The present invention relates to toilets that flush without requiring an elevated water tank positioned above the toilet bowl, or a flapper flush valve positioned between an elevated water tank and the toilet bowl.
Most conventional residential toilets make use of an elevated supply of water in a tank mounted above the toilet bowl. To flush the toilet, the user actuates a lever or button which releases the elevated water into the toilet bowl under the force of gravity. However, such elevated toilet tanks are bulky and unattractive, and are prone to leak risks. Therefore, a need exists for a toilet that flushes without requiring an elevated tank, and which is also suitable for both residential and commercial use.
Additionally, in recent years water conservation has become more important to many people and municipalities. In fact, many jurisdictions have laws limiting the amount of water that can be used per toilet flush. Also in response to the need for water conservation, dual flush toilets have been developed. In a dual flush toilet, there are two user-selectable flush sizes. A small flush is used to dispose of liquid waste. A large flush is used to dispose of solid waste. Preferably, the desired toilet would also be suitable for use with dual flush technologies. Importantly, water conservation includes both changing flush sizes and prevention of leak failures. Therefore, it is also desirable to provide a “flapperless” toilet since toilet flappers are prone to wear out and are also sensitive to harsh chemicals and grey water. As such, the elimination of the flapper valve is very desirable to reduce both the service expense and inconvenience of this messy and time-consuming replacement.
The present invention provides a toilet flushing system that requires no elevated water tank positioned above and behind the toilet bowl as seen in conventional gravity powered toilets. However, the present flush system offers many additional benefits and can optionally be used to replace a conventional flush system in a regular toilet as well.
In one preferred aspect, the present invention provides a jet powered toilet flushing system. This system comprises: (a) a toilet bowl; (b) a reservoir; (c) a fluid conduit between the reservoir and the toilet bowl; (d) a jet inside the reservoir, the jet having a nozzle directed toward an entrance of the fluid conduit; (e) a fill valve that supplies water to the jet; and (f) a flow diverter in the reservoir. The flow diverter in the reservoir is preferably positioned to divert water flow either: (i) from the jet nozzle into the entrance of the fluid conduit when the reservoir is full, or (ii) from the jet nozzle away from the entrance of the fluid conduit and into the reservoir when the reservoir is empty.
The jet nozzle is preferably positioned in the water reservoir below the mid-section of the fluid conduit. In operation, the passage of water from the jet nozzle into the entrance of the fluid conduit draws surrounding water from the reservoir into the fluid conduit as well. As a result, this creates a “siphon effect” wherein the fluid flow siphons water from the reservoir through the fluid conduit and into the toilet bowl (thereby flushing the toilet bowl).
An important novel feature of the present invention is its flow diverter. The flow diverter automatically directs fluid flow in one of two paths. Prior to a flush (i.e.: when the reservoir is full), flow from the jet nozzle is sent directly into the fluid conduit. This causes the contents of the reservoir to be siphoned into the toilet bowl, flushing the toilet bowl.
After a flush the water in the reservoir is substantially emptied. At this time, the water level in the reservoir drops to a low level such that the flow diverter then automatically blocks the flow of water shooting from the jet nozzle into the fluid conduit. This is done by blocking the entrance of the fluid conduit. Since no water is jetting into the fluid conduit entrance, the “siphon effect” is stopped. Therefore, the water in the reservoir does not drain into the toilet bowl. As a result, the flow of water simply passes into the reservoir itself, refilling the reservoir.
In preferred embodiments, the flow diverter comprises a float and a moveable gate. The float lifts the moveable gate away from a fluid path from the jet nozzle into the entrance of the fluid conduit when the reservoir is full (i.e.: prior to a flush). Similarly, the float lowers the moveable gate down into a fluid path from the jet nozzle into the entrance of the fluid conduit after the reservoir has been emptied (i.e.: immediately after the flush).
