Jet milling may be used to pulverize silicon pellets into a fine silicon powder. Jet mills of differing capacities are available under the trade name Micronizer® from Sturtevant, Inc. of Hanover, Mass. The operation of such a jet mill 10 is illustrated in the partially sectioned view of
Compressed mill gas 30 is supplied through a gas intake 32 to an annular gas manifold 34 formed between the circumferential mill body 26 and the circumferential wall liner 20 and generally surrounding the milling chamber 12. A plurality, for example, six or eight of jet holes 36 inject the compressed mill gas 32 through the circumferential liner 20 into the outer periphery of the milling chamber 12. The jet holes 36 are all aligned within a common plane at a common inclined angle to respective radii in the plane to the chamber central axis 14 to thereby set up a circulating flow pattern, in particular a vortex of the mill gas 30 and other gas within the milling chamber 12. That is, the jet holes 36 are aligned along respective axes tangential to a circle within the milling chamber 12, for example, in the outer quarter of the chamber radius. The vortex, as illustrated by the curved line with an arrowhead, forms an inwardly directed spiral flow of the general shape of a cyclone beginning near the circumference of the milling chamber 12 about the central axis 14 and shrinking with continuously decreasing radius until it is close to the central axis 14 and an outlet 40 arranged around the central axis 14 on one axial side of the milling chamber 12 facing the eye of the cyclone. The outlet 40, which forms an extraction hole for the vortex gases and entrained particles, extends away from the milling chamber 12 along the chamber central axis 14. The gas in the vortex and any entrained particles are exhausted through the outlet 40 away from the milling chamber 12. A tubular vortex finder 42 fits snugly into the outlet 40 but is slidable along the chamber central axis 14 so that its bottom can be placed at a selected axial position adjacent to the vortex.
Pellets 50 of the desired material, in this case, silicon are loaded into a feed funnel 52 having a narrow feed orifice 54 at its bottom to slowly feed the pellets 50 into a feed tube 56, which is part of the upper mill body 22. The feed tube 56 is aligned at small angle with respect to the plane of the vortex and is directed to a tangent of the vortex near the circumferential liner 20. Compressed feed gas 58 is supplied to a feed gas inlet 60 having a nozzle 62 directing the feed gas 58 toward the pellets 50 falling with them through the feed orifice 54 of the funnel 52. The feed gas 58 entrains the pellets 50 and flows through the bore of a tubular supply liner 64 shaped to form a Venturi tube and through the upper wall liner 18 into the milling chamber 12. The liner 64 acts as an injector injecting the feed gas 58 and entrained pellets 50 into the vortex within the milling chamber 12.
The swirling vortex accelerates the pellets 50 into a generally circular path within the milling chamber 12. The pulverization of the material primarily occurs from particle-to-particle impact although some particles do strike the liners, particularly the circumferential liner 20. The tangential velocity of the vortex generally increases towards the chamber central axis 14. Centrifugal force drives larger particles towards the perimeter while fine particles are swept by the gas vortex and move toward the chamber central axis 14 and eventually exit the milling chamber 12 through the vortex finder 42 within the outlet 40 together with the two gases 30, 58.
Conventionally, the wall liners 16, 18, 20 are made of stainless steel although other materials are also conventionally used to reduce corrosion. However, we observe that for semiconductor applications, the heavy metals in stainless steel including iron, nickel, and chromium are likely to contaminate the silicon powder and eventually contaminate the silicon integrated circuit.
According to one aspect of the invention, the wall liners 16, 18, 20 supply liner 64, and vortex finder 42 and other components to which the pellets 50 and milled powder are exposed, particularly at high velocity, are composed of silicon, preferably high-purity silicon. EGS-grade silicon, also known as virgin polysilicon, may be used. It, has an extremely high purity level but tends to easily fracture. Boyle et al. describe the machining of EGS-grade silicon in U.S. Pat. No. 6,617,225 including a high-temperature anneal prior to machining. A silicon part or feed stock according to the invention has a silicon fraction of at least 95 at % although EGS-grade silicon is known to have heavy and alkali metal impurity levels of less than 10−9 atomic (1 ppba). However, other forms of silicon may be used to form the high-purity silicon chamber parts, such as cast silicon, plasma sprayed silicon, and either monocrystalline or polycrystalline Czochralski-grown silicon. An expecially convenient and inexpensive form of polysilicon is randomly oriented polysilicon (ROPSi) described by Boyle et al. in patent application Ser. No. 11/328,438, filed Jan. 9, 2006 and published as U.S. patent application publication 2006/0211128, incorporated herein by reference. ROPSi is grown from a silicon melt by the Czochralski method using a randomly oriented seed. Depending upon its growth conditions, it may need to be annealed prior to machining.
An all-silicon liner assembly 70 including the first and second axial liners 72, 74 and a circumferential liner 76 for lining the walls of the milling chamber 12, and the vortex finder 42 is illustrated in more detail in the sectioned orthographic view of
The circumferential liner 76 is illustrated in
The silicon supply liner 64 is illustrated in the orthographic view of
Although most of the micronizing occurs as silicon particles collide, some particles strike the sides of the milling chamber 12 at high velocity. However, according to this aspect of the invention, the wall liners 16, 18, 20 or 72, 74, 76, the supply liner 64, and the vortex finder 42 are the only parts likely to be struck by high-speed silicon particles. Since they are all formed of high-purity silicon, the jet milling process is unlikely to contaminate the resultant silicon powder to lower purity levels than the silicon pellets 50 used as feed stock.
