This application relates generally to door frames, and more specifically to a jamb assembly for use in interior wall systems.
Jamb assemblies are known. Such assemblies are commonly used to form a door frame for supporting a door that can be opened and closed to control entry into, for example, a room, an office, and the like.
Doors require alignment within their door frame for effective operation. In certain circumstances, a small misalignment can create operational issues. For example, the door latch may not align with the strike plate on the door frame. As a result, door frames in interior wall systems often require a significant degree of customization during assembly and/or installation. These customizations can involve trial and error and can lead to a diminished aesthetic appearance.
A wide variety of doors are available for use in interior wall system. (e.g. framed, frameless, glass, solid, etc.). Also, doors may vary in size based on the size of the door frame. In some cases, slight tolerances in the parts of the door frame assembly can create alignment issues.
In some cases, the door frame may not have consistent dimensions. For example, the jamb assembly might have been imperfectly installed or the floor to ceiling dimensions may vary. With existing jamb assemblies, it is not uncommon for frequent adjustments and/or interchange of components to be required to achieve an acceptable alignment with the door. With such a wide range of possible variation, the interchange of a substantial number of parts is often required for successful installation. These drawbacks are often compounded and can lead to a complex, inefficient, and/or costly installation process.
This summary is intended to introduce the reader to the more detailed description that follows and not to limit or define any claimed or as yet unclaimed invention. One or more inventions may reside in any combination or sub-combination of the elements or process steps disclosed in any part of this document including its claims and figures.
In accordance with a first broad aspect, there is provided a jamb assembly for a door frame, the jamb assembly comprising: an elongate jamb channel defining an interior space, wherein a pair of opposing spaced apart ridges extend partially into the interior space leaving a gap therebetween, wherein the ridges divide the interior space into an outer interior space and an inner interior space; an elongate cap member comprising a planar surface and a pair of spaced apart opposing in-turned portions, wherein the planar surface and the in-turned portions define a trough; a clip for securing the cap member to the jamb channel and to locate the cap member at least partially within the outer interior space, the clip comprising: a base; a pair of opposed spaced apart resilient tabs extending from the base; and a pair of spaced apart retaining portions extending from the base, each retaining portion comprising a proximate resilient portion and a distal wing portion, wherein each wing portion is turned-in in relation to the resilient portion; wherein, when the base is located in the inner interior space, the tabs abut the ridges and the resilient portions are biased to engage the ridges; wherein the resilient portions of the clip are configured to deform to allow the wing portions to pass between the in-turned portions of the cap member and locate in the trough, wherein the resilient portions are biased to engage the in-turned portions.
In some embodiments, the clip is releasably secured to the jamb channel.
In some embodiments, the cap member is releasably secured to the clip.
In some embodiments, the clip is configured to snap fit to the jamb channel, and the cap member is configured to snap fit to the clip.
In some embodiments, the tabs are configured to extend from the base in a direction away from the jamb channel when secured to the jamb channel.
In some embodiments, the resilient portions and the tabs are configured to extend in a generally similar direction away from the base.
In some embodiments, the jamb channel comprises a pair of opposing walls, each wall having a distal edge, wherein, when the cap member is secured to the jamb channel, the planar surface of the cap member is substantially flush with the distal edges of the walls.
In some embodiments, each in-turned portion of the cap member comprises a lip at a distal end thereof, the lip having an inclined surface, wherein, when the cap member is secured to the clip, the inclined surface of each lip is generally parallel to the adjacent resilient portion of the clip.
In some embodiments, the jamb assembly further comprises a plurality of the clips, wherein each clip secures the cap member to the jamb channel at a predetermined location along a length thereof.
In some embodiments, the jamb assembly further comprises at least two of the elongate cap members, at least two of the clips, and a strike plate assembly for receiving a door latch, wherein the strike plate assembly is configured to be located within the jamb channel at a predetermined location along a length thereof, wherein one of the at least two clips secures one of the two elongate cap members to the jamb channel above the strike plate assembly, and wherein the other of the at least two clips secures the other of the two elongate cap members to the jamb channel below the strike plate assembly.
