgggctggaa gtaaggaaac atgtaatgat aggcggactc





ccagcacaga aaaaaaggta gatctgaatg ctgatcccct gtgtgagaga aaagaatgga





ataagcagaa actgccatgc tcagagaatc ctagagatac tgaagatgtt ccttggataa





cactaaatag cagcattcag aaagttaatg agtggttttc cagaagtgat gaactgttag





gttctgatga ctcacatgat ggggagtctg aatcaaatgc caaagtagct gatgtattgg





acgttctaaa tgaggtagat gaatattctg gttcttcaga gaaaatagac ttactggcca





gtgatcctca tgaggcttta atatgtaaaa gtgaaagagt tcactccaaa tcagtagaga





gtaatattga agacaaaata tttgggaaaa cctatcggaa gaaggcaagc ctccccaact





taagccatgt aactgaaaat ctaattatag gagcatttgt tactgagcca cagataatac





aagagcgtcc cctcacaaat aaattaaagc gtaaaaggag acctacatca ggccttcatc





ctgaggattt tatcaagaaa gcagatttgg cagttcaaaa gactcctgaa atgataaatc





agggaactaa ccaaacggag cagaatggtc aagtgatgaa tattactaat agtggtcatg





agaataaaac aaaaggtgat tctattcaga atgagaaaaa tcctaaccca atagaatcac





tcgaaaaaga atctgctttc aaaacgaaag ctgaacctat aagcagcagt ataagcaata





tggaactcga attaaatatc cacaattcaa aagcacctaa aaagaatagg ctgaggagga





agtcttctac caggcatatt catgcgcttg aactagtagt cagtagaaat ctaagcccac





ctaattgtac tgaattgcaa attgatagtt gttctagcag tgaagagata aagaaaaaaa





agtacaacca aatgccagtc aggcacagca gaaacctaca actcatggaa ggtaaagaac





ctgcaactgg agccaagaag agtaacaagc caaatgaaca gacaagtaaa agacatgaca





gcgatacttt cccagagctg aagttaacaa atgcacctgg ttcttttact aagtgttcaa





ataccagtga acttaaagaa tttgtcaatc ctagccttcc aagagaagaa aaagaagaga





aactagaaac agttaaagtg tctaataatg ctgaagaccc caaagatctc atgttaagtg





gagaaagggt tttgcaaact gaaagatctg tagagagtag cagtatttca ttggtacctg





gtactgatta tggcactcag gaaagtatct cgttactgga agttagcact ctagggaagg





caaaaacaga accaaataaa tgtgtgagtc agtgtgcagc atttgaaaac cccaagggac





taattcatgg ttgttccaaa gataatagaa atgacacaga aggctttaag tatccattgg





gacatgaagt taaccacagt cgggaaacaa gcatagaaat ggaagaaagt gaacttgatg





ctcagtattt gcagaataca ttcaaggttt caaagcgcca gtcatttgct ccgttttcaa





atccaggaaa tgcagaagag gaatgtgcaa cattctctgc ccactctggg tccttaaaga





aacaaagtcc aaaagtcact tttgaatgtg aacaaaagga agaaaatcaa ggaaagaatg





agtctaatat caagcctgta cagacagtta atatcactgc aggctttcct gtggttggtc





agaaagataa gccagttgat aatgccaaat gtagtatcaa aggaggctct aggttttgtc





tatcatctca gttcagaggc aacgaaactg gactcattac tccaaataaa catggacttt





tacaaaaccc atatcgtata ccaccacttt ttcccatcaa gtcatttgtt aaaactaaat





gtaagaaaaa tctgctagag gaaaactttg aggaacattc aatgtcacct gaaagagaaa





tgggaaatga gaacattcca agtacagtga gcacaattag ccgtaataac attagagaaa





atgtttttaa agaagccagc tcaagcaata ttaatgaagt aggttccagt actaatgaag





tgggctccag tattaatgaa ataggttcca gtgatgaaaa cattcaagca gaactaggta





gaaacagagg gccaaaattg aatgctatgc ttagattagg ggttttgcaa cctgaggtct





ataaacaaag tcttcctgga agtaattgta agcatcctga aataaaaaag caagaatatg





aagaagtagt tcagactgtt aatacagatt tctctccata tctgatttca gataacttag





aacagcctat gggaagtagt catgcatctc aggtttgttc tgagacacct gatgacctgt





tagatgatgg tgaaataaag gaagatacta gttttgctga aaatgacatt aaggaaagtt





ctgctgtttt tagcaaaagc gtccagaaag gagagcttag caggagtcct agccctttca





cccatacaca tttggctcag ggttaccgaa gaggggccaa gaaattagag tcctcagaag





agaacttatc tagtgaggat gaagagcttc cctgcttcca acacttgtta tttggtaaag





taaacaatat accttctcag tctactaggc atagcaccgt tgctaccgag tgtctgtcta





agaacacaga ggagaattta ttatcattga agaatagctt aaatgactgc agtaaccagg





taatattggc aaaggcatct caggaacatc accttagtga ggaaacaaaa tgttctgcta





gcttgttttc ttcacagtgc agtgaattgg aagacttgac tgcaaataca aacacccagg





atcctttctt gattggttct tccaaacaaa tgaggcatca gtctgaaagc cagggagttg





gtctgagtga caaggaattg gtttcagatg atgaagaaag aggaacgggc ttggaagaaa





ataatcaaga agagcaaagc atggattcaa acttaggtga agcagcatct gggtgtgaga





gtgaaacaag cgtctctgaa gactgctcag ggctatcctc tcagagtgac attttaacca





ctcagcagag ggataccatg caacataacc tgataaagct ccagcaggaa atggctgaac





tagaagctgt gttagaacag catgggagcc agccttctaa cagctaccct tccatcataa





gtgactcttc tgcccttgag gacctgcgaa atccagaaca aagcacatca gaaaaagcag





tattaacttc acagaaaagt agtgaatacc ctataagcca gaatccagaa ggcctttctg





ctgacaagtt tgaggtgtct gcagatagtt ctaccagtaa aaataaagaa ccaggagtgg





aaaggtcatc cccttctaaa tgcccatcat tagatgatag gtggtacatg cacagttgct





ctgggagtct tcagaataga aactacccat ctcaagagga gctcattaag gttgttgatg





tggaggagca acagctggaa gagtctgggc cacacgattt gacggaaaca tcttacttgc





caaggcaaga tctagaggga accccttacc tggaatctgg aatcagcctc ttctctgatg





accctgaatc tgatccttct gaagacagag ccccagagtc agctcgtgtt ggcaacatac





catcttcaac ctctgcattg aaagttcccc aattgaaagt tgcagaatct gcccagagtc





cagctgctgc tcatactact gatactgctg ggtataatgc aatggaagaa agtgtgagca





gggagaagcc agaattgaca gcttcaacag aaagggtcaa caaaagaatg tccatggtgg





tgtctggcct gaccccagaa gaatttatgc tcgtgtacaa gtttgccaga aaacaccaca





tcactttaac taatctaatt actgaagaga ctactcatgt tgttatgaaa acagatgctg





agtttgtgtg tgaacggaca ctgaaatatt ttctaggaat tgcgggagga aaatgggtag





ttagctattt ctgggtgacc cagtctatta aagaaagaaa aatgctgaat gagcatgatt





ttgaagtcag aggagatgtg gtcaatggaa gaaaccacca aggtccaaag cgagcaagag





aatcccagga cagaaagatc ttcagggggc tagaaatctg ttgctatggg cccttcacca





acatgcccac agatcaactg gaatggatgg tacagctgtg tggtgcttct gtggtgaagg





agctttcatc attcaccctt ggcacaggtg tccacccaat tgtggttgtg cagccagatg





cctggacaga ggacaatggc ttccatgcaa ttgggcagat gtgtgaggca cctgtggtga





cccgagagtg ggtgttggac agtgtagcac tctaccagtg ccaggagctg gacacctacc





tgatacccca gatcccccac agccactact gactgcagcc agccacaggt acagagccac





aggaccccaa gaatgagctt acaaagtggc ctttccaggc cctgggagct cctctcactc





ttcagtcctt ctactgtcct ggctactaaa tattttatgt acatcagcct gaaaaggact





tctggctatg caagggtccc ttaaagattt tctgcttgaa gtctcccttg gaaatctgcc





atgagcacaa aattatggta atttttcacc tgagaagatt ttaaaaccat ttaaacgcca





ccaattgagc aagatgctga ttcattattt atcagcccta ttctttctat tcaggctgtt





gttggcttag ggctggaagc acagagtggc ttggcctcaa gagaatagct ggtttcccta





agtttacttc tctaaaaccc tgtgttcaca aaggcagaga gtcagaccct tcaatggaag





gagagtgctt gggatcgatt atgtgactta aagtcagaat agtccttggg cagttctcaa





atgttggagt ggaacattgg ggaggaaatt ctgaggcagg tattagaaat gaaaaggaaa





cttgaaacct gggcatggtg gctcacgcct gtaatcccag cactttggga ggccaaggtg





ggcagatcac tggaggtcag gagttcgaaa ccagcctggc caacatggtg aaaccccatc





tctactaaaa atacagaaat tagccggtca tggtggtgga cacctgtaat cccagctact





caggtggcta aggcaggaga atcacttcag cccgggaggt ggaggttgca gtgagccaag





atcataccac ggcactccag cctgggtgac agtgagactg tggctcaaaa aaaaaaaaaa





aaaaaggaaa atgaaactag aagagatttc taaaagtctg agatatattt gctagatttc





taaagaatgt gttctaaaac agcagaagat tttcaagaac cggtttccaa agacagtctt





ctaattcctc attagtaata agtaaaatgt ttattgttgt agctctggta tataatccat





tcctcttaaa atataagacc tctggcatga atatttcata tctataaaat gacagatccc





accaggaagg aagctgttgc tttctttgag gtgatttttt tcctttgctc cctgttgctg





aaaccataca gcttcataaa taattttgct tgctgaagga agaaaaagtg tttttcataa





acccattatc caggactgtt tatagctgtt ggaaggacta ggtcttccct agccccccca





gtgtgcaagg gcagtgaaga cttgattgta caaaatacgt tttgtaaatg ttgtgctgtt





aacactgcaa ataaacttgg tagcaaacac ttcaaaaaaa aaaaaaaaaa a





SEQ ID NO: 8 Homo sapiens breast cancer 1, early onset (BRCA1) (NP_009225.1)


MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQE





STRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQET





SLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAA





CEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVE





KAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITL





NSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSK





SVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAV





QKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNI





HNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPA





TGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDL





MLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRND





TEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVT





FECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQ





NPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSS





TNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFS





PYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQ





GYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVI





LAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTG





LEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQP





SNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSK





CPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDP





ESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRM





SMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKE





RKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTL





GTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY





SEQ ID NO: 9 Homo sapiens SH3-domain binding protein 4 (SH3BP4)(NM_014521)


gggaccaccc tccgcccgcc gaggcggggg cccagcgcgc ccggcactct cggcggtccg





ggcccctcgc cactaccgcc gccgccgccg ccgtgagtcc cgcggagccg cgcgcgcccc





cggctgggcc gagccgctgg ccgacgagcg gagcctcagg agccggcggg gacgccatgc





gagccagcgt ctcccttctc tcctggacag aaggccgtgt cctgggactt ctctgatggc





gagaggctgc ggctgtacca ggaagaaaca tattgccgag tggatgccgc cgcgcagcgt





gtttgcttga ggcagaagct tcagcatctg ctgggataac tggaggaaga aatatgaagc





cttagcggct ttacccggga agcgagtttc gagatggcgg ctcagcggat ccgagcggcc





aactccaatg gcctccctcg ctgcaagtca gaggggaccc tgattgacct gagcgaaggg





ttttcagaga cgagctttaa tgacatcaaa gtgccttctc ccagtgcctt gctcgtagac





aaccccacac ctttcggaaa tgcaaaggaa gtgattgcga tcaaggacta ttgccccacc





aacttcacca cactgaagtt ctccaagggc gaccatctct acgtcttgga cacatctggc





ggtgagtggt ggtacgcaca caacaccacc gaaatgggct acatcccctc ctcctatgtg





cagcccttga actaccggaa ctcaacactg agtgacagcg gtatgattga taatcttcca





gacagcccag acgaggtagc caaggagctg gagctgctcg ggggatggac agatgacaaa





aaagtaccag gcagaatgta cagtaataac cctttctgga atggggtcca gaccaatcca





tttctgaatg ggaacgtgcc cgtcatgccc agcctggatg agctgaatcc caaaagtact





gtggatttgc tcctttttga cgcaggtaca tcctccttca ccgaatccag ctcagccacc





acgaatagca ctggcaacat cttcgatgag cttccagtca caaacggact ccacgcagag





ccgccggtca ggcgggacaa ccccttcttc agaagcaagc gctcctacag tctctcggaa





ctctccgtcc tccaagccaa gtccgatgct cccacatcgt cgagtttctt caccggcttg





aaatcacctg cccccgagca atttcagagc cgggaggatt ttcgaactgc ctggctaaac





cacaggaagc tggcccggtc ttgccacgac ctggacttgc ttggccaaag ccctggttgg





ggccagaccc aagccgtgga gacaaacatc gtgtgcaagc tggatagctc cgggggtgct





gtccagcttc ctgacaccag catcagcatc cacgtgcccg agggccacgt cgcccctggg





gagacccagc agatctccat gaaagccctg ctggaccccc cgctggagct caacagtgac





aggtcctgca gcatcagccc tgtgctggag gtcaagctga gcaacctgga ggtgaaaacc





tctatcatct tggagatgaa agtgtcagcc gagataaaaa atgacctttt tagcaaaagc





acagtgggcc tccagtgcct gaggagcgac tcgaaggaag ggccatatgt ctccgtcccg





ctcaactgca gctgtgggga cacggtccag gcacagctgc acaacctgga gccctgtatg





tacgtggctg tcgtggccca tggcccaagc atcctctacc cttccaccgt gtgggacttc





atcaataaaa aagtcacagt gggtctctac ggccctaaac acatccaccc atccttcaag





acggtagtga ccatttttgg gcatgactgt gccccaaaga cgctcctggt cagcgaggtc





acacgccagg cacccaaccc tgccccggtg gccctgcagc tgtgggggaa gcaccagttc





gttttgtcca ggccccagga tctcaaggtc tgtatgtttt ccaatatgac gaattacgag





gtcaaagcca gcgagcaggc caaagtggtg cgaggattcc agctgaagct gggcaaggtg





agccgcctga tcttccccat cacctcccag aaccccaacg agctctctga cttcacgctg





cgggttcagg tgaaggacga ccaggaggcc atcctcaccc agttttgtgt ccagactcct





cagccacccc ctaaaagtgc catcaagcct tccgggcaaa ggaggtttct caagaagaac





gaagtcggga aaatcatcct gtccccgttt gccaccacta caaagtaccc gactttccag





gaccgcccgg tgtccagcct caagtttggt aagttgctca agactgtggt gcggcagaac





aagaaccact acctgctgga gtacaagaag ggcgacggga tcgccctgct cagcgaggag





cgggtcaggc tccggggcca gctgtggacc aaggagtggt acatcggcta ctaccagggc





agggtgggcc tcgtgcacac caagaacgtg ctggtggtcg gcagggcccg gcccagcctg





tgctcgggcc ccgagctgag cacctcggtg ctgctggagc agatcctgcg gccctgcaaa





ttcctcacgt acatctatgc ctccgtgagg accctgctca tggagaacat cagcagctgg





cgctccttcg ctgacgccct gggctacgtg aacctgccgc tcaccttttt ctgccgggca





gagctggata gtgagcccga gcgggtggcg tccgtcctag aaaagctgaa ggaggactgt





aacaacactg agaacaaaga acggaagtcc ttccagaagg agcttgtgat ggccctactg





aagatggact gccagggcct ggtggtcaga ctcatccagg actttgtgct cctgaccacg





gctgtagagg tggcccagcg ctggcgggag ctggctgaga agctggccaa ggtctccaag





cagcagatgg acgcctacga gtctccccac cgggacagga acggggttgt ggacagcgag





gccatgtgga agcctgcgta tgacttctta ctcacctgga gccatcagat cggggacagc





taccgggatg tcatccagga gctgcacctg ggcctggaca agatgaaaaa ccccatcacc





aagcgctgga agcacctcac tgggactctg atcttggtga actccctgga cgttctgaga





gcagccgcct tcagccctgc ggaccaggac gacttcgtga tttgaatggg tcccctcccc





tcctgctgct ctggagtgca agccctcttc tgccctgcgt gccctgctgt caccgcggag





ctgaagaggg aggaaggggc ggctgctcag acagatttag ggcccgccag ctaggctaca





cccatcatgc gccgccctcc tccatcgagg gagaggcctg aagggactgc ctactgcagc





tcgttgccaa tcacatagct ttctatttgt taagtataaa tttaaattta aaatcacttt





tttaacgaat ggggggaagg gatctatgag aaaggtggta tctaattttt ttatggacca





taaaggttta aaagaaaata ggggcacagg ctgttgaggt ttttatgttg ttatagacct





ttttaaatta tgttagagat gtatataggt atttaaaggt cactgggagc gtttctgatt





cccggccaca ctttgcattt caacactcag cccggaaaga tgctcgttcg gttgttggac





ctctttcact ccctgcgtgt aagaaggtga atcacgtggg aaaaagtggc ttttcagtaa





acgggtacag ctcattcttt ctgagaaggc cccaggtcct gctccctcct cggatttgat





tgtcttccgt gctttgcctc actcgtagta aatgaccatc catagaatat gtgaatcttt





ggtgagcttc agtgggcaga gtgaagtccc gcattagcat ttaggtgccc tgagctgttt





ctgccaatag attagaaagc agccatgagt tgacagtctt tagggcccct gccagtgtgc





aattagtcat tgacaagaac aatgccattt gagagtgagg tggtccctgc tgctacgagg





ccattgtact gttttttcct tgaggtcaaa gcagtgcttc ccatagagtt tgctgcctct





tctgtggaca ggaagaaaac ttcatgaccg aatcagagcc ttggtggcca ctgactctcg





tgcttattgc agatgctgtg gttggcctca caagcaacgc cttatgctga tgtgcagagg





tgccagctgc catttgccaa actctgcatt tcatttcatc taaggcttaa cccctcttcc





ttcctggtgt acctgtgtct cctcggaagg aagtcatagt ttagatgaaa ccattttttg





tacaatgtaa agatcatctg agcaagatga gcattttgta aaaatgaaaa tgtgactcac





ataaaatcag gaacttgaca cagtgttgca ttaataactt tagggtgcag acatgctgtg





tgaatctcac aatgcgtcgt agatgtcgcg tgttggaagg gagcaggagg aaggactgat





actggcaaat cagtagagtg aggtgatcct tagcaacgtg ccaggacact tcctgtgtgc





ctgcagttgt cagggaccat ttgggatccc gaatctcatt ctctaaaact gctttcttga





aacatgttac ttccttagta taatcaatgt atactccctt actggcctga aacgttgtat





agctacttat tcagatactg aagaccaacg gactgaaaaa aagaacaaac attagctatt





ttatgctgca agaaccagga cacacaattc gccaatcatc ccaccatata accttcgatt





gtgcttctca actccacccc ataatttctc ccagagacca tctatcacct tttccccaaa





gaagaaacaa aaccagttgc accttaaacc atggatattt tttcctcagg ggctttaaat





agtttcctat gcaacgtgtc ttgtagcaca aataaaattc tacaaaagtt gcagtaaatt





ttatttggat attttaacct gttaagtgtg tgtgtgtttt ctgtacccaa ccagacttta





aataaaacaa acatgaaacc taaaaaaaaa aaa





SEQ ID NO: 10 Homo sapiens SH3-domain binding protein 4 (SH3BP4)


(NP_055336.1)


MAAQRIRAANSNGLPRCKSEGTLIDLSEGFSETSFNDIKVPSPSALLVDNPTPFGNAKEVIAIKDYCPTNFTTLK





FSKGDHLYVLDTSGGEWWYAHNTTEMGYIPSSYVQPLNYRNSTLSDSGMIDNLPDSPDEVAKELELLGGWTDDKK





VPGRMYSNNPFWNGVQTNPFLNGNVPVMPSLDELNPKSTVDLLLFDAGTSSFTESSSATTNSTGNIFDELPVTNG





LHAEPPVRRDNPFFRSKRSYSLSELSVLQAKSDAPTSSSFFTGLKSPAPEQFQSREDFRTAWLNHRKLARSCHDL





DLLGQSPGWGQTQAVETNIVCKLDSSGGAVQLPDTSISIHVPEGHVAPGETQQISMKALLDPPLELNSDRSCSIS





PVLEVKLSNLEVKTSIILEMKVSAEIKNDLFSKSTVGLQCLRSDSKEGPYVSVPLNCSCGDTVQAQLHNLEPCMY





VAVVAHGPSILYPSTVWDFINKKVTVGLYGPKHIHPSFKTVVTIFGHDCAPKTLLVSEVTRQAPNPAPVALQLWG





KHQFVLSRPQDLKVCMFSNMTNYEVKASEQAKVVRGFQLKLGKVSRLIFPITSQNPNELSDFTLRVQVKDDQEAI





LTQFCVQTPQPPPKSAIKPSGQRRFLKKNEVGKIILSPFATTTKYPTFQDRPVSSLKFGKLLKTVVRQNKNHYLL





EYKKGDGIALLSEERVRLRGQLWTKEWYIGYYQGRVGLVHTKNVLVVGRARPSLCSGPELSTSVLLEQILRPCKF





LTYIYASVRTLLMENISSWRSFADALGYVNLPLTFFCRAELDSEPERVASVLEKLKEDCNNTENKERKSFQKELV





MALLKMDCQGLVVRLIQDFVLLTTAVEVAQRWRELAEKLAKVSKQQMDAYESPHRDRNGVVDSEAMWKPAYDFLL





TWSHQIGDSYRDVIQELHLGLDKMKNPITKRWKHLTGTLILVNSLDVLRAAAFSPADQDDFVI





SEQ ID NO: 11 Homo sapiens collagen, type III, alpha 1 (Ehlers-Danlos


syndrome type IV, autosomal dominant) (COL3A1)(NM_000090)


ggctgagttt tatgacgggc ccggtgctga agggcaggga acaacttgat ggtgctactt





tgaactgctt ttcttttctc ctttttgcac aaagagtctc atgtctgata tttagacatg





atgagctttg tgcaaaaggg gagctggcta cttctcgctc tgcttcatcc cactattatt





ttggcacaac aggaagctgt tgaaggagga tgttcccatc ttggtcagtc ctatgcggat





agagatgtct ggaagccaga accatgccaa atatgtgtct gtgactcagg atccgttctc





tgcgatgaca taatatgtga cgatcaagaa ttagactgcc ccaacccaga aattccattt





ggagaatgtt gtgcagtttg cccacagcct ccaactgctc ctactcgccc tcctaatggt





caaggacctc aaggccccaa gggagatcca ggccctcctg gtattcctgg gagaaatggt





gaccctggta ttccaggaca accagggtcc cctggttctc ctggcccccc tggaatctgt





gaatcatgcc ctactggtcc tcagaactat tctccccagt atgattcata tgatgtcaag





tctggagtag cagtaggagg actcgcaggc tatcctggac cagctggccc cccaggccct





cccggtcccc ctggtacatc tggtcatcct ggttcccctg gatctccagg ataccaagga





ccccctggtg aacctgggca agctggtcct tcaggccctc caggacctcc tggtgctata





ggtccatctg gtcctgctgg aaaagatgga gaatcaggta gacccggacg acctggagag





cgaggattgc ctggacctcc aggtatcaaa ggtccagctg ggatacctgg attccctggt





atgaaaggac acagaggctt cgatggacga aatggagaaa agggtgaaac aggtgctcct





ggattaaagg gtgaaaatgg tcttccaggc gaaaatggag ctcctggacc catgggtcca





agaggggctc ctggtgagcg aggacggcca ggacttcctg gggctgcagg tgctcggggt





aatgacggtg ctcgaggcag tgatggtcaa ccaggccctc ctggtcctcc tggaactgcc





ggattccctg gatcccctgg tgctaagggt gaagttggac ctgcagggtc tcctggttca





aatggtgccc ctggacaaag aggagaacct ggacctcagg gacacgctgg tgctcaaggt





cctcctggcc ctcctgggat taatggtagt cctggtggta aaggcgaaat gggtcccgct





ggcattcctg gagctcctgg actgatggga gcccggggtc ctccaggacc agccggtgct





aatggtgctc ctggactgcg aggtggtgca ggtgagcctg gtaagaatgg tgccaaagga





gagcccggac cacgtggtga acgcggtgag gctggtattc caggtgttcc aggagctaaa





ggcgaagatg gcaaggatgg atcacctgga gaacctggtg caaatgggct tccaggagct





gcaggagaaa ggggtgcccc tgggttccga ggacctgctg gaccaaatgg catcccagga





gaaaagggtc ctgctggaga gcgtggtgct ccaggccctg cagggcccag aggagctgct





ggagaacctg gcagagatgg cgtccctgga ggtccaggaa tgaggggcat gcccggaagt





ccaggaggac caggaagtga tgggaaacca gggcctcccg gaagtcaagg agaaagtggt





cgaccaggtc ctcctgggcc atctggtccc cgaggtcagc ctggtgtcat gggcttcccc





ggtcctaaag gaaatgatgg tgctcctggt aagaatggag aacgaggtgg ccctggagga





cctggccctc agggtcctcc tggaaagaat ggtgaaactg gacctcaggg acccccaggg





cctactgggc ctggtggtga caaaggagac acaggacccc ctggtccaca aggattacaa





ggcttgcctg gtacaggtgg tcctccagga gaaaatggaa aacctgggga accaggtcca





aagggtgatg ccggtgcacc tggagctcca ggaggcaagg gtgatgctgg tgcccctggt





gaacgtggac ctcctggatt ggcaggggcc ccaggactta gaggtggagc tggtccccct





ggtcccgaag gaggaaaggg tgctgctggt cctcctgggc cacctggtgc tgctggtact





cctggtctgc aaggaatgcc tggagaaaga ggaggtcttg gaagtcctgg tccaaagggt





gacaagggtg aaccaggcgg tccaggtgct gatggtgtcc cagggaaaga tggcccaagg





ggtcctactg gtcctattgg tcctcctggc ccagctggcc agcctggaga taagggtgaa





ggtggtgccc ccggacttcc aggtatagct ggacctcgtg gtagccctgg tgagagaggt





gaaactggcc ctccaggacc tgctggtttc cctggtgctc ctggacagaa tggtgaacct





ggtggtaaag gagaaagagg ggctccgggt gagaaaggtg aaggaggccc tcctggagtt





gcaggacccc ctggaggttc tggacctgct ggtcctcctg gtccccaagg tgtcaaaggt





gaacgtggca gtcctggtgg acctggtgct gctggcttcc ctggtgctcg tggtcttcct





ggtcctcctg gtagtaatgg taacccagga cccccaggtc ccagcggttc tccaggcaag





gatgggcccc caggtcctgc gggtaacact ggtgctcctg gcagccctgg agtgtctgga





ccaaaaggtg atgctggcca accaggagag aagggatcgc ctggtgccca gggcccacca





ggagctccag gcccacttgg gattgctggg atcactggag cacggggtct tgcaggacca





ccaggcatgc caggtcctag gggaagccct ggccctcagg gtgtcaaggg tgaaagtggg





aaaccaggag ctaacggtct cagtggagaa cgtggtcccc ctggacccca gggtcttcct





ggtctggctg gtacagctgg tgaacctgga agagatggaa accctggatc agatggtctt





ccaggccgag atggatctcc tggtggcaag ggtgatcgtg gtgaaaatgg ctctcctggt





gcccctggcg ctcctggtca tccaggccca cctggtcctg tcggtccagc tggaaagagt





ggtgacagag gagaaagtgg ccctgctggc cctgctggtg ctcccggtcc tgctggttcc





cgaggtgctc ctggtcctca aggcccacgt ggtgacaaag gtgaaacagg tgaacgtgga





gctgctggca tcaaaggaca tcgaggattc cctggtaatc caggtgcccc aggttctcca





ggccctgctg gtcagcaggg tgcaatcggc agtccaggac ctgcaggccc cagaggacct





gttggaccca gtggacctcc tggcaaagat ggaaccagtg gacatccagg tcccattgga





ccaccagggc ctcgaggtaa cagaggtgaa agaggatctg agggctcccc aggccaccca





gggcaaccag gccctcctgg acctcctggt gcccctggtc cttgctgtgg tggtgttgga





gccgctgcca ttgctgggat tggaggtgaa aaagctggcg gttttgcccc gtattatgga





gatgaaccaa tggatttcaa aatcaacacc gatgagatta tgacttcact caagtctgtt





aatggacaaa tagaaagcct cattagtcct gatggttctc gtaaaaaccc cgctagaaac





tgcagagacc tgaaattctg ccatcctgaa ctcaagagtg gagaatactg ggttgaccct





aaccaaggat gcaaattgga tgctatcaag gtattctgta atatggaaac tggggaaaca





tgcataagtg ccaatccttt gaatgttcca cggaaacact ggtggacaga ttctagtgct





gagaagaaac acgtttggtt tggagagtcc atggatggtg gttttcagtt tagctacggc





aatcctgaac ttcctgaaga tgtccttgat gtgcagctgg cattccttcg acttctctcc





agccgagctt cccagaacat cacatatcac tgcaaaaata gcattgcata catggatcag





gccagtggaa atgtaaagaa ggccctgaag ctgatggggt caaatgaagg tgaattcaag





gctgaaggaa atagcaaatt cacctacaca gttctggagg atggttgcac gaaacacact





ggggaatgga gcaaaacagt ctttgaatat cgaacacgca aggctgtgag actacctatt





gtagatattg caccctatga cattggtggt cctgatcaag aatttggtgt ggacgttggc





cctgtttgct ttttataaac caaactctat ctgaaatccc aacaaaaaaa atttaactcc





atatgtgttc ctcttgttct aatcttgtca accagtgcaa gtgaccgaca aaattccagt





tatttatttc caaaatgttt ggaaacagta taatttgaca aagaaaaatg atacttctct





ttttttgctg ttccaccaaa tacaattcaa atgctttttg ttttattttt ttaccaattc





caatttcaaa atgtctcaat ggtgctataa taaataaact tcaacactct ttatgataac





aacactgtgt tatattcttt gaatcctagc ccatctgcag agcaatgact gtgctcacca





gtaaaagata acctttcttt ctgaaatagt caaatacgaa attagaaaag ccctccctat





tttaactacc tcaactggtc agaaacacag attgtattct atgagtccca gaagatgaaa





aaaattttat acgttgataa aacttataaa tttcattgat taatctcctg gaagattggt





ttaaaaagaa aagtgtaatg caagaattta aagaaatatt tttaaagcca caattatttt





aatattggat atcaactgct tgtaaaggtg ctcctctttt ttcttgtcat tgctggtcaa





gattactaat atttgggaag gctttaaaga cgcatgttat ggtgctaatg tactttcact





tttaaactct agatcagaat tgttgacttg cattcagaac ataaatgcac aaaatctgta





catgtctccc atcagaaaga ttcattggca tgccacaggg gattctcctc cttcatcctg





taaaggtcaa caataaaaac caaattatgg ggctgctttt gtcacactag catagagaat





gtgttgaaat ttaactttgt aagcttgtat gtggttgttg atcttttttt tccttacaga





cacccataat aaaatatcat attaaaattc





SEQ ID NO: 12 Homo sapiens collagen, type III, alpha 1 (Ehlers-Danlos


syndrome type IV, autosomal dominant) (COL3A1) (NP_000081.1)


