The present invention relates to a jig assembly, and in particular, to a jig assembly which includes a universal joint to enable precise positioning relative to a work piece.
Various types of jig assemblies are currently known which are used to locate and hold work pieces and/or to guide cutting tools in the manufacture of various devices the servicing of machinery and other equipment, etc. In such applications, often the work to be held is of cumbersome size and/or weight and/or the work piece or tool is required to be provided in an awkward and/or fairly inaccessible location. Presently known jig assemblies usually comprise a movable frame (i.e. supported on wheels) with hydraulic cylinders attached to arms, wherein the ends of the arms may be located proximal to the work by activation of the hydraulic cylinders. A number of sequential operations often have to be performed to locate such a jig in the desired position. For example, when the jig needs to be moved to a different angular disposition, it is has to be separately moved, up or down, sidewards and also back or forth. Often, in the process of moving it closer in one dimension further disalignment in one or other of the other two dimensions occurs. Consequently, the separate movement in each dimension often has to be performed a number of times prior to the jig being provided in the desired location.
The present invention seeks to provide a jig assembly which overcomes the disadvantages of prior art jig assemblies.
The present invention seeks to provide a jig assembly which incorporates a universal joint in the head of the device such that alignment of the head to the desired work is enabled more expeditiously.
In one broad form, the present invention provides a jig assembly, including a frame supporting a head, characterized in that the head includes a universal joint for precise positioning to a work piece.
Preferably, the universal joint comprises a ball joint.
Alternatively, but also preferably, the universal joint comprises a pair of ball joints, a first of the ball joints being a load bearing ball joint and a second of the ball joints being a guide ball joint.
Most preferably, the ball joints is/are movable by actuation of one or more hydraulic cylinder or the like.
In a preferred form, the ball joints is/are supported by at least one arm extending from a main frame member.
Also preferably, movement of the universal joint and/or jig assembly is controlled from a remote position.
In a preferred embodiment, the present invention further includes a handling device for attachment to the jig assembly to enable full 3 dimensional rotations and translational control and the ability to tip a wheel motor or final drive on end for servicing or maintenance.
In one form, the handling device is a device to handle a type of earthmoving, mining, or like equipment.
In a further form, the handling device is a fork lift device.
In yet a further form, the handling device is a device for handling a front wheel hub of a mining, earthmoving, or like equipment.
In yet a further form, the handling device is a cylinder clamp.
In yet a further form, the handling device is a wheel motor handler for handling a wheel motor of a mining, earthmoving, or like equipment.
In a further broad form, the present invention provides an apparatus for handling heavy articles, including:
a mobile base frame for movement of said apparatus over a substrate surface;
a support frame extending upwards from said base frame;
first alignment means, to effect side-to-side alignment relative to said support frame, said first alignment means being formed of a plate member provided substantially parallel to and spaced apart from said support frame by a pair of interconnecting members, side-to-side alignment being effected by pivotal connections provided between said support frame, said plate member and said interconnecting members;
second alignment means, to effect vertical alignment relative to said first alignment means, said second alignment means being formed of a pair of outwardly extending arms pivotally connected to said plate member and also linked at their remote ends to form a parallelogram configuration; and,
having actuation means to effect pivotal rotation of said arms relative to said plate member; and,
a head supported by said second alignment means, the head including a universal joint or ball joint adapted to support said heavy article, the head able to be raised or lowered and be moved side-to-side while being maintained in vertical and horizontal alignment, the universal joint comprising a load bearing ball joint and a guide ball joint.
Preferably, the apparatus is as described above, wherein said plate member of said first alignment means is moved relative to said support frame by one of more hydraulic cylinder.
Also preferably, the apparatus is as described above, wherein:
vertical rotation of said head is effected by operation of a vertical rotation cylinder to cause rotation about the horizontal axis of said universal joint; and
horizontal rotation of said head is effected by operation of a horizontal rotation cylinder to cause rotation about the vertical axis of said universal joint.
Also preferably, the apparatus is as above, wherein movement of at least one of said universal joint and jig assembly is controlled from a remote position.