In further preferred embodiments, water flow from the jet nozzle is directed onto the moveable gate to keep the moveable gate in a lowered position blocking the entrance of the fluid conduit even after the reservoir has been substantially or fully refilled following a flush. Finally, when the reservoir has been fully refilled, the fluid flow out of the jet nozzle stops. Thus, there is no longer a fluid flow pressure holding the moveable gate down in its lowered position. At this time, the float on the diverter will then lift the gate, opening the entrance to the fluid conduit. As a result, the toilet is “reset” and ready for the next flush.
In preferred embodiments, the fill valve comprises a fill valve float. When the fill valve float is lowered in position, the fill valve supplies water into the jet. This fill valve float may optionally be lowered in one of two ways. First, it may be lowered when the water level in the reservoir drops immediately after a flush. Thus, the reservoir will automatically refill after water has been siphoned out of it and into the toilet bowl. Secondly, the float may be manually lowered in position by a user to initiate a flush. Specifically, manually pushing down on the float will cause water to flow to the jet—which will in turn cause the water in the reservoir to be siphoned into the toilet bowl (as explained above). Once flow to the jet is initiated, the water level in the reservoir becomes lower allowing the weight of the float to keep the fill valve open during the flush. In one optional embodiment, the reservoir has a narrowed top portion, and the fill valve float is positioned within the narrowed top portion of the reservoir to facilitate this action.
A first advantage of the present invention is that a single water supply line into the reservoir is used both to initiate jet siphon flow (i.e.: flushing the toilet bowl) and to refill the reservoir after a flush. In contrast, existing jet flow systems use one line to initiate a jet siphon flow and separate input flow line to refill the tank. As a result, these existing jet flow systems also require many additional controls and valves to operate.
A second advantage of the present invention is that it avoids the flexible flapper valve that commonly separates an elevated toilet water tank from the toilet bowl below. Flexible flapper valves are typically the weakest part of a toilet system and are therefore the most prone to malfunction (causing water to leak from the toilet tank down into the toilet bowl). As a result, the flapper valve is typically the first part of the toilet system to be replaced.
A third advantage of the present system is that it conserves water since tank-to-bowl water leakage is completely avoided (as there is no elevated tank sitting above the bowl and thus no flapper valve separation of the tank and bowl).
A fourth advantage of the present system is that it is easy to install, maintain and operate, and can be used with different bowl sizes and geometries. The present system has few moving fluid parts than conventional elevated tank toilets and is thus better adapted to harsh water conditions due to chemicals or even grey water reuse. Lastly, other advantages of the present invention are that it provides a very consistent flush; and it is durable and long lasting.
Exemplary embodiments of the inventions are described below. The figures are not necessarily drawn to scale and do not necessarily show every detail or structure of the various embodiments of the inventions, but rather illustrate exemplary embodiments and mechanical features in order to provide an enabling description of such embodiments.
Referring first to
A water supply system 50 is also provided. In accordance with the present invention, water supply system 50 is used both to refill the water in reservoir 20 after a flush, and also to initiate a flush when reservoir 20 is full. Water supply system 50 comprises a single water flow line inlet 52 connected to fill valve 54. When fill valve 54 is open, water flows from water inlet 52 through fill valve 54 and out of jet nozzle 56. Fill valve 54 further comprises a float 58. When float 58 is lowered in position, fill valve 54 is opened (thereby supplying water to nozzle 56).
Jet nozzle 56 is directed toward entrance 42 of fluid conduit 40. Thus, when fill valve 54 is opened, water will shoot out of nozzle 56 directly into entrance 42 of fluid conduit 40. As will be explained, the water passing from jet nozzle 56 into entrance 42 of fluid conduit 40 will pull surrounding water in reservoir 20 into fluid conduit 40. This will siphon water from reservoir 20 through fluid conduit 40 and into toilet bowl 30, flushing the bowl.