In some embodiments, the one of the two elongate cap members substantially encloses the outer interior space of the jamb channel above the strike plate assembly and the other of the two elongate cap members substantially encloses the outer interior space of the jamb channel below the strike plate assembly.
In some embodiments, the strike plate assembly comprises: a main plate having a door-facing surface, an opposed surface opposite the door-facing surface, and an aperture defined therethrough; a sliding plate having a planar body and an elongate tab projecting generally perpendicularly from the body, wherein, when the tab is received in the aperture of the main plate, the tab and aperture collectively define a door latch-receiving cavity; and, at least one locking fastener configured to secure the sliding plate to the main plate in one of an unlocked configuration and a locked configuration, wherein, in the unlocked configuration, the body is slideable along the opposed surface of the main plate to adjust a position of the door latch-receiving cavity, and wherein, in the locked configuration, the body is fixed relative to the main plate.
In some embodiments, in the unlocked configuration, the sliding plate is actuated by sliding the tab.
In some embodiments, the main plate of the strike plate assembly is secured to jamb channel with at least one fastener.
In accordance with another broad aspect, there is provided a method of installing a pivot door within an interior wall system and above a floor surface, the method comprising: assembling a door frame comprising a first vertical door jamb channel, a second vertical door jamb channel, and a horizontal door jamb channel extending between the first and second vertical door jamb channels, wherein the first vertical door jamb channel defines a first interior space, and the second vertical door jamb channel defines a second interior space, wherein the first interior space faces the second interior space, mounting a lower pivot assembly to the first vertical door jamb channel proximate a juncture of a lower end of the first vertical door jamb channel and the floor surface; mounting an upper pivot assembly to the horizontal door jamb channel proximate a juncture of an upper end of the first vertical door jamb channel and the horizontal door jamb channel; securing the pivot door to the lower pivot assembly and to the upper pivot assembly, such that the pivot door is pivotable between a closed position and an open position; determining a location for a door latch of the pivot door relative to the second vertical door jamb channel; securing a strike plate at least partially within the second interior space of the second vertical door jamb channel based on the location, wherein the strike plate divides the second interior space into an upper interior space and a lower interior space; securing an upper cap member at least partially within the upper interior space of the second vertical door jamb channel using at least one clip, wherein the at least one clip engages both the upper cap member and the second vertical door jamb channel, wherein the at least one clip is positioned entirely between the upper cap member and the second vertical door jamb channel, wherein the upper cap member extends between the strike plate and the horizontal door jamb channel.
In some embodiments, the method further comprises securing a lower cap member at least partially within the lower interior space of the second vertical door jamb channel using another at least one clip, wherein the other at least one clip engages both the lower cap member and the second vertical jamb channel, wherein the other at least one clip is positioned entirely between the lower cap member and the second vertical jamb channel, wherein the lower cap member extends between the strike plate and the floor surface.
In some embodiments, the method further comprises cutting a single cap member extrusion to form both the upper cap member and the lower cap member.
In some embodiments, the method further comprises securing a pivot-side cap member at least partially within the first interior space of the first vertical door jamb channel using at least two clips, wherein each of the at least two clips engage both the pivot-side cap member and the first vertical jamb channel, wherein the at least two clips are positioned entirely between the pivot-side cap member and the first vertical jamb channel, wherein the pivot-side cap member extends between the horizontal door jamb channel and the lower pivot assembly.
In some embodiments, each of the first and second vertical door jamb channels have a transverse cross-section, wherein the transverse cross-section of the first vertical door jamb channel is substantially a mirror image of the transverse cross-section of the second vertical door jamb channel.
In some embodiments, each of the at least one clip, the another at least one clip, and the at least two clips have a common design.
