The present invention relates to jacks, and more particularly, to a jack structure operable both pneumatically and hydraulically and conducive to reducing internal pipeline congestion and thereby preventing the jack structure from damage.
After a user has lifted a heavy load with the ejection spindle of a conventional hydraulic jack, the ejection spindle takes much time descending to its initial position.
Furthermore, an oily liquid for use in the hydraulic pipeline inside the jack is susceptible to contamination, and thus the hydraulic pipeline inside the jack is prone to congestion which blocks the passage of the oily liquid, thereby rendering the jack inoperable.
Furthermore, if the hydraulic pipeline is clogged and the user keeps feeding the oily liquid into the jack, not only will the jack become inoperable, but the jack will also get damaged because of the difference in the cross-sectional area between a slave cylinder and a master cylinder of the jack.
Referring to
Accordingly, it is imperative to provide a jack conducive to reduction in the likelihood of pipeline congestion and over-compression and conducive to quick restoration to its initial condition.
In order to achieve the above and other objectives, the present invention provides a jack structure conducive to reducing internal pipeline congestion and thereby reducing the chance that over-compression occurs.
Another objective of the present invention is to provide a jack structure conducive to quick restoration to its initial condition.
In order to achieve the above and other objectives, the present invention provides a jack structure which comprises an external cylinder, an air chamber piston rod, an air chamber piston, an ejection piston rod, an ejection hydraulic piston, a position-limiting component and a fastening component.
The external cylinder has a liquid passage and is penetratingly disposed at a sidewall of the external cylinder.
The air chamber piston rod is disposed centrally in the external cylinder and has: a first air chamber disposed in the air chamber piston rod; a gas orifice penetratingly disposed at the bottom of the air chamber piston rod, wherein a gas is conveyed to the first air chamber via the gas orifice; a sealing component for hermetically sealing the gas orifice; and a gas passage penetratingly disposed at a sidewall of the air chamber piston rod and communicating with the first air chamber.
The air chamber piston is disposed at the top of the air chamber piston rod.
The ejection piston rod is disposed movably around the air chamber piston rod and has: a jack platform disposed at the top of the ejection piston rod; and an air chamber sealing cover disposed at the bottom of an internal wall of the ejection piston rod, wherein the air chamber sealing cover, the internal wall of the ejection piston rod, an external wall of the air chamber piston rod, and the air chamber piston together define a second air chamber, and the second air chamber is in communication with the first air chamber via the gas passage; an ejection hydraulic piston disposed at the bottom of an external wall of the ejection piston rod, wherein the ejection hydraulic piston, the bottom of the ejection piston rod, the air chamber sealing cover, the external wall of the air chamber piston rod, an internal wall of the external cylinder together define a hydraulic chamber, and the hydraulic chamber is in communication with the liquid passage; and a position-limiting portion disposed at the bottom of the external wall of the ejection piston rod and above the ejection hydraulic piston.
The position-limiting component is disposed at the top of the external cylinder, corresponds in position to the position-limiting portion, and is adapted to confine the ejection hydraulic piston of the ejection piston rod to between the position-limiting component and the bottom of an internal portion of the external cylinder.
The fastening component is disposed at the top of the external cylinder, disposed above the position-limiting component, and fastened to the external wall of the ejection piston rod.
The air chamber sealing cover and the external wall of the air chamber piston rod are in airtight sliding contact. The air chamber piston and the internal wall of the ejection piston rod are in airtight sliding contact. The ejection hydraulic piston and the internal wall of the external cylinder are in fluid-tight sliding contact.
As regards the jack structure, the gas passage is positioned proximate to the top of the air chamber piston rod and disposed below the air chamber piston.
As regards the jack structure, the liquid passage is positioned proximate to the bottom of the external cylinder.
As regards the jack structure, the external wall of the ejection piston rod further has a thread structure disposed above the position-limiting portion.
The jack structure further comprises a thread component disposed between the position-limiting component and the fastening component and corresponding in position to the thread structure of the ejection piston rod.
In conclusion, the jack structure of the present invention is conducive to reducing internal pipeline congestion, reducing the chance that over-compression occurs, and restoring the ejection piston rod to its initial position quickly.
Objectives, features, and advantages of the present invention are hereunder illustrated with specific embodiments in conjunction with the accompanying drawings, in which:
Referring to
Referring to
The air chamber piston rod 20 is centrally disposed in the external cylinder 10. The air chamber piston rod 20 comprises a first air chamber 21, a gas orifice 22, a sealing component 23, and a gas passage 24. The first air chamber 21 is disposed in the air chamber piston rod 20. The gas orifice 22 is penetratingly disposed at the bottom of the air chamber piston rod 20 and connected to an atmospheric pump (not shown) to feed a gas to the first air chamber 21, wherein the present invention is not restrictive of the gas, though the gas can be air or a specific type of gas. The sealing component 23 is disposed at the gas orifice 22. Upon completion of the feeding of the gas to the first air chamber 21, the sealing component 23 hermetically seals the gas orifice 22. The gas passage 24 is penetratingly disposed at the sidewall of the air chamber piston rod 20 and is in communication with the first air chamber 21.
