JET MOTOR

Information

  • Patent Application
  • 20100078219
  • Publication Number
    20100078219
  • Date Filed
    December 04, 2009
    15 years ago
  • Date Published
    April 01, 2010
    14 years ago
Abstract
An exemplary embodiment of the jet motor includes a control sleeve, and power shaft having at least one opening thereon. The power shaft is rotatable in relation to the control sleeve. The power shaft has a central longitudinal shaft axis and upper and lower ends. The at least one opening in the power shaft generates rotational torque when acting in cooperation with the control sleeve. The jet motor connects to a member that is in fluid communication with the source of drilling or cleaning fluid. Drilling or cleaning fluid pressure is directed to the at least one opening in the power shaft. The power shaft having at least one opening having an opening axis and an interior opening. The at least one opening may be acutely oriented with respect to a plane extending along the power shaft's central longitudinal axis wherein the plane intersects the opening axis at the interior opening. The at least one opening may be oriented toward the upper end of the power shaft to provide downward force. An alternative embodiment with a drill bit functionally connected to the power shaft wherein the drill bit contains drill bit nozzles that provide both rotational and forward force when a fluid is passed therethrough.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.


BACKGROUND

1. Field of the Invention


The disclosure relates, in general, to a downhole drilling and cleaning apparatus. More specifically, the invention is directed to a motor and apparatus for cleaning out production tubing, for drilling oil and gas wells, and like applications.


2. Description of the Related Art


The use of hydraulically driven drill bits is known in the art as described in the following U.S. patents.


U.S. Pat. No. 1,727,276, issued to Diehl on Sep. 3, 1929, discloses a drill bit rotating at one speed and a body portion rotating at a second lower speed. Once the drill bit engages a hard formation the drill bit and the body combine and rotate at the speed of the body portion.


U.S. Pat. No. 1,860,214, issued to Yeaman on May 24, 1932, discloses a hydraulically rotating drill bit with exhaust passages through the bit body for the escape of impelling fluid.


U.S. Pat. No. 3,133,603, issued to Lagacherie, et al on May 19, 1964, discloses a fluid driven-bit wherein fluid passes over an internal turbine. The fluid acts upon the internal turbine in order to rotate the drill bit.


U.S. Pat. No. 3,844,362, issued to Elbert, et al on Oct. 29, 1974, discloses a device for boring holes comprising a body having a front end and a rear end wherein forward drive means are provided at the rear end for receiving pressurized fluid. A boring head is rotatably mounted in the body and projects from the front end of the body. Passages direct fluid from the boring head to impart torque to the boring head.


U.S. Pat. Nos. 4,440,242 and 4,529,046, issued to Schmidt, et al on Apr. 3, 1984 and Jul. 16, 1985 respectively, disclose a drilling apparatus having nozzles functioning as cutting jets and passages discharging radially to generate torque for rotation.


U.S. Pat. No. 5,101,916, issued to Lesh for on Apr. 7, 1992, discloses a fluid-driven tool wherein pressurized fluid is used to create rotation by force applied to internal helical vanes.


U.S. Pat. No. 5,385,407, issued to De Lucia on Jan. 31, 1995, discloses a tool having three sections wherein lubricant is permitted to flow through orifices to lubricate the bearing assembly.


U.S. Pat. No. 6,520,271, issued to Martini on Feb. 18, 2003, discloses a fluid-driven tool wherein pressurized fluid is used to create rotation by internal vanes.


BRIEF SUMMARY

An exemplary embodiment of the jet motor includes a control sleeve, and power shaft having at least one opening thereon. The power shaft is rotatable in relation to the control sleeve. The power shaft has a central longitudinal shaft axis and upper and lower ends. The at least one opening in the power shaft generates rotational torque when acting in cooperation with the control sleeve. The jet motor connects to a member that is in fluid communication with the source of drilling or cleaning fluid. Drilling or cleaning fluid pressure is directed to the at least one opening in the power shaft.


The power shaft having at least one opening having an opening axis and an interior opening. The at least one opening may be acutely oriented with respect to a plane extending along the power shaft's central longitudinal axis wherein the plane intersects the opening axis at the interior opening.


The at least one opening may be oriented toward the upper end of the power shaft to provide downward force.


An alternative embodiment with a drill bit functionally connected to the power shaft wherein the drill bit contains drill bit nozzles that provide both rotational and forward force when a fluid is passed therethrough


Other features and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of the fully assembled jet motor with an exemplary drill bit attached thereto.



FIG. 2 is a partial exploded view of an exemplary embodiment of the jet motor.