It will be appreciated by a person skilled in the art that a method or apparatus disclosed herein may embody any one or more of the features contained herein and that the features may be used in any particular combination or sub-combination.
These and other aspects and features of various embodiments will be described in greater detail below.
For a better understanding of the described embodiments and to show more clearly how they may be carried into effect, reference will now be made, by way of example, to the accompanying drawings in which:
The drawings included herewith are for illustrating various examples of articles, methods, and apparatuses of the teaching of the present specification and are not intended to limit the scope of what is taught in any way.
Various apparatuses, methods and compositions are described below to provide an example of an embodiment of each claimed invention. No embodiment described below limits any claimed invention and any claimed invention may cover apparatuses and methods that differ from those described below. The claimed inventions are not limited to apparatuses, methods and compositions having all of the features of any one apparatus, method or composition described below or to features common to multiple or all of the apparatuses, methods or compositions described below. It is possible that an apparatus, method or composition described below is not an embodiment of any claimed invention. Any invention disclosed in an apparatus, method or composition described below that is not claimed in this document may be the subject matter of another protective instrument, for example, a continuing patent application, and the applicant(s), inventor(s) and/or owner(s) do not intend to abandon, disclaim, or dedicate to the public any such invention by its disclosure in this document.
Furthermore, it will be appreciated that for simplicity and clarity of illustration, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the example embodiments described herein. However, it will be understood by those of ordinary skill in the art that the example embodiments described herein may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the example embodiments described herein. Also, the description is not to be considered as limiting the scope of the example embodiments described herein.
The terms “an embodiment,” “embodiment,” “embodiments,” “the embodiment”, “the embodiments”, “one or more embodiments”, “some embodiments”, and “one embodiment” mean “one or more (but not all) embodiments of the present invention(s)”, unless expressly specified otherwise.
The terms “including”, “comprising”, and variations thereof mean “including but not limited to”, unless expressly specified otherwise. A listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a”, “an”, and “the” mean “one or more”, unless expressly specified otherwise.
The use of the words “vertical” or “horizontal” are used herein to indicate orientation of elements once installed, and are therefore not intended to be used in a limiting way.
In the illustrated example, jamb assembly 100 includes a first elongate jamb channel (e.g. first vertical jamb channel 102) and a second elongate jamb channel (e.g. second vertical jamb channel 202) spaced from and facing the first jamb channel 102. The first jamb channel 102 extends longitudinally from a lower end 102L to an upper end 102U. Similarly, the second jamb channel 202 extends longitudinally from a lower end 202L to an upper end 202U.
The lower end 102L of the first jamb channel 102 and the lower end 104L of the second jamb channel 104 are supported on or above a floor surface 106. The lower ends 102L and 104L may be secured to the floor surface 106 to improve stability of the jamb assembly 100. In the illustrated example, to further improve the stability of the jamb assembly 100, the lower ends 102L and 202L of the first and second jamb channels 102 and 202 are respectively secured to floor brackets 108A and 108B of the interior wall system.
In the illustrated example, the jamb assembly 100 also includes a third elongate jamb channel 110 that extends horizontally between the upper ends 102U and 202U of the first and second jamb channels 102 and 202. The third jamb channel 110 extends longitudinally from a first end 110A to second end 1106. In the illustrated example, the third jamb channel 110 is secured to a ceiling bracket 112 of the interior wall system to improve stability of the jamb assembly 100.
To further improve the stability of the jamb assembly 100, the first end 110A of the third jamb channel 110 may be secured to the upper end 102U of the first jamb channel 102 and/or the second end 1106 of the third jamb channel 110 may be secured to the upper end 202U of the second jamb channel 202. The third jamb channel 110 may be secured to either of the first and second jamb channel 102 and 202 in a number of suitable ways, using e.g. mechanical fasteners, adhesives, press fits, or a combination thereof. In the illustrated example, the first end 110A of the third jamb channel 110 and the upper end 102U of the first jamb channel 102 are cut and secured to each other at complimentary angles. Similarly, the second end 1106 of the third jamb channel 110 and the upper end 202U of the second jamb channel 202 are cut and secured at complimentary angles.
