The present invention relates to joined dissimilar materials. In one embodiment, the joined materials form a guide wire configured for intravascular use. For example, intravascular guidewires are used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient. Such guidewires are typically very small in diameter. In some applications, a guidewire can have multiple sections that are joined together in order to form a single wire. Joining sections of such a wire having a small diameter can be challenging, particularly where the sections being joined are configured of different materials. Because there are limitations to many present approaches, there is a need for the present invention.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
As used herein, the proximal section 12 and the distal section 14 can generically refer to any two adjacent wire sections along any portion of guidewire 10. Furthermore, although discussed with specific reference to guidewires, the wire segments can be applicable to almost any intravascular device. For example, they are applicable to hypotube shafts for intravascular catheters (e.g., rapid exchange balloon catheters, stent delivery catheters, etc.) or drive shafts for intravascular rotational devices (atherectomy catheters, IVUS catheters, etc.).
In one example, proximal section 12 can be configured of a relatively stiff material, such as stainless steel wire. Alternatively, proximal section 12 can be comprised of a metal or metal alloy such as a nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or other suitable material. In general, the material used to construct proximal section 12 can be selected to be relatively stiff for pushability and torqueability.
Also, in some embodiments, distal section 14 can be configured of a relatively flexible material, such as a super elastic or linear elastic alloy, wire, such as linear elastic nickel-titanium (NiTi), or alternatively, a polymer material, such as a high performance polymer. Alternatively, distal section 14 can be configured of a metal or metal alloy such as stainless steel, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or other suitable material. In general, the material used to configure distal section 14 can be selected to be relatively flexible for trackability.
In one embodiment, guidewire 10 is configured for intravascular use and can be used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient. Guidewire 10 is configured in a variety of sizes, and in one embodiment, its outer diameter ranges from about 0.005 to about 0.02 inches.
In one embodiment, first end 16a of joining section 16 is stainless steel and proximal section 12 is also stainless steel. Also, second end 16b of joining section 16 is nickel-titanium (NiTi) and distal section 14 is also nickel-titanium. In this way, first end 16a is readily weldable to proximal section 12 and second end 16b is readily weldable to distal section 14.
In one embodiment, first end 16a of joining section 16 is a metal or metal alloy such as nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or other similar material and proximal section 12 is of a highly similar material. Also, second end 16b of joining section 16 is made of a relatively flexible material, such as a super elastic or linear elastic alloy, and distal section 14 is of a highly similar material. In this way, first end 16a is readily weldable to proximal section 12 and second end 16b is readily weldable to distal section 14. Forming joining section 16, which is made of two different materials, can be accomplished in a variety of ways consistent with the exemplary embodiments.
In other embodiments, more or less layers can be used in order to more gradually or more steeply change the material content of joining section 16 from one of its end to the other. In the illustration, 11 layers are shown, but more or fewer layers can be used in accordance with various embodiments. Also, various other percentages of material changes can be used. In the illustrations, the percentages of material changes from one layer to the next are shown in increments of 10, but larger or smaller increments can be used in accordance with various embodiments.
In one embodiment, the layer sections of joining section 16 are formed via three-dimensional screen printing or Direct Typing Process (DTP). Three-dimensional screen printing, or DTP, is a known process for producing three-dimensionally shaped objects via a layering process. DTP uses to form a green compact by printing a liquefied metallic powder composition onto a substrate, and then repeating layer by layer until the green compact is obtained and the compact is sintered to a metal.
In one embodiment, a green compact is formed in order to make joining section 16. Initially, a metal-containing paste is mixed and then pressed through a sieve or mask. In one embodiment, the paste also contains an organic binder and a carrier liquid, for example, water. A first layer, such as layer 20, is printed by pushing the paste through a screen with a first print. In the first screen print, the metal-containing paste includes a first metal material and includes none of a second metal material. The first layer is then allowed to dry. A second layer is then printed on the first dried layer. Between the printing of the first and second layers, however, the composition of the paste is varied such that the amount of the first metal material is reduced and the amount of the second metal material is increased from none.
