This application is a National Stage Patent Application of PCT International Patent Application No. PCT/JP2015/005381 (filed on Oct. 27, 2015) under 35 U.S.C. § 371, which claims priority to Japanese Patent Application No. 2015-058202 (filed on Mar. 20, 2015), which are all hereby incorporated by reference in their entirety.
The present invention relates to jib connection structures, and more specifically, to a connection structure between a boom leading end and a jib base end.
Patent Literature (hereinafter, referred to as “PTL”) 1 discloses a jib connection structure composed of a jib connection shaft projecting in both lateral directions of a boom leading end and jib base end engagement portions provided at a bifurcated jib base end. The jib base end engagement portions are U-shaped and can be engaged with the jib connection shaft. The jib base end engagement portions can be connected to the jib connection shaft by engaging the jib base end engagement portions with the jib connection shaft and inserting pins into through holes in leading ends of the jib base end engagement portions.
For a jib projection operation, a boom is firstly slightly extended, the jib is then moved to a lower holding position of the boom, and the boom is fully retracted. The jib connection shaft is thereby fitted into the jib base end engagement portions. Subsequently, pins are inserted into through holes in the jib base end engagement portions to connect the jib base end engagement portions to the jib connection shaft. Subsequently, the boom is elevated up, so that the jib is suspended from the boom leading end. Lastly, the jib is projected, by exerting tension on a tension rod.
In the meantime, a wire telescoping mechanism is known as a telescoping mechanism of a boom (see, for example, PTL 2). When the wire telescoping mechanism is adopted, simultaneous extension or retraction of a multi-section boom is possible by means of telescopic motion of one hydraulic cylinder. In the wire telescoping mechanism, when for some reasons the balance of the tension between each wire for extension and retraction of the boom is disturbed, the so-called natural extension may sometimes occur in which the boom is not fully retracted despite that the hydraulic cylinder is fully retracted, or in which the boom unexpectedly extends after having been retracted. When the boom naturally extends, there is a problem that a pin interferes with a jib connection shaft and cannot be inserted, so that jib base end engagement portions cannot be connected to the jib connection shaft.
Against this problem, it may be considered to allow clearance between the pin and the jib connection shaft in anticipation of natural extension of the boom. However, an operation in a state where a jib is projected may sometimes cause force acting in a lateral direction on the jib. In this case, there is a problem that the jib swings sideways when the clearance between the pin and the jib connection shaft is too large.
it is therefore an object of the present invention to provide a jib connection structure capable of connecting jib base end engagement portions to a jib connection shaft even when a boom naturally extends, and restraining a jib from swinging sideways in a state where the jib is projected.
A jib connection structure of a first aspect of the present invention is a connection structure between a leading end of a boom and a base end of a jib, the connection structure including a jib connection shaft horizontally projecting in both lateral directions of the leading end of the boom; and jib base end engagement portions provided at respective ends of the bifurcated base end of the jib, in which: the jib base end engagement portions are U-shaped into which the jib connection shaft is allowed to be fitted, and include insertion holes for insertion of pins, the pins being intended for preventing slipping off of the jib connection shaft; the insertion holes in one of the jib base end engagement portions is placed laterally outwardly from a U-shaped bottom portion; and the laterally outwardly placed insertion holes are located at a position at which a gap is formed between the inserted pin and the jib connection shaft in a state where the jib connection shaft is fitted into the jib base end engagement portions and a leading end of the jib is placed laterally from the boom, and at which the gap between the inserted pin and the jib connection shaft becomes narrower in a state where the jib is projected.
A jib connection structure of a second aspect pf the present invention is a connection structure between a leading end of a boom and a base end of a jib, the connection structure including a jib connection shaft horizontally projecting in both lateral directions of the leading end of the boom; and jib base end engagement portions provided at respective ends of the bifurcated base end of the jib, in which: the jib base end engagement portions are U-shaped into which the jib connection shaft is allowed to be fitted, and include insertion holes for insertion of pins, the pins being intended for preventing slipping off of the jib connection shaft; and the insertion holes in one of the jib base end engagement portions are placed laterally outwardly from a U-shaped bottom portion, and a distance between said insertion holes and said bottom portion in a direction along a central axis of the jib is substantially the same as an outer diameter of the jib connection shaft.
According to the first and/or the second aspect(s) of the invention, when the jib base end engagement portions are connected to the jib connection shaft, the gap is formed between the pin and the jib connection shaft; therefore, even when the boom naturally extends, the jib base end engagement portions can be connected to the jib connection shaft. Further, when the jib is projected, the gap between the pin and the jib connection shaft becomes narrower. Therefore, the jib can be restrained from swinging sideways.