With continued reference to
With reference to
As shown in
As shown in
Referring again to
With reference to
In the illustrated example, the cap member 130 has a length L1 measured between an upper end 130U and a lower end 130L thereof. As will be described in more detail below, the length L1 of cap member 130 member may be dimensioned so that it substantially encloses the interior space 116. In the illustrated example, the cap member 130 is sized to substantially enclose the interior space 116 between the third jamb channel 110 and the lower pivot assembly 124. For example, the cap member 130 may extend to an upper end of plate 128, or to an upper end of base 126.
In one or more alternative embodiments (not shown), the lower pivot assembly 124 may not have a plate 128. Without a plate 128, the lower pivot assembly 124 may be secured directly to the floor surface 106, e.g. by a fastener passing through the base 126. In such alternative embodiments, the base 126 of lower pivot assembly 124 may not extend into the interior space 116 of first jamb channel 102 and the cap member 130 may extend to the floor surface 106.
Referring to
Referring to
It will be appreciated that the cap member extrusion 130′ may be cut to length L1 on-site. For example, an installer may bring one or more cap member extrusions 130′ with varying dimensions to an installation site. The installer may then select a desired cap member extrusion 130′ (e.g. after measuring a jamb channel to determine a length L1) and cut it to provide a cap member 130 with length L1. Alternatively, a cap member extrusion 130′ may be cut off-site to provide cap member 130 with length L1.
In the illustrated example, clips 138 are used to secure to the cap member 130 to the first jamb channel 102 and to locate the cap member 130 at least partially within the outer interior space 116o. Each clip 138 is positionable along the first jamb channel 102 within the interior space 116. As will be described in more detail below, the clips 138 maintain engagement between the cap member 130 and the first jamb channel 102. In the illustrated example, the clips 138 are spaced at a consistent interval. Alternatively, clips 138 may be positioned at any suitable interval along the jamb channel.
The number of clips 138 used to secure the cap member 130 to the first jamb channel 102 may vary. It will be appreciated that the number of clips 138 may vary depending on the length L1 of cap member 130. Preferably, at least one clip 138 is positioned proximate the lower end 102L of the first jamb channel 102 and at least one clip 138 is positioned proximate the upper end 102U of the first jamb channel 102. In general, increasing the number of clips 138 may strengthen the engagement between the cap member 130 and the first jamb channel 102.
Turning to
With continued reference to
Each retaining portion 146A, 146B includes a proximate resilient portion 148A, 148B extending from the base 140 and a distal wing portion 150A, 150B extending from corresponding resilient portions 148A, 148B. The resilient portions 148A and 148B extend away from each other. Preferably, as shown, resilient portion 148A extends in generally the same direction as tabs 142A and 144A while the resilient portion 148B extends in generally the same direction as tabs 142B and 144B.
Referring still to
Referring again to
In the illustrated example, the clip 138 may be snap fit to the first jamb channel 102 by pressing the base 140 of the clip 138 into the inner interior space 116i. As the base 140 is pressed into the inner interior space 116i, opposing tabs in the first and second pair of tabs resiliently deform to allow the base 140 to pass through gap G (e.g. at least one of tabs 142A and 142B may deform slightly toward each other, and at least one of tabs 144A and 144B may deform slightly toward each other).
With continued reference to
Optionally, once the clip 138 is located as desired, it may be secured to the first jamb channel 102 to limit undesired movement (i.e. translation up and down the first jamb channel 102). For example, the clip 138 may be secured with a fastener (not shown) that passes through an aperture 152 defined in the base 140 to engage the base wall 122C of first jamb channel 102. Alternatively, or in addition, an adhesive (e.g. tape or glue) may be placed between the base 140 of clip 138 and the base wall 122C of first jamb channel 102.