A flow diverter 60 is located in the reservoir. Flow diverter 60 optionally comprises a float 62 and a moveable gate 64. As will be explained by viewing
Referring first to
Next, in
As seen in
Finally, as seen in
As a result, as seen in
Finally, after tank 20 has been refilled, fill valve float 58 will be raised by the water level to a position where it shuts off water flow to nozzle 56. As that time, the stream of water shooting from nozzle 56 onto moveable gate 64 will stop. As a result, moveable gate 64 will no longer be held down in its lowered position. Rather, float 62 will lift moveable gate 64 back up to the position as initially shown in
As seen in
In alternate embodiments, there may be more than one jet nozzle pointed into the mouth of the fluid conduit (to increase the total kinetic energy of the water that shoots over the U-shaped fluid conduit to initiate the flush).
In preferred embodiments, spillway 46 is positioned above the bowl rim to prevent water from the bowl flowing back into the reservoir. In other alternate embodiments, fluid conduit 40 may also have a one-way valve to prevent reverse siphoning (“suck back”) from toilet bowl 30 into reservoir 20.
Lastly,
In contrast,
Various modifications and alterations of the inventions will become apparent to those skilled in the art without departing from the spirit and scope of the inventions, which are defined by the accompanying claims. For example, the type of flush actuator used may vary widely, and may be mounted in a wide variety of locations including on top of the tank, on the side of the tank, a foot activated actuator on the floor, or a hand activated actuator mounted on the wall behind the toilet and substantially above the toilet. The accompanying claims should be constructed with these principles in mind.
Any element in a claim that does not explicitly state “means for” performing a specified function or “step for” performing a specified function is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. §112, ¶6.
The present application claims priority to provisional patent application Ser. No. 61/182,742 filed May 31, 2009, entitled “Tankless Flush Systems for Toilets,” which is incorporated by reference into the present application as if set forth verbatim.
Number | Name | Date | Kind |
---|---|---|---|
665825 | Carroll | Jan 1901 | A |
1232767 | Camfield et al. | Jul 1917 | A |
1839424 | Tracey | Jan 1932 | A |
3345648 | Rafferty | Oct 1967 | A |
3851338 | Roosa | Dec 1974 | A |
4034423 | Milnes | Jul 1977 | A |
4170048 | Anthony | Oct 1979 | A |
4408361 | Rozek | Oct 1983 | A |
4918763 | Brotcke | Apr 1990 | A |
5033129 | Gajewski | Jul 1991 | A |
5036553 | Sanderson | Aug 1991 | A |
5274855 | Franck, III | Jan 1994 | A |
5305475 | Jaeckels et al. | Apr 1994 | A |
5363513 | Blankenburg | Nov 1994 | A |
5381561 | Carson, III | Jan 1995 | A |
5502845 | Hayashi et al. | Apr 1996 | A |
5515556 | Johnson | May 1996 | A |
5579542 | Hayman | Dec 1996 | A |
5666675 | Rüegg | Sep 1997 | A |
5729837 | Jaeckels et al. | Mar 1998 | A |
5857224 | Oberg et al. | Jan 1999 | A |
5867844 | Jaeckels et al. | Feb 1999 | A |
5887294 | Yeung | Mar 1999 | A |
5913611 | Jaeckels et al. | Jun 1999 | A |
6029287 | Ge et al. | Feb 2000 | A |
6115853 | Shibata et al. | Sep 2000 | A |
6145138 | Nakamura et al. | Nov 2000 | A |
6360378 | Martin | Mar 2002 | B2 |
6367095 | Hubatka et al. | Apr 2002 | B2 |
6502251 | Teshima et al. | Jan 2003 | B1 |
7010816 | Li | Mar 2006 | B2 |
7159251 | Hennessy | Jan 2007 | B2 |
7171701 | Kuster et al. | Feb 2007 | B2 |
20070113331 | Prokopenko | May 2007 | A1 |
Number | Date | Country |
---|---|---|
10-131257 | May 1998 | JP |
2004-156382 | Jun 2004 | JP |
Entry |
---|
PCT Written Opinion and International Search Report, Jul. 13, 2010. |
Number | Date | Country | |
---|---|---|---|
20100299824 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61182742 | May 2009 | US |