MMSFVQKGSWLLLALLHPTIILAQQEAVEGGCSHLGQSYADRDVWKPEPCQICVCDSGSVLCDDIICDDQELDCP





NPEIPFGECCAVCPQPPTAPTRPPNGQGPQGPKGDPGPPGIPGRNGDPGIPGQPGSPGSPGPPGICESCPTGPQN





YSPQYDSYDVKSGVAVGGLAGYPGPAGPPGPPGPPGTSGHPGSPGSPGYQGPPGEPGQAGPSGPPGPPGAIGPSG





PAGKDGESGRPGRPGERGLPGPPGIKGPAGIPGFPGMKGHRGFDGRNGEKGETGAPGLKGENGLPGENGAPGPMG





PRGAPGERGRPGLPGAAGARGNDGARGSDGQPGPPGPPGTAGFPGSPGAKGEVGPAGSPGSNGAPGQRGEPGPQG





HAGAQGPPGPPGINGSPGGKGEMGPAGIPGAPGLMGARGPPGPAGANGAPGLRGGAGEPGKNGAKGEPGPRGERG





EAGIPGVPGAKGEDGKDGSPGEPGANGLPGAAGERGAPGFRGPAGPNGIPGEKGPAGERGAPGPAGPRGAAGEPG





RDGVPGGPGMRGMPGSPGGPGSDGKPGPPGSQGESGRPGPPGPSGPRGQPGVMGFPGPKGNDGAPGKNGERGGPG





GPGPQGPPGKNGETGPQGPPGPTGPGGDKGDTGPPGPQGLQGLPGTGGPPGENGKPGEPGPKGDAGAPGAPGGKG





DAGAPGERGPPGLAGAPGLRGGAGPPGPEGGKGAAGPPGPPGAAGTPGLQGMPGERGGLGSPGPKGDKGEPGGPG





ADGVPGKDGPRGPTGPIGPPGPAGQPGDKGEGGAPGLPGIAGPRGSPGERGETGPPGPAGFPGAPGQNGEPGGKG





ERGAPGEKGEGGPPGVAGPPGGSGPAGPPGPQGVKGERGSPGGPGAAGFPGARGLPGPPGSNGNPGPPGPSGSPG





KDGPPGPAGNTGAPGSPGVSGPKGDAGQPGEKGSPGAQGPPGAPGPLGIAGITGARGLAGPPGMPGPRGSPGPQG





VKGESGKPGANGLSGERGPPGPQGLPGLAGTAGEPGRDGNPGSDGLPGRDGSPGGKGDRGENGSPGAPGAPGHPG





PPGPVGPAGKSGDRGESGPAGPAGAPGPAGSRGAPGPQGPRGDKGETGERGAAGIKGHRGFPGNPGAPGSPGPAG





QQGAIGSPGPAGPRGPVGPSGPPGKDGTSGHPGPIGPPGPRGNRGERGSEGSPGHPGQPGPPGPPGAPGPCCGGV





GAAAIAGIGGEKAGGFAPYYGDEPMDFKINTDEIMTSLKSVNGQIESLISPDGSRKNPARNCRDLKFCHPELKSG





EYWVDPNQGCKLDAIKVFCNMETGETCISANPLNVPRKHWWTDSSAEKKHVWFGESMDGGFQFSYGNPELPEDVL





DVQLAFLRLLSSRASQNITYHCKNSIAYMDQASGNVKKALKLMGSNEGEFKAEGNSKFTYTVLEDGCTKHTGEWS





KTVFEYRTRKAVRLPIVDIAPYDIGGPDQEFGVDVGPVCFL





SEQ ID NO: 13 Homo sapiens UDP-Gal:betaGlcNAc beta 1,3-


galactosyltransferase, polypeptide 2 (B3GALT2) (NM_003783)


cctgtgcagc agctgaggaa ccgtggattt catattatag actaaaaccc cattaaaact





gctcaaaatc cttcctgcag ctgccaggca acaacgaaag aagagaggta aatcctattc





ttttccaata caactgaagc actacatttt agctctggct gctttacatt gcagctcagt





gttattagta gaaatatgga tactgagacg agaacacagc actgcattgt ccagccagga





aaaatagcag atgtaaaaag cttcaatgca tcaactgtcg ggaagagtca acagtgctac





aagcagaacg ggcaactaca gctcttttgt ttaacgaaag agagaatatg aaagaaaggg





aaaatttcag aagactagga cccatatgaa caaggagggt aactcgaaga caagcagaca





gatggacact ttggatactg tgaaaagcaa tcgcaggagg cagactgttg ggggatgtgc





gcatgttcga tagcatcttt tttgctgaag tgatggcgtg ccaaaagtat tttcagtggg





cataatcctc ttcacataaa tggcctgacc aaggagaatg actacaagag agacaatgtg





actgaattag aaaatgattg ccaaagaata gtattaagga gaagaaaaca tttttgtcac





caatctctca tataccacta ctggatattt acaacatgct tcagtggagg agaagacact





gctgctttgc aaagatgacc tggaatgcca aaaggtctct gttccgcact catcttattg





gagtactttc tctagtgttt ctttttgcta tgtttttgtt tttcaatcat catgactggc





tgccaggcag agctggattc aaagaaaacc ctgtgacata cactttccga ggatttcggt





caacaaaaag tgagacaaac cacagctccc ttcggaacat ttggaaagaa acagtccctc





aaaccctgag gcctcaaaca gcaactaact ctaataacac agacctgtca ccacaaggag





ttacaggcct ggagaataca cttagtgcca atggaagtat ttacaatgaa aaaggtactg





gacatccaaa ttcttaccat ttcaaatata ttattaatga gcctgaaaaa tgccaagaga





aaagtccttt tttaatacta ctaatagctg cagagcctgg acaaatagaa gctagaagag





ctattcggca aacttggggc aatgaaagtc tagcacctgg tattcaaatc acaagaatat





ttttgttggg cttaagtatt aagctaaatg gctaccttca acgtgcaata ctggaagaaa





gcagacaata tcatgatata attcaacagg aatacttaga tacgtactat aatttgacca





ttaaaacact aatgggcatg aactgggttg caacatactg tccacatatt ccatatgtta





tgaaaactga cagtgacatg tttgtcaaca ctgaatattt aatcaataag ttactgaagc





cagatctgcc tcccagacat aactatttca ctggttacct aatgcgagga tatgcaccca





atcgaaacaa agatagcaag tggtacatgc caccagacct ctacccaagt gagcgttatc





ctgtcttctg ttctggaact ggttatgttt tttctggaga tctggcagaa aagattttta





aagtttcttt aggtatccgc cgtttgcact tggaagatgt atatgtaggg atctgtcttg





ccaagttgag aattgatcct gtaccccctc ccaatgagtt tgtgttcaat cactggcgag





tctcttattc gagctgtaaa tacagccacc taattacctc tcatcagttc cagcctagtg





aactgataaa atactggaac catttacaac aaaataagca caatgcctgt gccaacgcag





caaaagaaaa ggcaggcagg tatcgccacc gtaaactaca ttagaaaaga caattttttt





tcaatgtgca atttgtaaat attgctaaaa gcatgtatag ttaggaactg attacatccg





taggacaagt tttagttaaa actcatcaca taaagaaatt caagaagtat ttttttaatt





tctgaagaag ttaattctta aaactataac attatataac aaaaaaggtt tcccaaaaca





atctatttaa aaaactgtat aaggagattc tgtgtattaa catgcaataa caagcatgca





taaatcaatg gttcaagtct tctgttaggg ggccaataaa atgtatctgc atatgttttc





cacataaatt ttaattcaag aaatgacagt caaaagatcc ttcattttag attaagcttt





tcattttaat atataattta atgtaaataa aacatcacta tcaattttaa ggaaactttt





taattgtgca aaggataaat tttttgacct attttagggt tctaaatgca ataagattta





gttgagttat tccacaaaca cattataaag ttcagatgtt tcatcaatgc agttctcacg





aaagtattta ctttttaaaa ataactgaga tattatttta aatttctttt attaatactt





tcttttatta atatatgggg gaaaattatt ttgacatgac gtggtaaaat gtgaaaaact





aatgtgtctc aggctcaagt ttttatagtt attaaatgtt tcaaaataga caagttttgt





ttcctcattg atgttaagaa ccaaactcct atttcaatga gttattggat tagaccaatt





actgcactct taaacagcac caccatttaa tttcatgtaa tatctaactt cgaatatatc





tgtaaaggat aatcgaagca aaagtaatca cttaaaggca caaataggat gtactgttga





aaaagataaa gagtgcaggt gcagtttcat tcaacacatt tttaagatgc atgtctgcca





aaatgcaaca tacgggaagt ttatttcctg acagcaggtg tacacatgcc aacacttaat





cattttatgg cacctatttc tttcttggag tgccaagttt gcaaacctgc agtttttaat





ttggtagatg acaaatattc tgaatcacca attaaaaacc tttttgggag ggatggggaa





aactacaaac gtttgacaaa cacaattcta ggatgaacaa tgtatacaat gcacttttat





gaagttttta aaaataaagg aaaacaaaaa acttt





SEQ ID NO: 14 Homo sapiens UDP-Gal:betaGlcNAc beta 1,3-


galactosyltransferase, polypeptide 2 (B3GALT2) (NP_003774.1)


MLQWRRRHCCFAKMTWNAKRSLFRTHLIGVLSLVFLFAMFLFFNHHDWLPGRAGFKENPVTYTFRGFRSTKSETN





HSSLRNIWKETVPQTLRPQTATNSNNTDLSPQGVTGLENTLSANGSIYNEKGTGHPNSYHFKYIINEPEKCQEKS





PFLILLIAAEPGQIEARRAIRQTWGNESLAPGIQITRIFLLGLSIKLNGYLQRAILEESRQYHDIIQQEYLDTYY





NLTIKTLMGMNWVATYCPHIPYVMKTDSDMFVNTEYLINKLLKPDLPPRHNYFTGYLMRGYAPNRNKDSKWYMPP





DLYPSERYPVFCSGTGYVFSGDLAEKIFKVSLGIRRLHLEDVYVGICLAKLRIDPVPPPNEFVFNHWRVSYSSCK





YSHLITSHQFQPSELIKYWNHLQQNKHNACANAAKEKAGRYRHRKLH





SEQ ID NO: 15 Homo sapiens glycosylphosphatidylinositol specific


phospholipase D1 (GPLD1)(NM_001503)


gtgacctgct tagagagaag cggtgggtct gcacctggat tttggagtcc cagtgctgct





gcagctctga gcattcccac gtcaccagag aagccggtgg gcaatgagat catgtctgct





ttcaggttgt ggcctggcct gctgatcatg ttgggttctc tctgccatag aggttcaccg





tgtggccttt caacacacgt agaaatagga cacagagctc tggagtttct tcagcttcac





aatgggcgtg ttaactacag agagctgtta ctagaacacc aggatgcgta tcaggctgga





atcgtgtttc ctgattgttt ttaccctagc atctgcaaag gaggaaaatt ccatgatgtg





tctgagagca ctcactggac tccgtttctt aatgcaagcg ttcattatat ccgagagaac





tatccccttc cctgggagaa ggacacagag aaactggtag ctttcttgtt tggaattact





tctcacatgg cggcagatgt cagctggcat agtctgggcc ttgaacaagg attccttagg





accatgggag ctattgattt tcacggctcc tattcagagg ctcattcggc tggtgatttt





ggaggagatg tgttgagcca gtttgaattt aattttaatt accttgcacg acgctggtat





gtgccagtca aagatctact gggaatttat gagaaactgt atggtcgaaa agtcatcacc





gaaaatgtaa tcgttgattg ttcacatatc cagttcttag aaatgtatgg tgagatgcta





gctgtttcca agttatatcc cacttactct acaaagtccc cgtttttggt ggaacaattc





caagagtatt ttcttggagg actggatgat atggcatttt ggtccactaa tatttaccat





ctaacaagct tcatgttgga gaatgggacc agtgactgca acctgcctga gaaccctctg





ttcattgcat gtggcggcca gcaaaaccac acccagggct caaaaatgca gaaaaatgat





tttcacagaa atttgactac atccctaact gaaagtgttg acaggaatat aaactatact





gaaagaggag tgttctttag tgtaaattcc tggaccccgg attccatgtc ctttatctac





aaggctttgg aaaggaacat aaggacaatg ttcataggtg gctctcagtt gtcacaaaag





cacgtctcca gccccttagc atcttacttc ttgtcatttc cttatgcgag gcttggctgg





gcaatgacct cagctgacct caaccaggat gggcacggtg acctcgtggt gggcgcacca





ggctacagcc gccccggcca catccacatc gggcgcgtgt acctcatcta cggcaatgac





ctgggcctgc cacctgttga cctggacctg gacaaggagg cccacaggat ccttgaaggc





ttccagccct caggtcggtt tggctcggcc ttggctgtgt tggactttaa cgtggacggc





gtgcctgacc tggccgtggg agctccctcg gtgggctccg agcagctcac ctacaaaggt





gccgtgtatg tctactttgg ttccaaacaa ggaggaatgt cttcttcccc taacatcacc





atttcttgcc aggacatcta ctgtaacttg ggctggactc tcttggctgc agatgtgaat





ggagacagtg aacccgatct ggtcatcggc tccccttttg caccaggtgg agggaagcag





aagggaattg tggctgcgtt ttattctggc cccagcctga gcgacaaaga aaaactgaac





gtggaggcag ccaactggac ggtgagaggc gaggaagact tctcctggtt tggatattcc





cttcacggtg tcactgtgga caacagaacc ttgctgttgg ttgggagccc gacctggaag





aatgccagca ggctgggcca tttgttacac atccgagatg agaaaaagag ccttgggagg





gtgtatggct acttcccacc aaacggccaa agctggttta ccatttctgg agacaaggca





atggggaaac tgggtacttc cctttccagt ggccacgtac tgatgaatgg gactctgaaa





caagtgctgc tggttggagc ccctacgtac gatgacgtgt ctaaggtggc attcctgacc





gtgaccctac accaaggcgg agccactcgc atgtacgcac tcacatctga cgcgcagcct





ctgctgctca gcaccttcag cggagaccgc cgcttctccc gatttggtgg cgttctgcac





ttgagtgacc tggatgatga tggcttagat gaaatcatca tggcagcccc cctgaggata





gcagatgtaa cctctggact gattggggga gaagacggcc gagtatatgt atataatggc





aaagagacca cccttggtga catgactggc aaatgcaaat catggataac tccatgtcca





gaagaaaagg cccaatatgt attgatttct cctgaagcca gctcaaggtt tgggagctcc





ctcatcaccg tgaggtccaa ggcaaagaac caagtcgtca ttgctgctgg aaggagttct





ttgggagccc gactctccgg ggcacttcac gtctatagcc ttggctcaga ttgaagattt





cactgcattt ccccactctg cccacctctc tcatgctgaa tcacatccat ggtgagcatt





ttgatggaca aagtggcaca tccagtggag cggtggtaga tcctgataga catggggctc





ctgggagtag agagacacac taacagccac accctctgga aatctgatac agtaaatata





tgactgcacc agaaatatgt gaaatagcag acattctgct tactcatgtc tccttccaca





gtttacttcc tcgctccctt tgcatctaaa cctttcttct ttcccaactt attgcctgta





gtcagacctg ctgtacaacc tatttcctct tcctcttgaa tgtctttcca atggctggaa





aggtccctct gtggttatct gttagaacag tctctgtaca caattcctcc taaaaacatc





cttttttaaa aaaagaattg ttcagccata aagaaagaac aagatcatgc cctttgcagg





gacatggatg gagctggagg ccattatcct tcataaacta ttgcaggaac agaaaaccaa





acactccata ttctcacttg taagtgggag ctaaatgaga acacgtggac acatagaggg





aaacaacaca cactggggcc tatgagaggg cggaaggtgg gaggagggag agatcaggaa





aaataactaa tggatactta gggtgatgaa ataatctgtg taacaaaccc ccatgacaca





cctttatgta tgtaacaaac cagcacttcc tgcgcatgta cccctgaact taaaagttaa





aaaaaagttg aacttaaaaa taacagattg gcccatgcca atcaaagtat aatagaaagc atagtatac





SEQ ID NO: 16 Homo sapiens glycosylphosphatidylinositol specific


phospholipase D1 (GPLD1)(NP_001494.2)


MSAFRLWPGLLIMLGSLCHRGSPCGLSTHVEIGHRALEFLQLHNGRVNYRELLLEHQDAYQAGIVFPDCFYPSIC





KGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLFGITSHMAADVSWHSLGLEQGFLRTMGAIDF





HGSYSEAHSAGDFGGDVLSQFEFNFNYLARRWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAV





SKLYPTYSTKSPFLVEQFQEYFLGGLDDMAFWSTNIYHLTSFMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ





KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQLSQKHVSSPLASYFLS





FPYARLGWAMTSADLNQDGHGDLVVGAPGYSRPGHIHIGRVYLIYGNDLGLPPVDLDLDKEAHRILEGFQPSGRF





GSALAVLDFNVDGVPDLAVGAPSVGSEQLTYKGAVYVYFGSKQGGMSSSPNITISCQDIYCNLGWTLLAADVNGD





SEPDLVIGSPFAPGGGKQKGIVAAFYSGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTLLLVGSP





TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSSGHVLMNGTLKQVLLVGAPTYDD





VSKVAFLTVTLHQGGATRMYALTSDAQPLLLSTFSGDRRFSRFGGVLHLSDLDDDGLDEIIMAAPLRIADVTSGL





IGGEDGRVYVYNGKETTLGDMTGKCKSWITPCPEEKAQYVLISPEASSRFGSSLITVRSKAKNQVVIAAGRSSLG





ARLSGALHVYSLGSD





SEQ ID NO: 17 Homo sapiens myotubularin related protein 7


(MTMR7)(NM_004686)


gcgcccgccc gggaccctgc agacgtgggc cagccatgga gcacatccgc acgcccaagg





ttgaaaatgt ccgcttggta gatcgagtgt ctcctaaaaa agcagctcta ggtactttgt





atttgacggc tacccatgtc atattcgtgg aaaattcacc tgacgcaaga aaagaaacat





ggattcttca cagtcagatt tccaccattg agaaacaggc aacaaccgct accggatgcc





ctctgctgat tcgctgcaag aactttcaga taatacagct catcatacct caggaaagag





attgccacga cgtgtacatc tccctgatac gccttgcaag gccagtgaaa tatgaggagt





tatactgctt ttcattcaac cccatgctgg ataaagaaga aagagagcaa ggctgggtgc





tgatcgatct tagtgaagaa tacacgcgga tgggcctccc taatcattac tggcagctca





gcgatgtgaa tagagactac agagtctgtg actcttatcc tactgaactg tacgttccca





aatcggccac ggcacacatc atagtgggga gttccaaatt ccggagtaga cggcgatttc





ctgtcctttc ttactattat aaagataacc acgcctccat ctgccggagc agccagcccc





tgtccggctt cagtgcccgg tgcctggagg acgagcagat gctccaggcc attaggaaag





ccaatccagg aagtgacttc gtttatgtcg ttgacgcccg gcctaaactt aatgcaatgg





caaatcgtgc tgcagggaaa ggctatgaga atgaagacaa ttattccaat atcaagtttc





agtttatcgg gatagagaac atccatgtca tgaggaacag tctgcagaaa atgctggaag





tgtgtgaact taaatctccc tccatgagtg atttcctgtg gggtctggag aactctggct





ggttaaggca cattaaagcc ataatggatg caggaatctt cattgcaaag gcagtgtcag





aggaaggggc aagtgtgctt gttcactgtt ctgatggctg ggacaggacc gctcaggtgt





gctcggtggc aagcctgctg ctggaccctc actaccggac tctgaagggc ttcatggtat





taattgaaaa ggactggatt tcctttggtc ataagtttaa tcaccgatat ggcaatctag





atggtgaccc aaaagaaatc tctccagtta ttgaccagtt cattgagtgt gtttggcagt





taatggaaca atttccctgt gcctttgagt tcaatgagag gtttttgatt cacattcaac





atcacattta ttcctgccag tttggaaact tcctatgtaa cagccaaaag gagagacgag





aactcaagat tcaagaaaga acatactcat tatgggctca cctgtggaag aatcgggccg





actacctgaa tcctctgttt agagctgatc acagccagac tcagggaacc cttcatctcc





ctacaacacc atgtaacttc atgtacaagt tttggagtgg aatgtataac cgctttgaaa





aggggatgca gccccgacag tcagttacag attacctaat ggcagtgaag gaagaaactc





agcagctaga ggaagaacta gaggccctgg aagaaaggct ggaaaaaatt caaaaggtcc





agttaaattg cactaaggtg aagagtaagc aaagtgagcc cagcaagcac tcagggtttt





ctacctcaga caacagcata gccaacactc cccaggatta cagtgggaat atgaaatcat





ttccatcccg gagcccttca caaggcgatg aagattctgc tctgattcta acccaagaca





atctgaaaag ttcagatcca gatctgtcag ccaacagtga ccaagagtcc ggggtggagg





atttgagctg tcggtctcca agtggtggtg agcatgcacc gagtgaagat agtggcaagg





accgggattc tgatgaagcc gtgtttctca ctgcctgaag tttccctttg gagttccaaa





gtaaaggaca cataagcaac acttccaaaa acaagggaac aaggtggttt attgtaaaaa





caggaaatgg tgcatgtcat tgagaactat tttaatgcag ctatgaaaag ggaaaaaagt





gcccagttct tgatttctta gatactgaag aggacgtagt catttcattt atcaaatata





aggaaaatta ttcaccattt tgaagctcac cctagactat gaaaattata ttcactgcag





agcaattact tctgtcatta cctgaagtga tcagtatcta tcttccttgt catagcatgc





atctctcaaa aagcctccac tcctttccct cacatctgtg atcatcatga ttcttttagt





tcacttctag atgcatattt tgtgttttct aaagcatctg acattatcct cctttccgac





cctcttatac atatttctaa aaacaggcac attggtgaga tgcacccttt ttagttaata





gatgcattcc taaggagctt ttaattgctt atctttcagg cataatcatc actttaactt





ttccttggag catatatttt gaattgtgag aataattttg ttgcttttct ctgagatcta





tagtctgttt ctcctcatta tttaaaaatg ctaaaccttg tatctcactt tttctctaac





actgatttaa tagctaacga ggtagaagca acattcattc tcctggtctt acatatgaat





ttaagtatca gctttcttgt aataaccttt tattactgtt ctagagacta cactaccgac





agtgtgggcc agccaccagc ctgatctcaa agtatcacat tataaagtta gtagataaaa





catctgtgag tgaaaatcca gtttcaggaa ccagagaatt gggttgtcat gtctgtttaa





tgaagggaat aggttttgta atctatcatt ttagaaatta tgtaactggc taatatggtt





taattaacct tagtaacatc tcgtgaccac tgactgctga aagttctgaa aagaattttt





gttttgttac actgcacatt taagggagag tccctcccct atcttatgag ttaaaaaaga





cttcactagg tgacctaaat taaacttagt ggggaaaagt ggccatgttt ggacataaat





aaatggtatt cacactgtat ggttttaata tattagtaca ttctagaatg taaaaggatt





aaactttaca atttagatca atattttgaa tatgtgaaag gattaattta aactttacaa





tttacatcaa tattttgaat atctgatttt ttttaatggg agaattatta catttcgctg





aaatgaggac gagggcaaga aagcaacatt gctgatctct ctagtatgaa agatttggag





ggagtgttgc aatatatata aatgaaaaca tttaattgtg ttcatcatat ttaaaaatat





agaatatatt agagaactgt gatttaaaag tactgttaat gtaaaaaata aagcaagtgt





aattaattct ttcagaatat aaaatttggg cattctctgc tgagcagttc ccaaattaag





tacaaggaat gtttattcat tttctgcaat atactatatg taatagggaa taccttgcta





aaataaaact taggatatag tggtaatggc tttcacattt ttataacata acataactca





cttcacaacc ttcttggagc tgtccactct tagaaactct gttgcctaat attgaggatg





tggctttaat ttcttccgtt tgacagtgta tgtctataaa aacaataaac attttttaaa





aaatgacaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa





SEQ ID NO: 18 Homo sapiens myotubularin related protein 7


(MTMR7)(NP_004677.2)


MEHIRTPKVENVRLVDRVSPKKAALGTLYLTATHVIFVENSPDARKETWILHSQISTIEKQATTATGCPLLIRCK





NFQIIQLIIPQERDCHDVYISLIRLARPVKYEELYCFSFNPMLDKEEREQGWVLIDLSEEYTRMGLPNHYWQLSD





VNRDYRVCDSYPTELYVPKSATAHIIVGSSKFRSRRRFPVLSYYYKDNHASICRSSQPLSGFSARCLEDEQMLQA





IRKANPGSDFVYVVDARPKLNAMANRAAGKGYENEDNYSNIKFQFIGIENIHVMRNSLQKMLEVCELKSPSMSDF





LWGLENSGWLRHIKAIMDAGIFIAKAVSEEGASVLVHCSDGWDRTAQVCSVASLLLDPHYRTLKGFMVLIEKDWI





SFGHKFNHRYGNLDGDPKEISPVIDQFIECVWQLMEQFPCAFEFNERFLIHIQHHIYSCQFGNFLCNSQKERREL





KIQERTYSLWAHLWKNRADYLNPLFRADHSQTQGTLHLPTTPCNFMYKFWSGMYNRFEKGMQPRQSVTDYLMAVK





EETQQLEEELEALEERLEKIQKVQLNCTKVKSKQSEPSKHSGFSTSDNSIANTPQDYSGNMKSFPSRSPSQGDED





SALILTQDNLKSSDPDLSANSDQESGVEDLSCRSPSGGEHAPSEDSGKDRDSDEAVFLTA





SEQ ID NO: 19 Homo sapiens transmembrane protein with EGF-like and two


follistatin-like domains 1 (TMEFF1)(NM_003692)


agcgggcggc tgctaggagg caccgaggca gcggcggggc tctgggcgcg cggctggatg





cccccggcct gcggctccct gcgcttcccg ccgtccaggg gcaccagtca tgggcgccgc





agccgctgag gcgccgctcc ggctgcctgc cgcgcctccg ctcgccttct gctgctacac





gtcggtgctt ctgctcttcg ccttctctct gccagggagc cgcgcgtcca accagccccc





gggtggtggc ggcggcagcg gcggggactg tcccggcggc aaaggcaaga gcatcaactg





ctcagaatta aatgtgaggg agtctgacgt aagagtttgt gatgagtcat catgtaaata





tggaggagtc tgtaaagaag atggagatgg tttgaaatgt gcatgccaat ttcagtgcca





tacaaattat attcctgtct gtggatcaaa tggggacact tatcaaaatg aatgctttct





cagaagggct gcttgtaagc accagaaaga gataacagta atagcaagag gaccatgcta





ctctgataat ggatctggat ctggagaagg agaagaggaa gggtcagggg cagaagttca





cagaaaacac tccaagtgtg gaccctgcaa atataaagct gagtgtgatg aagatgcaga





aaatgttggg tgtgtatgta atatagattg cagtggatac agttttaatc ctgtgtgtgc





ttctgatggg agttcctata acaatccctg ttttgttcga gaagcatctt gtataaagca





agaacaaatt gatataaggc atcttggtca ttgcacagat acagatgaca ctagtttgtt





gggaaagaaa gatgatggac tacaatatcg accagatgtg aaagatgcta gtgatcaaag





agaagatgtt tatattggaa accacatgcc ttgccctgaa aacctcaatg gttactgcat





ccatggaaaa tgtgaattca tctattctac tcagaaggct tcttgtagat gtgaatctgg





ctacactgga cagcactgtg aaaagacaga ctttagtatt ctctatgtag tgccaagtag





gcaaaagctc actcatgttc ttattgcagc aattattgga gctgtacaga ttgccatcat





agtagcaatt gtaatgtgca taacaagaaa atgccccaaa aacaatagag gacgtcgaca





gaagcaaaac ctaggtcatt ttacttcaga tacgtcatcc agaatggttt aaactgatga





cttttatatg tacactgacc atgtgatgta catttattat gtcttttttt aaagaatgga





aatatttatt tcagaggcct tatttttgga catttttagt gtagtactgt tggctcgtat





ttagaatatt cagctacgac agttttggac tctttagtag tctttgtttt atgtttttaa





atacagaaat tgctttcaca aatttgtacc acatggtaat tctaagactt gttctttacc





catggaatgt aatatttttg caaagatgga ctacttcaca aatggttata aagtcatatc





cacttcttcc acaatgacca cagcaaatga ccaagcatga actaaaggta aagatgttta





cagattactt ttcttacaaa aaaatctaga agacactgtg tttaaataga tatttaaatg





tttttgagat ttagtaactg attttttaga cactgcctat cgcatgaact gtaaagctgt





gtgtattagg tgtaaaatat ttataagata tatggactgg ggaatttgat tattcctccc





tttgaaaaaa tagtcctaat aatttgaaca aatatgttag taatgatgga acagatcaat





gaaaagtaga tatagatatt gtgaaaatag gctgtttaac aaacagattg gaataaagcc





tattctacca gttaaactac tttaatacac attcattttt aaagaaaatg tttgttttaa





cataaataaa caaatcgtat cagtgtttgt gaataaaata caaaaatgat tgttaatgat





tggtgctctt aaagtgagct taaaatttat ccaagacgta tatccaaatt tgtcctgtag





taatagatta atattcatag attgttggtg tttaaagatc tgaagtgtga gtagaatgta





ttcagctgtt taacatgtag tttagatatt caaaagtatg catgtagaat ttaaagaata





tgttaaaaat tattaatctt aatattttgt ttggaaaagc atgttataat ataatgtttt





cacaaaaaaa aaaaaaaaa





SEQ ID NO: 20 Homo sapiens transmembrane protein with EGF-like and two


follistatin-like domains 1 (TMEFF1)(NP_003683.2)


MGAAAAEAPLRLPAAPPLAFCCYTSVLLLFAFSLPGSRASNQPPGGGGGSGGDCPGGKGKSINCSELNVRESDVR





VCDESSCKYGGVCKEDGDGLKCACQFQCHTNYIPVCGSNGDTYQNECFLRRAACKHQKEITVIARGPCYSDNGSG





SGEGEEEGSGAEVHRKHSKCGPCKYKAECDEDAENVGCVCNIDCSGYSFNPVCASDGSSYNNPCFVREASCIKQE





QIDIRHLGHCTDTDDTSLLGKKDDGLQYRPDVKDASDQREDVYIGNHMPCPENLNGYCIHGKCEFIYSTQKASCR





CESGYTGQHCEKTDFSILYVVPSRQKLTHVLIAAIIGAVQIAIIVAIVMCITRKCPKNNRGRRQKQNLGHFTSDT





SSRMV





SEQ ID NO: 21 Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha


subcomplex, 5, 13 kDa (NDUFA5), nuclear gene encoding mitochondrial protein


(NM_005000)


tggagctaag ctgtttccag ggtgacagag tggcgacctc ggtggtcgat tgagcaggtc





tgagaattgt tcccaaaggg ttgtgcgtca ccgagtcgtt ggcgctgtca tggcgggtgt





gctgaagaag accactggcc ttgtgggatt ggctgtgtgc aatactcctc acgagaggct





aagaatattg tacacaaaga ttcttgatgt tcttgaggaa atccctaaaa atgcagcata





tagaaagtat acagaacaga ttacaaatga gaagctggct atggttaaag cggaaccaga





tgttaaaaaa ttagaagacc aacttcaagg cggtcaatta gaagaggtga ttcttcaggc





tgaacatgaa ctaaatctgg caagaaaaat gagggaatgg aaactatggg agccattagt





ggaagagcct cctgccgatc agtggaaatg gccaatataa ttattaagtg actttggtgt





gttcatggga aactgatgta attaaatatt ctgttatatt aagagcgtgt tcttattact





gacattttgt aatcaagaaa agtgatatag aaaatatgta ggagactgtt aaaattggtg





attatggtaa tatggtcatg tgaatcaatt tttgatttat aaagtactca cacaagttgt





ttcaaagatg atatttctgt gaacagagag gccatgggaa gatttgaaaa ttattaaaga





aaaattccta cagattttca atgcagagac cataatcaaa aagtaaactt tctttagtag





tatgttcaat acatcattta attttttaag ttatcctgaa gaaggaaagg tccttaatta





ttatagtcta aacaaattta tagattactg tttgaagtaa ataatacgag tgaatatttt





caaatgtgat aaaatagcac aagtggctgg tgataaaatt tgaaattatg gttaacctca





gctgtgatct tatgtatgta aagtgaaatt taaatagata attataggtt gattacaaaa





tccatagtgt cattttattt tagtcattat tgaattatac catttactct gttttcttat





agtcttaatt ttattatatt ttgttgttac tgtattatat ttgaaaacct tcaaattaga





atacattgta cagttaaaga aattgacttg gtacttaaaa gaaagatttc ccattgcata





caggttattg gagaaatttt ccttttgttg catttgtgga agttagtttt ctggcccgtg





gcctttaatt ttcttaatca acctaattac atcaggatag aggtagagtt tctgtaaaag





aagagacatt aagagttcct gaaatttata tctggcatac cgataggctt atattcaaaa





catcttagtc atacgaccat aaattaaaag tggagtcact aaatagtttg cagtacgttt





ctaatataag tgtaggtggg tatcaaaaca agacaaatgc tgttcaggga aagaagttgg





caagcttaag gttaaacaaa aataaaatta catgtgtttt cgccttccta





SEQ ID NO: 22 Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha


subcomplex, 5, 13 kDa (NDUFA5), nuclear gene encoding mitochondrial protein


(NP_004991.1)


MAGVLKKTTGLVGLAVCNTPHERLRILYTKILDVLEEIPKNAAYRKYTEQITNEKLAMVKAEPDVKKLEDQLQGG





QLEEVILQAEHELNLARKMREWKLWEP LVEEPPADQWKWPI





SEQ ID NO: 23 Homo sapiens FAT tumor suppressor homolog 2 (Drosophila)