Referring still to
In the illustrated example, the cap member 130 may be snap fit to the clips 138 by pressing the cap member 130 into the outer interior space 116o with the trough 136 facing the outer interior space 116o, e.g. as shown in
Alternatively, the clip 138 may be engaged first with cap member 130 by pressing the wing portions 150a and 150b into the trough 136. The clip 138 may then subsequently be engaged with first jamb channel 102 by pressing the cap member 130 (and thus base 140) into the inner interior space 116i.
With continued reference to
Although cap member 130 is secured to the first jamb channel 102 using clips 138 in the illustrated example, it will be appreciated that the cap member 130 may additionally or alternatively be secured to jamb channel 102 by other means, e.g. using mechanical fasteners, adhesives, and the like.
When the cap member 130 is secured to the first jamb channel 102, e.g. as described above, the cap member 130 is at least partially located within the outer interior space 116o. In the illustrated example, when the cap member 130 is secured to the first jamb channel 102, the planar surface 132 of cap member 130 is slightly set in from distal edges of opposing walls 118A and 118B. In this arrangement, the cap member 130 does not protrude from first jamb channel 102 and is fully located within the outer interior space 116o. In one or more alternative embodiments (not shown), the planar surface 132 of the cap member 130 may be substantially flush with the distal edges of opposing walls 118A and 1186. This arrangement may provide the first jamb channel 102 with a smoother visual appearance. In one or more alternative embodiments (not shown), the planar surface 132 of the cap member 130 may be slightly raised from the distal edges of opposing walls 118A and 118B.
With continued reference to
Turning to
Referring to
As best shown in
The cap member 160 has a length L2 between a first end 160A and a second end 160B thereof. Length L2 of cap member 160 may be selected so that it substantially encloses the interior space 158 of the third jamb channel 110. In the illustrated example, length L2 substantially corresponds to a length measured between the first and second ends 110A and 1106 of the third jamb channel 110. In this way, when the cap member 160 is secured to the third jamb channel 110, the interior space 158 is substantially enclosed.
Additionally, as shown in
Cap member 160 may be one of many standardized caps stored in an inventory and/or warehouse available to an installer. In some cases, the cap member 160 that is selected by the installer may have a length generally equal to the length measured between the first and second ends 110A and 1106 of the horizontal jamb 110 (i.e. already having length L2). For example, after measuring or being provided this length, the installer can select the appropriately sized cap member 160 from inventory. In other cases, a longer cap member (not shown) may be cut to the length L2 on or off site to provide the cap member 160.
Referring to
Referring to
Referring again to
In the illustrated example, cap member 160 is secured to the third jamb channel 110 before cap member 130 is secured to the first jamb channel 102. However, in one or more alternative embodiments, cap member 130 may be secured to the first jamb channel 102 before cap member 160 is secured to the third jamb channel 110.
Turning to
Pivot door 104 includes a door latch (not visible in
A strike plate may be secured to the second jamb channel 202 to engage the door latch. Such a strike plate may define a latch-receiving cavity positioned to receive the door latch of the pivot door 104. It will be appreciated that misalignment of the door latch and the latch-receiving cavity of the strike plate may impair the performance of the pivot door 104.
Referring to
From a manufacturing and installation perspective, it may be convenient for the first and second jamb channels 102 and 202 to be structurally similar, or even identical, to each other. In such embodiments, manufacturing costs may be reduced since only one part is being made as opposed to two. In the illustrated example, the first and second jamb channels 102 and 202 are cut from a single jamb extrusion (not shown). It will be appreciated that using the same material for the first and second jamb channels 102 and 202 may simplify installation. Accordingly, once installed, the first and second jamb channel 102 may have transverse cross-sections that are substantially a mirror images of each other.
Unless otherwise noted, like-numbered elements (i.e. elements having reference numerals that share two least-significant digits or two least significant digits and an alphabetic character, where applicable) have a similar structure and/or perform a similar function. For example, outer interior space 216o is analogous to outer interior space 116o.