The present invention will become more fully understood from a following detailed description of a preferred by non-limiting embodiment thereof, described in connection with the accompanying drawings wherein:
a) shows the tilt function in a neutral position;
b) shows the tilt function in a rearward tilt position;
c) shows the tilt function in a forward tilt position;
d) shows the double parallelogram configuration;
a) shows the turn function in a neutral position;
b) shows the turn function in a right position;
c) shows the turn function in a left position'
d) shows an isometric view of the schematic control mechanism;
a) shows a perspective view of the rotation mechanism;
b) shows a front view of the rotation mechanism;
c) and 6(d) illustrate operation of the rotation mechanism;
a) shows an isometric view of a tire handler device connected to the head;
b) shows a front view of the tire handler device connected to the head;
c) shows a top view of the tire handler device connected to the head;
d) shows a side view of the tire handler device connected to the head;
a) shows an isometric view of a fork lift apparatus;
b) shows a front view of the fork lift apparatus;
c) shows a top view of the fork lift apparatus;
d) shows a side view of the fork lift apparatus in a lowered position;
e) shows a side view of the fork lift apparatus in an elevated position;
a) shows isometric view of a front wheel handling hub connected to the head;
b) shows a front view of the front wheel handling hub connected to the head;
c) shows a top view of the front wheel handling hub connected to the head;
d) shows a side view of the front wheel handling hub connected to the head;
a) shows an isometric view of a cylinder clamp attachment connected to the head;
b) shows a front view of a cylinder clamp attachment connected to the head;
c) shows a top view of a cylinder clamp attachment connected to the head;
d) shows a side view of a cylinder clamp attachment connected to the head;
a) shows an isometric view of a wheel motor handler attached to the apparatus;
b) shows an end view of a wheel motor handler attached to the apparatus;
c) shows a side view of a wheel motor handler attached to the apparatus;
d) shows the other side view of a wheel motor handler attached to the apparatus;
e) shows an isometric view of the wheel motor and associated handler base attached to the apparatus;
f) shows a side view of the wheel motor and associated handler base attached to the apparatus;
g) shows the other side view of the wheel motor and associated handler base attached to the apparatus;
h) shows an isometric view of the wheel motor handler device in an orthogonal direction connected to the apparatus;
i) shows a front view of the wheel motor handler device in an orthogonal direction connected to the apparatus;
j) shows a top view of the wheel motor handler device in an orthogonal direction connected to the apparatus, and
k) shows a side view of the wheel motor handler device in an orthogonal direction connected to the apparatus.
Throughout the drawings, like numerals will be used to identify similar features, except where expressly otherwise indicated.
As shown in the drawings, and in particular, in
The frame may include a platform like member 4 which may for example be provided on wheels, on a vehicle, or the like, such that it is optionally movable. The device may alternatively be attached to the front end of a loader. Supported on the platform 4 is an upward support frame 5. A first alignment means, to effect side-to-side alignment relative to the support frame 5, is attached thereto. The alignment means, generally designated by the numeral 21, includes a plate member 24 which remains substantially parallel to and spaced apart from the support frame 5 by a pair of interconnecting members 22 and 23. The members 22 and 23 are pivotally connected to the support frame 5 and plate member 24 parallel to the frame 5. Relative movement may be enabled by hydraulic cylinders 40 or the like. The upper end of the support member 24 has one or more arms 6 extending therefrom. The arms 6, in this case upper arms 7 and lower arms 8, are pivotally connected to the upright frame portion 5 at pivot points 9 and 10 respectively. Movement of the arms 7 and 8 may be effected by operation of one or more hydraulic cylinder such that the head 3 may be moved as desired and be precisely positioned in the transverse and longitudinal directions to be provided adjacent to a work piece, as required. The head comprises a main load bearing ball joint 11 and a guide ball joint 12 supporting the jig attachment 13. It will be understood that by movement of the ball joints 11 and 12, any desired positioning of the jig attachment 13 may be enabled three dimensionally by activation of appropriate cylinders. Details of the operation of cylinders which may be attached to the ball and socket joints are shown in
In
In
In
As shown in
This rotational movement is exemplified in
In
In
In
In
In
In
The advantage of the present invention is primarily achieved by use of one or more ball joints, as illustrated. Two joints are utilized in the present embodiment, one as the load bearing joint, and one as a guide. It will however be appreciated by persons skilled in the art, that these may be embodied in one universal joint. Other types of universal joint may be used, however, it is anticipated that a ball and socket type joint whereby a ball is embraced by spherical cup like device is the preferred type of universal joint to permit the required relative angular movement it any plane.
It will be appreciated that the present invention is particularly useful for holding tools, or for holding heavy and awkwardly positioned work pieces during repair/maintenance/installation.
While the present invention has been hereinbefore described with reference to a particular embodiment, it will be understood that numerous variations and modifications will be envisaged by persons skilled in art. All such variations and modifications should be considered to fall within the scope of the invention as broadly hereinbefore described and as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
PP4497/98 | Jul 1998 | AU | national |
This application is a continuation-in-part of Ser. No. 10/105,920, filed Mar. 25, 2002, now abandoned, which is a continuation-in-part of Ser. No. 09/342,613, filed Jun. 29, 1999, now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3893580 | Stevens | Jul 1975 | A |
4432252 | Brucher | Feb 1984 | A |
4617853 | Wagenseil et al. | Oct 1986 | A |
5498121 | Todo et al. | Mar 1996 | A |
5584646 | Lewis et al. | Dec 1996 | A |
6010294 | Lyddon | Jan 2000 | A |
6244643 | Tillaart | Jun 2001 | B1 |
20020150453 | Hedley et al. | Oct 2002 | A1 |
20040262474 | Boks et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
1017535 | Oct 1957 | DE |
3916086 | Nov 1989 | DE |
2203722 | Oct 1988 | GB |
3-128900 | May 1991 | JP |
1038219 | Aug 1983 | SU |
1186636 | Apr 1984 | SU |
Number | Date | Country | |
---|---|---|---|
20060171797 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10105920 | Mar 2002 | US |
Child | 11166847 | US | |
Parent | 09342613 | Jun 1999 | US |
Child | 10105920 | US |