FIG. 3A is a perspective view of an exemplary embodiment of the drill bit.



FIG. 3B is a perspective view of an alternative embodiment of the drill bit.



FIG. 4A is a cross-sectional view of an exemplary embodiment of the power shaft of the jet motor taken along plane 4A in FIG. 2.



FIG. 4B is a cross-sectional view of an alternative embodiment of the openings in the power shaft.



FIG. 5A is a cross-sectional view of an exemplary embodiment of the drill bit taken along line 5A-5A in FIG. 4.



FIG. 5B is a cross-sectional view of an alternative embodiment of the drill bit taken through the nozzles.



FIG. 6 is a cross-sectional view of an exemplary embodiment of the jet motor taken along axis A-A.



FIG. 7 is a cross-sectional view of an alternative embodiment of the jet motor.





DETAILED DESCRIPTION

Referring to FIG. 1, the exterior of the depicted exemplary embodiment of the jet motor 10 generally comprises a drill bit 20, control sleeve 12, and upper subassembly 16 having a common central longitudinal axis AA.


As used herein, “upper” will refer to the direction of upper end 80 of upper subassembly 16 that connects to a drill string or tubing (not shown). As used herein, “lower” will refer to the direction of the drill face 18 of drill bit 20.


Referring to FIG. 2, drill bit 20 is generally a closed cylindrical structure with an open connection end 24. Channel 22 extends inwardly of bit 20 from connection end 24. In an exemplary embodiment, threading is provided on the interior surface of drill bit 20 proximate connection end 24 for threaded connection to threaded lower connector 23 of power shaft assembly 36.


In an exemplary embodiment, drill bit face 18 is textured to model a rock configuration as depicted in FIG. 3A. Alternatively, drill bit face 18 is comprised of a plurality of nodes, as seen in FIG. 3B.


At least one rotation nozzle 26 is disposed in cylinder wall 27 of drill bit 20. In an exemplary embodiment at least two rotation nozzles 26 are provided. Rotation nozzles 26 are in fluid communication with the interior channel 22 of drill bit 20 and allow fluid flow from channel 22 to the exterior of bit 20.


Referring to FIG. 5A, an exemplary embodiment of the nozzles 26, of the drill bit 20, each have an axis N. Axes N are each disposed generally perpendicularly to axis AA. Axes N of the rotation nozzles 26 are each oriented radially to allow fluid expulsion from nozzles 26 to provide rotational thrust in a desired direction. Specifically, the angle N′ of each axis N with respect to a plane passing through axis AA and interior opening 29 of cylinder wall 27 is acute in the preferred direction of rotation. The plane intersects the nozzle axis N at the interior opening 29.


Referring to FIG. 5B, in an alternative embodiment, nozzles 26 may each be oriented from a plane normal to, or parallel with, axis AA at the interior opening 29 of each nozzle 26 to provide a forward thrust from fluid escaping through nozzles 26. That is, the nozzle axis N of at least one nozzle 26 is acutely oriented in relation to the direction of the upper end 80.


Referring to FIGS. 2, 3A and 3B, cutting nozzles 28 are provided in bit face 18. Cutting nozzles 28 are in fluid communication with interior channel 22 of drill bit 20. The axes of cutting nozzles 28 may be oriented parallel with axis AA or at an angle to axis AA. Fluid escaping from nozzles 28 provides cutting forces, and the fluid may wash loose materials away from bit face 18.


Referring to FIGS. 2 and 6. Control sleeve 12 is generally composed of an elongated cylindrical barrel body, with a sleeve channel 17 passing therethrough. Sleeve channel 17 is oriented along axis AA. Control sleeve 12 is provided with threading 19 at its upper end 32 for threaded connection to threaded lower end 42 of upper subassembly 16. Upper subassembly 16 is provided with threading 82 at its end 80 to allow connection to a drill string or tubing (not shown). Such threaded connections are commonly practiced. Accordingly, control sleeve 12, after installation on a drill string or tubing, is in a fixed position in relation to the drill string or tubing.


Referring to FIGS. 2 and 6, power shaft assembly 36 is depicted. Power shaft assembly 36 includes power shaft 30, lower radial bearing 46, thrust bushing 48, upper radial bearing 44, retainer 38 and upper thrust bushing 70.


Power shaft 30 comprises a hollow cylindrical structure having an internal channel 66 aligned with axis AA. Internal channel 66 allows fluid communication from a drill string or tube (not shown) to channel 22 of drill bit 20.