(FAT2) (NM_001447)


ggagttttcc accatgacta ttgccctgct gggttttgcc atattcttgc tccattgtgc





gacctgtgag aagcctctag aagggattct ctcctcctct gcttggcact tcacacactc





ccattacaat gccaccatct atgaaaattc ttctcccaag acctatgtgg agagcttcga





gaaaatgggc atctacctcg cggagccaca gtgggcagtg aggtaccgga tcatctctgg





ggatgtggcc aatgtattta aaactgagga gtatgtggtg ggcaacttct gcttcctaag





aataaggaca aagagcagca acacagctct tctgaacaga gaggtgcgag acagctacac





cctcatcatc caagccacag agaagacctt ggagttggaa gctttgaccc gtgtggtggt





ccacatcctg gaccagaatg acctgaagcc tctcttctct ccaccttcgt acagagtcac





catctctgag gacatgcccc tgaagagccc catctgcaag gtgactgcca cagatgctga





tctaggccag aatgctgagt tctattatgc ctttaacaca aggtcagaga tgtttgccat





ccatcccacc agcggtgtgg tcactgtggc tgggaagctt aacgtcacct ggcgaggaaa





gcatgagctc caggtgctag ctgtggaccg catgcggaaa atctctgagg gcaatgggtt





tggcagcctg gctgcacttg tggttcatgt ggagcctgcc ctcaggaagc ccccagccat





tgcttcggtg gtggtgactc caccagacag caatgatggt accacctatg ccactgtact





ggtcgatgca aatagctcag gagctgaagt ggagtcagtg gaagttgttg gtggtgaccc





tggaaagcac ttcaaagcca tcaagtctta tgcccggagc aatgagttca gtttggtgtc





tgtcaaagac atcaactgga tggagtacct tcatgggttc aacctcagcc tccaggccag





gagtgggagc ggcccttatt tttattccca gatcaggggc tttcacctac caccttccaa





actgtcttcc ctcaaattcg agaaggctgt ttacagagtg cagcttagtg agttttcccc





tcctggcagc cgcgtggtga tggtgagagt caccccagcc ttccccaacc tgcagtatgt





tctaaagcca tcttcagaga atgtaggatt taaacttaat gctcgaactg ggttgatcac





caccacaaag ctcatggact tccacgacag agcccactat cagctacaca tcagaacctc





accgggccag gcctccaccg tggtggtcat tgacattgtg gactgcaaca accatgcccc





cctcttcaac aggtcttcct atgatggtac cttggatgag aacatccctc caggcaccag





tgttttggct gtgactgcca ctgaccggga tcatggggaa aatggatatg tcacctattc





cattgctgga ccaaaagctt tgccattttc tattgacccc tacctgggga tcatctccac





ctccaaaccc atggactatg aactcatgaa aagaatttat accttccggg taagagcatc





agactgggga tccccttttc gccgggagaa ggaagtgtcc atttttcttc agctcaggaa





cttgaatgac aaccagccta tgtttgaaga agtcaactgt acagggtcta tccgccaaga





ctggccagta gggaaatcga taatgactat gtcagccata gatgtggatg agcttcagaa





cctaaaatac gagattgtat caggcaatga actagagtat tttgatctaa atcatttctc





cggagtgata tccctcaaac gcccttttat caatcttact gctggtcaac ccaccagtta





ttccctgaag attacagcct cagatggcaa aaactatgcc tcacccacaa ctttgaatat





tactgtggtg aaggaccctc attttgaagt tcctgtaaca tgtgataaaa caggggtatt





gacacaattc acaaagacta tcctccactt tattgggctt cagaaccagg agtccagtga





tgaggaattc acttctttaa gcacatatca gattaatcat tacaccccac agtttgagga





ccacttcccc caatccattg atgtccttga gagtgtccct atcaacaccc ccttggcccg





cctagcagcc actgaccctg atgctggttt taatggcaaa ctggtctatg tgattgcaga





tggcaatgag gagggctgct ttgacataga gctggagaca gggctgctca ctgtagctgc





tcccttggac tatgaagcca ccaatttcta catcctcaat gtaacagtat atgacctggg





cacaccccag aagtcctcct ggaagctgct gacagtgaat gtgaaagact ggaatgacaa





cgcacccaga tttcctcccg gtgggtacca gttaaccatc tcggaggaca cagaagttgg





aaccacaatt gcagagctga caaccaaaga tgctgactcg gaagacaatg gcagggttcg





ctacaccctg ctaagtccca cagagaagtt ctccctccac cctctcactg gggaactggt





tgttacagga cacctggacc gcgaatcaga gcctcggtac atactcaagg tggaggccag





ggatcagccc agcaaaggcc accagctctt ctctgtcact gacctgataa tcacattgga





ggatgtcaac gacaactctc cccagtgcat cacagaacac aacaggctga aggttccaga





ggacctgccc cccgggactg tcttgacatt tctggatgcc tctgatcctg acctgggccc





cgcaggtgaa gtgcgatatg ttctgatgga tggcgcccat gggaccttcc gggtggacct





gatgacaggg gcgctcattc tggagagaga gctggacttt gagaggcgag ctgggtacaa





tctgagcctg tgggccagtg atggtgggag gcccctagcc cgcaggactc tctgccatgt





ggaggtgatc gtcctggatg tgaatgagaa tctccaccct ccccactttg cctccttcgt





gcaccagggc caggtgcagg agaacagccc ctcgggaact caggtgattg tagtggctgc





ccaggacgat gacagtggct tggatgggga gctccagtac ttcctgcgtg ctggcactgg





actcgcagcc ttcagcatca accaagatac aggaatgatt cagactctgg cacccctgga





ccgagaattt gcatcttact actggttgac ggtattagca gtggacaggg gttctgtgcc





cctctcttct gtaactgaag tctacatcga ggttacggat gccaatgaca acccacccca





gatgtcccaa gctgtgttct acccctccat ccaggaggat gctcccgtgg gcacctctgt





gcttcaactg gatgcctggg acccagactc cagctccaaa gggaagctga ccttcaacat





caccagtggg aactacatgg gattctttat gattcaccct gttacaggtc tcctatctac





agcccagcag ctggacagag agaacaagga tgaacacatc ctggaggtga ctgtgctgga





caatggggaa ccctcactga agtccacctc cagggtggtg gtaggcatct tggacgtcaa





tgacaatcca cctatattct cccacaagct cttcaatgtc cgccttccag agaggctgag





ccctgtgtcc cctgggcctg tgtacaggct ggtggcttca gacctggatg agggtcttaa





tggcagagtc acctacagta tcgaggacag cgatgaggag gccttcagta tcgacctggt





cacaggtgtg gtttcatcca gcagcacttt tacagctgga gagtacaaca tcctaacgat





caaggcaaca gacagtgggc agccaccact ctcagccagt gtccggctac acattgagtg





gatcccttgg ccccggccgt cctccatccc tctggccttt gatgagacct actacagctt





tacggtcatg gagacggacc ctgtgaacca catggtgggg gtcatcagcg tagagggcag





acccggactc ttctggttca acatctcagg tggggataag gacatggact ttgacattga





gaagaccaca ggcagcatcg tcattgccag gcctcttgat accaggagaa ggtcgaacta





taacttgact gttgaggtga cagatgggtc ccgcaccatt gccacacagg tccacatctt





catgattgcc aacattaacc accatcggcc ccagtttctg gaaactcgtt atgaagtcag





agttccccag gacaccgtgc caggggtaga gctcctgcga gtccaggcca tagatcaaga





caagggcaaa agcctcatct ataccataca tggcagccaa gacccaggaa gtgccagcct





cttccagctg gacccaagca gtggtgtcct ggtaacggtg ggaaaattgg acctcggctc





ggggccctcc cagcacacac tgacagtcat ggtccgagac caggaaatac ctatcaagag





gaacttcgtg tgggtgacca ttcatgtgga ggatggaaac ctccacccac cccgcttcac





tcagctccat tatgaggcaa gtgttcctga caccatagcc cccggcacag agctgctgca





ggtccgagcc atggatgctg accggggagt caatgctgag gtccactact ccctcctgaa





agggaacagc gaaggtttct tcaacatcaa tgccctgcta ggcatcatta ctctagctca





aaagcttgat caggcaaatc atgccccaca tactctgaca gtgaaggcag aagatcaagg





ctccccacaa tggcatgacc tggctacagt gatcattcat gtctatccct cagataggag





tgcccccatc ttttcaaaat ctgagtactt tgtagagatc cctgaatcaa tccctgttgg





ttccccaatc ctccttgtct ctgctatgag cccctctgaa gttacctatg agttaagaga





gggaaataag gatggagtct tctctatgaa ctcatattct ggccttattt ccacccagaa





gaaattggac catgagaaaa tctcgtctta ccagctgaaa atccgaggca gcaatatggc





aggtgcattt actgatgtca tggtggtggt tgacataatt gatgaaaatg acaatgctcc





tatgttctta aagtcaactt ttgtgggcca aattagtgaa gcagctccac tgtatagcat





gatcatggat aaaaacaaca acccctttgt gattcatgcc tctgacagtg acaaagaagc





taattccttg ttggtctata aaattttgga gccggaggcc ttgaagtttt tcaaaattga





tcccagcatg ggaaccctaa ccattgtatc agagatggat tatgagagca tgccctcttt





ccaattctgt gtctatgtcc atgaccaagg aagccctgta ttatttgcac ccagacctgc





ccaagtcatc attcatgtca gagatgtgaa tgattcccct cccagattct cagaacagat





atatgaggta gcaatagtcg ggcctatcca tccaggcatg gagcttctca tggtgcgggc





cagcgatgaa gactcagaag tcaattatag catcaaaact ggcaatgctg atgaagctgt





taccatccat cctgtcactg gtagcatatc tgtgctgaat cctgctttcc tgggactctc





tcggaagctc accatcaggg cttctgatgg cttgtatcaa gacactgcgc tggtaaaaat





ttctttgacc caagtgcttg acaaaagctt gcagtttgat caggatgtct actgggcagc





tgtgaaggag aacttgcagg acagaaaggc actggtgatt cttggtgccc agggcaatca





tttgaatgac accctttcct actttctctt gaatggcaca gatatgtttc atatggtcca





gtcagcaggt gtgttgcaga caagaggtgt ggcgtttgac cgggagcagc aggacactca





tgagttggca gtggaagtga gggacaatcg gacacctcag cgggtggctc agggtttggt





cagagtctct attgaggatg tcaatgacaa tccccccaaa tttaagcatc tgccctatta





cacaatcatc caagatggca cagagccagg ggatgtcctc tttcaggtat ctgccactga





tgaggacttg gggacaaatg gggctgttac atatgaattt gcagaagatt acacatattt





ccgaattgac ccctatcttg gggacatatc actcaagaaa ccctttgatt atcaagcttt





aaataaatat cacctcaaag tcattgctcg ggatggagga acgccatccc tccagagtga





ggaagaggta cttgtcactg tgagaaataa atccaaccca ctgtttcaga gtccttatta





caaagtcaga gtacctgaaa atatcaccct ctatacccca attctccaca cccaggcccg





gagtccagag ggactccggc tcatctacaa cattgtggag gaagaaccct tgatgctgtt





caccactgac ttcaagactg gtgtcctaac agtaacaggg cctttggact atgagtccaa





gaccaaacat gtgttcacag tcagagccac ggatacagct ctggggtcat tttctgaagc





cacagtggaa gtcctagtgg aggatgtcaa tgataaccct cccacttttt cccaattggt





ctataccact tccatctcag aaggcttgcc tgctcagacc cctgtgatcc aactgttggc





ttctgaccag gactcagggc ggaaccgtga cgtctcttat cagattgtgg aggatggctc





agatgtttcc aagttcttcc agatcaatgg gagcacaggg gagatgtcca cagttcaaga





actggattat gaagcccaac aacactttca tgtgaaagtc agggccatgg ataaaggaga





tcccccactc actggtgaaa cccttgtggt tgtcaatgtg tctgatatca atgacaaccc





cccagagttc agacaacctc aatatgaagc caatgtcagt gaactggcaa cctgtggaca





cctggttctt aaagtccagg ctattgaccc tgacagcaga gacacctccc gcctggagta





cctgattctt tctggcaatc aggacaggca cttcttcatt aacagctcat cgggaataat





ttctatgttc aacctttgca aaaagcacct ggactcttct tacaatttga gggtaggtgc





ttctgatgga gtcttccgag caactgtgcc tgtgtacatc aacactacaa atgccaacaa





gtacagccca gagttccagc agcaccttta tgaggcagaa ttagcagaga atgcaatggt





tggaaccaag gtgattgatt tgctagccat agacaaagat agtggtccct atggcactat





agattatact atcatcaata aactagcaag tgagaagttc tccataaacc ccaatggcca





gattgccact ctgcagaaac tggatcggga aaattcaaca gagagagtca ttgctattaa





ggtcatggct cgggatggag gaggaagagt agccttctgc acggtgaaga tcatcctcac





agatgaaaat gacaaccccc cacagttcaa agcatctgag tacacagtat ccattcaatc





caatgtcagt aaagactctc cggttatcca ggtgttggcc tatgatgcag atgaaggtca





gaacgcagat gtcacctact cagtgaaccc agaggaccta gttaaagatg tcattgaaat





taacccagtc actggtgtgg tcaaggtgaa agacagcctg gtgggattgg aaaatcagac





ccttgacttc ttcatcaaag cccaagatgg aggccctcct cactggaact ctctggtgcc





agtacgactt caggtggttc ctaaaaaagt atccttaccg aaattttctg aacctttgta





tactttctct gcacctgaag accttccaga ggggtctgaa attgggattg ttaaagcagt





ggcagctcaa gatccagtca tctacagtct agtgcggggc actacacctg agagcaacaa





ggatggtgtc ttctccctag acccagacac aggggtcata aaggtgagga agcccatgga





ccacgaatcc accaaattgt accagattga tgtgatggca cattgccttc agaacactga





tgtggtgtcc ttggtctctg tcaacatcca agtgggagac gtcaatgaca ataggcctgt





atttgaggct gatccatata aggctgtcct cactgagaat atgccagtgg ggacctcagt





cattcaagtg actgccattg acaaggacac tgggagagat ggccaggtga gctacaggct





gtctgcagac cctggtagca atgtccatga gctctttgcc attgacagtg agagtggttg





gatcaccaca ctccaggaac ttgactgtga gacctgccag acttatcatt ttcatgtggt





ggcctatgac cacggacaga ccatccagct atcctctcag gccctggttc aggtctccat





tacagatgag aatgacaatg ctccccgatt tgcttctgaa gagtacagag gatctgtggt





tgagaacagt gagcctggcg aactggtggc gactctaaag accctggatg ctgacatttc





tgagcagaac aggcaggtca cctgctacat cacagaggga gaccccctgg gccagtttgg





catcagccaa gttggagatg agtggaggat ttcctcaagg aagaccctgg accgcgagca





tacagccaag tacttgctca gagtcacagc atctgatggc aagttccagg cttcggtcac





tgtggagatc tttgtcctgg acgtcaatga taacagccca cagtgttcac agcttctcta





tactggcaag gttcatgaag atgtatttcc aggacacttc attttgaagg tttctgccac





agacttggac actgatacca atgctcagat cacatattct ctgcatggcc ctggggcgca





tgaattcaag ctggatcctc atacagggga gctgaccaca ctcactgccc tagaccgaga





aaggaaggat gtgttcaacc ttgttgccaa ggcgacggat ggaggtggcc gatcgtgcca





ggcagacatc accctccatg tggaggatgt gaatgacaat gccccgcggt tcttccccag





ccactgtgct gtggctgtct tcgacaacac cacagtgaag acccctgtgg ctgtagtatt





tgcccgggat cccgaccaag gcgccaatgc ccaggtggtt tactctctgc cggattcagc





cgaaggccac ttttccatcg acgccaccac gggggtgatc cgcctggaaa agccgctgca





ggtcaggccc caggcaccac tggagctcac ggtccgtgcc tctgacctgg gcaccccaat





accgctgtcc acgctgggca ccgtcacagt ctcggtggtg ggcctagaag actacctgcc





cgtgttcctg aacaccgagc acagcgtgca ggtgcccgag gacgccccac ctggcacgga





ggtgctgcag ctggccaccc tcactcgccc gggcgcagag aagaccggct accgcgtggt





cagcgggaac gagcaaggca ggttccgcct ggatgctcgc acagggatcc tgtatgtcaa





cgcaagcctg gactttgaga caagccccaa gtacttcctg tccattgagt gcagccggaa





gagctcctct tccctcagtg acgtgaccac agtcatggtc aacatcactg atgtcaatga





acaccggccc caattccccc aagatccata tagcacaagg gtcttagaga atgcccttgt





gggtgacgtc atcctcacgg tatcagcgac tgatgaagat ggacccctaa atagtgacat





tacctatagc ctcataggag ggaaccagct tgggcacttc accattcacc ccaaaaaggg





ggagctacag gtggccaagg ccctggaccg ggaacaggcc tctagttatt ccctgaagct





ccgagccaca gacagtgggc agcctccact gcatgaggac acagacatcg ctatccaagt





ggctgatgtc aatgataacc caccgagatt cttccagctc aactacagca ccactgtcca





ggagaactcc cccattggca gcaaagtcct gcagctgatc ctgagtgacc cagattctcc





agagaatggc cccccctact cgtttcgaat caccaagggg aacaacggct ctgccttccg





agtgaccccg gatggatggc tggtgactgc tgagggccta agcaggaggg ctcaggaatg





gtatcagctt cagatccagg cgtcagacag tggcatccct cccctctcgt ctttgacgtc





tgtccgtgtc catgtcacag agcagagcca ctatgcacct tctgctctcc cactggagat





cttcatcact gttggagagg atgagttcca gggtggcatg gtgggtaaga tccatgccac





agaccgagac ccccaggaca cgctgaccta tagcctggca gaagaggaga ccctgggcag





gcacttctca gtgggtgcgc ctgatggcaa gattatcgcc gcccagggcc tgcctcgtgg





ccactactcg ttcaacgtca cggtcagcga tgggaccttc accacgactg ctggggtcca





tgtgtacgtg tggcatgtgg ggcaggaggc tctgcagcag gccatgtgga tgggcttcta





ccagctcacc cccgaggagc tggtgagtga ccactggcgg aacctgcaga ggttcctcag





ccataagctg gacatcaaac gggctaacat tcacttggcc agcctccagc ctgcagaggc





cgtggctggt gtggatgtgc tcctggtctt tgaggggcat tctggaacct tctacgagtt





tcaggagcta gcatccatca tcactcactc agccaaggag atggagcatt cagtgggggt





tcagatgcgg tcagctatgc ccatggtgcc ctgccagggg ccaacctgcc agggtcaaat





ctgccataac acagtgcatc tggaccccaa ggttgggccc acgtacagca ccgccaggct





cagcatccta accccgcggc accacctgca gaggagctgc tcctgcaatg gtactgctac





aaggttcagt ggtcagagct atgtgcggta cagggcccca gcggctcgga actggcacat





ccatttctat ctgaaaacac tccagccaca ggccattctt ctattcacca atgaaacagc





gtccgtctcc ctgaagctgg ccagtggagt gccccagctg gaataccact gtctgggtgg





tttctatgga aacctttcct cccagcgcca tgtgaatgac cacgagtggc actccatcct





ggtggaggag atggacgctt ccattcgcct gatggttgac agcatgggca acacctccct





tgtggtccca gagaactgcc gtggtctgag gcccgaaagg cacctcttgc tgggcggcct





cattctgttg cattcttcct cgaatgtctc ccagggcttt gaaggctgcc tggatgctgt





cgtggtcaac gaagaggctc tagatctgct ggcccctggc aagacggtgg caggcttgct





ggagacacaa gccctcaccc agtgctgcct ccacagtgac tactgcagcc agaacacatg





cctcaatggt gggaagtgct catggaccca tggggcaggc tatgtctgca aatgtccccc





acagttctct gggaagcact gtgaacaagg aagggagaac tgtacttttg caccctgcct





ggaaggtgga acttgcatcc tctcccccaa aggagcttcc tgtaactgcc ctcatcctta





cacaggagac aggtgtgaaa tggaggcgag gggttgttca gaaggacact gcctagtcac





tcccgagatc caaagggggg actgggggca gcaggagtta ctgatcatca cagtggccgt





ggcgttcatt atcataagca ctgtcgggct tctcttctac tgccgccgtt gcaagtctca





caagcctgtg gccatggagg acccagacct cctggccagg agtgttggtg ttgacaccca





agccatgcct gccatcgagc tcaacccatt gagtgccagc tcctgcaaca acctcaacca





accggaaccc agcaaggcct ctgttccaaa tgaactcgtc acatttggac ccaattctaa





gcaacggcca gtggtctgca gtgtgccccc cagactcccg ccagctgcgg tcccttccca





ctctgacaat gagcctgtca ttaagagaac ctggtccagc gaggagatgg tgtaccctgg





cggagccatg gtctggcccc ctacttactc caggaacgaa cgctgggaat acccccactc





cgaagtgact cagggccctc tgccgccctc ggctcaccgc cactcaaccc cagtcgtgat





gccagagcct aatggcctct atgggggctt ccccttcccc ctggagatgg aaaacaagcg





ggcacctctc ccaccccgtt acagcaacca gaacctggaa gatctgatgc cctctcggcc





ccctagtccc cgggagcgcc tggttgcccc ctgtctcaat gagtacacgg ccatcagcta





ctaccactcg cagttccggc agggaggggg agggccctgc ctggcagacg ggggctacaa





gggggtgggt atgcgcctca gccgagctgg gccctcttat gctgtctgtg aggtggaggg





ggcacctctt gcaggccagg gccagccccg ggtgcccccc aactatgagg gctctgacat





ggtggagagt gattatggca gctgtgagga ggtcatgttc tagcttccca ttcccagagc





aaggcaggcg ggaggccaag gactggactt ggcttatttc ttcctgtctc gtagggggtg





agttgagtgt ggctgggaga gtgggaggga agccctcagc ccaggctgtt gtcccttgaa





atgtgctctt ccaatccccc acctagtccc tgagggtgga gggaagctga ggatagagct





ccagaaacag cactagggtc ccaggagagg ggcatttcta gagcagtgac cctggaaaac





caggaacaat tgactcctgg ggtgggcgac agacaggagg gctccctgat ctgccggctc





tcagtccccg gggcaaagcc tgattgactg tgctggctca acttcaccaa gatgcattct





catacctgcc cacagctcca ttttggaggc aggcaggttg gtgcctgaca gacaaccact





acgcgggccg tacagaggag ctctagaggg ctgcgtggca tcctcctagg ggctgagagg





tgagcagcag gggagcgggc acagtcccct ctgcccctgc ctcagtcgag cactcactgt





gtctttgtca agtgtctgct ccacgtcagg cactgtgctt tgcaccgggg agaaaatggt





gatggagggc aacaaggact ccgaggagca ccaccaggcc tcgggcccca gaggtcccgc





tcctcagcct acacgcagag gaacgggccc acctcagagt cacaccactg gctgccagtc





agggcctgcc aggagtctac acagctctga accttctttg ttaaagaatt cagacctcat





ggaactctgg gttcttcatc ccaagtttcc caggcacttt tggccaaagg aaggaaggaa





ctaattcttc attttaaaaa ttcttaggca ctttttgacc ttgctgtctg gatgagtttc





ctcaatggga tttttcttcc ctagacacaa ggaagtctga actcctattt agggccggtt





ggaagcaggg agctggaccg cagtgtccag gctggacacc tgccattgcc tcctctccac





tgcagacgcc tgcccatcaa gtattacctg cagcgactca accctatgca tggagggtca





atgtgggcac atgtctacac atgtgggtgc ccatggatag tacgtgtgta cacatgtgta





gagtgtatgt agccaggagt ggtggggacc agaagcctct gtggcctttg gtgacctcac





cactccctcc cacccagtcc ctccctctgg tccactgcct tttcatatgt gttgtttctg





gagacagaag tcaaaaggaa gagcagtgga gccttgccca cagggctgct gcttcatgcg





agagggagat gtgtgggcga gagccaattt gtgtgagtgg tttgtggctg tgtgtgtgac





tgtgagtgtg agtgacagat acatagtttc attggtcatt ttttttttta acaataaagt





atcttttttt actgtt





SEQ ID NO: 24 Homo sapiens FAT tumor suppressor homolog 2 (Drosophila)


(FAT2) (NP_001438.1)


MTIALLGFAIFLLHCATCEKPLEGILSSSAWHFTHSHYNATIYENSSPKTYVESFEKMGIYLAEPQWAVRYRIIS





GDVANVFKTEEYVVGNFCFLRIRTKSSNTALLNREVRDSYTLIIQATEKTLELEALTRVVVHILDQNDLKPLFSP





PSYRVTISEDMPLKSPICKVTATDADLGQNAEFYYAFNTRSEMFAIHPTSGVVTVAGKLNVTWRGKHELQVLAVD





RMRKISEGNGFGSLAALVVHVEPALRKPPAIASVVVTPPDSNDGTTYATVLVDANSSGAEVESVEVVGGDPGKHF





KAIKSYARSNEFSLVSVKDINWMEYLHGFNLSLQARSGSGPYFYSQIRGFHLPPSKLSSLKFEKAVYRVQLSEFS





PPGSRVVMVRVTPAFPNLQYVLKPSSENVGFKLNARTGLITTTKLMDFHDRAHYQLHIRTSPGQASTVVVIDIVD





CNNHAPLFNRSSYDGTLDENIPPGTSVLAVTATDRDHGENGYVTYSIAGPKALPFSIDPYLGIISTSKPMEYELM





KRIYTFRVRASDWGSPFRREKEVSIFLQLRNLNDNQPMFEEVNCTGSIRQDWPVGKSIMTMSAIDVDELQNLKYE





IVSGNELEYFDLNHFSGVISLKRPFINLTAGQPTSYSLKITASDGKNYASPTTLNITVVKDPHFEVPVTCDKTGV





LTQFTKTILHFIGLQNQESSDEEFTSLSTYQINHYTPQFEDHFPQSIDVLESVPINTPLARLAATDPDAGFNGKL





VYVIADGNEEGCFDIELETGLLTVAAPLDYEATNFYILNVTVYDLGTPQKSSWKLLTVNVKDWNDNAPRFPPGGY





QLTISEDTEVGTTIAELTTKDADSEDNGRVRYTLLSPTEKFSLHPLTGELVVTGHLDRESEPRYILKVEARDQPS





KGHQLFSVTDLIITLEDVNDNSPQCITEHNRLKVPEDLPPGTVLTFLDASDPDLGPAGEVRYVLMDGAHGTFRVD





LMTGALILERELDFERRAGYNLSLWASDGGRPLARRTLCHVEVIVLDVNENLHPPHFASFVEQGQVQENSPSGTQ





VIVVAAQDDDSGLDGELQYFLRAGTGLAAFSINQDTGMIQTLAPLDREFASYYWLTVLAVDRGSVPLSSVTEVYI





EVTDANDNPPQMSQAVFYPSIQEDAPVGTSVLQLDAWDPDSSSKGKLTFNITSGNYMGFFMIHPVTGLLSTAQQL





DRENKDEHILEVTVLDNGEPSLKSTSRVVVGILDVNDNPPIFSHKLFNVRLPERLSPVSPGPVYRLVASDLDEGL





NGRVTYSIEDSDEEAFSIDLVTGVVSSSSTFTAGEYNILTIKATDSGQPPLSASVRLHIEWIPWPRPSSIPLAFD





ETYYSFTVMETDPVNHMVGVISVEGRPGLFWFNISGGDKDMDFDIEKTTGSIVIARPLDTRRRSNYNLTVEVTDG





SRTIATQVHIFMIANINHHRPQFLETRYEVRVPQDTVPGVELLRVQAIDQDKGKSLIYTIHGSQDPGSASLFQLD





PSSGVLVTVGKLDLGSGPSQHTLTVMVRDQEIPIKRNFVWVTIHVEDGNLHPPRFTQLHYEASVPDTIAPGTELL





QVRAMDADRGVNAEVHYSLLKGNSEGFFNINALLGIITLAQKLDQANHAPHTLTVKAEDQGSPQWHDLATVIIHV





YPSDRSAPIFSKSEYFVEIPESIPVGSPILLVSAMSPSEVTYELREGNKDGVFSMNSYSGLISTQKKLDHEKISS





YQLKIRGSNMAGAFTDVMVVVDIIDENDNAPMFLKSTFVGQISEAAPLYSMIMDKNNNPFVIHASDSDKEANSLL





VYKILEPEALKFFKIDPSMGTLTIVSEMDYESMPSFQFCVYVHDQGSPVLFAPRPAQVIIHVRDVNDSPPRFSEQ





IYEVAIVGPIHPGMELLMVRASDEDSEVNYSIKTGNADEAVTIHPVTGSISVLNPAFLGLSRKLTIRASDGLYQD





TALVKISLTQVLDKSLQFDQDVYWAAVKENLQDRKALVILGAQGNHLNDTLSYFLLNGTDMFHMVQSAGVLQTRG





VAFDREQQDTHELAVEVRDNRTPQRVAQGLVRVSIEDVNDNPPKFKHLPYYTIIQDGTEPGDVLFQVSATDEDLG





TNGAVTYEFAEDYTYFRIDPYLGDISLKKPFDYQALNKYHLKVIARDGGTPSLQSEEEVLVTVRNKSNPLFQSPY





YKVRVPENITLYTPILHTQARSPEGLRLIYNIVEEEPLMLFTTDFKTGVLTVTGPLDYESKTKHVFTVRATDTAL





GSFSEATVEVLVEDVNDNPPTFSQLVYTTSISEGLPAQTPVIQLLASDQDSGRNRDVSYQIVEDGSDVSKFFQIN





GSTGEMSTVQELDYEAQQHFHVKVRAMDKGDPPLTGETLVVVNVSDINDNPPEFRQPQYEANVSELATCGHLVLK





VQAIDPDSRDTSRLEYLILSGNQDRHFFINSSSGIISMFNLCKKHLDSSYNLRVGASDGVFRATVPVYINTTNAN





KYSPEFQQHLYEAELAENAMVGTKVIDLLAIDKDSGPYGTIDYTIINKLASEKFSINPNGQIATLQKLDRENSTE





RVIAIKVMARDGGGRVAFCTVKIILTDENDNPPQFKASEYTVSIQSNVSKDSPVIQVLAYDADEGQNADVTYSVN





PEDLVKDVIEINPVTGVVKVKDSLVGLENQTLDFFIKAQDGGPPHWNSLVPVRLQVVPKKVSLPKFSEPLYTFSA





PEDLPEGSEIGIVKAVAAQDPVIYSLVRGTTPESNKDGVFSLDPDTGVIKVRKPMDHESTKLYQIDVMAHCLQNT





DVVSLVSVNIQVGDVNDNRPVFEADPYKAVLTENMPVGTSVIQVTAIDKDTGRDGQVSYRLSADPGSNVHELFAI





DSESGWITTLQELDCETCQTYHFHVVAYDHGQTIQLSSQALVQVSITDENDNAPRFASEEYRGSVVENSEPGELV





ATLKTLDADISEQNRQVTCYITEGDPLGQFGISQVGDEWRISSRKTLDREHTAKYLLRVTASDGKFQASVTVEIF





VLDVNDNSPQCSQLLYTGKVHEDVFPGHFILKVSATDLDTDTNAQITYSLHGPGAHEFKLDPHTGELTTLTALDR





ERKDVFNLVAKATDGGGRSCQADITLHVEDVNDNAPRFFPSHCAVAVFDNTTVKTPVAVVFARDPDQGANAQVVY





SLPDSAEGHFSIDATTGVIRLEKPLQVRPQAPLELTVRASDLGTPIPLSTLGTVTVSVVGLEDYLPVFLNTEHSV





QVPEDAPPGTEVLQLATLTRPGAEKTGYRVVSGNEQGRFRLDARTGILYVNASLDFETSPKYFLSIECSRKSSSS





LSDVTTVMVNITDVNEHRPQFPQDPYSTRVLENALVGDVILTVSATDEDGPLNSDITYSLIGGNQLGHFTIHPKK





GELQVAKALDREQASSYSLKLRATDSGQPPLHEDTDIAIQVADVNDNPPRFFQLNYSTTVQENSPIGSKVLQLIL





SDPDSPENGPPYSFRITKGNNGSAFRVTPDGWLVTAEGLSRRAQEWYQLQIQASDSGIPPLSSLTSVRVHVTEQS





HYAPSALPLEIFITVGEDEFQGGMVGKIHATDRDPQDTLTYSLAEEETLGRHFSVGAPDGKIIAAQGLPRGHYSF





NVTVSDGTFTTTAGVHVYVWHVGQEALQQAMWMGFYQLTPEELVSDHWRNLQRFLSHKLDIKRANIHLASLQPAE





AVAGVDVLLVFEGHSGTFYEFQELASIITHSAKEMEHSVGVQMRSAMPMVPCQGPTCQGQICHNTVHLDPKVGPT





YSTARLSILTPRHHLQRSCSCNGTATRFSGQSYVRYRAPAARNWHIHFYLKTLQPQAILLFTNETASVSLKLASG





VPQLEYHCLGGFYGNLSSQRHVNDHEWHSILVEEMDASIRLMVDSMGNTSLVVPENCRGLRPERHLLLGGLILLH





SSSNVSQGFEGCLDAVVVNEEALDLLAPGKTVAGLLETQALTQCCLHSDYCSQNTCLNGGKCSWTHGAGYVCKCP





PQFSGKHCEQGRENCTFAPCLEGGTCILSPKGASCNCPHPYTGDRCEMEARGCSEGHCLVTPEIQRGDWGQQELL





IITVAVAFIIISTVGLLFYCRRCKSHKPVAMEDPDLLARSVGVDTQAMPAIELNPLSASSCNNLNQPEPSKASVP





NELVTFGPNSKQRPVVCSVPPRLPPAAVPSHSDNEPVIKRTWSSEEMVYPGGAMVWPPTYSRNERWEYPHSEVTQ





GPLPPSAHRHSTPVVMPEPNGLYGGFPFPLEMENKRAPLPPRYSNQNLEDLMPSRPPSPRERLVAPCLNEYTAIS





YYHSQFRQGGGGPCLADGGYKGVGMRLSRAGPSYAVCEVEGAPLAGQGQPRVPPNYEGSDMVESDYGSCEEVMF





SEQ ID NO: 25 Homo sapiens chemokine (C—X—C motif) ligand 5


(CECL5)(NM_002994)


gtgcagaagg cacgaggaag ccacagtgct ccggatcctc caatcttcgc tcctccaatc





tccgctcctc cacccagttc aggaacccgc gaccgctcgc agcgctctct tgaccactat





gagcctcctg tccagccgcg cggcccgtgt ccccggtcct tcgagctcct tgtgcgcgct





gttggtgctg ctgctgctgc tgacgcagcc agggcccatc gccagcgctg gtcctgccgc





tgctgtgttg agagagctgc gttgcgtttg tttacagacc acgcaaggag ttcatcccaa





aatgatcagt aatctgcaag tgttcgccat aggcccacag tgctccaagg tggaagtggt





agcctccctg aagaacggga aggaaatttg tcttgatcca gaagcccctt ttctaaagaa





agtcatccag aaaattttgg acggtggaaa caaggaaaac tgattaagag aaatgagcac





gcatggaaaa gtttcccagt cttcagcaga gaagttttct ggaggtctct gaacccaggg





aagacaagaa ggaaagattt tgttgttgtt tgtttatttg tttttccagt agttagcttt





cttcctggat tcctcacttt gaagagtgtg aggaaaacct atgtttgccg cttaagcttt





cagctcagct aatgaagtgt ttagcatagt acctctgcta tttgctgtta ttttatctgc





tatgctattg aagttttggc aattgactat agtgtgagcc aggaatcact ggctgttaat





ctttcaaagt gtcttgaatt gtaggtgact attatatttc caagaaatat tccttaagat





attaactgag aaggctgtgg atttaatgtg gaaatgatgt ttcataagaa ttctgttgat





ggaaatacac tgttatcttc acttttataa gaaataggaa atattttaat gtttcttggg





gaatatgtta gagaatttcc ttactcttga ttgtgggata ctatttaatt atttcacttt





agaaagctga gtgtttcaca ccttatctat gtagaatata tttccttatt cagaatttct





aaaagtttaa gttctatgag ggctaatatc ttatcttcct ataattttag acattcttta





tctttttagt atggcaaact gccatcattt acttttaaac tttgatttta tatgctattt





attaagtatt ttattaggag taccataatt ctggtagcta aatatatatt ttagatagat





gaagaagcta gaaaacaggc aaattcctga ctgctagttt atatagaaat gtattctttt





agtttttaaa gtaaaggcaa acttaacaat gacttgtact ctgaaagttt tggaaacgta





ttcaaacaat ttgaatataa atttatcatt tagttataaa aatatatagc gacatcctcg





aggccctagc atttctcctt ggatagggga ccagagagag cttggaatgt taaaaacaaa





acaaaacaaa aaaaaacaag gagaagttgt ccaagggatg tcaatttttt atccctctgt





atgggttaga ttttccaaaa tcataatttg aagaaggcca gcatttatgg tagaatatat





aattatatat aaggtggcca cgctggggca agttccctcc ccactcacag ctttggcccc





tttcacagag tagaacctgg gttagaggat tgcagaagac gagcggcagc ggggagggca





gggaagatgc ctgtcgggtt tttagcacag ttcatttcac tgggattttg aagcatttct





gtctgaatgt aaagcctgtt ctagtcctgg tgggacacac tggggttggg ggtgggggaa





gatgcggtaa tgaaaccggt tagtcagtgt tgtcttaata tccttgataa tgctgtaaag





tttattttta caaatatttc tgtttaagct atttcacctt tgtttggaaa tccttccctt





ttaaagagaa aatgtgacac ttgtgaaaag gcttgtagga aagctcctcc ctttttttct





ttaaaccttt aaatgacaaa cctaggtaat taatggttgt gaatttctat ttttgctttg





tttttaatga acatttgtct ttcagaatag gattctgtga taatatttaa atggcaaaaa





caaaacataa ttttgtgcaa ttaacaaagc tactgcaaga aaaataaaac atttcttggt





aaaaacgtat gtatttatat attatatatt tatatataat atatattata tatttagcat





tgctgagctt tttagatgcc tattgtgtat cttttaaagg ttttgaccat tttgttatga





gtaattacat atatattaca ttcactatat taaaattgta cttttttact atgtgtctca





ttggttcata gtctttattt tgtcctttga ataaacatta aaagatttct aaacttcaaa





aaaaaaaaaa aaaaa





SEQ ID NO: 26 Homo sapiens chemokine (C—X—C motif) ligand 5 (CXCL5)


