The present invention is directed to a gripping assembly. The gripping assembly comprises a tapered jaw, a block having a tapered cavity, and a retainer. The tapered jaw has at least one tapered surface. The tapered cavity comprises at least one tapered surface complementary to the tapered surface of the tapered jaw. The retainer comprises a first section and a second section. The first section is disposed within the block. The second section is offset from the first section and defined by a first position and a second position. The retainer contacts the tapered jaw when in the first position and does not contact the tapered jaw when in the second position. The tapered jaw is situated within the tapered cavity.
In another aspect, the invention is directed to a gripping assembly. The gripping assembly comprises a jaw block, a subassembly, a first retainer, and a second retainer. The jaw block defines a tapered cavity, wherein the tapered cavity defines first and second opposed surfaces. The subassembly comprises a plate, a first tapered jaw, and a second tapered jaw.
The plate is slidingly receivable in the jaw block and defines first and second slots. The first tapered jaw is secured to the plate by a first pin, where the first pin is disposed through the first slot. The first tapered jaw defines a first crush face and a first tapered jaw surface. The second tapered jaw is secured to the plate by a second pin, wherein the second pin is disposed through the second slot. The second tapered jaw defines a second crush face and a second tapered jaw surface. The first tapered jaw and second tapered jaw are situated within the tapered cavity such that the first crush surface and second crush surface are opposed, the first tapered jaw surface is adjacent and complementary to the opposed tapered surface of the tapered cavity, and the second tapered jaw surface is adjacent and complementary to the second opposed tapered surface of the tapered cavity.
The first retainer and second retainer are each disposed through the jaw block. Each retainer has a first position and a second position. The retainers engage the jaws such that their tapered jaw surfaces are biased toward the respective opposed tapered surfaces of the tapered cavity when the retainers are in the first position.
Wire rope or rod gripping systems used for replacement of underground utilities are well known. A wire rope or rod is typically used to pull tooling through an existing pipe that will crack, split, slit or remove the pipe where it is buried while towing an expander to open the adjacent soil and permit the new product to be pulled along into the bore after the tooling passes.
In many gripping systems, a tapered jaw or jaws are designed to slide in a matching tapered jaw block. As the force between the jaw face contacting the strand increases, the jaw taper is forced deeper into the jaw block taper thereby increasing the squeezing force on the wire rope and therefore the friction to hold it in position relative to the jaw block.
The challenge of the process is often initiating the force between the tapered jaw and the pulling wire rope or strand. A modest amount of externally applied force will initiate the gripping; that modest force then grows as the jaw block is moved to pull the strand and the jaws will wedge with this pulling movement.
While the primary job of the jaws is to grip the strand, at the start and end of the job, the strand must be placed between the jaws or between one jaw and a friction face. In order to accomplish that the jaws need to be removed from the jaw block or slide a meaningful distance toward the open end of the tapered faces in the jaw block. This strand installation and removal process occurs at the start and end of every pull. Permanently installed springs or hydraulic actuators impede the distance the jaws can slide. In these applications, the installation and removal of the strand is extremely difficult. Only long throw actuators facilitate the beginning and end process and said throw adds, size, cost and weight to the device.
An ideal device is one that is easily brought into position to bear upon the jaw(s) once the pulling strand is installed and equally easily moved out of the way when the job is done to allow the jaws to slide a meaningful distance, enabling easy removal of the strand.
Turning now to the figures in general, shown therein is a strand pulling apparatus 10 for gripping a strand 15. The apparatus 10 comprises a compression spring 47 and a ‘J’ shaped rod 35 contained within a jaw block 31. There is one J rod 35 and one spring 47 required per jaw 38, as best shown in
With reference to
The apparatus has a frame 12 which comprises a base 21 which may be flush with a ground surface, and a face 22 which typically shores a vertical face of an excavation. The strand 15 is disposed through an existing pipe (as a part of the horizontal run 26), and will have an expanding or bursting tool (not shown) at its distal end.
Two hydraulic actuators 17 provide the force which pulls the strand 15 through the existing utility. The actuators 17 are mounted to the frame 12. As shown, these actuators are attached to plates 27. The plates 27 allow force associated with pulling the strand 15 to be passed into the face 22 and the base 21.
The hydraulic actuators 17, as shown, are a pair of hydraulic cylinders. The actuators 17 are each comprised of a cylinder body 23 and extendable rod 24. A moving jaw assembly 13 is attached to the rod 24 end of the cylinders 17 and carried thereby.
The apparatus 10 further comprises a rebound strand jaw assembly 14. The rebound strand jaw assembly 14 restrains the strand 15 from reverse travel while moving jaw assembly 13 is retracted by the hydraulic actuators 17. Reverse travel of the strand 15 may occur due to elastic stretch over the length of horizontal run 26. By restraining rebound, each stroke of the cylinders 17, and thus the movable jaw assembly 13 is more productive. As shown, the rebound strand jaw assembly 14 may include a J-rod as will be discussed in detail with respect to the moving strand jaw assembly 13.
With reference to
In
The cylinder assembly 17 is joined to the jaw block 31 by cylinder pins 34. The J-rods 35 are located in slip fit bores of the jaw block 31 and bear upon the tops of strand jaws 38 through spherical rod caps 37 that mount threadedly to J-rods 35. Parking divots 36 are located in the top face of the jaw block 31. These divots 36 provide a semi-secure location to position the J-rods 35 when not bearing against the jaws 38.
Jaws 38 hang loosely from the plate 32 via jaw handles 42 (
With specific reference to
This orientation allows the jaws 38 to separate sufficiently to pass around vertical run 25 of the strand 15. The jaw plate subassembly 28 may be pulled away from the vertical run 25 of the strand 15 thereby removing it from engagement with the vertical run 25 and the jaw block 31. To achieve this, the thrust force applied to jaws 38 must be removed. That is accomplished by twisting each of the J-rods 35 about their long stem in the jaw block 31 and placing the spherical rod cap 37 into parking divot 36 which takes them completely away from the jaw 38 travel path and permits jaw removal from strand jaw assembly 13.
With reference to
In
The spherical rod cap 37 at the end of short stem 50 bears against the jaw 38 to thrust it along the tapered sliding surface 44 (
Load applied to each jaw 38 may range from 0.1 to 201b or more. There need only be one jaw 38 if a stationary reaction surface is used. In a multiple jaw 38 system only one jaw needs to be loaded, though both may be loaded, as shown.
The shape of the J-rod 35 minimizes the overall size of the system; however the same effective function could be achieved with other shapes if the spring were disposed above the jaw 38 and used to load a movable pin. In this condition, an offset must exist between the stem bearing on the jaw and the portion of the stem being urged by the compression spring, as the bend allows the rod end to be parked away from the jaw when free jaw movement is required for strand installation or removal.
Changes may be made in the construction, operation and arrangement of the various parts, elements, steps and procedures described herein without departing from the spirit and scope of the invention as described in the following claims.
Number | Date | Country | |
---|---|---|---|
63333694 | Apr 2022 | US |