Each subsequent layer is then printed over the dried previous layer, gradually adjusting the composition of the metal-containing paste between each printing such that a gradient progressing from the first metal material to the second metal material is produced in the green compact. Subsequently, the green compact is debindered and sintered, whereby a joining section, such as joining section 16 of
In one embodiment, the individual printed layers of the green compact are on the order of 10-40 μm. As such, in one example, two or more layers may be printed before the composition of the paste is varied. In this way, a gradient progressing from the first metal material to the second metal material is still produced in the green compact, but each layer illustrated in
In one embodiment, the first material in the above-described three-dimensional screen printing or DTP is stainless steel and the second material is nickel-titanium. In another embodiment, first material is nickel-titanium and the second material is stainless steel. In other embodiments, still other materials can be used so that each end of the joining section 16 has a material composition that is compatible with the adjoining piece to which it will be connected or welded.
In one embodiment, first section 40 is metal, such as metal alloy, stainless steel, nickel, iron, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or other similar material and proximal section 12 is of a similar material. Also in one embodiment, second section 42 is made of a relatively flexible material, such as a super elastic or linear elastic alloy, and distal section 14 is of a similar material. In this way, first end 16a of first section 40 is readily weldable to proximal section 12 and second end 16b of second section 42 is readily weldable to distal section 14.
In one embodiment, when first section 40 is metal, such as metal alloy, stainless steel, nickel, iron, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or other similar material, one of these materials is dissolved in the electrolytic solution as positively charged ions.
In one embodiment, when section 42 is relatively flexible material, such as nickel-titanium (NiTi) or a super elastic or linear elastic alloy, one of these materials is dissolved in the electrolytic solution as positively charged ions.
In another embodiment, first section 40 can be formed by other means and then placed within mask 52 on conductive substrate 50. Then, second section 42 can be formed over first section 42 within mask 52 with an electrodeposition process using conductive substrate 50 as described above.
In one embodiment, first section 60 includes first extended portion 60a and second section 62 includes second extended portion 62a, which overlap along joint 65. As with above-described embodiments, either first or second section 60 or 62 can be electroplated first (or otherwise formed) and then the other section is electroplated on to the already formed section. Joint 65 is perpendicular to first and second ends 16a and 16b of joining section 16. In one example, having a feature such as joint 65 running perpendicular to ends 16a and 16b can provide increased holding force between first and second section 60 and 62 when there is significant pulling or torque applied to proximal section 12 and distal section 14, which are respectively coupled to ends 16a and 16b.
In one example, joining section 16 includes first section 70 and second section 72. First and second sections 70 and 72 are formed with an electrodeposition process as explained above. A conductive substrate 50 and mask corresponding to the shape of first and second sections 70 and 72 are used to electrodeposit one or both of first and second sections 70 and 72.
In one embodiment, first section 70 includes plug portion 70a and second section 72 is configured to receive plug portion 70a. As with above-described embodiments, either first or second section 70 or 72 can be electroplated first (or otherwise formed) and then the other section is electroplated on to the already formed section. In one example, having a features such as plug 70a formed within a receiving cavity of second section 72 can provide increased holding force between first and second section 70 and 72 when there is significant pulling or torque applied to proximal section 12 and distal section 14, which are respectively coupled to ends 16a and 16b.
Other configurations of joining section 16 are also possible in accordance with other embodiments and other electro-forming methods. In one embodiment, joining section 16 may be fabricated using LIGA or lithography and electroforming techniques. In one case, the LIGA process includes X-ray deep lithography, electroforming and molding.
In X-ray deep lithography, a polymer layer (resist) sensitive X-radiation is exposed to X-radiation by the shadow produced by an X-ray mask, which transfers to the resist an exact image of the absorber structures on the mask. The exposed areas are dissolved selectively by wet chemical methods. Somewhat complex or intricate configurations are possible using lithography techniques. When these polymer structures are produced on a metal starting layer, the structural areas exposed after the developing process can be filled up with various metals by electrodeposition. Once the metal is built up, the remaining resist is removed, and only the metal structures remain in place.
In other embodiments, EFAB® technology is used to create joining section 16. EFAB® technology is a known process for forming micro-structures by stacking a set of thin metal layers, somewhat similar to rapid prototyping technologies. The EFAB® process is driven by a three-dimensional CAD of the final device. The manufacturing starts with a blank substrate and then grows the device layer-by-layer by depositing and precisely planerizing metals. In one example, two metals are deposited (for example, one for the first section and one for the second section of a joining section). Somewhat complex or intricate configurations are possible using EFAB® processes.