(NP_002985.1)


MSLLSSRAARVPGPSSSLCALLVLLLLLTQPGPIASAGPAAAVLRELRCVCLQTTQGVHPKMISNLQVFAIGPQC





SKVEVVASLKNGKEICLDPEAPFLKKVIQKILDGGNKEN





SEQ ID NO: 27 Homo sapiens zinc finger protein 771 (ZNF771) (NM_016643)


gaggtggtga aactcaagat ccccatggac aacaaggagg tcccgggcga ggcgcccgcg





ccgtccgccg acccggcgcg tccccacgcg tgccccgact gcggccgcgc cttcgcgcgc





cgctccacgc tggcgaagca cgcgcgcacg cacacgggcg aacggccctt cgggtgcacc





gagtgcgggc ggcgcttctc acagaagtcg gcgctgacca aacacggccg cacgcacacg





ggcgagcggc cctacgagtg ccccgagtgc gacaaacgct tctcggccgc ctcgaacctg





cggcagcacc gacggcggca cacgggcgag aagccgtacg catgcgcgca ctgcggccgc





cgcttcgcgc agagctccaa ctacgcacag cacctgcgcg tgcacacggg cgagaagccg





tacgcgtgcc cggactgcgg acgcgccttt ggcggcagct cgtgcctggc gcgccaccga





cgcacgcaca cgggcgagcg gccctacgct tgcgccgact gcggcacgcg cttcgctcag





agctcggcgc tggccaagca ccggcgcgtg cacacgggcg agaagccgca ccgctgcgct





gtgtgtggcc gtcgcttcgg ccaccgctcc aacctggcgg agcacgcgcg cacgcacaca





ggcgagcggc cctacccctg cgccgagtgc ggccgccgct tccgcctaag ctcgcacttc





attcgccacc gacgcgcgca catgcggcgc cgcctgtata tttgcgccgg ctgcggcagg





gacttcaagc tgccccctgg cgccacggcc gccactgcca ccgagcgttg cccggagtgt





gagggcagct gagtcccgca gggctgcgga ggggcgcgct ggggcttcga cctggctgca





ctaacccagg ctcctcctcg ccccggcctc cgggtctggg aaattgaggg gacggcaggc





ccggctgccc tggaactggg agacagggag aatcccctgc cggggtccct ggaaacagtg





cccaccccac atcactacat tccctcggcc cgtgttagtg aataaagtat tatatcctca





ccccacccgt gcctgtgagt gaggtgggtg ggagaggaag aaagttgggg ttctccaggc





tcaggtgcca agtgagttgt caaggaacca aatggggatg taaacctaaa aggggttccc





ggcacctcgg tttgtgttgg ttggaggtga tcgcacactt ggcccttggt tacgtcctca





taaccttaga cctgaaaggg cccataaata tactatgttc acgatcagac acgcactgca





ttcggcagag ctccagtgag caaggcacga ccctcagatc tcagtctagt gaaggagaga





aaactgtaat aacactacgt taaaggtttt aactgctttg ttatgtaagc ttacccagcc





cggcgcacag tgactcacgc ctgtaatccc agcactttgg gagggcgagg ctagcagatc





acttgaggtt aggagttcga taccagcctg gccaacatgg tgaaacccgg tctctactaa





aaatacaaaa attaactggg tgtggtggcg ggcgcctgta atcccagcta ctgagggggc





tgaggcatga gaatcacttg aacctgggag acagaggttg caatgaaccg agatagtgcc





attgcactcc ggcctgggca acagaggaag actgcctcaa acaaacaaaa aacaacaaac





caaaccaaac caaaaaaatc tcaaagcgat tggacctagc agctcatgcc tgtaatctcc





agcactttgg gaggcggagg caggaggatc tcttgaagtc aagagtttga gatcagcctg





gagaacaaag tgagaccccc atctattaaa aaaaaaaaaa aaaaa





SEQ ID NO: 28 Homo sapiens zinc finger protein 771 (ZNF771)(NP_057727.1)


MDNKEVPGEAPAPSADPARPHACPDCGRAFARRSTLAKHARTHTGERPFGCTECGRRFSQKSALTKHGRTHTGER





PYECPECDKRFSAASNLRQHRRRHTGEKPYACAHCGRRFAQSSNYAQHLRVHTGEKPYACPDCGRAFGGSSCLAR





HRRTHTGERPYACADCGTRFAQSSALAKHRRVHTGEKPHRCAVCGRRFGHRSNLAEHARTHTGERPYPCAECGRR





FRLSSHFIRHRRAHMRRRLYICAGCGRDFKLPPGATAATATERCPECEGS





SEQ ID NO: 29 Homo sapiens natriuretic peptide receptor C/guanylate cyclase


C (atrionatriuretic peptide receptor C)(NPR3)(NM_000908)


tctttttctt ttttttttaa gaaaaactag tgacattgca gagaaggacg cttcctctct





atcttttggc gcattagtga agggggtatt ctattttgtt aaagcgccca agggggcgca





gggaccttgg agagaagagt ggggaggaaa gaggaagggt gggtgggggg cagagggcga





gtcggcggcg gcgagggcaa gctctttctt gcggcacgat gccgtctctg ctggtgctca





ctttctcccc gtgcgtacta ctcggctggg cgttgctggc cggcggcacc ggtggcggtg





gcgttggcgg cggcggcggt ggcgcgggca taggcggcgg acgccaggag agagaggcgc





tgccgccaca gaagatcgag gtgctggtgt tactgcccca ggatgactcg tacttgtttt





cactcacccg ggtgcggccg gccatcgagt atgctctgcg cagcgtggag ggcaacggga





ctgggaggcg gcttctgccg ccgggcactc gcttccaggt ggcttacgag gattcagact





gtgggaaccg tgcgctcttc agcttggtgg accgcgtggc ggcggcgcgg ggcgccaagc





cagaccttat cctggggcca gtgtgcgagt atgcagcagc gccagtggcc cggcttgcat





cgcactggga cctgcccatg ctgtcggctg gggcgctggc cgctggcttc cagcacaagg





actctgagta ctcgcacctc acgcgcgtgg cgcccgccta cgccaagatg ggcgagatga





tgctcgccct gttccgccac caccactgga gccgcgctgc actggtctac agcgacgaca





agctggagcg gaactgctac ttcaccctcg agggggtcca cgaggtcttc caggaggagg





gtttgcacac gtccatctac agtttcgacg agaccaaaga cttggatctg gaagacatcg





tgcgcaatat ccaggccagt gagagagtgg tgatcatgtg tgcgagcagt gacaccatcc





ggagcatcat gctggtggcg cacaggcatg gcatgaccag tggagactac gccttcttca





acattgagct cttcaacagc tcttcctatg gagatggctc atggaagaga ggagacaaac





acgactttga agctaagcaa gcatactcgt ccctccagac agtcactcta ctgaggacag





tgaaacctga gtttgagaag ttttccatgg aggtgaaaag ttcagttgag aaacaagggc





tcaatatgga ggattacgtt aacatgtttg ttgaaggatt ccacgatgcc atcctcctct





acgtcttggc tctacatgaa gtactcagag ctggttacag caaaaaggat ggagggaaaa





ttatacagca gacttggaac agaacatttg aaggtatcgc cgggcaggtg tccatagatg





ccaacggaga ccgatatggg gatttctctg tgattgccat gactgatgtg gaggcgggca





cccaggaggt tattggtgat tattttggaa aagaaggtcg ttttgaaatg cggccgaatg





tcaaatatcc ttggggccct ttaaaactga gaatagatga aaaccgaatt gtagagcata





caaacagctc tccctgcaaa tcatgtggcc tagaagaatc ggcagtgaca ggaattgtcg





tgggggcttt actaggagct ggcttgctaa tggccttcta ctttttcagg aagaaataca





gaataaccat tgagaggcga acccagcaag aagaaagtaa ccttggaaaa catcgggaat





tacgggaaga ttccatcaga tcccattttt cagtagctta aaggaagccc cccacttttt





ttttttctgc ctgagattct ttaaggagat agacgggttg aaagacatca atgaaacaga





aggggcgttc ttgaagaatt cataatttta agcagttagt aatttcattt taaaatttct





gtagaagctc aggaattatg attaatcacc atctgcctcc aggcctttca tctcatgaca





aacaaatata ataatgatat cgtgtcactc tgttaaatgt tcatactgtt tcaagcccat





atgattagat ttatgttttt aaaatctgtt gtctccatat cttgatggct tttgggagca





tttcacacaa ggatataaaa tgcggttttc ttaaatgaaa tgttttgtag ctagaataaa





atcattttta caagtacagc attcttggaa agaatttaac acccaaaaag gggaaaatgt





aatgaaaaat ctcaaggttg gaaatacagc cttactctct ctagagctgg aggacaggtt





tgtggttgag gacttctctg tccgatgtct acattcaggt tctgacttca tatcttgaaa





aaggatttcc tccctgtctt tttcagtgtc tcataaacgc tactctggat tgttgtaaat





attagtgaga tgggaggatt tacagaagaa aagcaagtca aaaatatttc ctttttgatg





taaaaaaaaa aagccctatt tcgcactaac attttatttt acaagtattt taatcttata





ttttggtatt agaaaaattt gtctattttt tcattttgaa gattaaatgt tgcttacatt





ttaaaaaaaa a





SEQ ID NO: 30 Homo sapiens natriuretic peptide receptor C/guanylate cyclase


C (atrionatriuretic peptide receptor C) (NPR3) (NP_000899.1)


MPSLLVLTFSPCVLLGWALLAGGTGGGGVGGGGGGAGIGGGRQEREALPPQKIEVLVLLPQDDSYLFSLTRVRPA





IEYALRSVEGNGTGRRLLPPGTRFQVAYEDSDCGNRALFSLVDRVAAARGAKPDLILGPVCEYAAAPVARLASHW





DLPMLSAGALAAGFQHKDSEYSHLTRVAPAYAKMGEMMLALFRHHHWSRAALVYSDDKLERNCYFTLEGVHEVFQ





EEGLHTSIYSFDETKDLDLEDIVRNIQASERVVIMCASSDTIRSIMLVAHRHGMTSGDYAFFNIELFNSSSYGDG





SWKRGDKHDFEAKQAYSSLQTVTLLRTVKPEFEKFSMEVKSSVEKQGLNMEDYVNMFVEGFHDAILLYVLALHEV





LRAGYSKKDGGKIIQQTWNRTFEGIAGQVSIDANGDRYGDFSVIAMTDVEAGTQEVIGDYFGKEGRFEMRPNVKY





PWGPLKLRIDENRIVEHTNSSPCKSCGLEESAVTGIVVGALLGAGLLMAFYFFRKKYRITIERRTQQEESNLGKH





RELREDSIRSHFSVA





SEQ ID NO: 31 Homo sapiens early growth response 2 (Krox-20 homolog,



Drosophila) (EGR2) (NM_000399)



taactgagcg aggagcaatt gattaatagc tcggcgaggg gactcactga ctgttataat





aacactacac cagcaactcc tggcttccca gcagccggaa cacagacagg agagagtcag





tggcaaatag acatttttct tatttcttaa aaaacagcaa cttgtttgct acttttattt





ctgttgattt ttttttcttg gtgtgtgtgg tacttgtttt taagtgtgga gggcaaaagg





agataccatc ccaggctcag tccaacccct ctccaaaacg gcttttctga cactccaggt





agcgagggag ttgggtctcc aggttgtgcg aggagcaaat gatgaccgcc aaggccgtag





acaaaatccc agtaactctc agtggttttg tgcaccagct gtctgacaac atctacccgg





tggaggacct cgccgccacg tcggtgacca tctttcccaa tgccgaactg ggaggcccct





ttgaccagat gaacggagtg gccggagatg gcatgatcaa cattgacatg actggagaga





agaggtcgtt ggatctccca tatcccagca gctttgctcc cgtctctgca cctagaaacc





agaccttcac ttacatgggc aagttctcca ttgaccctca gtaccctggt gccagctgct





acccagaagg cataatcaat attgtgagtg caggcatctt gcaaggggtc acttccccag





cttcaaccac agcctcatcc agcgtcacct ctgcctcccc caacccactg gccacaggac





ccctgggtgt gtgcaccatg tcccagaccc agcctgacct ggaccacctg tactctccgc





caccgcctcc tcctccttat tctggctgtg caggagacct ctaccaggac ccttctgcgt





tcctgtcagc agccaccacc tccacctctt cctctctggc ctacccacca cctccttcct





atccatcccc caagccagcc acggacccag gtctcttccc aatgatccca gactatcctg





gattctttcc atctcagtgc cagagagacc tacatggtac agctggccca gaccgtaagc





cctttccctg cccactggac accctgcggg tgccccctcc actcactcca ctctctacaa





tccgtaactt taccctgggg ggccccagtg ctggggtgac cggaccaggg gccagtggag





gcagcgaggg accccggctg cctggtagca gctcagcagc agcagcagcc gccgccgccg





ccgcctataa cccacaccac ctgccactgc ggcccattct gaggcctcgc aagtacccca





acagacccag caagacgccg gtgcacgaga ggccctaccc gtgcccagca gaaggctgcg





accggcggtt ctcccgctct gacgagctga cacggcacat ccgaatccac actgggcata





agcccttcca gtgtcggatc tgcatgcgca acttcagccg cagtgaccac ctcaccaccc





atatccgcac ccacaccggt gagaagccct tcgcctgtga ctactgtggc cgaaagtttg





cccggagtga tgagaggaag cgccacacca agatccacct gagacagaaa gagcggaaaa





gcagtgcccc ctctgcatcg gtgccagccc cctctacagc ctcctgctct gggggcgtgc





agcctggggg taccctgtgc agcagtaaca gcagcagtct tggcggaggg ccgctcgccc





cttgctcctc tcggacccgg acaccttgag atgagactca ggctgataca ccagctccca





aaggtcccgg aggccctttg tccactggag ctgcacaaca aacactacca ccctttcctg





tccctctctc cctttgttgg gcaaagggct ttggtggagc tagcactgcc ccctttccac





ctagaagcag gttcttccta aaacttagcc cattctagtc tctcttaggt gagttgacta





tcaacccaag gcaaagggga ggctcagaag gaggtggtgt ggggatcccc tggccaagag





ggctgaggtc tgaccctgct ttaaagggtt gtttgactag gttttgctac cccacttccc





cttattttga cccatcacag gtttttgacc ctggatgtca gagttgatct aagacgtttt





ctacaatagg ttgggagatg ctgatccctt caagtgggga cagcaaaaag acaagcaaaa





ctgatgtgca ctttatggct tgggactgat ttgggggaca ttgtacagtg agtgaagtat





agcctttatg ccacactctg tggccctaaa atggtgaatc agagcatatc tagttgtctc





aacccttgaa gcaatatgta ttatatactc agagaacaga agtgcaatgt gatgggagga





acgtagcaat atctgctcct tttcgagttg tttgagaaat gtaggctatt ttttcagtgt





atatccactc agattttgtg tatttttgat gtacccacac tgttctctaa attctgaatc





tttgggaaaa aatgtaaagc atttatgatc tcagaggtta acttatttaa gggggatgta





catattctct gaaactagga tgcatgcaat tgtgttggaa gtgtccttgg tcgccttgtg





tgatgtagac aaatgttaca aggctgcatg taaatgggtt gccttattat ggagaaaaaa





atcactccct gagtttagta tggctgtata tttatgccta ttaatatttg gaattttttt





tagaaagtat atttttgtat gctttgtttt gtgacttaaa agtgttacct ttgtagtcaa





atttcagata agaatgtaca taatgttacc ggagctgatt tgtttggtca ttagctctta





atagttgtga aaaaataaat ctattctaac gcaaaaccac taactgaagt tcagatataa





tggatggttt gtgactatag tgtaaataaa tacttttcaa caat





SEQ ID NO: 32 Homo sapiens early growth response 2 (Krox-20 homolog,



Drosophila) (EGR2) (NP_000390.2)



MMTAKAVDKIPVTLSGFVHQLSDNIYPVEDLAATSVTIFPNAELGGPFDQMNGVAGDGMINIDMTGEKRSLDLPY





PSSFAPVSAPRNQTFTYMGKFSIDPQYPGASCYPEGIINIVSAGILQGVTSPASTTASSSVTSASPNPLATGPLG





VCTMSQTQPDLDHLYSPPPPPPPYSGCAGDLYQDPSAFLSAATTSTSSSLAYPPPPSYPSPKPATDPGLFPMIPD





YPGFFPSQCQRDLHGTAGPDRKPFPCPLDTLRVPPPLTPLSTIRNFTLGGPSAGVTGPGASGGSEGPRLPGSSSA





AAAAAAAAAYNPHHLPLRPILRPRKYPNRPSKTPVHERPYPCPAEGCDRRFSRSDELTRHIRIHTGHKPFQCRIC





MRNFSRSDHLTTHIRTHTGEKPFACDYCGRKFARSDERKRHTKIHLRQKERKSSAPSASVPAPSTASCSGGVQPG





GTLCSSNSSSLGGGPLAPCSSRTRTP





SEQ ID NO: 33 Homo sapiens leukocyte immunoglobulin-like receptor,


subfamily A (with TM domain), member 4 (LILRA4) (NM_012276)


ctacgggcac cgtggccaca cctgcctgca cagccagggc caggaggagg agatgccatg





accctcattc tcacaagcct gctcttcttt gggctgagcc tgggccccag gacccgggtg





caggcagaaa acctacccaa acccatcctg tgggccgagc caggtcccgt gatcacctgg





cataaccccg tgaccatctg gtgtcagggc accctggagg cccaggggta ccgtctggat





aaagagggaa actcaatgtc gaggcacata ttaaaaacac tggagtctga aaacaaggtc





aaactctcca tcccatccat gatgtgggaa catgcagggc gatatcactg ttactatcag





agccctgcag gctggtcaga gcccagcgac cccctggagc tggtggtgac agcctacagc





agacccaccc tgtccgcact gccaagccct gtggtgacct caggagtgaa cgtgaccctc





cggtgtgcct cacggctggg actgggcagg ttcactctga ttgaggaagg agaccacagg





ctctcctgga ccctgaactc acaccaacac aaccatggaa agttccaggc cctgttcccc





atgggccccc tgaccttcag caacaggggt acattcagat gctacggcta tgaaaacaac





accccatacg tgtggtcgga acccagtgac cccctgcagc tactggtgtc aggcgtgtct





aggaagccct ccctcctgac cctgcagggc cctgtcgtga cccccggaga gaatctgacc





ctccagtgtg gctctgatgt cggctacatc agatacactc tgtacaagga gggggccgat





ggcctccccc agcgccctgg ccggcagccc caggctgggc tctcccaggc caacttcacc





ctgagccctg tgagccgctc ctacgggggc cagtacagat gctacggcgc acacaacgtc





tcctccgagt ggtcggcccc cagtgacccc ctggacatcc tgatcgcagg acagatctct





gacagaccct ccctctcagt gcagccgggc cccacggtga cctcaggaga gaaggtgacc





ctgctgtgtc agtcatggga cccgatgttc actttccttc tgaccaagga gggggcagcc





catcccccgt tgcgtctgag atcaatgtac ggagctcata agtaccaggc tgaattcccc





atgagtcctg tgacctcagc ccacgcgggg acctacaggt gctacggctc acgcagctcc





aacccctacc tgctgtctca ccccagtgag cccctggagc tcgtggtctc aggagcaact





gagaccctca atccagcaca aaagaagtca gattccaaga ctgccccaca cctccaggat





tacacagtgg agaatctcat ccgcatgggt gtggctggct tggtcctgct gttcctcggg





attctgttat ttgaggctca gcacagccag agaagccccc caaggtgcag ccaggaggca





aacagcagaa aggacaatgc acccttcaga gtggtggagc cttgggaaca gatctgatga





tctgaggagg ttctggaaga ctggggcagc agttggggaa gtgtctgctg agaatatcaa





ggggaagaag catgggtcag gtgcaggaag atgtctgggt gtctgtagaa gatgcttcct





ccattaaact gtggtgcttt cctcctcaaa aaaaaaaaaa aaaaa





SEQ ID NO: 34 Homo sapiens leukocyte immunoglobulin-like receptor,


subfamily A (with TM domain), member 4 (LILRA4) (NP_036408.3)


MTLILTSLLFFGLSLGPRTRVQAENLPKPILWAEPGPVITWHNPVTIWCQGTLEAQGYRLDKEGNSMSRHILKTL





ESENKVKLSIPSMMWEHAGRYHCYYQSPAGWSEPSDPLELVVTAYSRPTLSALPSPVVTSGVNVTLRCASRLGLG





RFTLIEEGDHRLSWTLNSHQHNHGKFQALFPMGPLTFSNRGTFRCYGYENNTPYVWSEPSDPLQLLVSGVSRKPS





LLTLQGPVVTPGENLTLQCGSDVGYIRYTLYKEGADGLPQRPGRQPQAGLSQANFTLSPVSRSYGGQYRCYGAHN





VSSEWSAPSDPLDILIAGQISDRPSLSVQPGPTVTSGEKVTLLCQSWDPMFTFLLTKEGAAHPPLRLRSMYGAHK





YQAEFPMSPVTSAHAGTYRCYGSRSSNPYLLSHPSEPLELVVSGATETLNPAQKKSDSKTAPHLQDYTVENLIRM





GVAGLVLLFLGILLFEAQHSQRSPPRCSQEANSRKDNAPFRVVEPWEQI





SEQ ID NO: 35 Homo sapiens prostaglandin D2 synthase 21 kDa (brain) (PTGDS)


(NM_000954)


gctcctcctg cacacctccc tcgctctccc acaccactgg caccaggccc cggacacccg





ctctgctgca ggagaatggc tactcatcac acgctgtgga tgggactggc cctgctgggg





gtgctgggcg acctgcaggc agcaccggag gcccaggtct ccgtgcagcc caacttccag





caggacaagt tcctggggcg ctggttcagc gcgggcctcg cctccaactc gagctggctc





cgggagaaga aggcggcgtt gtccatgtgc aagtctgtgg tggcccctgc cacggatggt





ggcctcaacc tgacctccac cttcctcagg aaaaaccagt gtgagacccg aaccatgctg





ctgcagcccg cggggtccct cggctcctac agctaccgga gtccccactg gggcagcacc





tactccgtgt cagtggtgga gaccgactac gaccagtacg cgctgctgta cagccagggc





agcaagggcc ctggcgagga cttccgcatg gccaccctct acagccgaac ccagaccccc





agggctgagt taaaggagaa attcaccgcc ttctgcaagg cccagggctt cacagaggat





accattgtct tcctgcccca aaccgataag tgcatgacgg aacaatagga ctccccaggg





ctgaagctgg gatcccggcc agccaggtga cccccacgct ctggatgtct ctgctctgtt





ccttccccga gcccctgccc cggctccccg ccaaagcaac cctgcccact caggcttcat





cctgcacaat aaactccgga agcaagtcag taaaaaaaaa aaaaaaaaaa aaaaaaa





SEQ ID NO: 36 Homo sapiens prostaglandin D2 synthase 21 kDa (brain) (PTGDS)


(NP_000945.3)


MATHHTLWMGLALLGVLGDLQAAPEAQVSVQPNFQQDKFLGRWFSAGLASNSSWLREKKAALSMCKSVVAPATDG





GLNLTSTFLRKNQCETRTMLLQPAGSLGSYSYRSPHWGSTYSVSVVETDYDQYALLYSQGSKGPGEDFRMATLYS





RTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQ





SEQ ID NO: 37 Homo sapiens periostin, osteoblast specific factor (POSTN)


(NM_006475)


agagactcaa gatgattccc tttttaccca tgttttctct actattgctg cttattgtta





accctataaa cgccaacaat cattatgaca agatcttggc tcatagtcgt atcaggggtc





gggaccaagg cccaaatgtc tgtgcccttc aacagatttt gggcaccaaa aagaaatact





tcagcacttg taagaactgg tataaaaagt ccatctgtgg acagaaaacg actgttttat





atgaatgttg ccctggttat atgagaatgg aaggaatgaa aggctgccca gcagttttgc





ccattgacca tgtttatggc actctgggca tcgtgggagc caccacaacg cagcgctatt





ctgacgcctc aaaactgagg gaggagatcg agggaaaggg atccttcact tactttgcac





cgagtaatga ggcttgggac aacttggatt ctgatatccg tagaggtttg gagagcaacg





tgaatgttga attactgaat gctttacata gtcacatgat taataagaga atgttgacca





aggacttaaa aaatggcatg attattcctt caatgtataa caatttgggg cttttcatta





accattatcc taatggggtt gtcactgtta attgtgctcg aatcatccat gggaaccaga





ttgcaacaaa tggtgttgtc catgtcattg accgtgtgct tacacaaatt ggtacctcaa





ttcaagactt cattgaagca gaagatgacc tttcatcttt tagagcagct gccatcacat





cggacatatt ggaggccctt ggaagagacg gtcacttcac actctttgct cccaccaatg





aggcttttga gaaacttcca cgaggtgtcc tagaaaggtt catgggagac aaagtggctt





ccgaagctct tatgaagtac cacatcttaa atactctcca gtgttctgag tctattatgg





gaggagcagt ctttgagacg ctggaaggaa atacaattga gataggatgt gacggtgaca





gtataacagt aaatggaatc aaaatggtga acaaaaagga tattgtgaca aataatggtg





tgatccattt gattgatcag gtcctaattc ctgattctgc caaacaagtt attgagctgg





ctggaaaaca gcaaaccacc ttcacggatc ttgtggccca attaggcttg gcatctgctc





tgaggccaga tggagaatac actttgctgg cacctgtgaa taatgcattt tctgatgata





ctctcagcat ggttcagcgc ctccttaaat taattctgca gaatcacata ttgaaagtaa





aagttggcct taatgagctt tacaacgggc aaatactgga aaccatcgga ggcaaacagc





tcagagtctt cgtatatcgt acagctgtct gcattgaaaa ttcatgcatg gagaaaggga





gtaagcaagg gagaaacggt gcgattcaca tattccgcga gatcatcaag ccagcagaga





aatccctcca tgaaaagtta aaacaagata agcgctttag caccttcctc agcctacttg





aagctgcaga cttgaaagag ctcctgacac aacctggaga ctggacatta tttgtgccaa





ccaatgatgc ttttaaggga atgactagtg aagaaaaaga aattctgata cgggacaaaa





atgctcttca aaacatcatt ctttatcacc tgacaccagg agttttcatt ggaaaaggat





ttgaacctgg tgttactaac attttaaaga ccacacaagg aagcaaaatc tttctgaaag





aagtaaatga tacacttctg gtgaatgaat tgaaatcaaa agaatctgac atcatgacaa





caaatggtgt aattcatgtt gtagataaac tcctctatcc agcagacaca cctgttggaa





atgatcaact gctggaaata cttaataaat taatcaaata catccaaatt aagtttgttc





gtggtagcac cttcaaagaa atccccgtga ctgtctatac aactaaaatt ataaccaaag





ttgtggaacc aaaaattaaa gtgattgaag gcagtcttca gcctattatc aaaactgaag





gacccacact aacaaaagtc aaaattgaag gtgaacctga attcagactg attaaagaag





gtgaaacaat aactgaagtg atccatggag agccaattat taaaaaatac accaaaatca





ttgatggagt gcctgtggaa ataactgaaa aagagacacg agaagaacga atcattacag





gtcctgaaat aaaatacact aggatttcta ctggaggtgg agaaacagaa gaaactctga





agaaattgtt acaagaagag gtcaccaagg tcaccaaatt cattgaaggt ggtgatggtc





atttatttga agatgaagaa attaaaagac tgcttcaggg agacacaccc gtgaggaagt





tgcaagccaa caaaaaagtt caaggttcta gaagacgatt aagggaaggt cgttctcagt





gaaaatccaa aaaccagaaa aaaatgttta tacaacccta agtcaataac ctgaccttag





aaaattgtga gagccaagtt gacttcagga actgaaacat cagcacaaag aagcaatcat





caaataattc tgaacacaaa tttaatattt ttttttctga atgagaaaca tgagggaaat





tgtggagtta gcctcctgtg gtaaaggaat tgaagaaaat ataacacctt acaccctttt





tcatcttgac attaaaagtt ctggctaact ttggaatcca ttagagaaaa atccttgtca





ccagattcat tacaattcaa atcgaagagt tgtgaactgt tatcccattg aaaagaccga





gccttgtatg tatgttatgg atacataaaa tgcacgcaag ccattatctc tccatgggaa





gctaagttat aaaaataggt gcttggtgta caaaactttt tatatcaaaa ggctttgcac





atttctatat gagtgggttt actggtaaat tatgttattt tttacaacta attttgtact





ctcagaatgt ttgtcatatg cttcttgcaa tgcatatttt ttaatctcaa acgtttcaat





aaaaccattt ttcagatata aagagaatta cttcaaattg agtaattcag aaaaactcaa





gatttaagtt aaaaagtggt ttggacttgg gaa





SEQ ID NO: 38 Homo sapiens periostin, osteoblast specific factor (POSTN)


(NP_006466.1)