In the following, an embodiment of the present invention will be described with reference to the drawings.
A jib connection structure according to one embodiment of the invention is applied, for example, to mobile crane C as illustrated in
(Mobile Crane)
To begin with, the basic structure of mobile crane C will be described.
Reference numeral 11 in
Boom 14 is attached to slewing base 12 such that boom 14 can be freely elevated and lowered. A base end of boom 14 is pivotally supported by a pin on slewing base 12. A boom elevating cylinder is attached between boom 14 and slewing base 12. Boom 14 is elevated when the boom elevating cylinder is extended, and lowered when the boom elevating cylinder is retracted.
Boom 14 is a multi-section boom configured to be telescopic, and extends and retracts by a telescopic cylinder. A telescoping mechanism of boom 14 is a wire telescoping mechanism. The wire telescoping mechanism is a mechanism which is composed of a telescopic cylinder and wires for extension and retraction of a boom, and is configured to transmit telescopic motion of the telescopic cylinder to each tubular section of boom 14 by means of the wires for extension and retraction of the boom. The telescopic motion of the hydraulic cylinder allows simultaneous extension or retraction of the multi-section boom. In the wire telescoping mechanism, when for some reasons the balance of the tension between each wire for extension and retraction of the boom is disturbed, the so-called natural extension may sometimes occur in which the boom is not fully retracted despite that the hydraulic cylinder is fully retracted, or in which the boom unexpectedly extends after having been retracted.
A wire rope provided with a hook (not illustrated) is suspended from leading end 14a of boom 14, and is guided along boom 14 to slewing base 12 and wound around a winch. The winch is driven to rotate forward and reverse by a hoist motor, to wind up and pay out the wire rope, thereby allowing the hook to be moved up and down.
Combination of slewing of slewing base 12; elevating, lowering, extending, and retracting of boom 14; and moving up and down of the hook allows loading and unloading in a three-dimensional space.
Further, mobile crane C is provided with jib 15. Jib 15 as a whole is an elongated bar member, base end 15a of which is bifurcated. Jib 15 is employed for achieving a lifting height and/or operating radius still greater than a lifting height and/or operating radius of the boom length of fully extended boom 14. When jib 15 is not used, jib 15 is stowed along a side of boom 14 (see
(Jib Connection Structure)
In the following, the jib connection structure of the embodiment will be described.
The jib connection structure of the embodiment is a structure for connecting leading end 14a of boom 14 (hereinafter referred to as “boom leading end 14a ”) to base end 15a of jib 15 (hereinafter referred to as “jib base end 15a ”) in mobile crane C as described above.
As illustrated in
As illustrated in
As illustrated in
Insertion holes 31h are formed in leading ends of the pair of arms 31a. Jib connection shaft 21 is prevented from slipping off by fitting jib connection shaft 21 into jib base end engagement portion 31 and inserting pin 33 into insertion holes 31h. Jib base end engagement portion 31 can thus be connected to jib connection shaft 21.
As illustrated in
Sides of arms 32a are each provided with extension plates 32c, with extension plates 32c projecting outwardly. These extension plates 32c are provided with insertion holes 32h. Jib connection shaft 22 is prevented from slipping off by fitting jib connection shaft 22 into jib base end engagement portion 32 and inserting pin 34 into insertion holes 32h. Jib base end engagement portion 32 can thus be connected to jib connection shaft 22.
As illustrated in
In the meantime, jib 15 is supported by a base end boom and jib connection shafts 21, 22 are fixed to a leading end boom. Accordingly, when boom 14 naturally extends, the position of jib 15 remains unchanged and jib connection shafts 21, 22 move in the direction of the boom leading end. As a result, jib connection shaft 22 moves toward pin 34. Normally, when boom 14 naturally extends in a case where there is no gap between pin 34 and jib connection shaft 22, pin 34 interferes with jib connection shaft 22 and cannot be inserted into insertion holes 32h. Jib base end engagement portion 32 thus cannot be connected to jib connection shaft 22.
In contrast, in the embodiment, when jib base end engagement portion 32 is connected to jib connection shaft 22, gap d1 is formed between pin 34 and jib connection shaft 22. Accordingly, when it is within the range of gap d1 that boom 14 naturally extends, pin 34 can be inserted into insertion holes 32h without interfering with jib connection shaft 22 and jib base end engagement portion 32 can be connected to jib connection shaft 22.