Power shaft 30 is constructed and sized to rotate within control sleeve 12 with lower radial bearing 46 and upper radial bearing 44 providing radial support. As drill bit 20 is fixedly attached to power shaft 30, drill bit 20 and power shaft 30 rotate together in relation to control sleeve 12. The power shaft 30 is at least partially surrounded by the control sleeve.


Thrust bushing 48 extends intermediate lower radial bearing 46 and upper radial bearing 44.


A retainer nut 38 is provided on power shaft 30 intermediate upper radial bearing 44 and upper end 60 of power shaft 30. Retainer nut 38 is provided with an internal threading 39 to attach to corresponding threading 81 provided on power shaft 30 to retain radial bearings 44 and 46 and thrust bushing 48 intermediate retainer nut 38 and a shoulder 69 on power shaft 30 and shoulder 68 on control sleeve 12, as seen in FIG. 6 (upper portion).


Power shaft 30, control sleeve 12, shoulder 68 and end 56 of lower radial bearing 46 define a blind annular space 55 intermediate exterior surface 33 of power shaft 30 and inner surface 34 of control sleeve 12, blind annular space 55 having an upper end 45 defined by end 56 of lower radial bearing 46 and shoulder 68 of control sleeve 12.


In an alternative embodiment, an annular seal (not shown) may be provided at end 56 of lower radial bearing 46 to define the upper end 45 of annular space 55. An annular opening 54 of annular space 55 is defined intermediate control sleeve 12 and power shaft 30.


At least one drive nozzle 52 extends through wall 31 of power shaft 30. In an exemplary embodiment, at least two drive nozzles 52 are provided spaced within wall 31 of power shaft 30. Drive nozzles 52 are in fluid communication with the internal channel 66 of power shaft 30.


Drive nozzles 52 are located intermediate annular opening 54 of annular space 55 and upper end 45 of annular space 55. Drive nozzles 52 allow fluid flow from channel 66 to annular space 55.


Drive nozzles 52 each have an axis D, as seen in FIG. 4A. Axes D are each oriented angularly with respect to axis AA, the angle being acute in the direction of upper end 60 of power shaft 30 and obtuse with respect to the direction of the threaded lower connector 23. Accordingly, drive nozzles 52 are each oriented rearward from a plane normal to axis AA at the interior opening 57 of each nozzle 52. Such orientation provides a forward thrust from fluid escaping through nozzles 52.


Referring to FIG. 4A, and the alternative embodiment of FIG. 4B, axes D of the drive nozzles 52 are each angled radially to allow fluid expulsion from nozzles 52 to provide rotational thrust in a desired direction. Specifically, the angle D′ of each axis D with respect to a plane passing through the longitudinal axis AA and interior opening 57 is acute in relation to the plane. The plane intersects axis D at the interior opening 57.


In the exemplary embodiments shown, rotation nozzles 26 and drive nozzles 52 are depicted. In an alternative embodiment, not shown, ports, or openings, may be provided without nozzles to achieve the results of the invention. The principles taught in this invention apply with ports, or openings, used in lieu of rotation nozzles 26 or drive nozzles 52.


Referring to FIG. 6, inner surface 34 of control sleeve 12 is spaced from exterior surface 33 of power shaft 30. The extent of separation is gap 49. In operation, fluid forced through internal channel 66 is expelled through drive nozzles 52. Upon impinging inner surface 34, a reactive force is incurred, thereby enhancing the rotation of power shaft 30.


In an exemplary embodiment, gap 49 is in the range of 0.0381 cm to 0.0762 cm (0.015″ to 0.030″) for a tool having a nominal diameter in the range of 3.175 cm to 4.445 cm (1.25″ to 1.75″). In an exemplary embodiment, gap 49 is in the range of 0.508 cm to 0.635 cm (0.20″ to 0.25″) for a tool having a nominal diameter in the range of 10.4775 cm to 12.065 cm (4.125″ to 4.75″). Generally, gap 49 is effective in a range of ratios of gap 49 to nominal diameter of the control sleeve 12 (gap:sleeve diameter) as follows: Ratio of 1:125 to ratio of 1:17. Depending on various application requirements, including the fluid used, nozzle size, pressure and other factors, ratios outside the foregoing range may be preferred.


Referring to FIGS. 2 and 6, upper subassembly 16 comprises a generally hollow cylindrical body 61 having a connecting threading 82 for connecting to a drill string or tubing (not shown) at its upper end 80, and connecting threading at its lower end 42 for connecting to control sleeve 12 at control sleeve threading 19. Upper subassembly 16 includes an interior channel 72 aligned with axis AA.