MIPFLPMFSLLLLLIVNPINANNHYDKILAHSRIRGRDQGPNVCALQQILGTKKKYFSTCKNWYKKSICGQKTTV





LYECCPGYMRMEGMKGCPAVLPIDHVYGTLGIVGATTTQRYSDASKLREEIEGKGSFTYFAPSNEAWDNLDSDIR





RGLESNVNVELLNALHSHMINKRMLTKDLKNGMIIPSMYNNLGLFINHYPNGVVTVNCARIIHGNQIATNGVVHV





IDRVLTQIGTSIQDFIEAEDDLSSFRAAAITSDILEALGRDGHFTLFAPTNEAFEKLPRGVLERFMGDKVASEAL





MKYHILNTLQCSESIMGGAVFETLEGNTIEIGCDGDSITVNGIKMVNKKDIVTNNGVIHLIDQVLIPDSAKQVIE





LAGKQQTTFTDLVAQLGLASALRPDGEYTLLAPVNNAFSDDTLSMVQRLLKLILQNHILKVKVGLNELYNGQILE





TIGGKQLRVFVYRTAVCIENSCMEKGSKQGRNGAIHIFREIIKPAEKSLHEKLKQDKRFSTFLSLLEAADLKELL





TQPGDWTLFVPTNDAFKGMTSEEKEILIRDKNALQNIILYHLTPGVFIGKGFEPGVTNILKTTQGSKIFLKEVND





TLLVNELKSKESDIMTTNGVIHVVDKLLYPADTPVGNDQLLEILNKLIKYIQIKFVRGSTFKEIPVTVYTTKIIT





KVVEPKIKVIEGSLQPIIKTEGPTLTKVKIEGEPEFRLIKEGETITEVIHGEPIIKKYTKIIDGVPVEITEKETR





EERIITGPEIKYTRISTGGGETEETLKKLLQEEVTKVTKFIEGGDGHLFEDEEIKRLLQGDTPVRKLQANKKVQG





SRRRLREGRSQ





SEQ ID NO: 39 Homo sapiens wingless-type MMTV integration site family,


member 5A (WNT5A) (NM_003392)


agttgcctgc gcgccctcgc cggaccggcg gctccctagt tgcgccccga ccaggccctg





cccttgctgc cggctcgcgc gcgtccgcgc cccctccatt cctgggcgca tcccagctct





gccccaactc gggagtccag gcccgggcgc cagtgcccgc ttcagctccg gttcactgcg





cccgccggac gcgcgccgga ggactccgca gccctgctcc tgaccgtccc cccaggctta





acccggtcgc tccgctcgga ttcctcggct gcgctcgctc gggtggcgac ttcctccccg





cgccccctcc ccctcgccat gaagaagtcc attggaatat taagcccagg agttgctttg





gggatggctg gaagtgcaat gtcttccaag ttcttcctag tggctttggc catatttttc





tccttcgccc aggttgtaat tgaagccaat tcttggtggt cgctaggtat gaataaccct





gttcagatgt cagaagtata tattatagga gcacagcctc tctgcagcca actggcagga





ctttctcaag gacagaagaa actgtgccac ttgtatcagg accacatgca gtacatcgga





gaaggcgcga agacaggcat caaagaatgc cagtatcaat tccgacatcg aaggtggaac





tgcagcactg tggataacac ctctgttttt ggcagggtga tgcagatagg cagccgcgag





acggccttca catacgcggt gagcgcagca ggggtggtga acgccatgag ccgggcgtgc





cgcgagggcg agctgtccac ctgcggctgc agccgcgccg cgcgccccaa ggacctgccg





cgggactggc tctggggcgg ctgcggcgac aacatcgact atggctaccg ctttgccaag





gagttcgtgg acgcccgcga gcgggagcgc atccacgcca agggctccta cgagagtgct





cgcatcctca tgaacctgca caacaacgag gccggccgca ggacggtgta caacctggct





gatgtggcct gcaagtgcca tggggtgtcc ggctcatgta gcctgaagac atgctggctg





cagctggcag acttccgcaa ggtgggtgat gccctgaagg agaagtacga cagcgcggcg





gccatgcggc tcaacagccg gggcaagttg gtacaggtca acagccgctt caactcgccc





accacacaag acctggtcta catcgacccc agccctgact actgcgtgcg caatgagagc





accggctcgc tgggcacgca gggccgcctg tgcaacaaga cgtcggaggg catggatggc





tgcgagctca tgtgctgcgg ccgtggctac gaccagttca agaccgtgca gacggagcgc





tgccactgca agttccactg gtgctgctac gtcaagtgca agaagtgcac ggagatcgtg





gaccagtttg tgtgcaagta gtgggtgcca cccagcactc agccccgctc ccaggacccg





cttatttata gaaagtacag tgattctggt ttttggtttt tagaaatatt ttttattttt





ccccaagaat tgcaaccgga accatttttt ttcctgttac catctaagaa ctctgtggtt





tattattaat attataatta ttatttggca ataatggggg tgggaaccaa gaaaaatatt





tattttgtgg atctttgaaa aggtaataca agacttcttt tgatagtata gaatgaaggg





gaaataacac ataccctaac ttagctgtgt ggacatggta cacatccaga aggtaaagaa





atacattttc tttttctcaa atatgccatc atatgggatg ggtaggttcc agttgaaaga





gggtggtaga aatctattca caattcagct tctatgacca aaatgagttg taaattctct





ggtgcaagat aaaaggtctt gggaaaacaa aacaaaacaa aacaaacctc ccttccccag





cagggctgct agcttgcttt ctgcattttc aaaatgataa tttacaatgg aaggacaaga





atgtcatatt ctcaaggaaa aaaggtatat cacatgtctc attctcctca aatattccat





ttgcagacag accgtcatat tctaatagct catgaaattt gggcagcagg gaggaaagtc





cccagaaatt aaaaaattta aaactcttat gtcaagatgt tgatttgaag ctgttataag





aattaggatt ccagattgta aaaagatccc caaatgattc tggacactag atttttttgt





ttggggaggt tggcttgaac ataaatgaaa atatcctgtt attttcttag ggatacttgg





ttagtaaatt ataatagtaa aaataataca tgaatcccat tcacaggttc tcagcccaag





caacaaggta attgcgtgcc attcagcact gcaccagagc agacaaccta tttgaggaaa





aacagtgaaa tccaccttcc tcttcacact gagccctctc tgattcctcc gtgttgtgat





gtgatgctgg ccacgtttcc aaacggcagc tccactgggt cccctttggt tgtaggacag





gaaatgaaac attaggagct ctgcttggaa aacagttcac tacttaggga tttttgtttc





ctaaaacttt tattttgagg agcagtagtt ttctatgttt taatgacaga acttggctaa





tggaattcac agaggtgttg cagcgtatca ctgttatgat cctgtgttta gattatccac





tcatgcttct cctattgtac tgcaggtgta ccttaaaact gttcccagtg tacttgaaca





gttgcattta taagggggga aatgtggttt aatggtgcct gatatctcaa agtcttttgt





acataacata tatatatata tacatatata taaatataaa tataaatata tctcattgca





gccagtgatt tagatttaca gtttactctg gggttatttc tctgtctaga gcattgttgt





ccttcactgc agtccagttg ggattattcc aaaagttttt tgagtcttga gcttgggctg





tggccctgct gtgatcatac cttgagcacg acgaagcaac cttgtttctg aggaagcttg





agttctgact cactgaaatg cgtgttgggt tgaagatatc ttttttcttt tctgcctcac





ccctttgtct ccaacctcca tttctgttca ctttgtggag agggcattac ttgttcgtta





tagacatgga cgttaagaga tattcaaaac tcagaagcat cagcaatgtt tctcttttct





tagttcattc tgcagaatgg aaacccatgc ctattagaaa tgacagtact tattaattga





gtccctaagg aatattcagc ccactacata gatagctttt tttttttttt ttttaataag





gacacctctt tccaaacagt gccatcaaat atgttcttat ctcagactta cgttgtttta





aaagtttgga aagatacaca tctttcatac cccccttagg caggttggct ttcatatcac





ctcagccaac tgtggctctt aatttattgc ataatgatat tcacatcccc tcagttgcag





tgaattgtga gcaaaagatc ttgaaagcaa aaagcactaa ttagtttaaa atgtcacttt





tttggttttt attatacaaa aaccatgaag tacttttttt atttgctaaa tcagattgtt





cctttttagt gactcatgtt tatgaagaga gttgagttta acaatcctag cttttaaaag





aaactattta atgtaaaata ttctacatgt cattcagata ttatgtatat cttctagcct





ttattctgta cttttaatgt acatatttct gtcttgcgtg atttgtatat ttcactggtt





taaaaaacaa acatcgaaag gcttatgcca aatggaagat agaatataaa ataaaacgtt





acttgtatat tggtaagtgg tttcaattgt ccttcagata attcatgtgg agatttttgg





agaaaccatg acggatagtt taggatgact acatgtcaaa gtaataaaag agtggtgaat





tttaccaaaa ccaagctatt tggaagcttc aaaaggtttc tatatgtaat ggaacaaaag





gggaattctc ttttcctata tatgttcctt acaaaaaaaa aaaaaaaaga aatcaagcag





atggcttaaa gctggttata ggattgctca cattctttta gcattatgca tgtaacttaa





ttgttttaga gcgtgttgct gttgtaacat cccagagaag aatgaaaagg cacatgcttt





tatccgtgac cagattttta gtccaaaaaa atgtattttt ttgtgtgttt accactgcaa





ctattgcacc tctctatttg aatttactgt ggaccatgtg tggtgtctct atgccctttg





aaagcagttt ttataaaaag aaagcccggg tctgcagaga atgaaaactg gttggaaact





aaaggttcat tgtgttaagt gcaattaata caagttattg tgcttttcaa aaatgtacac





ggaaatctgg acagtgctgc acagattgat acattagcct ttgctttttc tctttccgga





taaccttgta acatattgaa accttttaag gatgccaaga atgcattatt ccacaaaaaa





acagcagacc aacatataga gtgtttaaaa tagcatttct gggcaaattc aaactcttgt





ggttctagga ctcacatctg tttcagtttt tcctcagttg tatattgacc agtgttcttt





attgcaaaaa catatacccg atttagcagt gtcagcgtat tttttcttct catcctggag





cgtattcaag atcttcccaa tacaagaaaa ttaataaaaa atttatatat aggcagcagc





aaaagagcca tgttcaaaat agtcattatg ggctcaaata gaaagaagac ttttaagttt





taatccagtt tatctgttga gttctgtgag ctactgacct cctgagactg gcactgtgta





agttttagtt gcctacccta gctcttttct cgtacaattt tgccaatacc aagtttcaat





ttgtttttac aaaacattat tcaagccact agaattatca aatatgacgc tatagcagag





taaatactct gaataagaga ccggtactag ctaactccaa gagatcgtta gcagcatcag





tccacaaaca cttagtggcc cacaatatat agagagatag aaaaggtagt tataacttga





agcatgtatt taatgcaaat aggcacgaag gcacaggtct aaaatactac attgtcactg





taagctatac ttttaaaata tttatttttt ttaaagtatt ttctagtctt ttctctctct





gtggaatggt gaaagagaga tgccgtgttt tgaaagtaag atgatgaaat gaatttttaa





ttcaagaaac attcagaaac ataggaatta aaacttagag aaatgatcta atttccctgt





tcacacaaac tttacacttt aatctgatga ttggatattt tattttagtg aaacatcatc





ttgttagcta actttaaaaa atggatgtag aatgattaaa ggttggtatg attttttttt





aatgtatcag tttgaaccta gaatattgaa ttaaaatgct gtctcagtat tttaaaagca





aaaaaggaat ggaggaaaat tgcatcttag accattttta tatgcagtgt acaatttgct





gggctagaaa tgagataaag attatttatt tttgttcata tcttgtactt ttctattaaa





atcattttat gaaatccaaa aaaaaaaaaa aaaaa





SEQ ID NO: 40 Homo sapiens wingless-type MMTV integration site family,


member 5A (WNT5A) (NP_003383.2)


MKKSIGILSPGVALGMAGSAMSSKFFLVALAIFFSFAQVVIEANSWWSLGMNNPVQMSEVYIIGAQPLCSQLAGL





SQGQKKLCHLYQDHMQYIGEGAKTGIKECQYQFRHRRWNCSTVDNTSVFGRVMQIGSRETAFTYAVSAAGVVNAM





SRACREGELSTCGCSRAARPKDLPRDWLWGGCGDNIDYGYRFAKEFVDARERERIHAKGSYESARILMNLHNNEA





GRRTVYNLADVACKCHGVSGSCSLKTCWLQLADFRKVGDALKEKYDSAAAMRLNSRGKLVQVNSRFNSPTTQDLV





YIDPSPDYCVRNESTGSLGTQGRLCNKTSEGMDGCELMCCGRGYDQFKTVQTERCHCKFHWCCYVKCKKCTEIVD





QFVCK





SEQ ID NO: 41 Homo sapiens prostaglandin D2 synthase 21 kDa (brain) (PTGDS)


(NM_000954)


gctcctcctg cacacctccc tcgctctccc acaccactgg caccaggccc cggacacccg





ctctgctgca ggagaatggc tactcatcac acgctgtgga tgggactggc cctgctgggg





gtgctgggcg acctgcaggc agcaccggag gcccaggtct ccgtgcagcc caacttccag





caggacaagt tcctggggcg ctggttcagc gcgggcctcg cctccaactc gagctggctc





cgggagaaga aggcggcgtt gtccatgtgc aagtctgtgg tggcccctgc cacggatggt





ggcctcaacc tgacctccac cttcctcagg aaaaaccagt gtgagacccg aaccatgctg





ctgcagcccg cggggtccct cggctcctac agctaccgga gtccccactg gggcagcacc





tactccgtgt cagtggtgga gaccgactac gaccagtacg cgctgctgta cagccagggc





agcaagggcc ctggcgagga cttccgcatg gccaccctct acagccgaac ccagaccccc





agggctgagt taaaggagaa attcaccgcc ttctgcaagg cccagggctt cacagaggat





accattgtct tcctgcccca aaccgataag tgcatgacgg aacaatagga ctccccaggg





ctgaagctgg gatcccggcc agccaggtga cccccacgct ctggatgtct ctgctctgtt





ccttccccga gcccctgccc cggctccccg ccaaagcaac cctgcccact caggcttcat





cctgcacaat aaactccgga agcaagtcag taaaaaaaaa aaaaaaaaaa aaaaaaa





SEQ ID NO: 42 Homo sapiens prostaglandin D2 synthase 21 kDa (brain) (PTGDS)


(NP_000945.3)


MATHHTLWMGLALLGVLGDLQAAPEAQVSVQPNFQQDKFLGRWFSAGLASNSSWLREKKAALSMCKSVVAPATDG





GLNLTSTFLRKNQCETRTMLLQPAGSLGSYSYRSPHWGSTYSVSVVETDYDQYALLYSQGSKGPGEDFRMATLYS





RTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQ





SEQ ID NO: 43 Homo sapiens defensin, alpha 3, neutrophil-specific (DEFA3)


(NM_005217)


ccttgctata gaagacctgg gacagaggac tgctgtctgc cctctctggt caccctgcct





agctagagga tctgtgaccc cagccatgag gaccctcgcc atccttgctg ccattctcct





ggtggccctg caggcccagg ctgagccact ccaggcaaga gctgatgagg ttgctgcagc





cccggagcag attgcagcgg acatcccaga agtggttgtt tcccttgcat gggacgaaag





cttggctcca aagcatccag gctcaaggaa aaacatggac tgctattgca gaataccagc





gtgcattgca ggagaacgtc gctatggaac ctgcatctac cagggaagac tctgggcatt





ctgctgctga gcttgcagaa aaagaaaaat gagctcaaaa tttgctttga gagctacagg





gaattgctat tactcctgta ccttctgctc aatttccttt cctcatctca aataaatgcc ttgttac





SEQ ID NO: 44 Homo sapiens defensin, alpha 3, neutrophil-specific (DEFA3)


(NP_005208.1)


MRTLAILAAILLVALQAQAEPLQARADEVAAAPEQIAADIPEVVVSLAWDESLAPKHPGSRKNMDCYCRIPACIA





GERRYGTCIYQGRLWA





SEQ ID NO: 45 Homo sapiens POU domain, class 1, transcription factor 1


(Pit1, growth hormone factor 1) (POU1F1) (NM_000306)


ctcagagcct tcctgatgta tatatgcagg tagtgagaat tgaatcggcc ctttgagaca





gtaatataat aaaactctga tttggggagc agcggttctc cttatttttc tactctcttg





tgggaatgag ttgccaagct tttacttcgg ctgatacctt tatacctctg aattctgacg





cctctgcaac tctgcctctg ataatgcatc acagtgctgc cgagtgtcta ccagtctcca





accatgccac caatgtgatg tctacagcaa caggacttca ttattctgtt ccttcctgtc





attatggaaa ccagccatca acctatggag tgatggcagg tagtttaacc ccttgtcttt





ataaatttcc tgaccacacc ttgagtcatg gatttcctcc tatacaccag cctcttctgg





cagaggaccc cacagctgct gatttcaagc aggaactcag gcggaaaagt aaattggtgg





aagagccaat agacatggat tctccagaaa tcagagaact tgaaaagttt gccaatgaat





ttaaagtgag acgaattaaa ttaggataca cccagacaaa tgttggggag gccctggcag





ctgtgcatgg ctctgaattc agtcaaacaa caatctgccg atttgaaaat ctgcagctca





gctttaaaaa tgcatgcaaa ctgaaagcaa tattatccaa atggctggag gaagctgagc





aagtaggagc tttgtacaat gaaaaagtgg gagcaaatga aaggaaaaga aaacgaagaa





caactataag cattgctgct aaagatgctc tggagagaca ctttggagaa cagaataaac





cttcttctca agagatcatg aggatggctg aagaactgaa tctggagaaa gaagtagtaa





gagtttggtt ttgcaaccgg aggcagagag aaaaacgggt gaaaacaagt ctgaatcaga





gtttattttc tatttctaag gaacatcttg agtgcagata agatttttct attgtataat





agcctttttc tcccgtttca ttcctttctc ttcctcaaca aaaacagaaa ttacttggtt





gacttaaaat cattttatat caatagcttt tacagaagct ttacttttcc actttttttt





aaaaaaaaga aaccaacaat ttaaattata ttgatgttat ttacttaaaa taattattct





cagaagccac attatctatt ttaagccaaa tatattaaca gtaataaaat gatctctctg tc





SEQ ID NO: 46 Homo sapiens POU domain, class 1, transcription factor 1


(Pit1, growth hormone factor 1) (POU1F1) (NP_000297.1)


MSCQAFTSADTFIPLNSDASATLPLIMHHSAAECLPVSNHATNVMSTATGLHYSVPSCHYGNQPSTYGVMAGSLT





PCLYKFPDHTLSHGFPPIHQPLLAEDPTAADFKQELRRKSKLVEEPIDMDSPEIRELEKFANEFKVRRIKLGYTQ





TNVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTTISIAA





KDALERHFGEQNKPSSQEIMRMAEELNLEKEVVRVWFCNRRQREKRVKTSLNQSLFSISKEHLECR





SEQ ID NO: 47 Homo sapiens cadherin 13, H-cadherin (heart) (CDH13)


(NM_001257)


gggaagttgg ctggctggcg aggcagagcc tctcctcaaa gcctggctcc cacggaaaat





atgctcagtg cagccgcgtg catgaatgaa aacgccgccg ggcgcttcta gtcggacaaa





atgcagccga gaactccgct cgttctgtgc gttctcctgt cccaggtgct gctgctaaca





tctgcagaag atttggactg cactcctgga tttcagcaga aagtgttcca tatcaatcag





ccagctgaat tcattgagga ccagtcaatt ctaaacttga ccttcagtga ctgtaaggga





aacgacaagc tacgctatga ggtctcgagc ccatacttca aggtgaacag cgatggcggc





ttagttgctc tgagaaacat aactgcagtg ggcaaaactc tgttcgtcca tgcacggacc





ccccatgcgg aagatatggc agaactcgtg attgtcgggg ggaaagacat ccagggctcc





ttgcaggata tatttaaatt tgcaagaact tctcctgtcc caagacaaaa gaggtccatt





gtggtatctc ccattttaat tccagagaat cagagacagc ctttcccaag agatgttggc





aaggtagtcg atagtgacag gccagaaagg tccaagttcc ggctcactgg aaagggagtg





gatcaagagc ctaaaggaat tttcagaatc aatgagaaca cagggagcgt ctccgtgaca





cggaccttgg acagagaagt aatcgctgtt tatcaactat ttgtggagac cactgatgtc





aatggcaaaa ctctcgaggg gccggtgcct ctggaagtca ttgtgattga tcagaatgac





aaccgaccga tctttcggga aggcccctac atcggccacg tcatggaagg gtcacccaca





ggcaccacag tgatgcggat gacagccttt gatgcagatg acccagccac cgataatgcc





ctcctgcggt ataatatccg tcagcagacg cctgacaagc catctcccaa catgttctac





atcgatcctg agaaaggaga cattgtcact gttgtgtcac ctgcgctgct ggaccgagag





actctggaaa atcccaagta tgaactgatc atcgaggctc aagatatggc tggactggat





gttggattaa caggcacggc cacagccacg atcatgatcg atgacaaaaa tgatcactca





ccaaaattca ccaagaaaga gtttcaagcc acagtcgagg aaggagctgt gggagttatt





gtcaatttga cagttgaaga taaggatgac cccaccacag gtgcatggag ggctgcctac





accatcatca acggaaaccc cgggcagagc tttgaaatcc acaccaaccc tcaaaccaac





gaagggatgc tttctgttgt caaaccattg gactatgaaa tttctgcctt ccacaccctg





ctgatcaaag tggaaaatga agacccactc gtacccgacg tctcctacgg ccccagctcc





acagccaccg tccacatcac tgtcctggat gtcaacgagg gcccagtctt ctacccagac





cccatgatgg tgaccaggca ggaggacctc tctgtgggca gcgtgctgct gacagtgaat





gccacggacc ccgactccct gcagcatcaa accatcaggt attctgttta caaggaccca





gcaggttggc tgaatattaa ccccatcaat gggactgttg acaccacagc tgtgctggac





cgtgagtccc catttgtcga caacagcgtg tacactgctc tcttcctggc aattgacagt





ggcaaccctc ccgctacggg cactgggact ttgctgataa ccctggagga cgtgaatgac





aatgccccgt tcatttaccc cacagtagct gaagtctgtg atgatgccaa aaacctcagt





gtagtcattt tgggagcatc agataaggat cttcacccga atacagatcc tttcaaattt





gaaatccaca aacaagctgt tcctgataaa gtctggaaga tctccaagat caacaataca





cacgccctgg taagccttct tcaaaatctg aacaaagcaa actacaacct gcccatcatg





gtgacagatt cagggaaacc acccatgacg aatatcacag atctcagggt acaagtgtgc





tcctgcagga attccaaagt ggactgcaac gcggcagggg ccctgcgctt cagcctgccc





tcagtcctgc tcctcagcct cttcagctta gcttgtctgt gagaactcct gacgtctgaa





gcttgactcc caagtttcca tagcaacagg aaaaaaaaaa atctatccaa atctgaagat





tgcggtttac agctatcgaa cttcacaact aggcctcaat tgttccggtt ttttattttc





tttacaattt cacttagtct gtacttcatc attttgacag catcttcctc cctcctttaa





ttaatggaat cttctgaatt ttccctgaat gtttaaagat catgacatat gacttgatct





tctgggagca ggaacaatga ctactttttc tggtgtgtta acatgtcgct agccagtgct





ccaggcaccc agctttgtct gtgggttagt attggtgtat gtatgagtat ctgtatgtat





atatacacgg tatttataga gagagactat cctggagaag cctcgttttg atgccattct





tccttgcaag gttaagcaag gtgggtggaa actaagacac ctgaaccctc cagggcctcc





cgcatcaagg tcagcatgag gacagaccac agagctgtca cttttgctcc gaagctactt





ctccactgtc ccgttcagtc tgaatgctgc cacaaccagc caggcaggtc cacagagagg





gagagcagag aaagaagtcc tttctcttta ttgagttcga ggactacaac caatttacac





tgccatctga tgccgtgatc ctgagccaag gaggtgagga gcagagcagg caatttcacc





accaaatgcc aagaaaaggg ctgacatttt ctttcatggg caccaacctg catttgtatg





tgtcccgaat ccacagtcgt actgattcta atggggacac agatcatggt agagaatctc





tccctcctca gtaaatgtac aactgcacct gtcatcatgg aggtcataca tgcatacaaa





gaggtgtaca ggtaccatct tgtatacaca tatataccca catgtacaga catacattta





tgcacattca cgctgtttgt ttcatatata caggcataaa atagagtaaa tacaggtagt





tttaaaagta cccttttgtg tgaattgact accgttgttt gcaaacccga aaataaaaga





cgttcattat gtatgaaaag taactgattt gtattctgtg agcatgtaaa agcggaaagt





tagtgcttgt tctaagatta ccttcttgtt gataaaccat aaatgaatca tcaaagctca





caccaaattt ttctatcaaa taaaactagt gacagcttgt ggctttttat tagagctcgc





cacgaactag ggtaaggtga gtgtcttagc atattttaat gcagttgctt actaaaggtt





ttaaccgcac atgcacacac acacgctttc ttatgcaatc tatgtttgca cttgtgcttt





cagttagcct tctgtaggaa gtagaagtca tatgttgtct ttgttgtagt gaaattatac





agatagagtt ccatatattg tatttgtttc aatggtaaat ccttttggaa catatagaat





gcagagattt ttttttccat taaaataaat gggtattggt ggttaaaaaa aaaaaaaaaa aa





SEQ ID NO: 48 Homo sapiens cadherin 13, H-cadherin (heart) (CDH13)


(NP_001248.1)


MQPRTPLVLCVLLSQVLLLTSAEDLDCTPGFQQKVFHINQPAEFIEDQSILNLTFSDCKGNDKLRYEVSSPYFKV





NSDGGLVALRNITAVGKTLFVHARTPHAEDMAELVIVGGKDIQGSLQDIFKFARTSPVPRQKRSIVVSPILIPEN





QRQPFPRDVGKVVDSDRPERSKFRLTGKGVDQEPKGIFRINENTGSVSVTRTLDREVIAVYQLFVETTDVNGKTL





EGPVPLEVIVIDQNDNRPIFREGPYIGHVMEGSPTGTTVMRMTAFDADDPATDNALLRYNIRQQTPDKPSPNMFY





IDPEKGDIVTVVSPALLDRETLENPKYELIIEAQDMAGLDVGLTGTATATIMIDDKNDHSPKFTKKEFQATVEEG





AVGVIVNLTVEDKDDPTTGAWRAAYTIINGNPGQSFEIHTNPQTNEGMLSVVKPLDYEISAFHTLLIKVENEDPL





VPDVSYGPSSTATVHITVLDVNEGPVFYPDPMMVTRQEDLSVGSVLLTVNATDPDSLQHQTIRYSVYKDPAGWLN





INPINGTVDTTAVLDRESPFVDNSVYTALFLAIDSGNPPATGTGTLLITLEDVNDNAPFIYPTVAEVCDDAKNLS





VVILGASDKDLHPNTDPFKFEIHKQAVPDKVWKISKINNTHALVSLLQNLNKANYNLPIMVTDSGKPPMTNITDL





RVQVCSCRNSKVDCNAAGALRFSLPSVLLLSLFSLACL





SEQ ID NO: 49 Homo sapiens tripartite motif-containing 58 (TRIM58)


(NM_015431)


gggagacggt gcgggcggcc gggagcgcag ccctccggga ggcgggtcat ggcctgggcg





ccgcccgggg agcggctgcg cgaggatgcg cggtgcccgg tgtgcctgga tttcctgcag





gagccggtca gcgtggactg cggccacagc ttctgcctca ggtgcatctc cgagttctgc





gagaagtcgg acggcgcgca gggcggcgtc tacgcctgtc cgcagtgccg gggccccttc





cggccctcgg gctttcgccc caaccggcag ctggcgggcc tggtggagag cgtgcggcgg





ctggggttgg gcgcggggcc cggggcgcgg cgatgcgcgc ggcacggcga ggacctgagc





cgcttctgcg aggaggacga ggcggcgctg tgctgggtgt gcgacgccgg ccccgagcac





aggacgcacc gcacggcgcc gctgcaggag gccgccggca gctaccaggt aaagctccag





atggctctgg aacttatgag gaaagagttg gaggacgcct tgactcagga ggccaacgtg





gggaaaaaga ctgtcatttg gaaggagaaa gtggaaatgc agaggcagcg cttcagattg





gagtttgaga agcatcgtgg ctttctggcc caggaggagc aacggcagct gaggcggctg





gaggcggagg agcgagcgac gctgcagaga ctgcgggaga gcaagagccg gctggtccag





cagagcaagg ccctgaagga gctggcggat gagctgcagg agaggtgcca gcgcccggcc





ctgggtctgc tggagggtgt gagaggagtc ctgagcagaa gtaaggctgt cacaaggctg





gaagcagaga acatccccat ggaactgaag acagcatgct gcatccctgg gaggagggag





ctcttaagga agttccaagt ggatgtaaag ctggatcccg ccacggcgca cccgagtctg





ctcttgaccg ccgacctgcg cagtgtgcag gatggagaac catggaggga tgtccccaac





aaccctgagc gatttgacac atggccctgc atcctgggtt tgcagagctt ctcatcaggg





aggcattact gggaggttct ggtgggagaa ggagcagagt ggggtttagg ggtctgtcaa





gacacactgc caagaaaggg ggaaaccacg ccatctcctg agaatggggt ctgggccctg





tggctgctga aagggaatga gtacatggtc cttgcctccc catcagtgcc tcttctccaa





ctggaaagtc ctcgctgcat tgggattttc ttggactatg aagccggtga aatttcattc





tacaatgtca cagatggatc ttatatctac acattcaacc aactcttctc tggtcttctt





cggccttact ttttcatctg tgatgcaact cctcttatct tgccacccac aacaatagca





gggtcaggaa attgggcatc cagggatcat ttagatcctg cttctgatgt aagagatgat





catctctaaa attctgttcc caagatgcag tcctagcgta gcgaacgttc ctggagtggg





gtgaaggata tcaatatact aagttttaac agatacccca tttaggtcag cacttgattc





gttgttgctg tgaaatatgt ccatgggaca aaagagggaa tatgaaatat ttgcatatgg





gaagattata gagcataata attttgtaaa tggagcaatc tcaacctcta tttctagatc





acattttctt gatgtcttcc ttcaaattaa tgaccttgga ttacataagg atttctatgc





attcattata atttgttatt cctttcaata tccttgtatt tcaaatcttc catataagaa





ttagacatgg caattcttaa attgattcag aatggtctga tactattcca gtatcacctc





cttaattctg tttctcctcg ttttcctgat tttccttctc attctctcct tccccgctct





gtctctctct ccctgtcact ctctctctct tgttccttat tttttgtttc ttacctctta





ctgtttaacc tgttgcttcc ttctggatta atacatttag agccattcct ttatatggtc





acatttccta tgactttact caattacttt taaaatcctt tctattctga gactaatttt





taagaattac aaagctcatt cttctgaatc taatatcact aactcctaga ctttttccgt





tttctttgga tacactttaa gtaggaattt atcagaattt tcattcaact cgttctttaa





tgcagatatt tactagttat aagaccttaa ggctgggtgc agtggctcac gcctgtaatc





ccagcacttt gggaggctga ggcgggtgga tcacaagctc aggagttcaa gaccagcctg





gccaacatgg tgaaaccctg tctctactaa aaaaaaaaaa aaaatagaaa aattagctgg





gcatggtggc aggagcctgt aatcccagct attctggagg tggagacagg agaattgctt





gaaccctgga ggcggaggtt gcagtgagcc aatatctcac cactgtactc cagcccagtg





cgagactcca tctcaaaaaa gaaaaaagac ctcaaacaac acttctctct ctcttttagc





tgcttgttat ggttcctata catggaacaa ttatactggc ctcactgtgt tatggtaaat





atttaaggtc atatttgata ttgctggttt gaattcagct tttccattta aatacattat





aatgatgatg atgaaatcat gataatattt aacttatttt taaagtatat tctgtacctt





tccaacaaaa aggttaaaag tcattgaagg ctaaccttac tgccttcttt gtatcactgt





cttctaaata attattatgt ctgggtacag tggctcacgc ctgtaatccc agcactttgg





gaggccgagg tgggcagatc acgaggtcag gagattgaga ccatcctggc taacacagtg





aaaccccgtc tctactaaaa atacaaaaag aaattagctg ggcgtggtgg tgggtgcctg





ttgtcccagc tacttgggag gctgaggcag gagaatggca tgaacccagg aggcagagct





tgtagtgagc cgagatcgcg ccactgcact ccagccgggg caacagagca agactccatc





tcaaaaataa ataaataaat aaataaataa ataaataaat aaataaatat tacacaaatg





ctaaaatgtt taaatggtaa atgcttcaat gctaaccaaa tattaattaa tggcaaatta





tttaacatta tctgataata atctgcagaa ggtttaattt tcctcctcaa tttgaagttc





aagatgtttt tctcttccag ggagattttt tcgactgaca tctttaactt accttccaat





catattacta acgtagcctt cttcctagat tttttaattg tttgatcatg agcgaacact





tctactctct gtgatagatt tgcaaacaga ggaaataacg catcctcgtg tccctcttct





tggtgttcca caggccatgt gtgccctagc cctcgttcat gcaaggtctg tgtagggaag





gtggacttca gctcagcaac agcatccctt cccacaggga tcaggtgggt ggcttgagat





accccttcca tggggcacca cccattcagt gagacgggga agccctgggt gggagggaga





acacctccac atgtcttcta ctctctccat aggatggaat gagtgtccca gtcccaggag





tatccatttc ccactgtgta gcccagtact ctggtctcac tgtctctgct gaatcctgtc





tcactgtgca tattattgtg gtttatatca gtcagtaaac caatgtgagt cttcatctct





tgcattctta ggttcatagt tttgtgtgtc tcctgtaatg actcttctct ttccctttcc





aactcctgaa agattgccac tatttcctct ggaactttgt ttcgttacca gcaaaatcct





cgacatccat acccgtttcc tggctttccc tctcctttcc tctgaatggt agtcttttat





attcagctgt ccacttgaca tcaaaataga cattttgaac tcaatttgcc taaaacttac





ccacaaattt ctccccaagt ctctccctaa ctgcaacaac aaaaaccaca ggcttctccc





tgtcactgga tggcaactcc attcttttga ttgcttaagc caggcatccg attgagtact





ttcttgattt ctccagccca catccagtcc atcggcaagc cctgttggtc ctaccttcag





aatatgtccg gggttcagtt gtcctggcca ccctgctgct gtaaccatgg tcagaactcc





atcctgcccc tctggattat gactttcgtt tcctcacagt ggtcctgctt gggctctagg





cccttccact cccattctct ctacagcagc tgggctgatt cctttagcac ccaaggatat





gttggcatca cagtgactta gataccatca caaagacctc ccattcaact tagagtgaaa





gtcagaatcc tcacagtgaa tccccaggcc ctagaggatg tgaaccccca ggccctagag





gatctgaacc cccatccctc ctctgattat ctctcccacc cccacttccc tttgcattct





gctccagctg ccctggcctc atggctgggt ttccaccaaa gcaggcactt cccatcacag





ggccatttcc ccgcctgtgg cttctgcttg acattccctt ttccctgata tccccttgac





tcattattcc ctttcttcct taactcttct gagatccagc ttctcagtga taccacacag





ccctactccc cccagagccc atctagagct cacctttcca gtcgcccttg ccaggctcag





tggaggctct ttgttcccca tacagtacgt gtcgtcgtac tatattgtta ggcttattta





atttatgtat gttttgcctt tttgtgctaa atgtaaacac cacaagggga ggtatctttg





tctgttgaca atgatacatt caatgtttct caagcacccc caatgctggt ttgtatgtgg 5101





ttatcattca atctgtattt gttgaatgaa taaatgattg actatgtgga gagcaaaa





SEQ ID NO: 58 Homo sapiens tripartite motif-containing 58 (TRIM58)


(NP_056246.3)


