The present exemplary embodiment relates to a job integrity and verification system. It finds particular application in conjunction within printing, and will be described with particular reference thereto. However, it is to be appreciated that the present exemplary embodiment is amendable to other like applications.
We propose a system, method, and apparatus to improve operational efficiency and reliability, job integrity management functions performed in document production shops. Sensing solutions play an important role in automating the job integrity functions. Our proposed solution incorporates a sensing solution which uses an inline spectrophotometer to read an invisible symbology placed on the cover of the book or specially designated job integrity sheet in order to enable customers to track printing jobs. We proposed to print coded information using invisible yellow patches. The present application offers a spectrophotometric solution for job integrity and output management applications with symbology printed using clear toner.
With reference to
With reference to
Such a system improves the operational efficiency and reliability, job integrity management functions are included in the document production shops. Sensing solutions play an important role in automating the job integrity functions.
With reference to
With respect to
The present application uses coded invisible yellow patches to code the information. The patches will be a digital count of around 10 (<4%). An embedded inline spectrophotometer (e.g., Xerox ILS) is proposed to measure the invisible patches to track and manage the complete finished job electronically. The Xerox inline spectrophotometer has capabilities to distinguish yellow patches that were invisible to human eye. The present application offers a spectrophotometric solution for job integrity and output management applications with symbology printed using clear toner.
The patches consist of a symbology, which is defined in the art as the use of symbol with a cultural significance or context to convey a message. Examples would be a barber shop pole, or a pedestrian crossing sign, while an example of a modern symbology would be the universal product bar code. A spectrophotometric device is a scanner which uses light to detect the presence or absence of a symbology, read the symbology, and interpret the meaning of the symbology through interface with a computer operable medium to determine a meaning of the symbology.
In an enterprise-wide production shop due to the nature of distributed infrastructure, printing process requires efficient management of printed outputs. All aspects of output management solution should be able to handle the process from a digital document from the point of creation to the point of delivery. For example, while printing books cover pages are often printed on a different/same printer at different time. They are sent to the finishing modules/stations for automatic binding with text pages. Often there is mismatch between the cover page and the text pages of the book. This can lead to loss of job integrity and hence increases waste. We propose an inline spectrophotometer based solution which used an invisible symbology on the cover of the book or specially designated job integrity sheet that customers want to track. We propose to print coded invisible yellow patches in a four color press such as, but not limited to, iGen3 engine, to code the information. The yellow patches selected are of a digital count of around 10 (<4%). An embedded inline spectrophotometer such as, but not limited to Xerox inline spectrophotometer, is proposed to measure the invisible yellow patches to track and manage the completely finished job electronically.
When a six color press becomes available, clear toner may be used as one of the separations. Although the clear toner is invisible to the human eye, sensitive spectrophotometers can measure the color difference between the media with clear toner patch.
This disclosure relates to extending the functionality of the ILS system for job integrity management function with invisible encoding information printed with clear toner. It refers to producing a pattern, such as patches, on a cover sheet such as book/magazine cover sheet or a job banner sheet, to track the job with spectrophotometric sensors. The present application proposes to put invisible characters on the cover page of the book/job that customers want to track as finished product. We propose to print coded invisible patches with clear toner with a digital count around 60% to 80% area coverage and use the inline/offline spectrophotometers to measure those invisible patches for further use in inline/offline finishing stations.
The curve line 710 shows color difference in CIELab space with respect to media white for six different patches created with clear toner at different area coverages. The curve line 720 is shown for Xerox inline spectrophotometer sensor. Points with ‘+’ represent 20 measurements for each patch. Clearly for patches between 60% to 100% area coverage, the deltaE signal is sufficient to distinguish between the no toner to toner patch. This information will be used to read the invisible symbology.
It will be appreciated that an additional embodiment of the present application would be to allow a surface such as a cover or a cover page to contain more than one patch and that a match among a plurality of patches might be required in order to perform a binding.
It will be appreciated that an additional embodiment of the present application would be to allow patches to be attached to more than a single cover and a single cover page. A single cover could be matched to a plurality of cover pages and a plurality of bound pages such that the resultant job would contain a single cover bound to a plurality of cover page bound sections.
It will be appreciated that an additional embodiment of the present application would be to allow multiple covers to be matched and bound to a single cover page bound pages or to allow multiple covers to be matched and bound to multiple cover page bound pages. Such bindings occur frequently in the magazine industry when special edition covers or advertisements are attached over the regular cover.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3676646 | Carlsen et al. | Jul 1972 | A |
4869532 | Abe et al. | Sep 1989 | A |
4970554 | Rourke | Nov 1990 | A |
5429468 | Kojima | Jul 1995 | A |
6039257 | Berson et al. | Mar 2000 | A |
6075888 | Schwartz | Jun 2000 | A |
6206358 | Yamaguchi et al. | Mar 2001 | B1 |
6762858 | Haro | Jul 2004 | B2 |
6775381 | Nelson et al. | Aug 2004 | B1 |
7413175 | Levine et al. | Aug 2008 | B2 |
20030189612 | Darby et al. | Oct 2003 | A1 |
20070145735 | Lawandy et al. | Jun 2007 | A1 |
20090040563 | Mestha et al. | Feb 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090296993 A1 | Dec 2009 | US |