As illustrated in
In a state where jib 15 is projected, gap d2 between pin 34 inserted into insertion holes 32h and jib connection shaft 22 becomes narrower than in the case of the offset placement (d1). This is because, when jib 15 is projected, jib 15 that has been in the offset placement rotationally moves in the counterclockwise direction in
An operation in a state where jib 15 is projected, for example slewing with a load being suspended causes force acting on jib 15 in a lateral direction. In this case, when clearances between pins 33, 34 and jib connection shafts 21, 22 are too large, jib 15 swings sideways.
In contrast, in the embodiment, insertion holes 32h are placed in the position as described above; therefore, pin 34 is in contact with jib connection shaft 22 or there is a small clearance between pin 34 and jib connection shaft 22. That is, jib connection shaft 22 is brought into a state where jib connection shaft 22 is held between bottom portion 32b of jib base end engagement portion 32 and pin 34 and is supported from the front and rear. As a result, rotational movement of jib 15 in the counterclockwise direction in
As described above, when jib 15 is projected, the gap between pin 34 and jib connection shaft 22 becomes narrower; therefore, the jib can be restrained from swinging sideways. In the meantime, rotational movement of jib 15 in the clockwise direction may be restrained by means of other mechanisms provided on jib connection shaft 21 and jib base end engagement portion 31 on the right side.
(Jib Projection Operation)
In the following, a jib projection operation be described.
(1) As illustrated in
(2) Firstly, boom 14 is slightly extended. Subsequently, jib 15 is moved to the lower holding position in which jib 15 is placed along the bottom of boom 14. Jib 15 is supported by first jib supporting member 16 and second jib supporting member 17. First jib supporting member 16 is provided with hydraulic cylinder 16a. Jib 15 can be turned to the lower holding position by extending hydraulic cylinder 16a. Boom 14 is then fully retracted. Accordingly, the state as illustrated in
(3) Pins 33, 34 are then inserted into insertion holes 31h, 32h. Jib base end engagement portions 31, 32 are thus connected to jib connection shafts 21, 22. Tension rod 15b provided on jib 15 is also connected.
At this stage, jib 15 is in the offset placement in which jib base end 15a is located at boom leading end 14a, and the leading end of jib 15 is located laterally from boom 14. As described above, gap d1 is formed between pin 34 and jib connection shaft 22. Accordingly, even when boom 14 naturally extends and is not fully retracted by the aforementioned operation of fully retracting the boom, pin 34 can be inserted into insertion holes 32h without interfering with jib connection shaft 22. That is, jib base end engagement portion 32 can be connected to jib connection shaft 22.
(4) Boom 14 is then elevated. Subsequently, when boom 14 is slightly extended, first jib supporting member 16 and second jib supporting member 17 are disconnected. Then, as illustrated in
(5) Tilt cylinder 15c is mounted on jib 15. A rod of tilt cylinder 15c is connected to tension rod 15b. When tilt cylinder 15c is extended, tension can be generated on tension rod 15b, and jib 15 can be projected forward from jib connection shafts 21, 22.
When jib 15 is projected, bottom portions 31b, 32b of jib base end engagement portions 31, 32 are brought into contact with jib connection shafts 21, 22. Accordingly, force acting on jib 15 is transmitted from bottom portions 31b, 32b of jib base end engagement portions 31, 32 to jib connection shafts 21, 22.
As illustrated in
(Jib Stowage Operation)
A jib stowage operation is carried out in a procedure reverse to the jib projection operation. In the jib stowage operation, pins 33, 34 are extracted from insertion holes 31h, 32h in a state where jib 15 is in the lower holding position and in the offset placement. Also in this case, because there is gap d1 formed between pin 34 and jib connection shaft 22, no frictional force acts between pin 34 and jib connection shaft 22, and pin 34 can be easily extracted.
Number | Date | Country | Kind |
---|---|---|---|
2015-058202 | Mar 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/005381 | 10/27/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/151648 | 9/29/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4106631 | Lundy | Aug 1978 | A |
4141455 | Henderson | Feb 1979 | A |
4155464 | Hogg | May 1979 | A |
7337912 | Hull | Mar 2008 | B1 |
20110147331 | Tanaka | Jun 2011 | A1 |
20180037446 | Harauchi | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
02-127693 | Oct 1990 | JP |
08-127494 | May 1996 | JP |
11-011878 | Jan 1999 | JP |
2006-264956 | Oct 2006 | JP |
2011-131975 | Jul 2011 | JP |
Entry |
---|
Jan. 19, 2016, International Search Report issued for related WO application No. PCT/JP2015/005381. |
Number | Date | Country | |
---|---|---|---|
20170305726 A1 | Oct 2017 | US |