MAWAPPGERLREDARCPVCLDFLQEPVSVDCGHSFCLRCISEFCEKSDGAQGGVYACPQCRGPFRPSGFRPNRQL





AGLVESVRRLGLGAGPGARRCARHGEDLSRFCEEDEAALCWVCDAGPEHRTHRTAPLQEAAGSYQVKLQMALELM





RKELEDALTQEANVGKKTVIWKEKVEMQRQRFRLEFEKHRGFLAQEEQRQLRRLEAEERATLQRLRESKSRLVQQ





SKALKELADELQERCQRPALGLLEGVRGVLSRSKAVTRLEAENIPMELKTACCIPGRRELLRKFQVDVKLDPATA





HPSLLLTADLRSVQDGEPWRDVPNNPERFDTWPCILGLQSFSSGRHYWEVLVGEGAEWGLGVCQDTLPRKGETTP





SPENGVWALWLLKGNEYMVLASPSVPLLQLESPRCIGIFLDYEAGEISFYNVTDGSYIYTFNQLFSGLLRPYFFI





CDATPLILPPTTIAGSGNWASRDHLDPASDVRDDHL





SEQ ID NO: 59 Homo sapiens Zwilch, kinetochore associated, homolog


(Drosophila) (ZWILCH) (NM_017975)


agtcgaggta tcttctcccc aaccactgct cttattttaa ttattgcaga cggaagttga





agactattga catagtaaat agctctgggt ggcttgaaac gaaagtttaa ctttgcggac





aaacaggact tattgtaggg ggtggtcaaa atagtcccgg cggggcgggg ccatgacccc





tgacgtcgcc ggtccggcgc gcagttcagt ttggcggttc cggtaccgct ctcacattgg





ggcgggatgt gggagcggct gaactgcgca gcagaggact tttattctcg tctccttcag





aaatttaatg aagaaaagaa aggaatccgt aaagacccat ttctctatga ggctgatgtc





caagtgcagt tgatcagcaa aggccaacca aaccctttga aaaatattct aaatgaaaat





gacatagtat tcatagtgga aaaagtgcct ttagaaaagg aagaaacaag tcatattgaa





gaacttcaat ctgaagaaac tgccatatct gatttctcta ctggcgaaaa tgttggacca





cttgctttac cagttgggaa ggcaaggcag ttaattggac tttacaccat ggctcacaat





cctaatatga cccatttgaa gattaatctg ccagttactg cccttcctcc cctttgggta





agatgtgaca gttcagatcc tgaaggtact tgttggctag gagctgagct tatcacaaca





aacaacagca ttacaggaat tgtcttatat gtggtcagtt gtaaagctga taaaaattat





tctgtaaatc ttgaaaacct aaaaaattta cacaagaaaa gacatcactt gtctactgta





acatccaaag gctttgccca gtatgagctc tttaagtcct ctgccttgga tgatacaatc





acagcatcac aaactgcgat cgctttggat atttcctgga gtcctgtgga tgagattctt





caaatccctc cactctcttc aactgcaact ctgaatatta aagtggaatc aggagagccc





agaggtcctt tgaatcatct ctacagagaa ctgaaatttc ttcttgtttt ggctgatggt





ttgaggactg gtgtcactga atggctcgag cccctggaag caaaatctgc tgttgaactt





gttcaggaat ttctgaatga cttaaataag ctggatggat ttggtgattc tacaaaaaaa





gacactgagg ttgagacctt gaagcatgac actgctgcag tcgatcgttc cgtcaagcgt





cttttcaaag ttcggagtga tcttgatttt gctgagcaac tgtggtgcaa aatgagcagt





agtgtgattt cataccaaga cttggtgaag tgtttcacat tgatcatcca gagtctacaa





cgtggtgata tacagccatg gctccatagt ggaagtaaca gtttactaag taagctcatt





catcagtctt atcatggaac catggacaca gtttctctca gtgggactat tccagttcaa





atgcttttgg aaattggttt ggacaaacta aagaaagatt atatcagttt tttcataggt





caggaacttg catctttgaa tcatttggaa tacttcattg ctccatcagt agatatacaa





gaacaggttt atcgtgtcca aaaactccac catattctag aaatattagt cagttgcatg





cctttcatta aatctcaaca tgaactcctc ttttctttaa cacagatctg cataaagtat





tacaaacaaa atcctcttga tgagcaacac atttttcagc tgccagtcag accaactgct





gtaaagaact tatatcaaag tgagaagcca cagaaatgga gagtggaaat atatagtggt





caaaagaaga ttaagacagt ttggcaactg agtgacagct cacccataga ccatctgaat





tttcacaaac ctgatttttc ggaattaaca ctaaacggta gcctggaaga aaggatattc





tttactaaca tggttacctg cagccaggtg catttcaagt gaagtgtgct gatgaagtcc





tctataagca caagccaaaa agagaaagag aaaaaaaggt aattattgta gaacctgaaa





acagcaatgt atggaaaccc tcaaagcaga aaagggagga agatcctgaa gattctctta





tgaagctcca aaattgataa tcctgtctca gctctgcctc ctcaggagga gcattagtag





aacagcagtg atgaggacac agagggagca gacagtgggt accacgatct ccgtaaccat





ttgcatgtga cttagcaagg gctctgaaat gacaaagaga acgagcacca caaatgagaa





caggatcatt ttagtaaata cagctttatc ccaaaagctt taactgtatt gggaaaactt





aaaaaatagc atcctcaaat tttctgattc ttatttgcca tgaaatagaa cttagtaaat





taaatgttat ttgaaaatgt tataagagct ttgtaaatat ttcagaaaat atgggataaa





tgcctgaatt tggttcttct acaggtgcta taataaagtc catctctcaa tacttatact





ttctaaattc atctcagaat attagcagcc atattccaca gttcctataa tttttactgg





gggggatttg tgataggaaa gtccttggga aacatttcca atctttcaaa atattattgt





gtatcttaag aagtatagga acttgtatgt tgaaatgttg tatggtagtt cttgtatagt





taaataataa tctttttaag agttaatgat aagcatatgt tatgtgcatt attaataaaa





tagtggccac ttaggtaata cccactttta tcttgtgtgc tgggtactct ggttactgag





ataaataagg cactggacat cctcacgtgg agttcacagg ctcatcagtg aattctgtac





cacatttcaa ccttgtttat tttagtttaa tggaatatac attcttagta ttgcctgatt





atttaaattt gttgaggggg attgcatgtt gctttattgg cctgtaaaaa tagctagttt





ggtaagattt ggtctcgcac cttccatctt tgctaccaca ttaaagatga gcttgttaaa





aaggaaagca tatttctctg attgccctta tggagaaata aagataaaat tcaaagaaac





aaaaaaaaaa aaaa





SEQ ID NO: 60 Homo sapiens Zwilch, kinetochore associated, homolog


(Drosophila) (ZWILCH) (NP_060445.3)


MWERLNCAAEDFYSRLLQKFNEEKKGIRKDPFLYEADVQVQLISKGQPNPLKNILNENDIVFIVEKVPLEKEETS





HIEELQSEETAISDFSTGENVGPLALPVGKARQLIGLYTMAHNPNMTHLKINLPVTALPPLWVRCDSSDPEGTCW





LGAELITTNNSITGIVLYVVSCKADKNYSVNLENLKNLHKKRHHLSTVTSKGFAQYELFKSSALDDTITASQTAI





ALDISWSPVDEILQIPPLSSTATLNIKVESGEPRGPLNHLYRELKFLLVLADGLRTGVTEWLEPLEAKSAVELVQ





EFLNDLNKLDGFGDSTKKDTEVETLKHDTAAVDRSVKRLFKVRSDLDFAEQLWCKMSSSVISYQDLVKCFTLIIQ





SLQRGDIQPWLHSGSNSLLSKLIHQSYHGTMDTVSLSGTIPVQMLLEIGLDKLKKDYISFFIGQELASLNHLEYF





IAPSVDIQEQVYRVQKLHHILEILVSCMPFIKSQHELLFSLTQICIKYYKQNPLDEQHIFQLPVRPTAVKNLYQS





EKPQKWRVEIYSGQKKIKTVWQLSDSSPIDHLNFHKPDFSELTLNGSLEERIFFTNMVTCSQVHFK





SEQ ID NO: 61 Homo sapiens pelota homolog (Drosophila) (PELO)(NM_015946)


gatttggccc ggagaacgag atcaccctct caatgaaagg cagatgtccc tttaaggttt





gcttctacag cccgtggact ttagcctaaa cacggacccg cgaagctggc tttatttgtc





catgtctcgg acagagcctg ggaagctgcc agtgagattt cagagaccaa gagcgcgaag





gggcgggcga tgtggcaatc cgtctgggat gtgaaaagcg tggagcgcat ttagaggaat





tcgacgaaaa cacaggaaat cactcctctc ccgctcctgg gcgccgctgc cactggggca





gaggactggg aaccgcggca gcgggataag tggcccagcc agagagcgca gctcccgcgc





ccggtcctgc cctgcgaacc agcgcggccc cctggcgctg aggctgctcc ggccatggcc





cctcggcccc gcgcccgccc aggggtcgct gtcgcctgct gctggctcct cactgacagg





gatggaagag aaaacttagg aagttgaagt ttggcattaa aataaaggac tcgccaccac





tctgtgcacc ttcttgaggg agttcattcg tccggagcgc ctcacagctt agtgcgcctg





cgcacgcgcg aactgcggcc ccgcctctcc tttggggacg ggagacgtgc gtcgggtcgc





gggacggggg ctgcgcatgc gccttcattt cgtcagcccg ctgttgcgtg ctgccagcgg





gaactgtgta ggggtagatt ttcgctgcag tgttccccga gcctgttaga cgcagcgcgc





cgggagactg agagaggaaa ggatagagga agtgctgccc taggctgcat gagtcgaagc





aagcgtgttt ccttcccgcc aggcaagtgc ccttagaaac cgggccccgc ccccttcctg





gcctgcattc ccatcccctc tcccggggcg gaggtgagga cctccttggt tcctttggtt





ctgtcagtga gccccttcct tggccatgaa gctcgtgagg aagaacatcg agaaggacaa





tgcgggccag gtgaccctgg tccccgagga gcctgaggac atgtggcaca cttacaacct





cgtgcaggtg ggcgacagcc tgcgcgcctc caccatccgc aaggtacaga cagagtcctc





cacgggcagc gtgggcagca accgggtccg cactaccctc actctctgcg tggaggccat





cgacttcgac tctcaagcct gccagctgcg ggttaagggg accaacatcc aagagaatga





gtatgtcaag atgggggctt accacaccat cgagctggag cccaaccgcc agttcaccct





ggccaagaag cagtgggata gtgtggtact ggagcgcatc gagcaggcct gtgacccagc





ctggagcgct gatgtggcgg ctgtggtcat gcaggaaggc ctcgcccata tctgcttagt





cactcccagc atgaccctca ctcgggccaa ggtggaggtg aacatcccta ggaaaaggaa





aggcaattgc tctcagcatg accgggcctt ggagcggttc tatgaacagg tggtccaggc





tatccagcgc cacatacact ttgatgttgt aaagtgcatc ctggtggcca gcccaggatt





tgtgagggag cagttctgcg actacctgtt tcaacaagca gtgaagaccg acaacaaact





gctcctggaa aaccggtcca aatttcttca ggtacatgcc tcctccggac acaagtactc





cctgaaagag gccctttgtg accctactgt ggctagccgc ctttcagaca ctaaagctgc





tggggaagtc aaagccttgg atgacttcta taaaatgtta cagcatgaac cggatcgagc





tttctatgga ctcaagcagg tggagaaggc caatgaagcc atggcaattg acacattgct





catcagcgat gagctcttca ggcatcagga tgtagccaca cggagccggt atgtgaggct





ggtggacagt gtgaaagaga atgcaggcac cgttaggata ttctctagtc ttcacgtttc





tggggaacag ctcagccagt tgactggggt agctgccatt ctccgcttcc ctgttcccga





actttctgac caagagggtg attccagttc tgaagaggat taatgattga aacttaaaat





tgagacaatc ttgtgtttcc taaactgtta cagtacattt ctcagcatcc ttgtgacaga





aagctgcaag aatggcactt tttgattcat acagggattt cttatgtctt tggctacact





agatattttg tgattggcaa gacatgtatt taaacaataa actaaaagga aataatctcc





acgtactacc atcttgatta aattgtgtaa ttttttatag gaattatgag ttatctgtag





tacttggaaa cagaaaatgt gtgtatttaa agacgatgcc tatgcagtat attgtttggg





atagattgca aaatttcaca ctgcatgctt tgaaacagtt ttccttagaa aaagcttttg





ctatcttatc ctgtttacat tatttcttta ttttaattct gcttggtgtt cttgcattgc





atttaatgat cccttttctc cccacctcca cacactacat tttttttaga tttaaatagt





tttactattt taaatgattg ccgtacaatt agtagacttg aagacaagtt ttaaatattt





ttcttcaaag gcttgttaaa ccaatcatgt taaaaggaaa ttcttggttt tggtttgttg





ttgttagcat tagtcatatt tgatttagag ggtaacttaa atcagttatt tttagctttt





tagaactttg atctgctagg gattgtcaaa ataatctcct tgaggcatct ttatttttaa





aatgagatta aagtatgtga tttgcttgtt atgtggctaa aaaaaaaaaa aaaaaaaaaa a





SEQ ID NO: 62 Homo sapiens pelota homolog (Drosophila)(PELO)(NP_057030.3)


MKLVRKNIEKDNAGQVTLVPEEPEDMWHTYNLVQVGDSLRASTIRKVQTESSTGSVGSNRVRTTLTLCVEAIDFD





SQACQLRVKGTNIQENEYVKMGAYHTIELEPNRQFTLAKKQWDSVVLERIEQACDPAWSADVAAVVMQEGLAHIC





LVTPSMTLTRAKVEVNIPRKRKGNCSQHDRALERFYEQVVQAIQRHIHFDVVKCILVASPGFVREQFCDYLFQQA





VKTDNKLLLENRSKFLQVHASSGHKYSLKEALCDPTVASRLSDTKAAGEVKALDDFYKMLQHEPDRAFYGLKQVE





KANEAMAIDTLLISDELFRHQDVATRSRYVRLVDSVKENAGTVRIFSSLHVSGEQLSQLTGVAAILRFPVPELSD





QEGDSSSEED





SEQ ID NO: 63 Homo sapiens zinc finger protein 711 (ZNF711)(NM_021998)


agacgcagag tagattgtga ttggctcggg ctgcggaacc tcggaaaccc gaatgtgagg





accttaaggg atccacagct gccgcccccc gcagccatcc agagcgcggt cacagtccga





ctggcggcac ggaggcggcg gcggcggcgg cggcggcagc ggcggcggca gcggcggcgg





cagctgtagc tgcagcagca ggtaaagaga gcgttttccc aaagaaaata acatagcaca





gaaggaaaaa taaaaagaaa ttgctgcaga ttttacttta tgtgagaaaa tctacaattt





cttcgagaca ctcatataaa gatattggtg aatgaacttt gctaagtatg gattcaggcg





gtggaagtct tggattgcac acgccagact ctagaatggc ccataccatg attatgcaag





attttgtggc tggaatggct ggtactgcac atatcgatgg agaccatatt gttgtttcag





ttcctgaagc tgttttagtt tctgatgttg tcacagatga tgggataact cttgatcatg





gccttgcagc tgaagttgtc catggacctg atatcatcac agagactgat gtagtaacag





aaggtgtgat tgttcctgaa gcggtacttg aagctgatgt tgccattgaa gaggatttag





aggaagatga tggtgatcac atcttgactt ctgaactaat tacagaaacc gttagggtac





cagagcaggt tttcgtggct gaccttgtta ctggtcctaa tggacactta gaacatgtgg





tccaagattg tgtttcagga gtcgactctc ccacaatggt atcagaggag gttcttgtaa





ctaattcaga tacagaaact gtgattcaag cagctggagg tgttcctggt tctacagtta





ctataaaaac cgaagatgat gatgatgatg atgtcaagag cacttctgaa gactacttaa





tgatatcttt ggatgatgtt ggagaaaaat tagagcatat ggggaataca ccattaaaaa





ttggcagtga tggttcacaa gaagatgcta aagaagatgg gtttggttct gaagttataa





aagtgtatat atttaaagcg gaggctgaag atgatgttga aataggtgga acagaaattg





tcacagagag tgagtacacc agtggacatt cagtagctgg agtgcttgac cagagccgaa





tgcagcggga gaagatggtt tacatggcag ttaaagattc ttctcaagaa gaagatgata





tcagagatga aagaagagtt tcccgaaggt atgaagattg tcaagcatca ggaaatactt





tggactcagc attagaaagc agaagtagta cagcagcaca gtaccttcaa atttgtgacg





gcattaatac aaataaagta cttaaacaaa aagccaaaaa gaggagaagg ggagaaacca





ggcagtggca aacagctgtt ataataggtc ctgatggaca gcccctcaca gtgtaccctt





gccatatttg cacaaaaaag tttaaatcca ggggattctt aaaaagacac atgaagaatc





atcctgatca tttaatgaga aaaaaatatc agtgtacaga ttgtgacttt acaactaaca





agaaagtgag tttccataac cacttagaaa gccataagct cataaacaaa gtcgacaaaa





cccatgaatt tacagaatac acacgaagat acagagaggc tagtccactg agttccaata





aacttatttt aagagacaag gagccgaaga tgcacaagtg caaatactgt gactatgaaa





ctgcagaaca aggactgtta aacaggcatt tgttggccgt tcacagcaag aattttcctc





atgtttgtgt tgagtgtggg aagggttttc gacatccttc tgaactcaag aaacatatga





gaacccatac tggtgagaag ccatatcagt gtcagtattg tattttcagg tgtgcagatc





aatcaaatct gaaaactcac attaagtcta aacatggtaa caatttgcca tataaatgtg





agcattgtcc ccaagcattt ggtgatgaga gggagcttca acgccatctg gatttgtttc





aaggacataa gacacaccag tgtcctcatt gtgaccataa gagcaccaat tcaagtgacc





ttaagcggca catcatatct gtccatacta aggattttcc tcacaaatgt gaggtctgtg





ataaaggttt tcatcgtcct tctgagctca aaaagcatag tgatatccat aagggtagga





agattcatca gtgcaggcac tgtgacttta aaacatccga tccatttatt cttagtggcc





atatcctttc agttcatact aaagatcagc cattgaaatg taaaaggtgc aagagaggat





tcagacaaca aaatgagcta aaaaaacata tgaagaccca tactggaagg aagatttacc





aatgtgagta ttgtgaatac agcactacag atgcatctgg ctttaaacga catgtgatat





caatacatac aaaagactat ccacacaggt gtgaattctg caagaaggga ttccgaagac





catcagaaaa aaatcagcat attatgaggc accacaaaga ggctcttatg taataagatc





aatataaaga aagaagctat ttaggagata tgatatgcta cttgggagaa aactctcact





aactgtctca ccgggtttca aagcttgata ctaaaccatg actttacatt ctttgtatta





aagatcttaa aatatttgaa ttcacagggg atcccatagc cctttgaaaa ttacttaaag





aatttaagaa gcactataga atggttacag aaaaacttct taagtatctg tgtaatagta





ttatatgcat acttaaacta cagaggggaa aagcaaagac aaatacttta tttggctgat





tatgttagat acaaatgttt ctgagaagag aatacataat tgagtttagt gatgctttgc





tatagcaagc aaacccactt ttatgcaatt ttagaaatgg ggcagggaaa caaaatgtgg





tcattcatca gtcacttagt cattgagcct tttatattgt acctggaaat taaattccag





caatgacaaa agttttgtgt attcattaaa agaaaactaa ctggaaaaca ggttagatta





attcagtact attaaaaaag aattcagagc tgttaatatt ttatcacagg ataggatact





taaaatatag cattctgtgc tgagatctaa ggtgaagtct ataaagatta aagttccctt





ttttctgatg ttcaagttga ttgttgttca gtatggcata tatgacaaaa gtatatttga





gtcaaatgtg gctttctaaa atggatgcaa cattagcgtt gcaaacaaaa tcagcactat





atttcttaat gatctaaaga ttaatttgag agaacacagt tttcttaaat attataatgt





ctagagtttt tttaggacag tcttagcaag tatgattgtt ctagtcttac ttgctctaat





gtttaaaggt gcaattttat gccattattg aaattgattt ttaaaatcta tataccatat





gattaacatg cattttcaat atgaggcagt gtttatgcag tatttaacag agcaatctgc





tgccaataga gtttggaggt ggatatttag tttacagtgt ataaacttaa aatatgcatc





cctttaacaa cgctttgtgt tagcatgctg caaatcaaaa tggcacttaa tattaaaagc





tggtttaggg aaattttatg aaaatcctgt tcataaatgt aatgcatatg atatgtactt





ttaagtttta gttgcttcat gtttacattc agctgttcaa cataattaaa atgtaatttt





acttcatgct atattgtggc tttgtgtttc aaataatgtt cacctttctg tttttgcacc





agataagaat cagttccttg agaataaatt ttttatcttt cttaacttca gaatattaaa





tttggaatat ctactaaaat tgtgtgttat gtggctgtaa atgatgtaca cgctgtaaaa





taagatcgct actgttatgt gggattatta tttctaaatg ttactcattg aaatgagcat





acaataaaaa gcatttattg cacttaaaaa aaaaaaaaaa aa





SEQ ID NO: 64 Homo sapiens zinc finger protein 711 (ZNF711)(NP_068838.3)


MDSGGGSLGLHTPDSRMAHTMIMQDFVAGMAGTAHIDGDHIVVSVPEAVLVSDVVTDDGITLDHGLAAEVVHGPD





IITETDVVTEGVIVPEAVLEADVAIEEDLEEDDGDHILTSELITETVRVPEQVFVADLVTGPNGHLEHVVQDCVS





GVDSPTMVSEEVLVTNSDTETVIQAAGGVPGSTVTIKTEDDDDDDVKSTSEDYLMISLDDVGEKLEHMGNTPLKI





GSDGSQEDAKEDGFGSEVIKVYIFKAEAEDDVEIGGTEIVTESEYTSGHSVAGVLDQSRMQREKMVYMAVKDSSQ





EEDDIRDERRVSRRYEDCQASGNTLDSALESRSSTAAQYLQICDGINTNKVLKQKAKKRRRGETRQWQTAVIIGP





DGQPLTVYPCHICTKKFKSRGFLKRHMKNHPDHLMRKKYQCTDCDFTTNKKVSFHNHLESHKLINKVDKTHEFTE





YTRRYREASPLSSNKLILRDKEPKMHKCKYCDYETAEQGLLNRHLLAVHSKNFPHVCVECGKGFRHPSELKKHMR





THTGEKPYQCQYCIFRCADQSNLKTHIKSKHGNNLPYKCEHCPQAFGDERELQRHLDLFQGHKTHQCPHCDHKST





NSSDLKRHIISVHTKDFPHKCEVCDKGFHRPSELKKHSDIHKGRKIHQCRHCDFKTSDPFILSGHILSVHTKDQP





LKCKRCKRGFRQQNELKKHMKTHTGRKIYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEFCKKGFRRPSEKNQ





HIMRHHKEALM





SEQ ID NO: 65 Homo sapiens intersectin 1 (SH3 domain protein) (ITSN1)


(NM_003024)


gagcgaggga gggagcgaag gaggtagaga agagtggagg cgccagggga gggagcgtag





cttggttgct ccgtagtacg gcggctcgcg aggaagaatc ccgagcgggc tccgggacgg





acagagaggc gggcggggat ggtgtgcggg gctgcggctc ctgcgtccct cccagcggcg





cgtgagcggc actgatttgt ccctggggcg gcagcgcgga cccgcccgga gatgaggcgt





cgattagcaa ggtaaaagta acagaaccat ggctcagttt ccaacacctt ttggtggcag





cctggatatc tgggccataa ctgtagagga aagagcgaag catgatcagc agttccatag





tttaaagcca atatctggat tcattactgg tgatcaagct agaaactttt tttttcaatc





tgggttacct caacctgttt tagcacagat atgggcacta gctgacatga ataatgatgg





aagaatggat caagtggagt tttccatagc tatgaaactt atcaaactga agctacaagg





atatcagcta ccctctgcac ttccccctgt catgaaacag caaccagttg ctatttctag





cgcaccagca tttggtatgg gaggtatcgc cagcatgcca ccgcttacag ctgttgctcc





agtgccaatg ggatccattc cagttgttgg aatgtctcca accctagtat cttctgttcc





cacagcagct gtgccccccc tggctaacgg ggctccccct gttatacaac ctctgcctgc





atttgctcat cctgcagcca cattgccaaa gagttcttcc tttagtagat ctggtccagg





gtcacaacta aacactaaat tacaaaaggc acagtcattt gatgtggcca gtgtcccacc





agtggcagag tgggctgttc ctcagtcatc aagactgaaa tacaggcaat tattcaatag





tcatgacaaa actatgagtg gacacttaac aggtccccaa gcaagaacta ttcttatgca





gtcaagttta ccacaggctc agctggcttc aatatggaat ctttctgaca ttgatcaaga





tggaaaactt acagcagagg aatttatcct ggcaatgcac ctcattgatg tagctatgtc





tggccaacca ctgccacctg tcctgcctcc agaatacatt ccaccttctt ttagaagagt





tcgatctggc agtggtatat ctgtcataag ctcaacatct gtagatcaga ggctaccaga





ggaaccagtt ttagaagatg aacaacaaca attagaaaag aaattacctg taacgtttga





agataagaag cgggagaact ttgaacgtgg caacctggaa ctggagaaac gaaggcaagc





tctcctggaa cagcagcgca aggagcagga gcgcctggcc cagctggagc gggcggagca





ggagaggaag gagcgtgagc gccaggagca agagcgcaaa agacaactgg aactggagaa





gcaactggaa aagcagcggg agctagaacg gcagagagag gaggagagga ggaaagaaat





tgagaggcga gaggctgcaa aacgggaact tgaaaggcaa cgacaacttg agtgggaacg





gaatcgaagg caagaactac taaatcaaag aaacaaagaa caagaggaca tagttgtact





gaaagcaaag aaaaagactt tggaatttga attagaagct ctaaatgata aaaagcatca





actagaaggg aaacttcaag atatcagatg tcgattgacc acccaaaggc aagaaattga





gagcacaaac aaatctagag agttgagaat tgccgaaatc acccatctac agcaacaatt





acaggaatct cagcaaatgc ttggaagact tattccagaa aaacagatac tcaatgacca





attaaaacaa gttcagcaga acagtttgca cagagattca cttgttacac ttaaaagagc





cttagaagca aaagaactag ctcggcagca cctacgagac caactggatg aagtggagaa





agaaactaga tcaaaactac aggagattga tattttcaat aatcagctga aggaactaag





agaaatacac aataagcaac aactccagaa gcaaaagtcc atggaggctg aacgactgaa





acagaaagaa caagaacgaa agatcataga attagaaaaa caaaaagaag aagcccaaag





acgagctcag gaaagggaca agcagtggct ggagcatgtg cagcaggagg acgagcatca





gagaccaaga aaactccacg aagaggaaaa actgaaaagg gaggagagtg tcaaaaagaa





ggatggcgag gaaaaaggca aacaggaagc acaagacaag ctgggtcggc ttttccatca





acaccaagaa ccagctaagc cagctgtcca ggcaccctgg tccactgcag aaaaaggtcc





acttaccatt tctgcacagg aaaatgtaaa agtggtgtat taccgggcac tgtacccctt





tgaatccaga agccatgatg aaatcactat ccagccagga gacatagtca tggttaaagg





ggaatgggtg gatgaaagcc aaactggaga acccggctgg cttggaggag aattaaaagg





aaagacaggg tggttccctg caaactatgc agagaaaatc ccagaaaatg aggttcccgc





tccagtgaaa ccagtgactg attcaacatc tgcccctgcc cccaaactgg ccttgcgtga





gacccccgcc cctttggcag taacctcttc agagccctcc acgaccccta ataactgggc





cgacttcagc tccacgtggc ccaccagcac gaatgagaaa ccagaaacgg ataactggga





tgcatgggca gcccagccct ctctcaccgt tccaagtgcc ggccagttaa ggcagaggtc





cgcctttact ccagccacgg ccactggctc ctccccgtct cctgtgctag gccagggtga





aaaggtggag gggctacaag ctcaagccct atatccttgg agagccaaaa aagacaacca





cttaaatttt aacaaaaatg atgtcatcac cgtcctggaa cagcaagaca tgtggtggtt





tggagaagtt caaggtcaga agggttggtt ccccaagtct tacgtgaaac tcatttcagg





gcccataagg aagtctacaa gcatggattc tggttcttca gagagtcctg ctagtctaaa





gcgagtagcc tctccagcag ccaagccggt cgtttcggga gaagaattta ttgccatgta





cacttacgag agttctgagc aaggagattt aacctttcag caaggggatg tgattttggt





taccaagaaa gatggtgact ggtggacagg aacagtgggc gacaaggccg gagtcttccc





ttctaactat gtgaggctta aagattcaga gggctctgga actgctggga aaacagggag





tttaggaaaa aaacctgaaa ttgcccaggt tattgcctca tacaccgcca ccggccccga





gcagctcact ctcgcccctg gtcagctgat tttgatccga aaaaagaacc caggtggatg





gtgggaagga gagctgcaag cacgtgggaa aaagcgccag ataggctggt tcccagctaa





ttatgtaaag cttctaagcc ctgggacgag caaaatcact ccaacagagc cacctaagtc





aacagcatta gcggcagtgt gccaggtgat tgggatgtac gactacaccg cgcagaatga





cgatgagctg gccttcaaca agggccagat catcaacgtc ctcaacaagg aggaccctga





ctggtggaaa ggagaagtca atggacaagt ggggctcttc ccatccaatt atgtgaagct





gaccacagac atggacccaa gccagcaatg gtgttcagac ttacatctct tggatatgtt





gaccccaact gaaagaaagc gacaaggata catccacgag ctcattgtca ccgaggagaa





ctatgtgaat gacctgcagc tggtcacaga gatttttcaa aaacccctga tggagtctga





gctgctgaca gaaaaagagg ttgctatgat ttttgtgaac tggaaggagc tgattatgtg





taatatcaaa ctactaaaag cgctgagagt ccgcaagaag atgtccgggg agaagatgcc





tgtgaagatg attggagaca tcctgagcgc acagctgccg cacatgcagc cctacatccg





cttctgcagc cgccagctca acggggctgc cctgatccag cagaagacgg atgaggcccc





agacttcaag gagttcgtca aaagattggc aatggatcct cggtgtaaag ggatgccact





ctctagtttt atactgaagc ctatgcaacg ggtaacaaga tacccactga tcattaaaaa





tatcctggaa aacacccctg aaaaccaccc ggaccacagc cacttgaagc acgccctgga





gaaggcggaa gagctctgtt cccaggtgaa cgaaggggtg cgggagaagg agaactctga





ccggctggag tggatccagg cccacgtgca gtgtgaaggc ctgtctgagc aacttgtgtt





caattcagtg accaattgct tggggccgcg caaatttctg cacagtggga agctctacaa





ggccaagagc aacaaggagc tgtatggctt ccttttcaac gacttcctcc tgctgactca





gatcacgaag cctttggggt cttctggcac cgacaaagtc ttcagcccca aatcaaacct





gcagtataaa atgtataaaa cacctatttt cctaaatgag gttctagtaa aattacccac





cgacccttct ggagacgagc ccatcttcca catctcccac attgaccgcg tctatactct





ccgagcagaa agcataaatg aaaggactgc ctgggtgcag aaaatcaaag ctgcttctga





actctacata gagactgaga aaaagaagcg cgagaaagcg tacctggtcc gttcccaaag





ggcaacaggc attggaaggt tgatggtgaa cgtggttgaa ggcatcgagt tgaaaccctg





tcggtcacat ggaaagagca acccgtactg tgaggtgacc atgggttccc agtgccacat





caccaagacg atccaggaca ctctgaaccc caagtggaat tccaactgcc agttcttcat





ccgagacctg gagcaggaag tcctctgcat cactgtgttc gagagggacc agttctcacc





agatgatttt ttgggtcgga cggagatccg tgtggcggac atcaagaaag accagggctc





caaaggtcca gttacgaagt gtcttctgct gcacgaagtc cccacgggag agattgtggt





ccgcttggac ctgcagttgt ttgatgagcc gtaggcagcg ggctcagggt gtgctcagca





gggtcccagc ccacggccac acatgctgtc tggaaattgt attccttttc taagaaacca





ccatttggta ttcagtcaca gggatatggg atggcaaaga caggcccctc aaagctccta





ggaatcattc tcgacaatcc tccctgcccc gaaacaattt cctgtttcat gaaacaaagc





tgtgttttcc tttgtcctca ctacaggtct cattatggct tctagggtcg ctgaaatccc





atagccctca acagggtgca gctgggagtc tagccccttc ccgggcttga gggatgggtc





tggttactat aaaatagatt tataaatgca atgtctatat ttttggagaa ctcatgtaac





cctcctgttt cttacatcca ccagtcccca agtagacttc ttggcctaca atgcccagtc





cttggtgtga gtttagaaac aattatgacg gtcctgtcat tgcttcagaa tcccatctct





cctgcaggga aatgctgcct agagctgatc actcggtgag acggtctgat caggccctgg





cttagctctt tgaagagctg gtctatggaa gtttccagca tgtgcaccgt tatagccgtt





ccttccccct ctaggccttg tattaatata tgtcaatgaa aacacactgg tgtattgttg





cgtggattca gttctgattc ccagcatgct tagaatatgg tcacagaaag tcattatcta





gaaagtcacc cctctgctgg atcagatcac tacaggtcac tggaaaggca actttacaat





gttgggtcac tgggtctcgg ttggcagcca tgttggaaaa atctcttttg gctcggaggc





ctgtgatatt tcatagcagc agtcgttgct ggtgacctgt tctgtgcttg aatgtgctga





atcctgattg ttgtaggaca tttcaacagc tctttttggt acgttcccca aaaagccatg





tcctagatcc ccaaggcgt





SEQ ID NO: 66 Homo sapiens intersectin 1 (SH3 domain protein) (ITSN1)


(NP_003015.2)