Referring to
Referring to
With continued reference to
Cap members 230 and 330 may be structurally similar, or identical, to cap member 130. In some cases, cap members 130, 230, and 330 may be cut from a single cap member extrusion (e.g. cap member extrusion 130′). In the illustrated example, cap members 230 and 330 have identical transverse cross-sections to the transverse cross-section of cap member 130.
The cap member 230 has a length L3 between an upper end 230U and a lower end 230L thereof. Similarly, cap member 330 has a length L4 between an upper end 330U and a lower end 330L thereof. The length L3 of cap member 230 and the length L4 of cap member 330 may be dimensioned so that they substantially enclose the interior space 216 above and below the strike plate assembly 178.
With continued reference to
Referring to
Referring to
In some cases, the cap member extrusion 230′ can be cut to length on site. In such cases, an installer may bring the cap member extrusion 230′ or several cap member extrusions 230′ with varying dimensions to the installation site. For example, after measuring lengths L3 and L4, the installer can select the desired cap member extrusion 230′ and cut it to the measured lengths to provide the cap members 230 and 330 with lengths L3 and L4, respectively. Alternatively, the cap member extrusion 230′ may be cut off site to provide the cap members 230 and 330 with lengths L3 and L4, respectively.
It will be appreciated the selected cap member extrusion may also be shorter than the sum of the lengths L3 and L4. In such cases, two cap member extrusions (e.g. 230′) may be needed to provide cap members 230 and 230 (i.e. one cut to provide cap member 230 with length L3 and the other cut to provide cap member 330 with length L4).
Referring again to
When the cap members 230 and 330 are secured to the second jamb channel 202, the cap members 230 and 330 are at least partially located within the outer interior space 216o. Preferably, when the cap members 230 and 330 are secured to the second jamb channel 202, the planar surfaces 232 and 332 of corresponding cap members 230 and 330 are substantially flush with distal edges of opposing walls 218A and 2186. In this arrangement, cap members 230 and 330 do not protrude from first jamb channel 202 and are fully located within the outer interior space 216o. This arrangement may also provide the second jamb channel 202 with a smoother visual appearance.
Reference is now made to
Strike plate assembly 178 includes a main plate 182, a sliding plate 184, and a pair of locking fasteners (e.g. set screws 186A and 186B). As shown in
Referring to
The set screws 188A and 188B secure the sliding plate 184 to the main plate 182 in one of an unlocked configuration and a locked configuration. In the unlocked configuration, the body 190 is slideable along the opposed surface 1826 of the main plate 182 to adjust the position of the door latch-receiving cavity 194. Conversely, in the locked configuration, the set screws 188A and 188B lock the body 190 to the main plate 182 such that relative movement therebetween is inhibited or prevented. Put another way, when the sling plate 184 is secured to the main plate 182 the locked configuration, the position of the latch-receiving cavity 194 is fixed. In one or more alternative embodiments, one only locking fastener may be used.
Each of the set screws 188A and 188B preferably include a hex-shaped axial opening (not shown) defined in an end thereof. As shown in
Referring to
Referring again to
Returning to
As used herein, the wording “and/or” is intended to represent an inclusive-or. That is, “X and/or Y” is intended to mean X or Y or both, for example. As a further example, “X, Y, and/or Z” is intended to mean X or Y or Z or any combination thereof.
While the above description describes features of example embodiments, it will be appreciated that some features and/or functions of the described embodiments are susceptible to modification without departing from the spirit and principles of operation of the described embodiments. For example, the various characteristics which are described by means of the represented embodiments or examples may be selectively combined with each other. Accordingly, what has been described above is intended to be illustrative of the claimed concept and non-limiting. It will be understood by persons skilled in the art that other variants and modifications may be made without departing from the scope of the invention as defined in the claims appended hereto. The scope of the claims should not be limited by the preferred embodiments and examples, but should be given the broadest interpretation consistent with the description as a whole.