The funnel 52 may also be advantageously be made of high-purity silicon although in view of the low velocity of the silicon pellets 50 through it the funnel 52 may alternately be made of high-purity plastic.
A jet milling system 100 is schematically illustrated in
For small-scale production, the silicon pellets can be supplied from a feed trough 120 supported on vibrator 122 and tilted at a selected upward angle θ from the horizontal towards an open end 124 of the feed trough 120, for example, between 10° and 70°, more preferably 30° to 60°, with the open end 124 positioned over the funnel 52. As illustrated in the orthographic view of
Returning to
The particle size can be controlled by varying the gas feed pressure, the flow rates for the feed and mill gases, the position of the vortex finder, the size of the silicon pellets, and the feed rate of the pellets into the mill. We have been able to achieve a narrow size distribution of 0.2 to 20 micron.
Tighter size distributions could be achieved interposing a hydrocyclone between the jet mill and the powder collection apparatus. Hydrocylones utilizing centrifugal sedimentation are available from Particle Sizing Systems, Inc. of Santa Barbara, Calif. under the trade name SuperClone but may need to be modified with silicon parts. A sieve may also be used to separate out the larger particles. For example, a 635 nylon mesh will capture any milled particles larger than 20 microns although nylon sieves presents problems with electrostatic clogging.
The pellets 50 should be of high-purity silicon, preferably EGS-grade silicon. Virgin polysilicon broken from ingots of CVD-grown silicon can be ground small enough to act as feed stock. Czochralski silicon of high purity may also be broken down into the feed stock. A preferred feed stock is granular polysilicon manufactured by MEMC Electronic Materials, Inc. of St. Louis, Mo. or Wacker Solitec of Burghausen, Germany. Such granular polysilicon has the appearance of BBs with generally spherical shapes and having diameters between about 0.15 mm to 2.5 mm with an average of about 0.7 to 0.75 mm. Total transition metal impurity is less than 100 ppba (parts per billion atomic), preferably less than 10 ppba. The granular polysilicon is grown by a CVD process from silane or chlorosilane and hydrogen in a fluidized bed reactor using silicon powder as a seed.
The highly pure silicon powder of small size and narrow distribution producible with the invention is advantageously used as the silicon component of the composite adhesive used to join silicon parts. The high purity silicon powder cannot contaminate the semiconductor processing chamber in which the assembled structure is used. The small size provides for a large surface area of silicon and the narrow size distribution allows the clearance between joint edges to be small, thereby easing assembly and alignment as well as reducing the amount of adhesive used.
Another use of silicon powder is the plasma spraying of silicon for joining silicon parts, as described by Boyle et al. in U.S. Pat. No. 7,074,693 and other sealing applications for silicon structures. Yet another application includes plasma spraying of semiconducting silicon, for example, to form solar cells. In plasma spraying, silicon powder is fed into a plasma spray gun, which vaporizes it in a plasma stream, for example of argon, directed at the joint or part being sprayed. When the silicon part or assembly is being used in semiconductor fabrication, the sprayed silicon needs to be essentially free of contaminants, especially heavy metals. For forming a semiconducting silicon device such as a solar cell, the silicon must be of high purity. The silicon powder of the invention satisfies these requirements. The silicon powder may also need to be doped with semiconductor dopants of a chosen dopant type and doping concentration.
Some application would benefit from the plasma spraying of doped silicon, for example, to control the electrical resistivity or optical transmittance of the sprayed layer or in forming solar cells. Hence, it would benefit to produce silicon powder having the desired semiconductor doping. It is possible to adjust the process producing the silicon pellets to have the desired doping levels. EGS-grade silicon can be grown with the desired doping by the addition of conventional doping gases in the CVD process. However, this is not conventionally done since EGS-grade silicon is produced to be free of all contaminants. Czocharalski-grown silicon is more conventionally grown with a controlled semiconductor doping. However, an entire ingot of virgin polysilicon would need to be so grown or the fluidized bed apparatus would need to be converted to accept a doping gas. An alternative or additional technique dopes the liners of the jet mill with the desired dopant. Some of the doped liner material will mix with the milled powder and produce a silicon powder incorporating the desired dopant.
The jet mill of the invention is not limited to the illustrated embodiment. A jet mill can be defined as a milling apparatus in which a feed stock to be milled is entrained in a flow of gas a majority of the milling occurs as particles within the flow collide with each other such that multiple steps of reduction of particle size occurs. A circulating gas flow, such as the described vortex, increases the interaction length for collision between particles. The feed stock pellets need not be entrained in a separate gas flow and could drop unassisted into the milling chamber. The feed inlet may be formed in the side wall. A separate and adjustable vortex finder is not required.
The invention allows the inexpensive production of high-purity silicon powder of tight size distribution. Further, a jet mill conforming to the invention can be easily implemented with retrofitting of a few parts on existing commercially available equipment.
This application claims benefit of provisional application 60/824,681, filed Sep. 6, 2006.
Number | Date | Country | |
---|---|---|---|
60824681 | Sep 2006 | US |