MAQFPTPFGGSLDIWAITVEERAKHDQQFHSLKPISGFITGDQARNFFFQSGLPQPVLAQIWALADMNNDGRMDQ





VEFSIAMKLIKLKLQGYQLPSALPPVMKQQPVAISSAPAFGMGGIASMPPLTAVAPVPMGSIPVVGMSPTLVSSV





PTAAVPPLANGAPPVIQPLPAFAHPAATLPKSSSFSRSGPGSQLNTKLQKAQSFDVASVPPVAEWAVPQSSRLKY





RQLFNSHDKTMSGHLTGPQARTILMQSSLPQAQLASIWNLSDIDQDGKLTAEEFILAMHLIDVAMSGQPLPPVLP





PEYIPPSFRRVRSGSGISVISSTSVDQRLPEEPVLEDEQQQLEKKLPVTFEDKKRENFERGNLELEKRRQALLEQ





QRKEQERLAQLERAEQERKERERQEQERKRQLELEKQLEKQRELERQREEERRKEIERREAAKRELERQRQLEWE





RNRRQELLNQRNKEQEDIVVLKAKKKTLEFELEALNDKKHQLEGKLQDIRCRLTTQRQEIESTNKSRELRIAEIT





HLQQQLQESQQMLGRLIPEKQILNDQLKQVQQNSLHRDSLVTLKRALEAKELARQHLRDQLDEVEKETRSKLQEI





DIFNNQLKELREIHNKQQLQKQKSMEAERLKQKEQERKIIELEKQKEEAQRRAQERDKQWLEHVQQEDEHQRPRK





LHEEEKLKREESVKKKDGEEKGKQEAQDKLGRLFHQHQEPAKPAVQAPWSTAEKGPLTISAQENVKVVYYRALYP





FESRSHDEITIQPGDIVMVKGEWVDESQTGEPGWLGGELKGKTGWFPANYAEKIPENEVPAPVKPVTDSTSAPAP





KLALRETPAPLAVTSSEPSTTPNNWADFSSTWPTSTNEKPETDNWDAWAAQPSLTVPSAGQLRQRSAFTPATATG





SSPSPVLGQGEKVEGLQAQALYPWRAKKDNHLNFNKNDVITVLEQQDMWWFGEVQGQKGWFPKSYVKLISGPIRK





STSMDSGSSESPASLKRVASPAAKPVVSGEEFIAMYTYESSEQGDLTFQQGDVILVTKKDGDWWTGTVGDKAGVF





PSNYVRLKDSEGSGTAGKTGSLGKKPEIAQVIASYTATGPEQLTLAPGQLILIRKKNPGGWWEGELQARGKKRQI





GWFPANYVKLLSPGTSKITPTEPPKSTALAAVCQVIGMYDYTAQNDDELAFNKGQIINVLNKEDPDWWKGEVNGQ





VGLFPSNYVKLTTDMDPSQQWCSDLHLLDMLTPTERKRQGYIHELIVTEENYVNDLQLVTEIFQKPLMESELLTE





KEVAMIFVNWKELIMCNIKLLKALRVRKKMSGEKMPVKMIGDILSAQLPHMQPYIRFCSRQLNGAALIQQKTDEA





PDFKEFVKRLAMDPRCKGMPLSSFILKPMQRVTRYPLIIKNILENTPENHPDHSHLKHALEKAEELCSQVNEGVR





EKENSDRLEWIQAHVQCEGLSEQLVFNSVTNCLGPRKFLHSGKLYKAKSNKELYGFLFNDFLLLTQITKPLGSSG





TDKVFSPKSNLQYKMYKTPIFLNEVLVKLPTDPSGDEPIFHISHIDRVYTLRAESINERTAWVQKIKAASELYIE





TEKKKREKAYLVRSQRATGIGRLMVNVVEGIELKPCRSHGKSNPYCEVTMGSQCHITKTIQDTLNPKWNSNCQFF





IRDLEQEVLCITVFERDQFSPDDFLGRTEIRVADIKKDQGSKGPVTKCLLLHEVPTGEIVVRLDLQLFDEP





SEQ ID NO: 67 Homo sapiens phorbol-12-myristate-13-acetate-induced protein


1 (PMAIP1) (NM_021127)


actggacaaa agcgtggtct ctggcgcggg gatctcagag tttcccgggc actcaccgtg





tgtagttggc atctccgcgc gtccggacac ccgatcccag catccctgcc tgcaggactg





ttcgtgttca gctcgcgtcc tgcagctgtc cgaggtgctc cagttggagg ctgaggttcc





cgggctctgt agctgagtgg gcggcggcac cggcggagat gcctgggaag aaggcgcgca





agaacgctca accgagcccc gcgcgggctc cagcagagct ggaagtcgag tgtgctactc





aactcaggag atttggagac aaactgaact tccggcagaa acttctgaat ctgatatcca





aactcttctg ctcaggaacc tgactgcatc aaaaacttgc atgaggggac tccttcaaaa





gagttttctc aggaggtgca cgtttcatca atttgaagaa agactgcatt gtaattgaga





ggaatgtgaa ggtgcattca tgggtgccct tggaaacgga agatggaata catcaaagtg





aatttctgtt caagttttcc cagattatca ttctttggga tgagagaaca ttataaaacc





actttgttta ttttaaagca agaatggaag acccttgaaa ataaagaagt aattattgac





acatttcttt tttacttaga gaatcgttct agtgtttttg ccgaagatta ccgctggcct





actgtgaagg gagatgacct gtgattagac tgggcggctg gggagaaaca gttcagtgca





ttgttgttgt tgctgttttt ggtgttttgc ttttcagtgc caactcagca cattgtatat





gattcggttt atacatatta ccttgttata atgaaaaaac tcattctgag aacactgaaa





tgttatactc agtgttgatt tcttcggtca ctacacaacg taaaatcatt tgtttctttt





gactcaaatt gtattgcttc tgttcagatg atctttcatt caatgtgttc ctgttgggcg





ttactagaaa ctatggaaaa ctggaaaata actttgaaaa aattggataa agtataggag





ggttacttgg ggccagtaaa tcagtagact gaacattcaa tataataaaa gaacatgggg





attttgtata accagggata ataaaaagaa aaaagaagtt aatttttaat tgatgttttt





gaaacttagt agaacaaata ttcagaagta acttgataag atatgaatgt ttctaaagaa





gtttctaaag gttcggaaaa tgctccttgt cacattagtg tgcatcctac aaaaagtgat





ctcttaatgt aaattaagaa tattttcata attggaatat acttttctta aaaaaaagga





acagttagtt ctcatctaga atgaaagttc catatatgca ttggtgaata tatatgtata





cacatactta catacttata tgggtatctg tatagataat ttgtattaga gtattatata





gcttcttagt agggtctcaa gtaagtttca ttttttttat ctgggctata tacagtcctc





aaataaataa tgtcttgatt ttatttcagc aggaataatt ttatttattt tgcctattta





taattaaagt atttttcttt agtttgaaaa tgtgtattaa agttacattt ttgagttaca





agagtcttat aactacttga atttttagtt aaaatgtctt aatgtaggtt gtagtcactt





tagatggaaa attacctcac atctgttttc ttcagtatta cttaagattg tttatttagt





ggtagagagt tttttttttc agcctagagg cagctatttt accatctggt atttatggtc





taatttgtat ttaaacatat gcacacatat aaaagttgat actgtggcag taaactatta





aaagttttca ctgttcaaaa aaaaaaaaaa aaaa





SEQ ID NO: 68 Homo sapiens phorbol-12-myristate-13-acetate-induced protein


1 (PMAIP1) (NP_066950.1)


MPGKKARKNAQPSPARAPAELEVECATQLRRFGDKLNFRQKLLNLISKLFCSGT





SEQ ID NO: 69 Homo sapiens transmembrane protein 47 (TMEM47) (NM_031442)


ggcagagcgc ggcgcggggc cggcggcgaa ggtccggggt ggaatcgacg tcgctgcggc





tgccgacgac ccacacccgg ccggccgcct ccgcagaccc accttggccg cgcggcaggg





ggcgcgcaga gccccgaggg agcgagtccc cgcgcgtggc agctcggcgg cttctccctt





cgggaggtcc ggctcccggc tctccggacc cgcctggcgt cctcgcctgc ggcggggcgg





acgacagcgg cgcccaggaa tggcttcggc gggcagcggc atggaggagg tgcgcgtgtc





ggtgctgacc cccttgaagc tggtcgggct ggtgtgcatc ttcctggcgc tgtgtctgga





cctgggggcg gtgctgagcc cggcctgggt cacagctgac caccagtact acctgtcgtt





gtgggagtcc tgccgcaaac ccgccagctt ggacatctgg cactgcgagt ccacgctcag





cagcgattgg cagattgcta ctctggcttt actcctgggc ggcgctgcca tcattctcat





tgcattcctg gtgggtttga tttctatctg cgtgggatct cgaaggcgtt tctatagacc





tgttgcggtc atgctttttg cagcagttgt tttacaggtt tgcagcctgg tcctttaccc





aatcaagttc attgaaactg tgagcttgaa aatttaccat gagttcaact ggggttatgg





cctggcctgg ggtgcaacta tattttcgtt tgggggtgcc atcctttatt gcctgaaccc





taagaactat gaagactact actagaacca atagtctcaa agtaaaaaca accaccacca





tccaacaaaa ggattacgtc tgcatctttt ctaacttact attttctaaa acacttgtgg





agcatcaagc agtttgctca gttgatttaa tcttttttgc cttttggctg tcaacatcat





aaccagcttt tacatccatt ttagaaatct gcacaaatta agagagctga ttagacatag





gcaaatgctg caaacttcca atatgttcat atcgtttttc ttgacaaatg aagggtctat





atgacagcaa ccattgtgag aaactagttg gaatgagatt tgcctcaatc tcctattgcc





tgcaggggag cagttggcat aagcaacatt tagaagttcc tttgcgctga caaggattcc





actgttagag cccttaccgc ctgcttatcc tacccaatga ctacattggc tgttggttat





ttgcttgagt gagcccttga aaaatgaact gcccttcagc atctaatggg agttgtgaat





gtaactggtt aatgatacac attccacctt caggaacact ctttttaatg ggaggttatg





ctttggcaat cagcgtctcc ctgggaagag agtcaagact tggagacatg tgcttctcat





tatgtggtta gaaattggtg cctcagccct atctagactg gggaaaaatt gaggatctct





gtttttcctg gggcaaacag aaagaaatct gcatgagttg cttttgtacc ctttaaatca





tttgccaaac attgcagcaa acaagtgtgc gtatgtaaca agcttcactg tttttataga





aggtgaacca ttagtataaa tggtaataag ttgttcccta accctccaca tacatttgcc





tatcacacgt aaaattaata tttactctag tgaagtggtt tgagcactaa ccttgtacac





attgttaaga ggcttagatt ggtattcata cttatttacc atacaaaagt atggtacctt





aaagcttttg ctctatgttc tttactgttt cactggaaag tgtcaataga gttgcctaag





aataaaaatt gaaatggtgt taatctgaaa attaatgatt ctctgtaagc actgtagttg





aaaagagagt agcaattagg atgatcattt tgtgtaaaat tcattaaaat agaaggctgc





tattttttgc aagtatttta aatgtcttca tttttttaag aaaggaatag cgatagattt





atataaatat ctaaatgtct cagtagagga gtagaattca tctggttatc acctggtcct





ctgaagttaa ctgatgggct aaccgatttg tgcacacact taggatggat ttatgttaag





ggaattactt actgactgtt caatggaagg aagtattaat aatagggaat aagtttgcaa





ctaatctcat gctgcaaact tgtgttaatt ctgtttaata tacaaatttg gatagcttaa





ttataaacat atttttatat caaatataca gttctaatat aaaagttata aataattatt





tttgttaaca aagacactaa aacagtatgt tctggttttg gccctcttgc agaaagaagc





attagaaaaa ttactttaaa agtagctata tgttactgta ttgcaaaatc tgttaagagc





aggaccacat cgatagtatt taataatttg ttttacctcc caaaacacag ttcttctttc





agcttgtctt aagaatggtt gccaaaaaca acagccaaaa aaaaaaaacc tattttatta





tccaaatgct agaaaacaca catgaatttt ctataaaatc acgaatatga agtaccaggt





ttagtcttac tttagcaatg atagacaaaa gcgaataaat acatcacaga cagaaacctt





tataaaaata tatgattcta taaagaatca ttagaaatta tgagtggaaa ttctccagaa





agatagtatt atagagtctt ttgaagcaat tttttgagaa atagtaaaat ctggggcaga





gtgtcttgca gttaattgca tattgtcaga gcagcatgag aaatatgata tttggatagg





gatttcagca actaaacatt ctctgttctg agatctcttt attcctgaat aatgaaagaa





tagtactttg gtgctgacac caatgaggca cttctcttgg tcctagtaga ggatgcagtg





tactgttaaa ccaatatcat cacatctcga gtcttatcaa gttttcattc tctgtcaata





tgacaagctc aaagtgacag aatatgttat aggttgaagc acacatattt gcagtttact





gaaaagtaga tttcttatgt gacttttttc ccttctcagc aaagagccct acactagatt





tctaccatca ctaatatttg gaagtatttc attactaaca atctcagtac aacatgaaaa





ttgttgcttc tcatctaaaa tacaattttg tctatcagaa taaacacaag tgaaattttc





acctacatta acattatgtc tttgcagctt taggtttgtt agatgtgttc ttaagcataa





tttttagcca caaacccatt gttagataga tatctatgga tatagatcta catctataga





tatagatata cacacatata tatactcaca cacatatagc ataaaatact cagcagggct





agttattccg atttcttgca caattattta gctttttgta agttcaacat gtaaatttta





aagacataaa tatagagaga cttatgtgtt tgaatataaa tgatatatat ggattagcat





gtacctgtat attattaaac atgcaatgaa ctgactggta agtgacgtct aattgtatgg





ctagcaatgt aatttattca gactgtattt ttgtacagag cagtgcactc taacctatgc





ctctgtgtcc tctttaatgc ctaaagctgt gcctagaaat ttcatctgtc ttaaaagtaa





aatatacttc atgctgttta tgctattagt ttctgtactg ctattctata tttattattt





ttaaatatat gacatgttta ctacttaaac atgaattcat ggtatcctgg ttattttttt





taagtcatct gggggaaaac ctgtttatca ctccagtgat tttgagtttg cagtttcaca





atcagttctt catttcatga tttttgtagt tgacatgaag tcatctatgt ggaaaaaaat





aaaaataaaa gtgatttcac ggatgtggtt tgaaaaaaaa aaaaaaaa





SEQ ID NO: 70 Homo sapiens transmembrane protein 47 (TMEM47)(NP_113630.1)


MASAGSGMEEVRVSVLTPLKLVGLVCIFLALCLDLGAVLSPAWVTADHQYYLSLWESCRKPASLDIWHCESTLSS





DWQIATLALLLGGAAIILIAFLVGLISICVGSRRRFYRPVAVMLFAAVVLQVCSLVLYPIKFIETVSLKIYHEFN





WGYGLAWGATIFSFGGAILYCLNPKNYEDYY





SEQ ID NO: 71 Homo sapiens interleukin 11 (IL11)(NM_000641)


gctcagggca catgcctccc ctccccaggc cgcggcccag ctgaccctcg gggctccccc





ggcagcggac agggaagggt taaaggcccc cggctccctg ccccctgccc tggggaaccc





ctggccctgt ggggacatga actgtgtttg ccgcctggtc ctggtcgtgc tgagcctgtg





gccagataca gctgtcgccc ctgggccacc acctggcccc cctcgagttt ccccagaccc





tcgggccgag ctggacagca ccgtgctcct gacccgctct ctcctggcgg acacgcggca





gctggctgca cagctgaggg acaaattccc agctgacggg gaccacaacc tggattccct





gcccaccctg gccatgagtg cgggggcact gggagctcta cagctcccag gtgtgctgac





aaggctgcga gcggacctac tgtcctacct gcggcacgtg cagtggctgc gccgggcagg





tggctcttcc ctgaagaccc tggagcccga gctgggcacc ctgcaggccc gactggaccg





gctgctgcgc cggctgcagc tcctgatgtc ccgcctggcc ctgccccagc cacccccgga





cccgccggcg cccccgctgg cgcccccctc ctcagcctgg gggggcatca gggccgccca





cgccatcctg ggggggctgc acctgacact tgactgggcc gtgaggggac tgctgctgct





gaagactcgg ctgtgacccg gggcccaaag ccaccaccgt ccttccaaag ccagatctta





tttatttatt tatttcagta ctgggggcga aacagccagg tgatcccccc gccattatct





ccccctagtt agagacagtc cttccgtgag gcctgggggg catctgtgcc ttatttatac





ttatttattt caggagcagg ggtgggaggc aggtggactc ctgggtcccc gaggaggagg





ggactggggt cccggattct tgggtctcca agaagtctgt ccacagactt ctgccctggc





tcttccccat ctaggcctgg gcaggaacat atattattta tttaagcaat tacttttcat





gttggggtgg ggacggaggg gaaagggaag cctgggtttt tgtacaaaaa tgtgagaaac





ctttgtgaga cagagaacag ggaattaaat gtgtcataca tatccacttg agggcgattt





gtctgagagc tggggctgga tgcttgggta actggggcag ggcaggtgga ggggagacct





ccattcaggt ggaggtcccg agtgggcggg gcagcgactg ggagatgggt cggtcaccca





gacagctctg tggaggcagg gtctgagcct tgcctggggc cccgcactgc atagggcctt





ttgtttgttt tttgagatgg agtctcgctc tgttgcctag gctggagtgc agtgaggcaa





tctgaggtca ctgcaacctc cacctcccgg gttcaagcaa ttctcctgcc tcagcctccc





gattagctgg gatcacaggt gtgcaccacc atgcccagct aattatttat ttcttttgta





tttttagtag agacagggtt tcaccatgtt ggccaggctg gtttcgaact cctgacctca





ggtgatcctc ctgcctcggc ctcccaaagt gctgggatta caggtgtgag ccaccacacc





tgacccatag gtcttcaata aatatttaat ggaaggttcc acaagtcacc ctgtgatcaa





cagtacccgt atgggacaaa gctgcaaggt caagatggtt cattatggct gtgttcacca





tagcaaactg gaaacaatct agatatccaa cagtgagggt taagcaacat ggtgcatctg





tggatagaac gccacccagc cgcccggagc agggactgtc attcagggag gctaaggaga





gaggcttgct tgggatatag aaagatatcc tgacattggc caggcatggt ggctcacgcc





tgtaatcctg gcactttggg aggacgaagc gagtggatca ctgaagtcca agagttcgag





accggcctgc gagacatggc aaaaccctgt ctcaaaaaag aaagaatgat gtcctgacat





gaaacagcag gctacaaaac cactgcatgc tgtgatccca attttgtgtt tttctttcta





tatatggatt aaaacaaaaa tcctaaaggg aaatacgcca aaatgttgac aatgactgtc





tccaggtcaa aggagagagg tgggattgtg ggtgactttt aatgtgtatg attgtctgta





ttttacagaa tttctgccat gactgtgtat tttgcatgac acattttaaa aataataaac





actattttta gaat





SEQ ID NO: 72 Homo sapiens interleukin 11 (IL11)(NP_000632.1)


MNCVCRLVLVVLSLWPDTAVAPGPPPGPPRVSPDPRAELDSTVLLTRSLLADTRQLAAQLRDKFPADGDHNLDSL





PTLAMSAGALGALQLPGVLTRLRADLLSYLRHVQWLRRAGGSSLKTLEPELGTLQARLDRLLRRLQLLMSRLALP





QPPPDPPAPPLAPPSSAWGGIRAAHAILGGLHLTLDWAVRGLLLLKTRL





SEQ ID NO: 73 Homo sapiens chemokine (C motif) ligand 2 (XCL2)(NM_003175)


agctcagcgg gacctcagcc atgagacttc tcatcctggc cctccttggc atctgctctc





tcactgcata cattgtggaa ggtgtaggga gtgaagtctc acataggagg acctgtgtga





gcctcactac ccagcgactg ccagttagca gaatcaagac ctacaccatc acggaaggct





ccttgagagc agtaattttt attaccaaac gtggcctaaa agtctgtgct gatccacaag





ccacgtgggt gagagacgtg gtcaggagca tggacaggaa atccaacacc agaaataaca





tgatccagac caagccaaca ggaacccagc aatcgaccaa tacagctgtg accctgactg





gctagtagtc tctggcaccc tgtccgtctc cagccagcca gctcatttca ctttacaccc





tcatggactg agattatact caccttttat gaaagcactg catgaataaa attattcctt





tgtattttta cttttaaatg tcttctgtat tcacttatat gttctaatta ataaattatt





tattattaag aa





SEQ ID NO: 74 Homo sapiens chemokine (C motif) ligand 2 (XCL2)(NP_003166.1)


MRLLILALLGICSLTAYIVEGVGSEVSHRRTCVSLTTQRLPVSRIKTYTITEGSLRAVIFITKRGLKVCADPQAT





WVRDVVRSMDRKSNTRNNMIQTKPTGTQQSTNTAVTLTG





SEQ ID NO: 74 Homo sapiens prostaglandin E receptor 4 (subtype EP4)


(PTGER4) (NM_000958)


gcgagagcgg agctccaagc ccggcagccc gagaggaaga tgaacagccc caggccagag





cctctggcag agtggacccc gagccgcccc caggtagcca ggagcggcct cagcggcagc





cgcaaactcc agtagccgcc cgtgctgccc gtggctgggg cggagggcag ccagagctgg





ggaccaaggc tccgcgccac ctgcgcgcac agcctcacac ctgaacgctg tcctcccgca





gacgagaccg gcgggcactg caaagctggg actcgtcttt gaaggaaaaa aaatagcgag





taagaaatcc agcaccattc ttcactgacc catcccgctg cacctcttgt ttcccaagtt





tttgaaagct ggcaactctg acctcggtgt ccaaaaatcg acagccactg agaccggctt





tgagaagccg aagatttggc agtttccaga ctgagcagga caaggtgaaa gcaggttgga





ggcgggtcca ggacatctga gggctgaccc tgggggctcg tgaggctgcc accgctgctg





ccgctacaga cccagccttg cactccaagg ctgcgcaccg ccagccacta tcatgtccac





tcccggggtc aattcgtccg cctccttgag ccccgaccgg ctgaacagcc cagtgaccat





cccggcggtg atgttcatct tcggggtggt gggcaacctg gtggccatcg tggtgctgtg





caagtcgcgc aaggagcaga aggagacgac cttctacacg ctggtatgtg ggctggctgt





caccgacctg ttgggcactt tgttggtgag cccggtgacc atcgccacgt acatgaaggg





ccaatggccc gggggccagc cgctgtgcga gtacagcacc ttcattctgc tcttcttcag





cctgtccggc ctcagcatca tctgcgccat gagtgtcgag cgctacctgg ccatcaacca





tgcctatttc tacagccact acgtggacaa gcgattggcg ggcctcacgc tctttgcagt





ctatgcgtcc aacgtgctct tttgcgcgct gcccaacatg ggtctcggta gctcgcggct





gcagtaccca gacacctggt gcttcatcga ctggaccacc aacgtgacgg cgcacgccgc





ctactcctac atgtacgcgg gcttcagctc cttcctcatt ctcgccaccg tcctctgcaa





cgtgcttgtg tgcggcgcgc tgctccgcat gcaccgccag ttcatgcgcc gcacctcgct





gggcaccgag cagcaccacg cggccgcggc cgcctcggtt gcctcccggg gccaccccgc





tgcctcccca gccttgccgc gcctcagcga ctttcggcgc cgccggagct tccgccgcat





cgcgggcgcc gagatccaga tggtcatctt actcattgcc acctccctgg tggtgctcat





ctgctccatc ccgctcgtgg tgcgagtatt cgtcaaccag ttatatcagc caagtttgga





gcgagaagtc agtaaaaatc cagatttgca ggccatccga attgcttctg tgaaccccat





cctagacccc tggatatata tcctcctgag aaagacagtg ctcagtaaag caatagagaa





gatcaaatgc ctcttctgcc gcattggcgg gtcccgcagg gagcgctccg gacagcactg





ctcagacagt caaaggacat cttctgccat gtcaggccac tctcgctcct tcatctcccg





ggagctgaag gagatcagca gtacatctca gaccctcctg ccagacctct cactgccaga





cctcagtgaa aatggccttg gaggcaggaa tttgcttcca ggtgtgcctg gcatgggcct





ggcccaggaa gacaccacct cactgaggac tttgcgaata tcagagacct cagactcttc





acagggtcag gactcagaga gtgtcttact ggtggatgag gctggtggga gcggcagggc





tgggcctgcc cctaagggga gctccctgca agtcacattt cccagtgaaa cactgaactt





atcagaaaaa tgtatataat aggcaaggaa agaaatacag tactgtttct ggacccttat





aaaatcctgt gcaatagaca catacatgtc acatttagct gtgctcagaa gggctatcat





catcctacaa ctcacattag agaacatcct ggcttttgag cacttttcaa acaatcaagt





tgactcacgt gggtcctgag gcctgcagca cgtcggatgc taccccacta tgacagagga





ttgtggtcac aacttgatgg ctgcgaagac ctaccctccg tttttctact agataggagg





atggtagaag tttggctgct gtcataacat ccagagcttt gtcgtatttg gcacacagca





gaggcccaga tattagaaag gctctattcc aataaactat gaggactgcc ttatggatga





tttaagtgtc tcactaaagc atgaaatgtg aatttttatt gttgtacata cgatttaagg





tatttaaagt attttcttct ctgtgagaag gtttattgtt aatacaaggt ataataaaat





tatcgcaacc cctctccttc cagtataacc agctgaagtt gcagatgtta gatatttttc





ataaacaagt tcgagtcaaa gttgaaaatt catagtaaga ttgatatcta taaaatagat





ataaattttt aagagaaaga atttagtatt atcaaaggga taaagaaaaa aatactattt





aagatgtgaa aattacagtc caaaatactg ttctttccag gctatgtata aaatacatag





tgaaaattgt ttagtgatat tacatttatt tatccagaaa actgtgattt caggagaacc





taacatgctg gtgaatattt tcaacttttt ccctcactaa ttggtacttt taaaaacata





acataaattt tttgaagtct ttaataaata acccataatt gaagtgtata atataaaaaa





ttttaaaaat ctaagcagct tattgtttct ctgaaagtgt gtgtagtttt actttcctaa





ggaattacca agaatatcct ttaaaattta aaaggatggc aagttgcatc agaaagcttt





attttgagat gtaaaaagat tcccaaacgt ggttacatta gccattcatg tatgtcagaa





gtgcagaatt ggggcactta atggtcacct tgtaacagtt ttgtgtaact cccagtgatg





ctgtacacat atttgaaggg tctttctcaa agaaatatta agcatgtttt gttgctcagt





gtttttgtga attgcttggt tgtaattaaa ttctgagcct gatattgata tggttttaag





aagcagttgt accaagtgaa attattttgg agattataat aaatatatac attcaaaaaa





aaaaaaaaaa aa





SEQ ID NO: 76 Homo sapiens prostaglandin E receptor 4 (subtype EP4)


(PTGER4) (NP_000949.1)


MSTPGVNSSASLSPDRLNSPVTIPAVMFIFGVVGNLVAIVVLCKSRKEQKETTFYTLVCGLAVTDLLGTLLVSPV





TIATYMKGQWPGGQPLCEYSTFILLFFSLSGLSIICAMSVERYLAINHAYFYSHYVDKRLAGLTLFAVYASNVLF





CALPNMGLGSSRLQYPDTWCFIDWTTNVTAHAAYSYMYAGFSSFLILATVLCNVLVCGALLRMHRQFMRRTSLGT





EQHHAAAAASVASRGHPAASPALPRLSDFRRRRSFRRIAGAEIQMVILLIATSLVVLICSIPLVVRVFVNQLYQP





SLEREVSKNPDLQAIRIASVNPILDPWIYILLRKTVLSKAIEKIKCLFCRIGGSRRERSGQHCSDSQRTSSAMSG





HSRSFISRELKEISSTSQTLLPDLSLPDLSENGLGGRNLLPGVPGMGLAQEDTTSLRTLRISETSDSSQGQDSES





VLLVDEAGGSGRAGPAPKGSSLQVTFPSETLNLSEKCI





SEQ ID NO: 77 Homo sapiens caspase 2, apoptosis-related cysteine peptidase


(neural precursor cell expressed, developmentally down-regulated 2) (CASP2)


(NM_032982)


gggtggcctg gtgtgtgggc gcggcagggc gcaggcgcag gcgcagtgtg cgtccgcgtc





tgaggggagg gatgtggggg aagcgacggc ccccggtttg tttgggctgt gggcggtgcg





cagcggagag cccgggaaaa gcgggaaatg gcggcgccga gcgcggggtc ttggtccacc





ttccagcaca aggagctgat ggccgctgac aggggacgca ggatattggg agtgtgtggc





atgcatcctc atcatcagga aactctaaaa aagaaccgag tggtgctagc caaacagctg





ttgttgagcg aattgttaga acatcttctg gagaaggaca tcatcacctt ggaaatgagg





gagctcatcc aggccaaagt gggcagtttc agccagaatg tggaactcct caacttgctg





cctaagaggg gtccccaagc ttttgatgcc ttctgtgaag cactgaggga gaccaagcaa





ggccacctgg aggatatgtt gctcaccacc ctttctgggc ttcagcatgt actcccaccg





ttgagctgtg actacgactt gagtctccct tttccggtgt gtgagtcctg tcccctttac





aagaagctcc gcctgtcgac agatactgtg gaacactccc tagacaataa agatggtcct





gtctgccttc aggtgaagcc ttgcactcct gaattttatc aaacacactt ccagctggca





tataggttgc agtctcggcc tcgtggccta gcactggtgt tgagcaatgt gcacttcact





ggagagaaag aactggaatt tcgctctgga ggggatgtgg accacagtac tctagtcacc





ctcttcaagc ttttgggcta tgacgtccat gttctatgtg accagactgc acaggaaatg





caagagaaac tgcagaattt tgcacagtta cctgcacacc gagtcacgga ctcctgcatc





gtggcactcc tctcgcatgg tgtggagggc gccatctatg gtgtggatgg gaaactgctc





cagctccaag aggtttttca gctctttgac aacgccaact gcccaagcct acagaacaaa





ccaaaaatgt tcttcatcca ggcctgccgt ggagatgaga ctgatcgtgg ggttgaccaa





caagatggaa agaaccacgc aggatcccct gggtgcgagg agagtgatgc cggtaaagaa





aagttgccga agatgagact gcccacgcgc tcagacatga tatgcggcta tgcctgcctc





aaagggactg ccgccatgcg gaacaccaaa cgaggttcct ggtacatcga ggctcttgct





caagtgtttt ctgagcgggc ttgtgatatg cacgtggccg acatgctggt taaggtgaac





gcacttatca aggatcggga aggttatgct cctggcacag aattccaccg gtgcaaggag





atgtctgaat actgcagcac tctgtgccgc cacctctacc tgttcccagg acaccctccc





acatgatgtc acctccccat catccacgcc aagtggaagc cactggacca caggaggtgt





gatagagcct ttgatcttca ggatgcacgg tttctgttct gccccctcag ggatgtggga





atctcccaga cttgtttcct gtgcccatca tctctgcctt tgagtgtggg actccaggcc





agctcctttt ctgtgaagcc ctttgcctgt agagccagcc ttggttggac ctattgccag





gaatgtttca gctgcagttg aagagcctga caagtgaagt tgtaaacaca gtgtggttat





ggggagaggg catataaatt ccccatattt gtgttcagtt ccagcttttg tagatggcac





tttagtgatt gcttttatta cattagttaa gatgtctgag agaccatctc ctatctttta





tttcattcat atcctccgcc ctttttgtcc tagagtgaga gtttggaagg tgtccaaatt





taatgtagac attatctttt ggctctgaag aagcaaacat gactagagac gcaccttgct





gcagtgtcca gaagcggcct gtgcgttccc ttcagtactg cagcgccacc cagtggaagg





acactcttgg ctcgtttggg ctcaaggcac cgcagcctgt cagccaacat tgccttgcat





ttgtacctta ttgatctttg cccatggaag tctcaaagat ctttcgttgg ttgtttctct





gagctttgtt actgaaatga gcctcgtggg gagcatcaga gaaggccagg aagaatggtg





tgtttcccta gactctgtaa ccacctctct gtctttttcc ttcctgagaa acgtccatct





ctctccctta ctattcccac tttcattcaa tcaacctgca cttcatatct agatttctag





aaaagcttcc tagcttatct ccctgcttca tatctctccc ttctttacct tcatttcatc





ctgttggctg ctgccaccaa atctgtctag aatcctgctt tacaggatca tgtaaatgct





caaagatgta atgtagttct ttgttcctgc tttctctttc agtattaaac tctcctttga





tattatgtgg cttttatttc agtgccatac atgttattgt tttcaaccta gaaaccttta





tccctgctta tctgaaactt cccaacttcc ctgttcttta agactttttt tttttttttt





tttttttttg agacagagtc tcgctctgtc gcccaggctg gagggcagtg gcacgatctc





agctcactgc aagctccaac tcccgggttc acgccattct cctgcctcag ccttccaagt





agctgggact acaggtgccc gccaccgtgc ccggctaatt tttttgtatt tttagtagag





acagggtttc accatgttag ccgggatggt cttgatctcc tgacctcatg atccacccac





ctcagcctcc caaagtgttg ggattacagg cgtgagccac tgcgcccggg caagaccttt





ttttaaaaaa aaaaaaaaaa aaacttccat tctttcttcc tccagtctgt tctcacataa





cagagtagtt ttggttttta attttttttg gttgtttgct gttttttgtt ttttaaggtg





agttctcact atgtttctca gactggtctc gaactcctgg cctcaagcca tcttcccgcc





tcagcctctc aaatagctgg gcttacaggc atgagccacc acacctggcc aggatttggt





tgtttaaata taaatctgat cacccccctg cttagaaccc ttctgctttc tattacccct





catttaaaat gtaaactctt caccttggtt tatgagaact ggttcttgcc ttccccttga





acctcattaa atggtgattt cttgctaagc tccagcccga gtggtctcct ctcagcttct





aattttgtgc tctttcctgc ccttttcctg ggccttctca gctctccacc cccaccactc





ttgactcagg tggtgtcctt cttcctcaag tcttgacaat tcccgggccc ttcagtccct





gagcagtcta cttctgtgtc tgtcaccaca tcttgtcttt tcccctcatt gcatttattg





cagtttatat atatgctact tttacttgtt catttctgtc tcccctacca ggctgtaaat





gagggcagaa accttgtttg ttttattcac catcatgtac caagtgcttg gcacatagtg





ggccttcatt aaatgtttgt tgaataaaag agggaagaag gcaagccaac cttagctaca





atcctacctt ttgataaaat gttccttttg acaatataca cggattatta tttgtacttt





gtttttccat gtgttttgct tttatccact ggcattttta gctccttgaa gacatatcat





gtgtgagata acttccttca catctcccat ggtccctagc aaaatgctag gcctgtagta





gtcaaggtgc tcaataaata tttgtttggg tggtttgtga gccttgctgc caagtcctgc





ctttgggtcg acatagtatg gaagtatttg agagagagaa cctttccact cccactgcca





ggattttgta ttgccatcgg gtgccaaata aatgctcata tttattaaaa aaaaaaaaaa aaaaa





SEQ ID NO: 78 Homo sapiens caspase 2, apoptosis-related cysteine peptidase


(neural precursor cell expressed, developmentally down-regulated 2) (CASP2)


