Aggregate is crushed by various types of crushers including jaw crushers.
Referring to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views,
The sidewalls 110-1, 110-2 optionally cooperate with the moveable and stationary jaws 120, 140 to form both an upper opening OU configured and disposed to receive aggregate material (e.g., rock, stone, gravel, sand, debris, etc.) and a lower opening OL configured and disposed to release at least partially crushed aggregate material from the jaw crusher 100. The size of a gap G at the lower opening OL optionally determines the size of material released from the lower opening; as the size of gap G varies during operation, a given size (e.g., minimum size) of gap G may be referred to in the art as the close-side setting. It should be appreciated that movement of the moveable jaw 120 about eccentric shaft (which is optionally driven by a motor such as an electric motor, not shown, which may drive the shaft via a flywheel, drive belt and/or other apparatus) includes movement toward and away from the stationary jaw 140 so as to crush material trapped between the moveable and stationary jaws.
In some embodiments, a link 150-1 is optionally pivotally coupled (e.g., at a first end thereof) to the moveable jaw 120. The link 150-1 is optionally pivotally coupled to the moveable jaw 120 via a crossbar 160 mounted to the moveable jaw 120 defining a pivot point 152-1. The link 150-1 is optionally pivotally coupled (e.g., at a second end thereof) to a support 255-1 (e.g., pin, bearing, shaft, etc.) defining a pivot point 154-1. Support 255-1 is optionally disposed on the opposite side of stationary jaw 140 relative to moveable jaw 120. Support 255-1 is optionally disposed outside of the space between sidewalls 110-1, 110-2. In some embodiments, supports 255 are optionally supported (e.g., welded, mounted with fasteners, etc.) with a breaking strength selected such that in the event the support 255 is broken to allow release of the movable jaw upon introduction of uncrushable material.
In some embodiments, a link 150-2 is optionally pivotally coupled (e.g., at a first end thereof) to the moveable jaw 120. The link 150-2 is optionally pivotally coupled to the moveable jaw 120 via crossbar 160 defining a pivot point 152-2. The link 150-2 is optionally pivotally coupled (e.g., at a second end thereof) to a support 255-2 defining a pivot point 154-2. Support 255-2 is optionally disposed on the opposite side of stationary jaw 140 relative to moveable jaw 120. Support 255-2 is optionally disposed outside of the space between sidewalls 110-1, 110-2.
Links 150-1, 150-2 are optionally or substantially equal length. Links 150-1, 150-2 are optionally disposed outside of the sidewalls 110-1, 110-2. Crossbar 160 optionally extends through openings 112-1, 112-2 in the sidewalls 110-1, 110-2, respectively. Openings 112-1, 112-2 optionally are optionally configured to permit motion of the crossbar 160 as the moveable jaw 120 moves during operation.
It should be appreciated that for a given length of links 150-1, 150-2, the position of pivot point 154-1 (which is optionally coaxial with pivot point 154-2) determines the minimum gap G (e.g., close-side setting) during operation.
Referring to
It should be appreciated that crushing of material between the moveable and stationary jaws will place the links 150-1, 150-2 in tension. In the event that an uncrushable object (e.g., “tramp” material such as metal or excessively tough aggregate material) enters the jaw crusher 100, the links 150-1 and/or 150-2 optionally break to release the moveable jaw (e.g., such that more catastrophic damage to the jaw crusher 100 is avoided). A toughness and/or cross-sectional dimension of the links 150-1 and/or 150-2 are optionally selected in order to maintain integrity of the links 150 during normal crushing operations but to allow the links 150 to break upon introduction of uncrushable material. In some embodiments, the links 150 are extendable (e.g., incorporates a tension spring and/or hydraulic cylinder) to allow the links to extend upon introduction of uncrushable material.
In some embodiments, the position of the pivot points 154-1, 154-2 is optionally adjustable (e.g., so as to modify the minimum gap G and/or path PL). Referring to
Referring to
Referring to
In some embodiments, the jaw crusher 100 has one or more features or functionalities in common with U.S. Pat. No. 6,641,068, incorporated herein by reference. In some embodiments, the jaw crusher 100 has one or more features or functionalities in common with U.S. Pat. No. 9,662,655, incorporated herein by reference. In some embodiments, the crushing faces (e.g., faces of the jaw dies) are optionally curved or arched across the width of the jaw crusher. Additionally or alternatively, in some embodiments the crushing faces have a variety of profiles such as flat, slotted, corrugated etc. Additionally or alternatively, in some embodiments the crushing faces are be tapered (or more narrow width) along the sides thereof, e.g., to allow passage of fines along the sides of the crushing faces.
In various embodiments, the crusher embodiments described herein may be self-standing and/or may be incorporated in a plant having other equipment thereon (e.g., vibratory screens, vibratory feeders, crushers, impactors, hoppers, conveyors, etc.). The crusher embodiments and/or plant embodiments including such impactor embodiments may be stationary or portable (e.g., supported on skids, tracks, or wheels) according to various embodiments.
Ranges recited herein are intended to inclusively recite all values and sub-ranges within the range provided in addition to the maximum and minimum range values. Headings used herein are simply for convenience of the reader and are not intended to be understood as limiting or used for any other purpose.
Although various embodiments have been described above, the details and features of the disclosed embodiments are not intended to be limiting, as many variations and modifications will be readily apparent to those of skill in the art. Accordingly, the scope of the present disclosure is intended to be interpreted broadly and to include all variations and modifications within the scope and spirit of the appended claims and their equivalents. For example, any feature described for one embodiment may be used in any other embodiment.
Number | Date | Country | |
---|---|---|---|
63365806 | Jun 2022 | US |