An injection tube 96 is provided in upper subassembly 16. Injection tube 96 includes an elongated tube 40 and tube head 41. Tube head 41 has a larger diameter than tube 40. A tube retaining nut 86 is provided to retain tube head 41 between retaining nut 86 and a shoulder 87 provided in upper subassembly 16. Retaining nut 86, tube head 41 and tube 40 define a continuous tube channel 95 aligned with axis AA. Retaining nut 86 has connecting threading 84 for threaded connection to internal connecting threading 83 provided in upper subassembly 16.


In an exemplary embodiment, injection tube 96 is retained in position by the retaining nut 86 and shoulder 87. Injection tube 96 is free to rotate about axis AA independent of the rotation of power shaft 30 and upper subassembly 16.


Upper subassembly 16 is provided with a cylindrical inset 88 at its lower end 62. A thrust bushing 70 is provided to provide a bearing surface intermediate upper subassembly 16 and power shaft assembly 36. Thrust bushing 70 additionally encloses and provides radial support for tube 40.


Tube 40 extends past the lower end 62 of upper subassembly 16 into the channel 66 of power shaft 30.


The interior surface 71 of thrust bushing 70 is sized and constructed to encircle the exterior surface 43 of tube 40 but to allow rotation between the surfaces. Thrust bushing 70 further contains a flange 74 extending radially outward. Flange 74 is received between the lower end 62 of upper subassembly 16 and upper end 60 of power shaft 30. Thrust bushing 70 includes a cylindrical inset 78 to receive a segment of power shaft 30 at the upper end 60 of power shaft 30. Cylindrical inset 78 is sized and constructed to slidably receive end 60 of power shaft 30.


The diameter of outer surface 43 of tube 40 is preferably only slightly smaller than the diameter of channel 66 allowing tube 40 to be slidably received in channel 66.


In an exemplary embodiment of the present invention, the injection tube 96 with a tube wall 90 having a width such that the wall will expand slightly when an appropriate operating pressure is applied internal of wall 90 in tube channel 95. Such slight expansion creates a seal between the exterior surface 43 of tube wall 90 and the interior surface 93 of power shaft 30 that defines channel 66.


In an exemplary embodiment, the tube wall 90 is provided with a slight flare proximate its lower end 64 to enhance sealing of tube wall 90 and the interior surface 93. A preferred flare angle is up to five degrees outwardly from the tube wall segment that is not flared.


In summary, the power shaft assembly 36 is fixedly attached to the drill bit 20. Power shaft assembly 36 is rotatable within control sleeve 12. A blind annular space 55 is defined between power shaft 30 and control sleeve 12.


In operation, jet motor 10 of the present invention is attached to a drill string or tube (not shown). A fluid (drilling fluid or gas) is introduced into the drill string or tube at determined pressures. Pressure is applied to the fluid forcing the fluid through aligned channels 72, 95, 66 and 22. The fluid is forced through drive nozzles 52, rotation nozzles 26 and cutting nozzles 28. The pressure from the fluid in channels 66 and 22 is greater than the ambient downhole pressure. Differential pressure at rotation nozzles 26 and drive nozzles 52 create rotational torque on the drill bit 20 and power shaft 30.


Importantly, the proximity of inner surface 34 of control sleeve 12 provides a surface that is stationary relative to power shaft 30. The expansive force of the fluid escaping drive nozzles 52 impinging surface 34 enhances the rotational torque on power shaft 30.


Gap 49 may be determined to provide desired reactive force of fluid expelled through drive nozzles 52 at inner surface 34. In addition, the force of the drilling fluid may be manipulated in order to control the thrust of the drilling fluid against the sleeve inner surface 34 through the drive nozzle 52 thereby controlling the rotation of the power shaft 30 and the drill bit 20.


As the drive nozzles 52 are located intermediate opening 54 of annular space 55 and upper end 45, fluid forced out of drive nozzles 52 is forced out of opening 54, thereby continually washing annular space 55 and preventing accumulation of debris in annular space 55.



FIG. 7 depicts an alternative exemplary embodiment wherein four drive nozzles 52 are located on power shaft 30 in order to increase the amount of fluid expelled through the drive nozzles 52. Drive nozzles 52 are depicted as symmetrically situated opposing pairs with respect to each other. Drive nozzles 52 may also be situated asymmetrically or in any combination of the two.


In an exemplary embodiment, an appropriate gas, such as nitrogen, may be utilized as the fluid medium. The construction of the present invention, particularly the construction of injection tube wall 90 with expansion capability upon application of appropriate fluid pressure in tube channel 95 together with fit of exterior surface 43 of tube wall 90 and the interior surface 93 of power shaft 30 allows the creation of an effective seal even though the fluid is a gas.