(NP_116764.2)


MAAPSAGSWSTFQHKELMAADRGRRILGVCGMHPHHQETLKKNRVVLAKQLLLSELLEHLLEKDIITLEMRELIQ





AKVGSFSQNVELLNLLPKRGPQAFDAFCEALRETKQGHLEDMLLTTLSGLQHVLPPLSCDYDLSLPFPVCESCPL





YKKLRLSTDTVEHSLDNKDGPVCLQVKPCTPEFYQTHFQLAYRLQSRPRGLALVLSNVHFTGEKELEFRSGGDVD





HSTLVTLFKLLGYDVHVLCDQTAQEMQEKLQNFAQLPAHRVTDSCIVALLSHGVEGAIYGVDGKLLQLQEVFQLF





DNANCPSLQNKPKMFFIQACRGDETDRGVDQQDGKNHAGSPGCEESDAGKEKLPKMRLPTRSDMICGYACLKGTA





AMRNTKRGSWYIEALAQVFSERACDMHVADMLVKVNALIKDREGYAPGTEFHRCKEMSEYCSTLCRHLYLFPGHP





PT





SEQ ID NO: 79 Homo sapiens killer cell immunoglobulin-like receptor, two


domains, short cytoplasmic tail, 1 (KIR2DS1) (NM_014512)


caccggcagc accatgtcgc tcacggtcgt cagcatggcg tgtgttgggt tcttcttgct





gcagggggcc tggccacatg agggagtcca cagaaaacct tccctcctgg cccacccagg





tcgcctggtg aaatcagaag agacagtcat cctgcaatgt tggtcagatg tcatgtttga





acacttcctt ctgcacagag aggggatgtt taacgacact ttgcgcctca ttggagaaca





ccatgatggg gtctccaagg ccaacttctc catcagtcgc atgaagcaag acctggcagg





gacctacaga tgctacggtt ctgttactca ctccccctat cagttgtcag ctcccagtga





ccctctggac atcgtgatca taggtctata tgagaaacct tctctctcag cccagccggg





ccccacggtt ctggcaggag agaatgtgac cttgtcctgc agctcccgga gctcctatga





catgtaccat ctatccaggg aaggggaggc ccatgaacgt aggctccctg cagggaccaa





ggtcaacgga acattccagg ccaactttcc tctgggccct gccacccatg gagggaccta





cagatgcttc ggctctttcc gtgactctcc atacgagtgg tcaaagtcaa gtgacccact





gcttgtttct gtcacaggaa acccttcaaa tagttggcct tcacccactg aaccaagctc





cgaaaccggt aaccccagac acctacatgt tctgattggg acctcagtgg tcaaaatccc





tttcaccatc ctcctcttct ttctccttca tcgctggtgc tccgacaaaa aaaatgctgc





tgtaatggac caagagcctg cagggaacag aacagtgaac agcgaggatt ctgatgaaca





agaccatcag gaggtgtcat acgcataatt ggatcactgt gttttcacac agagaaaaat





cactcgccct tctgagaggc ccaagacacc cccaacagat accagcatgt acatagaact





tccaaatgct gagcccagat ccaaagttgt cttctgtcca cgagcaccac agtcaggcct





tgaggggatc ttctagggag a





SEQ ID NO: 80 Homo sapiens killer cell immunoglobulin-like receptor, two


domains, short cytoplasmic tail, 1 (KIR2DS1)(NP_055327.1)


MSLTVVSMACVGFFLLQGAWPHEGVHRKPSLLAHPGRLVKSEETVILQCWSDVMFEHFLLHREGMFNDTLRLIGE





HHDGVSKANFSISRMKQDLAGTYRCYGSVTHSPYQLSAPSDPLDIVIIGLYEKPSLSAQPGPTVLAGENVTLSCS





SRSSYDMYHLSREGEAHERRLPAGTKVNGTFQANFPLGPATHGGTYRCFGSFRDSPYEWSKSSDPLLVSVTGNPS





NSWPSPTEPSSETGNPRHLHVLIGTSVVKIPFTILLFFLLHRWCSDKKNAAVMDQEPAGNRTVNSEDSDEQDHQE





VSYA





SEQ ID NO: 81 Homo sapiens mitogen-activated protein kinase kinase kinase


kinase 2 (MAP4K2)(NM_004579)


cagagccacg ggcgcccgcc ccgccccgcg ccgccccgcg ccggctccgc agctcgcgcc





cgcccgcctg ccggcccgcc cggcgccggg ccatggcgct gctgcgggat gtgtcgctgc





aggacccgcg ggaccgcttc gagctgctgc agcgcgtggg ggccgggacc tatggcgacg





tctacaaggc ccgcgacacg gtcacgtccg aactggccgc cgtgaagata gtcaagctag





acccagggga cgacatcagc tccctccagc aggaaatcac catcctgcgt gagtgccgcc





accccaatgt ggtggcctac attggcagct acctcaggaa tgaccgcttg tggatctgca





tggagttctg cggagggggc tccctgcagg agatttacca tgccactggg cccctggagg





agcggcagat tgcctacgtc tgccgagagg cactgaaggg gctccaccac ctgcattctc





aggggaagat ccacagagac atcaagggag ccaaccttct cctcactctc cagggagatg





tcaaactggc tgactttggg gtgtcaggcg agctgacagc gtctgtggcc aagaggaggt





ctttcattgg gactccctac tggatggctc ccgaggtggc tgctgtggag cgcaaaggtg





gctacaatga gctatgtgac gtctgggccc tgggcatcac tgccattgag ctgggcgagc





tgcagccccc tctgttccac ctgcacccca tgagggccct gatgctcatg tcgaagagca





gcttccagcc gcccaaactg agagataaga ctcgctggac ccagaatttc caccactttc





tcaaactggc cctgaccaag aatcctaaga agaggccgac agcagagaag ctcctgcagc





acccgttcac gactcagcag ctccctcggg ccctcctcac acagctgctg gacaaagcca





gtgaccctca tctggggacc ccctcccctg aggactgtga gctggagacc tatgacatgt





ttccagacac cattcactcc cgggggcagc acggcccagc cgagaggacc ccctcggaga





tccagtttca ccaggtgaaa tttggcgccc cacgcaggaa ggaaactgac ccactgaatg





agccgtggga ggaagagtgg acactactgg gaaaggaaga gttgagtggg agcctgctgc





agtcggtcca ggaggccctg gaggaaagga gtctgactat tcggtcagcc tcagaattcc





aggagctgga ctccccagac gataccatgg gaaccatcaa gcgggccccg ttcctagggc





cactccccac tgaccctcca gcagaggagc ctctgtccag tcccccagga accctgcccc





cacctccttc aggccccaac agctccccac tgctgcccac ggcctgggcc accatgaagc





agcgggagga tcctgagagg tcatcctgcc acgggctccc cccaactccc aaggtgcata





tgggcgcctg cttctccaag gtcttcaatg gctgccccct gcggatccac gctgctgtca





cctggattca ccctgttact cgggaccagt tcctggtggt aggggccgag gaaggcatct





acacactcaa cctgcatgaa ctgcatgagg atacgctgga gaagctgatt tcacatcgct





gctcctggct ctactgcgtg aacaacgtgc tgctgtcact ctcagggaaa tccacgcaca





tctgggccca tgacctccca ggcctgtttg agcagcggag gctacagcaa caggttcccc





tctccatccc caccaaccgc ctcacccagc gcatcatccc caggcgcttt gctctgtcca





ccaagattcc tgacaccaaa ggctgcttgc agtgtcgtgt ggtgcggaac ccctacacgg





gtgccacctt cctgctggcc gccctgccca ccagcctgct cctgctgcag tggtatgagc





cgctgcagaa gtttctgctg ctgaagaact tctccagccc tctgcccagc ccagctggga





tgctggagcc gctggtgctg gatgggaagg agctgccgca ggtgtgtgtt ggggccgagg





ggcctgaggg gcccggctgc cgcgtcctgt tccatgtcct gcccctggag gctggcctga





cgcccgacat cctcatccca cctgagggga tcccaggctc ggcccagcag gtgatccagg





tggacaggga cacaatccta gtcagctttg aacgctgtgt gaggattgtc aacatgcagg





gcgagcccac ggccacactg gcacctgagc tgacctttga tttccccatc gagactgtgg





tgtgcctgca ggacagtgtg ctggccttct ggagccatgg gatgcaaggc cgaagcctgg





ataccaatga ggtgacccag gagatcacag atgaaacaag gatcttccga gtgcttgggg





cccacagaga catcatcctg gagagcattc ccactgacaa cccagaggcg cacagcaacc





tctacatcct cacgggccac cagagcacct actaagagca gcgggcctgt ccaggggctc





cccgccccac cccacgcctt agctgcaggc ccttttgggc aaaggggccc atcctagacc





agaggagccc aggccctggc cctgctgggg ctgaaggtca gaagtaatcc tgagaaatgt





ttcaggcctg gggagggagg ggagcccccg acgcctctgc aataactgga ccagggggag





ctgctgtcac tcccccatcc ccgaggcagc ccagtcccta gtgcccaagg cagggaccct





gggcctgggc catccattcc attttgttcc acatttcctt tctactcttt ctgccaagag





cctgcccctg catttgtcct gggaaacacg gtatttaaga gagaactata ttggtattaa





agctggtttg ttttaaaaaa aaaa





SEQ ID NO: 82 Homo sapiens mitogen-activated protein kinase kinase kinase


kinase 2 (MAP4K2)(NP_004570.2)


MALLRDVSLQDPRDRFELLQRVGAGTYGDVYKARDTVTSELAAVKIVKLDPGDDISSLQQEITILRECRHPNVVA





YIGSYLRNDRLWICMEFCGGGSLQEIYHATGPLEERQIAYVCREALKGLHHLHSQGKIHRDIKGANLLLTLQGDV





KLADFGVSGELTASVAKRRSFIGTPYWMAPEVAAVERKGGYNELCDVWALGITAIELGELQPPLFHLHPMRALML





MSKSSFQPPKLRDKTRWTQNFHHFLKLALTKNPKKRPTAEKLLQHPFTTQQLPRALLTQLLDKASDPHLGTPSPE





DCELETYDMFPDTIHSRGQHGPAERTPSEIQFHQVKFGAPRRKETDPLNEPWEEEWTLLGKEELSGSLLQSVQEA





LEERSLTIRSASEFQELDSPDDTMGTIKRAPFLGPLPTDPPAEEPLSSPPGTLPPPPSGPNSSPLLPTAWATMKQ





REDPERSSCHGLPPTPKVHMGACFSKVFNGCPLRIHAAVTWIHPVTRDQFLVVGAEEGIYTLNLHELHEDTLEKL





ISHRCSWLYCVNNVLLSLSGKSTHIWAHDLPGLFEQRRLQQQVPLSIPTNRLTQRIIPRRFALSTKIPDTKGCLQ





CRVVRNPYTGATFLLAALPTSLLLLQWYEPLQKFLLLKNFSSPLPSPAGMLEPLVLDGKELPQVCVGAEGPEGPG





CRVLFHVLPLEAGLTPDILIPPEGIPGSAQQVIQVDRDTILVSFERCVRIVNMQGEPTATLAPELTFDFPIETVV





CLQDSVLAFWSHGMQGRSLDTNEVTQEITDETRIFRVLGAHRDIILESIPTDNPEAHSNLYILTGHQSTY





SEQ ID NO: 83 Homo sapiens chemokine (C—X—C motif) ligand 5


(CXCL5)(NM_002994)


gtgcagaagg cacgaggaag ccacagtgct ccggatcctc caatcttcgc tcctccaatc





tccgctcctc cacccagttc aggaacccgc gaccgctcgc agcgctctct tgaccactat





gagcctcctg tccagccgcg cggcccgtgt ccccggtcct tcgagctcct tgtgcgcgct





gttggtgctg ctgctgctgc tgacgcagcc agggcccatc gccagcgctg gtcctgccgc





tgctgtgttg agagagctgc gttgcgtttg tttacagacc acgcaaggag ttcatcccaa





aatgatcagt aatctgcaag tgttcgccat aggcccacag tgctccaagg tggaagtggt





agcctccctg aagaacggga aggaaatttg tcttgatcca gaagcccctt ttctaaagaa





agtcatccag aaaattttgg acggtggaaa caaggaaaac tgattaagag aaatgagcac





gcatggaaaa gtttcccagt cttcagcaga gaagttttct ggaggtctct gaacccaggg





aagacaagaa ggaaagattt tgttgttgtt tgtttatttg tttttccagt agttagcttt





cttcctggat tcctcacttt gaagagtgtg aggaaaacct atgtttgccg cttaagcttt





cagctcagct aatgaagtgt ttagcatagt acctctgcta tttgctgtta ttttatctgc





tatgctattg aagttttggc aattgactat agtgtgagcc aggaatcact ggctgttaat





ctttcaaagt gtcttgaatt gtaggtgact attatatttc caagaaatat tccttaagat





attaactgag aaggctgtgg atttaatgtg gaaatgatgt ttcataagaa ttctgttgat





ggaaatacac tgttatcttc acttttataa gaaataggaa atattttaat gtttcttggg





gaatatgtta gagaatttcc ttactcttga ttgtgggata ctatttaatt atttcacttt





agaaagctga gtgtttcaca ccttatctat gtagaatata tttccttatt cagaatttct





aaaagtttaa gttctatgag ggctaatatc ttatcttcct ataattttag acattcttta





tctttttagt atggcaaact gccatcattt acttttaaac tttgatttta tatgctattt





attaagtatt ttattaggag taccataatt ctggtagcta aatatatatt ttagatagat





gaagaagcta gaaaacaggc aaattcctga ctgctagttt atatagaaat gtattctttt





agtttttaaa gtaaaggcaa acttaacaat gacttgtact ctgaaagttt tggaaacgta





ttcaaacaat ttgaatataa atttatcatt tagttataaa aatatatagc gacatcctcg





aggccctagc atttctcctt ggatagggga ccagagagag cttggaatgt taaaaacaaa





acaaaacaaa aaaaaacaag gagaagttgt ccaagggatg tcaatttttt atccctctgt





atgggttaga ttttccaaaa tcataatttg aagaaggcca gcatttatgg tagaatatat





aattatatat aaggtggcca cgctggggca agttccctcc ccactcacag ctttggcccc





tttcacagag tagaacctgg gttagaggat tgcagaagac gagcggcagc ggggagggca





gggaagatgc ctgtcgggtt tttagcacag ttcatttcac tgggattttg aagcatttct





gtctgaatgt aaagcctgtt ctagtcctgg tgggacacac tggggttggg ggtgggggaa





gatgcggtaa tgaaaccggt tagtcagtgt tgtcttaata tccttgataa tgctgtaaag





tttattttta caaatatttc tgtttaagct atttcacctt tgtttggaaa tccttccctt





ttaaagagaa aatgtgacac ttgtgaaaag gcttgtagga aagctcctcc ctttttttct





ttaaaccttt aaatgacaaa cctaggtaat taatggttgt gaatttctat ttttgctttg





tttttaatga acatttgtct ttcagaatag gattctgtga taatatttaa atggcaaaaa





caaaacataa ttttgtgcaa ttaacaaagc tactgcaaga aaaataaaac atttcttggt





aaaaacgtat gtatttatat attatatatt tatatataat atatattata tatttagcat





tgctgagctt tttagatgcc tattgtgtat cttttaaagg ttttgaccat tttgttatga





gtaattacat atatattaca ttcactatat taaaattgta cttttttact atgtgtctca





ttggttcata gtctttattt tgtcctttga ataaacatta aaagatttct aaacttcaaa





aaaaaaaaaa aaaaa





SEQ ID NO: 84 Homo sapiens chemokine (C—X—C motif) ligand 5


(CXCL5)(NP_002985.1)


MSLLSSRAARVPGPSSSLCALLVLLLLLTQPGPIASAGPAAAVLRELRCVCLQTTQGVHPKMISNLQVFAIGPQC





SKVEVVASLKNGKEICLDPEAPFLKKVIQKILDGGNKEN





SEQ ID NO: 85 Homo sapiens chemokine (C—X—C motif) ligand 3


(CXCL3)(NM_002090)


gctccgggaa tttccctggc ccggccgctc cgggctttcc agtctcaacc atgcataaaa





agggttcgcc gatcttgggg agccacacag cccgggtcgc aggcacctcc ccgccagctc





tcccgcttct cgcacagctt cccgacgcgt ctgctgagcc ccatggccca cgccacgctc





tccgccgccc ccagcaatcc ccggctcctg cgggtggcgc tgctgctcct gctcctggtg





gccgccagcc ggcgcgcagc aggagcgtcc gtggtcactg aactgcgctg ccagtgcttg





cagacactgc agggaattca cctcaagaac atccaaagtg tgaatgtaag gtcccccgga





ccccactgcg cccaaaccga agtcatagcc acactcaaga atgggaagaa agcttgtctc





aaccccgcat cccccatggt tcagaaaatc atcgaaaaga tactgaacaa ggggagcacc





aactgacagg agagaagtaa gaagcttatc agcgtatcat tgacacttcc tgcagggtgg





tccctgccct taccagagct gaaaatgaaa aagagaacag cagctttcta gggacagctg





gaaaggactt aatgtgtttg actatttctt acgagggttc tacttattta tgtatttatt





tttgaaagct tgtattttaa tattttacat gctgttattt aaagatgtga gtgtgtttca





tcaaacatag ctcagtcctg attatttaat tggaatatga tgggttttaa atgtgtcatt





aaactaatat ttagtgggag accataatgt gtcagccacc ttgataaatg acagggtggg





gaactggagg gtggggggat tgaaatgcaa gcaattagtg gatcactgtt agggtaaggg





aatgtatgta cacatctatt ttttatactt tttttttaaa aaaagaatgt cagttgttat





ttattcaaat tatctcacat tatgtgttca acatttttat gctgaagttt cccttagaca





ttttatgtct tgcttgtagg gcataatgcc ttgtttaatg tccattctgc agcgtttctc





tttcccttgg aaaagagaat ttatcattac tgttacattt gtacaaatga catgataata





aaagttttat gaaaaaaaaa aaaaaa





SEQ ID NO: 86 Homo sapiens chemokine (C—X—C motif) ligand 3


(CXCL3)(NP_002081.2)


MAHATLSAAPSNPRLLRVALLLLLLVAASRRAAGASVVTELRCQCLQTLQGIHLKNIQSVNVRSPGPHCAQTEVI





ATLKNGKKACLNPASPMVQKIIEKILNKGSTN





SEQ ID NO: 87 Homo sapiens chemokine (C-C motif) ligand 13


(CCL13)(NM_005408)


aaaaggccgg cggaacagcc agaggagcag agaggcaaag aaacattgtg aaatctccaa





ctcttaacct tcaacatgaa agtctctgca gtgcttctgt gcctgctgct catgacagca





gctttcaacc cccagggact tgctcagcca gatgcactca acgtcccatc tacttgctgc





ttcacattta gcagtaagaa gatctccttg cagaggctga agagctatgt gatcaccacc





agcaggtgtc cccagaaggc tgtcatcttc agaaccaaac tgggcaagga gatctgtgct





gacccaaagg agaagtgggt ccagaattat atgaaacacc tgggccggaa agctcacacc





ctgaagactt gaactctgct acccctactg aaatcaagct ggagtacgtg aaatgacttt





tccattctcc tctggcctcc tcttctatgc tttggaatac ttctaccata attttcaaat





aggatgcatt cggttttgtg attcaaaatg tactatgtgt taagtaatat tggctattat





ttgacttgtt gctggtttgg agtttatttg agtattgctg atcttttcta aagcaaggcc





ttgagcaagt aggttgctgt ctctaagccc ccttcccttc cactatgagc tgctggcagt





gggtttgtat tcggttccca ggggttgaga gcatgcctgt gggagtcatg gacatgaagg





gatgctgcaa tgtaggaagg agagctcttt gtgaatgtga ggtgttgcta aatatgttat





tgtggaaaga tgaatgcaat agtaggactg ctgacatttt gcagaaaata cattttattt





aaaatctcct aaaaaaaaaa a





SEQ ID NO: 88 Homo sapiens chemokine (C-C motif) ligand 13


(CCL13)(NP_005399.1)


MKVSAVLLCLLLMTAAFNPQGLAQPDALNVPSTCCFTFSSKKISLQRLKSYVITTSRCPQKAVIFRTKLGKEICA





DPKEKWVQNYMKHLGRKAHTLKT





SEQ ID NO: 89 Homo sapiens alpha-fetoprotein (AFP)(NM_001134)


tccatattgt gcttccacca ctgccaataa caaaataact agcaaccatg aagtgggtgg





aatcaatttt tttaattttc ctactaaatt ttactgaatc cagaacactg catagaaatg





aatatggaat agcttccata ttggattctt accaatgtac tgcagagata agtttagctg





acctggctac catatttttt gcccagtttg ttcaagaagc cacttacaag gaagtaagca





aaatggtgaa agatgcattg actgcaattg agaaacccac tggagatgaa cagtcttcag





ggtgtttaga aaaccagcta cctgcctttc tggaagaact ttgccatgag aaagaaattt





tggagaagta cggacattca gactgctgca gccaaagtga agagggaaga cataactgtt





ttcttgcaca caaaaagccc actccagcat cgatcccact tttccaagtt ccagaacctg





tcacaagctg tgaagcatat gaagaagaca gggagacatt catgaacaaa ttcatttatg





agatagcaag aaggcatccc ttcctgtatg cacctacaat tcttctttgg gctgctcgct





atgacaaaat aattccatct tgctgcaaag ctgaaaatgc agttgaatgc ttccaaacaa





aggcagcaac agttacaaaa gaattaagag aaagcagctt gttaaatcaa catgcatgtg





cagtaatgaa aaattttggg acccgaactt tccaagccat aactgttact aaactgagtc





agaagtttac caaagttaat tttactgaaa tccagaaact agtcctggat gtggcccatg





tacatgagca ctgttgcaga ggagatgtgc tggattgtct gcaggatggg gaaaaaatca





tgtcctacat atgttctcaa caagacactc tgtcaaacaa aataacagaa tgctgcaaac





tgaccacgct ggaacgtggt caatgtataa ttcatgcaga aaatgatgaa aaacctgaag





gtctatctcc aaatctaaac aggtttttag gagatagaga ttttaaccaa ttttcttcag





gggaaaaaaa tatcttcttg gcaagttttg ttcatgaata ttcaagaaga catcctcagc





ttgctgtctc agtaattcta agagttgcta aaggatacca ggagttattg gagaagtgtt





tccagactga aaaccctctt gaatgccaag ataaaggaga agaagaatta cagaaataca





tccaggagag ccaagcattg gcaaagcgaa gctgcggcct cttccagaaa ctaggagaat





attacttaca aaatgcgttt ctcgttgctt acacaaagaa agccccccag ctgacctcgt





cggagctgat ggccatcacc agaaaaatgg cagccacagc agccacttgt tgccaactca





gtgaggacaa actattggcc tgtggcgagg gagcggctga cattattatc ggacacttat





gtatcagaca tgaaatgact ccagtaaacc ctggtgttgg ccagtgctgc acttcttcat





atgccaacag gaggccatgc ttcagcagct tggtggtgga tgaaacatat gtccctcctg





cattctctga tgacaagttc attttccata aggatctgtg ccaagctcag ggtgtagcgc





tgcaaacgat gaagcaagag tttctcatta accttgtgaa gcaaaagcca caaataacag





aggaacaact tgaggctgtc attgcagatt tctcaggcct gttggagaaa tgctgccaag





gccaggaaca ggaagtctgc tttgctgaag agggacaaaa actgatttca aaaactcgtg





ctgctttggg agtttaaatt acttcagggg aagagaagac aaaacgagtc tttcattcgg





tgtgaacttt tctctttaat tttaactgat ttaacacttt ttgtgaatta atgaaatgat





aaagactttt atgtgagatt tccttatcac agaaataaaa tatctccaaa tg





SEQ ID NO: 90 Homo sapiens alpha-fetoprotein (AFP)(NP_005399.1)


MKWVESIFLIFLLNFTESRTLHRNEYGIASILDSYQCTAEISLADLATIFFAQFVQEATYKEVSKMVKDALTAIE





KPTGDEQSSGCLENQLPAFLEELCHEKEILEKYGHSDCCSQSEEGRHNCFLAHKKPTPASIPLFQVPEPVTSCEA





YEEDRETFMNKFIYEIARRHPFLYAPTILLWAARYDKIIPSCCKAENAVECFQTKAATVTKELRESSLLNQHACA





VMKNFGTRTFQAITVTKLSQKFTKVNFTEIQKLVLDVAHVHEHCCRGDVLDCLQDGEKIMSYICSQQDTLSNKIT





ECCKLTTLERGQCIIHAENDEKPEGLSPNLNRFLGDRDFNQFSSGEKNIFLASFVHEYSRRHPQLAVSVILRVAK





GYQELLEKCFQTENPLECQDKGEEELQKYIQESQALAKRSCGLFQKLGEYYLQNAFLVAYTKKAPQLTSSELMAI





TRKMAATAATCCQLSEDKLLACGEGAADIIIGHLCIRHEMTPVNPGVGQCCTSSYANRRPCFSSLVVDETYVPPA





FSDDKFIFHKDLCQAQGVALQTMKQEFLINLVKQKPQITEEQLEAVIADFSGLLEKCCQGQEQEVCFAEEGQKLI





SKTRAALGV





SEQ ID NO: 91 Homo sapiens C-type lectin domain 4, member E (CLEC4E)


(NM_014358)


atattctaca tctatcggag ctgaacttcc taaaagacaa agtgtttatc tttcaagatt





cattctccct gaatcttacc aacaaaacac tcctgaggag aaagaaagag agggagggag





agaaaaagag agagagagaa acaaaaaacc aaagagagag aaaaaatgaa ttcatctaaa





tcatctgaaa cacaatgcac agagagagga tgcttctctt cccaaatgtt cttatggact





gttgctggga tccccatcct atttctcagt gcctgtttca tcaccagatg tgttgtgaca





tttcgcatct ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag





ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt gaactgggaa





tattttcaat ccagctgcta cttcttttct actgacacca tttcctgggc gttaagttta





aagaactgct cagccatggg ggctcacctg gtggttatca actcacagga ggagcaggaa





ttcctttcct acaagaaacc taaaatgaga gagtttttta ttggactgtc agaccaggtt





gtcgagggtc agtggcaatg ggtggacggc acacctttga caaagtctct gagcttctgg





gatgtagggg agcccaacaa catagctacc ctggaggact gtgccaccat gagagactct





tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc tcaattattt tcggatttgt





gaaatggtag gaataaatcc tttgaacaaa ggaaaatctc tttaagaaca gaaggcacaa





ctcaaatgtg taaagaagga agagcaagaa catggccaca cccaccgccc cacacgagaa





atttgtgcgc tgaacttcaa aggacttcat aagtatttgt tactctgata taaataaaaa





taagtagttt taaatgttat aattcatgtt actggctgaa gtgcattttc tctctacgtt





agtctcaggt cctcttccca gaatttacaa agcaattcac taccttttgc tacatttgcc





tcatttttta gtgttcgtat gaaagtacag ggacacggag ccaagacaga gtctagcaaa





gaaggggatt ttggaaggtg ccttccaaaa atctcctgaa tccgggctct gtagcaggtc





ctcttctttc tagcttctga caagtctgtc ttctcttctt ggtttcatac cgttcttatc





tcctgcccaa gcatatatcg tctctttact cccctgtata atgagtaaga agcttcttca





agtcatgaaa cttattcctg ctcagaatac cggtgtggcc tttctggcta caggcctcca





ctgcaccttc ttagggaagg gcatgccagc catcagctcc aaacaggctg taaccaagtc





cacccatccc tggggcttcc tttgctctgc cttattttca attgactgaa tggatctcac





cagattttgt atctattgct cagctaggac ccgagtccaa tagtcaattt attctaagcg





aacattcatc tccacacttt cctgtctcaa gcccatccat tatttcttaa cttttatttt





agctttcggg ggtacatgtt aaaggctttt tatataggta aactcatgtc gtggaggttt





gttgtacaga ttatttcatc acccaggtat taagcccagt gcctaatatt gtttttttcg





gctcctctcc ctcctcctac cttccgccct caagtagact ccagtgtctg ttattccctt





ctttgtgttt atgaattctc atcatttagc tcccacttat aagtgaggac atgcagtatt





tggttttctg ttcccatgtt tgctaaggat aatggtttcc agttctaccg atgttcccac





aaaagacata attttctttt ttaaggctgc ttagtattcc atggtatcta tgtatcacat





tttctctatc caatctattg ttgactcaca tttagattga ttccatgttt ttgctattgt





gaatagtgct gcaatgaaca ttcgtgtgca tgtgtcttta tggtagaaag atttatattt





ctctgagtat gtatccagta atagcccatt catttattgc ataaaattct accaatac





SEQ ID NO: 92 Homo sapiens C-type lectin domain 4, member E (CLEC4E)


(NP_055173)


MNSSKSSETQCTERGCFSSQMFLWTVAGIPILFLSACFITRCVVFRIFQTCDEKKFQLPENFTELSCYNYGSGSV





KNCCPLNWEYFQSSCYFFSTDTISWALSLKNCSAMGAHLVVINSQEEQEFLSYKKPKMREFFIGLSDQVVEGQWQ





WVDGTPLTK SLSFWDVGEPNNIATLEDCATMRDSSNPRQNWNDVTCFLNYFRICEMVGINPLNKGKSL








Claims
  • 1. A method of providing a prognosis of Parkinson's disease in a subject treated with intravenous immunoglobulin (IVIG), the method comprising the steps of: (a) contacting a biological sample from the subject treated with IVIG with a reagent that specifically binds to at least one marker selected from the group consisting of the nucleic acid and corresponding protein sequences shown in Table 3a, Table 3b, and Table 4; and(b) determining whether or not the marker is overexpressed or underexpressed in the sample; thereby providing a prognosis for Parkinson's disease in a subject treated with IVIG.
  • 2. The method of claim 1, wherein the reagent is an antibody.
  • 3. The method of claim 2, wherein the antibody is monoclonal.
  • 4. The method of claim 1, wherein the reagent is a nucleic acid.
  • 5. The method of claim 1, wherein the reagent is an RT PCR primer set.
  • 6. The method of claim 1, wherein the sample is a blood sample.
  • 7. The method of claim 6, wherein the blood sample comprises T cells.
  • 8. The method of claim 1, wherein the sample is cerebrospinal fluid.
  • 9. The method of claim 1, wherein said at least one marker is a chemokine.
  • 10. The method of claim 9, wherein said chemokine is selected from the group consisting of CXCL3, CXCL5, CCL13, and XCL2.
  • 11. A method of identifying a compound that prevents or treats Parkinson's disease, the method comprising the steps of: (a) contacting a compound with a sample comprising a cell that expresses a marker selected from the group consisting of the nucleic acid and corresponding protein sequences shown in Table 3a, Table 3b, Table 3c, Table 3d, and Table 4; and(b) determining the functional effect of the compound on the marker, thereby identifying a compound that prevents or treats Parkinson's disease.
  • 12. The method of claim 11, wherein the functional effect is an increase or decrease in expression of the marker.
  • 13. The method of claim 11, wherein the functional effect is an increase or decrease in activity of the marker.
  • 14. The method of claim 11, wherein the compound is a small molecule.
  • 15. The method of claim 11, wherein the compound is a siRNA.
  • 16. The method of claim 11, wherein the compound is a ribozyme.
  • 17. The method of claim 11, wherein the compound is an antibody.
  • 18. A method of treating or preventing Parkinson's disease in a subject, the method comprising the step of administering to said subject an effective amount of an antibody which binds a chemokine selected from the group consisting of CXCL5, CXCL3, and CCL13, wherein said effective amount is sufficient to inactivate chemokine cell signaling, thereby treating or preventing Parkinson's disease.
  • 19. A method of treating or preventing Parkinson's disease in a subject, the method comprising the step of administering to said subject an effective amount of an antibody which binds a chemokine receptor selected from the group consisting of receptors for CXCL5, CXCL3, and CCL13, wherein said effective amount is sufficient to inactivate said chemokine receptor, thereby treating or preventing Parkinson's disease.
  • 20. A method of treating or preventing Parkinson's disease in a subject, the method comprising the step of administering to said subject an effective amount of an antibody which binds to a XCL2 chemokine receptor, wherein said effective amount is sufficient to activate said XCL2 chemokine receptor, thereby treating or preventing Parkinson's disease.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a continuation of U.S. Ser. No. 12/189,367, filed Aug. 11, 2008, which claims priority to U.S. Ser. No. 60/955,610, filed Aug. 13, 2007, herein incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
60955610 Aug 2007 US
Continuations (1)
Number Date Country
Parent 12189367 Aug 2008 US
Child 13026053 US