The air chamber piston 30 is disposed at the top of the air chamber piston rod 20. The air chamber piston 30 further comprises an airtight ring, such as an O-ring. Referring to
The ejection piston rod 40 is disposed movably around the air chamber piston rod 20 and disposed in the external cylinder 10. The ejection piston rod 40 has a jack platform 41 and an air chamber sealing cover 42. The jack platform 41 is disposed at the top of the ejection piston rod 40 and adapted to underpin a heavy load (not shown). The air chamber sealing cover 42 is disposed at the bottom of the internal wall of the ejection piston rod 40. The air chamber sealing cover 42 further comprises a sealing ring, such as an O-ring. The air chamber sealing cover 42, the internal wall of the ejection piston rod 40, the external wall of the air chamber piston rod 20, and the air chamber piston 30 together define a second air chamber 43.
The ejection hydraulic piston 50 is disposed at the bottom of the external wall of the ejection piston rod 40. The ejection hydraulic piston 50 further comprises a sealing ring, such as an O-ring. The ejection hydraulic piston 50, the bottom of the ejection piston rod 40, the air chamber sealing cover 42, the external wall of the air chamber piston rod 20, and the internal wall of the external cylinder 10 together define a hydraulic chamber 51. The hydraulic chamber 51 is in communication with the liquid passage 11.
The position-limiting portion 60 is disposed at the bottom of the external wall of the ejection piston rod 40 and disposed above the ejection hydraulic piston 50. Alternatively, the position-limiting portion 60 is part of the ejection hydraulic piston 50.
Referring to
The position-limiting component 70 is disposed at the top of the external cylinder 10 and corresponds in position to the position-limiting portion 60, such that the ejection hydraulic piston 50 is confined to a space defined by and between the position-limiting component 70 and the bottom of the internal portion of the external cylinder 10.
The fastening component 80 is disposed at the top of the external cylinder 10 and disposed above the position-limiting component 70. The fastening component 80 is fastened to the external wall of the ejection piston rod 40, such that the ejection piston rod 40 is fixed in place.
The air chamber sealing cover 42 is in airtight sliding contact with the external wall of the air chamber piston rod 20. The air chamber piston 30 is in airtight sliding contact with the internal wall of the ejection piston rod 40. The ejection hydraulic piston 50 is in fluid-tight sliding contact with the internal wall of the external cylinder 10.
Referring to
Referring to
Referring to
The purpose of the position-limiting component 70 is to prevent the user from introducing too much liquid to the hydraulic chamber 51, thereby preventing the ejection piston rod 40 from escaping the external cylinder 10.
Referring to
Alternatively, before unfastening the fastening component 80, the user drains the hydraulic chamber 51 to allow the liquid to be discharged therefrom through the liquid passage 11.
The jack structure of the present invention is characterized in that the first air chamber, the gas passage, and the second air chamber are in communication with each other to enable the ejection piston rod to return to its “initial position” quickly.
Furthermore, the gas for controlling the ascent and descent of the ejection piston rod 40 of the jack structure 100 is confined to a closed space defined within the jack structure 100, and thus the gas is unlikely to be contaminated; hence, congestion is unlikely to occur to the first air chamber 21, the gas passage 24 and the second air chamber 43. Therefore, the disadvantageous situation where the jack gets inoperable due to congestion of the hydraulic pipeline inside the jack is unlikely to occur.
Referring to
The thread component 90 and the thread structure 44 together enable the ejection piston rod 40 to ascend stepwise while the user is feeding the liquid to the hydraulic chamber 51.
In conclusion, the jack structures in the embodiments of the present invention are conducive to reduction in the likelihood of pipeline congestion, thereby reducing the chance that over-compression occurs, and are characterized in that the first air chamber, the gas passage and the second air chamber together enable the ejection piston rod to return to its “initial position” quickly. Furthermore, the jack structure in the second embodiment of the present invention is further advantageously characterized in that the thread component and the thread structure together enable stepwise ascent and descent of the ejection piston rod.
The present invention is disclosed above by preferred embodiments. However, persons skilled in the art should understand that the preferred embodiments are illustrative of the present invention only, but should not be interpreted as restrictive of the scope of the present invention. Hence, all equivalent modifications and replacements made to the aforesaid embodiments should fall within the scope of the present invention. Accordingly, the legal protection for the present invention should be defined by the appended claims.