The exemplary embodiment providing a flared lower end 64 of tube wall 90 provides an effective seal at interior surface 93 as internal fluid pressure is applied at the open end of lower end 64.


A method of use may include a providing step comprising providing a control sleeve 12 with an independently rotatable power shaft 30 disposed therein. Wherein the power shaft 30 has at least one opening 52 in the shaft wall, and wherein the opening axis D of the at least one opening 52 in the shaft wall is acutely oriented with respect to a plane extending through the central longitudinal shaft axis AA when the plane intersects the opening axis D at the interior opening 57. An introducing step comprising introducing a fluid under pressure to the rotatable power shaft 30 such that the fluid is forced through the at least one opening 52.


A method of use may include a providing step comprising providing a power shaft 30, the power shaft 30 has an upper end 80 and a lower end 18 and is functionally attached to a drill bit 20 at the lower end 23. The drill bit has a cylinder wall 27 and a longitudinal drill bit axis AA, with at least one drill bit opening 26, having an opening axis N and an interior opening 29, in the cylinder wall 27. The drill bit opening 26 is acutely oriented in relation to the direction of the upper end 80 of the power shaft 30, and the opening axis is acutely oriented with respect to a plane passing through the drill bit axis N at the interior opening 29. An introducing step comprising introducing a fluid under pressure to the rotatable power shaft 30 such that the fluid is forced through the at least one drill bit opening 26.


In the aforementioned methods, the fluid may be a gas. The gas may be nitrogen.


The foregoing description of the invention illustrates a preferred embodiment thereof. Various changes may be made in the details of the illustrated construction within the scope of the appended claims without departing from the true spirit of the invention. The present invention should only be limited by the claims and their equivalents.

Claims
  • 1. An apparatus comprising: a control sleeve;a power shaft;said power shaft at least partially surrounded by said control sleeve;said power shaft rotatable in relation to said control sleeve;said power shaft having a shaft wall;said power shaft having an interior power shaft channel;at least one opening provided in said shaft wall;said at least one opening in fluid communication with said shaft channel;said at least one opening in said shaft wall having an interior opening and an opening axis;said power shaft having a central longitudinal shaft axis and an upper end and a lower end; andsaid opening axis of said at least one opening in said shaft wall acutely oriented with respect to a plane extending through said central longitudinal shaft axis wherein said plane intersects said opening axis at said interior opening.
  • 2. An apparatus comprising: a power shaft;a drill bit operationally connected to said power shaft;said drill bit having a cylinder wall;said drill bit having a longitudinal drill bit axis;at least one drill bit opening provided in said cylinder wall;said at least one drill bit opening having an opening axis;said opening axis acutely oriented in relation to the direction of the upper end of said power shaft;said at least one drill bit opening having an interior opening; andsaid opening axis acutely oriented with respect to a plane passing through said drill bit axis at said interior opening.
  • 3. A method comprising: providing a control sleeve with an independently rotatable power shaft disposed therein, wherein said power shaft has a shaft wall, a central longitudinal shaft axis, and an upper end and a lower end, and wherein said power shaft has at least one opening in said shaft wall having an interior opening and an opening axis, wherein said opening axis of said at least one opening in said shaft wall is acutely oriented with respect to a plane extending through said central longitudinal shaft axis wherein said plane intersects said opening axis at said interior opening; andintroducing a fluid under pressure to the rotatable power shaft such that the fluid is forced through said at least one opening.
  • 4. A method comprising: providing a control sleeve with an independently rotatable power shaft disposed therein, wherein said power shaft has an upper end and a lower end and is functionally attached to a drill bit at said lower end of said power shaft, and wherein said drill bit has a cylinder wall and a longitudinal drill bit axis, with at least one drill bit opening, within said cylinder wall, having an opening axis and an interior opening, wherein said drill bit opening is acutely oriented in relation to the direction of the upper end of said power shaft and said opening axis is acutely oriented with respect to a plane passing through said drill bit axis at said interior opening; andintroducing a fluid under pressure to the rotatable power shaft such that the fluid is forced through said at least one drill bit opening.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Ser. No. 11/693,568, filed on Mar. 29, 2007 in the United States Patent and Trademark Office, and claims the benefit of U.S. Provisional Ser. No. 60/787,906 filed on Mar. 31, 2006 in the United States Patent and Trademark Office, which applications are both incorporated herein by reference as if reproduced in full below.

Provisional Applications (1)
Number Date Country
60787906 Mar 2006 US
Continuations (1)
Number Date Country
Parent 11693568 Mar 2007 US
Child 12631560 US