In one embodiment illustrated in
In one embodiment illustrated in
In one embodiment illustrated in
In one embodiment illustrated in
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
2367206 | Davis | Jan 1945 | A |
3314583 | Roberts | Apr 1967 | A |
3612386 | Gibson et al. | Oct 1971 | A |
3691622 | Takagi et al. | Sep 1972 | A |
3769685 | Noda | Nov 1973 | A |
3897896 | Louw et al. | Aug 1975 | A |
4811887 | King et al. | Mar 1989 | A |
5368661 | Nakamura et al. | Nov 1994 | A |
5714103 | Bauer et al. | Feb 1998 | A |
6036725 | Avellanet | Mar 2000 | A |
6637642 | Lingnau | Oct 2003 | B1 |
6645159 | Burkett | Nov 2003 | B1 |
6648206 | Nelson et al. | Nov 2003 | B2 |
6779704 | Nelson et al. | Aug 2004 | B2 |
6875949 | Hall | Apr 2005 | B2 |
6877277 | Kussel et al. | Apr 2005 | B2 |
6918882 | Skujins et al. | Jul 2005 | B2 |
7074197 | Reynolds et al. | Jul 2006 | B2 |
7124929 | Nelson et al. | Oct 2006 | B2 |
7152776 | Nelson et al. | Dec 2006 | B2 |
7270257 | Steel et al. | Sep 2007 | B2 |
7277762 | Belden et al. | Oct 2007 | B2 |
7632237 | Murayama et al. | Dec 2009 | B2 |
20040039310 | Burkett | Feb 2004 | A1 |
20040167443 | Shireman et al. | Aug 2004 | A1 |
20050035173 | Steel et al. | Feb 2005 | A1 |
20050116012 | Packer et al. | Jun 2005 | A1 |
20050256563 | Clerc et al. | Nov 2005 | A1 |
20060047223 | Grandfield et al. | Mar 2006 | A1 |
20060122537 | Reynolds et al. | Jun 2006 | A1 |
20060204919 | Thiry | Sep 2006 | A1 |
20060237407 | Nguyen et al. | Oct 2006 | A1 |
20080009934 | Schneider et al. | Jan 2008 | A1 |
20080154152 | Satou et al. | Jun 2008 | A1 |
20080217055 | Gumley | Sep 2008 | A1 |
20110147080 | Slininger et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
0321796 | Jun 1989 | EP |
0566523 | Oct 1993 | EP |
0515201 | Sep 1997 | EP |
1178867 | Sep 2004 | EP |
1432467 | Dec 2005 | EP |
2000042744 | Feb 2000 | JP |
2003159333 | Jun 2003 | JP |
9519800 | Jul 1995 | WO |
9919017 | Apr 1999 | WO |
0025973 | May 2000 | WO |
0145578 | Jun 2001 | WO |
0185385 | Nov 2001 | WO |
03030982 | Apr 2003 | WO |
2005053890 | Jun 2005 | WO |
2006025931 | Mar 2006 | WO |
2008014849 | Feb 2008 | WO |
Entry |
---|
Andersen, Olaf, et al, “Direct Typing—A New Method for the Production of Cellular P/M Parts,” Proceedings, Euro PM, Vol, 4, pp. 1-6 (2004). |
Cohen, Adam L., “EFAB® Technology: Unlocking the Potential of Miniaturized Medical Devices,” Microfabrica Inc., pp. 1-31 (2008). |
Forschungszentrum Karlsruhe GmbH, “The LIGA-Process (An outline),” Key Technologies, Microsystem Technologies, Fabrication Technologies • Materials, pp. 2 (Sep. 10, 2005). (English Version. pp. 2). |
Leonard, Shana, “Welding Technnlogy Fuses Nitinol to Stainless Steel,” Medical Device Link (originally published EMDM), pp, 2 (May/Jun. 2007). |
Office Action for U.S. Appl. No. 12/644,818 mailed Mar. 15, 2012 (22 pages). |
Number | Date | Country | |
---|---|---|---|
20110306949 A1 | Dec 2011 | US |