Some inkjet printers deposit drops of ink on a print substrate through an array of holes, also referred to as nozzles. In some printers, the ink is routed from an ink reservoir to the nozzles through a series of manifolds and chambers formed by stacking multiple plates into what is sometimes called a jet stack. Some printers attach the ink reservoir to the jet stack by using gaskets around ports from the reservoir to the jet stack. These are then compressed and the jet stack is clamped the stack in place using top and bottom clips and fasteners such as screws to form a joint.
Completed print heads have a stringent flatness requirement. The flatness of this joint depends upon the quality of the incoming parts in order to meet these requirements. The incoming parts subsequently have high tolerance requirements. This increases the costs of the print head as well as the likelihood of a system failure if the tolerances are not met.
In prior implementations, the jet stack is bonded to a surface of the external manifold. For purposes of the discussion here, the jet stack side of the external manifold will be referred to as the front side. The external manifold is pressed against the reservoir and compresses gaskets to form a seal. In these prior implementations, the manifold and reservoir surfaces in contact must meet strict flatness requirements. Each piece in the assembly must meet the production requirements in order for the assembly to meet the flatness requirements. Otherwise, the pieces become waste. This raises the costs of the resulting print head.
In the implementation of
In the embodiments discussed here, the jet stack has an external manifold, and the reservoir consists of front and back plates at either side of the reservoir tank plate. These elements of the particular embodiments are not necessarily needed to implement the invention as claimed here. The embodiments here provide examples of a fluid dispensing assembly using a jet stack coupled to an ink reservoir, with a merge joint somewhere between the jet stack and the reservoir.
The various plates are assembled into a print head assembly using a merge fixture that allows the plates to have the correct registration and conform to the needed flatness.
The process first places and secures the jet stack 10 down against the flat base plate 60. It next dispenses the adhesive into the moat channels on the back side of the manifold plate 14. The reservoir is then placed onto the spring loaded pins such as 62, which locate the reservoir in x and y relative to the jet stack, but keep the reservoir above contacting the adhesive. Next is to clamp the upper plate which sets the z-distance from the back of the ball nose pins such as 66 of the reservoir to the front face plate of the jet stack. It is during this step that the protrusions on the front side of the reservoir are pressed into the adhesive to form a seal. This entire assembly fixture may then be heated up or otherwise treated to cure the adhesive. Heating the entire fixture may involve placing it into an oven. Alternatively, each piece could be heated using their own heaters. Curing may also occur by ultraviolet curing of a UV curable adhesive. However, there may be regions of the adhesive not reachable by the light.
The channels form a moat within which there is no contact between the reservoir and the manifold within the moat. Further, the adhesive fills the moat within the channels to create a structural bond between the reservoir and the jet stack, as well as to create a sealed ink path.
In the embodiments here, the plates are typically metal. However, the plates may be made of any suitable materials such as metal, ceramics, hardened polymer, etc. Similarly, the adhesive is any appropriate curable adhesive. The adhesive should have some measure of compliance to allow the pieces to adjust as they are merged and be curable with an appropriate level of hardness and able to withstand the thermal cycling that occurs during print head operation. Similarly, the reservoir does not necessarily need to have two plates but may consist of one piece or multiple pieces.
By using a fixture to set relative location of the jetstack to the reservoir, and an adhesive to secure this location, it is possible to relax individual part/sub-assembly tolerances, and eliminate gaskets and parts required to clamp the gaskets to form a seal. The adhesive being compliant to withstand relative motion due to thermal gradients, and still strong enough to create a structural bond and maintain a sealed fluid path between the reservoir and jetstack.
It will be appreciated that several of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4678529 | Drake et al. | Jul 1987 | A |
5388326 | Beeson | Feb 1995 | A |
7600863 | Brick | Oct 2009 | B2 |
8523334 | Tomlin | Sep 2013 | B2 |
20020101487 | Petersen | Aug 2002 | A1 |
20050206686 | Hirano | Sep 2005 | A1 |
20080259121 | Stevenson | Oct 2008 | A1 |
20090303288 | Nakajima | Dec 2009 | A1 |