This application claims priority from German Patent Application No. 10 2009 020 080.0, filed on May 6, 2009, the disclosure of which is incorporated herein by reference.
The present invention relates to a joining component for joining onto a flat workpiece, in particular for the purpose of stud welding, having a joining portion, by means of which the joining component can be joined onto the workpiece, and having a fastening portion, which is realized as a single piece with the joining portion and to which at least one further structural element can be fastened, the joining portion having a joining surface that contacts the flat workpiece during joining and has a circumference.
Further, the present invention relates to a fastening arrangement having a flat workpiece onto which such a joining component is joined.
Such joining components and fastening arrangements are generally known in the domain of so-termed stud welding. In the case of stud welding, an electrically conductive joining component is welded onto a likewise electrically conductive workpiece. In the case of the so-termed drawn arc ignition process, the joining component is placed with the joining portion upon the flat workpiece. A pilot current is then passed through them, and the joining component is raised back from the workpiece, such that an arc is drawn. The current intensity is then increased to that of a welding current, such that the joining portion, in the region of the joining surface, and an opposing surface portion of the workpiece become fused. Finally, the joining component is lowered back onto the workpiece, such that the melts mix together. Upon the thus occurring short-circuit, the welding current is switched off. The combined melt solidifies, and the joining component is connected to the workpiece by material bonding.
This type of stud welding is used very extensively, for example in the automobile industry, joining components, in the form of welding studs, being welded onto the vehicle-body metal sheet. The welding studs then serve as anchors for fastening mount-on parts or for clipping-on plastic clips to which, in turn, other structural elements are fixed, such as electrical lines, brake hoses, etc.
The term stud welding is normally used in connection with rotationally symmetrical joining components. The substantially same type of welding technique is also used, however, to weld flat joining components perpendicularly onto a workpiece (so-termed Weldfast® process). In the present case, the term stud welding is intended to include also the welding-on of such non-rotationally symmetrical components.
Although stud welding is a long-established process, there continues to be a requirement for improved solutions. Under some marginal conditions, for example, the welding quality is not constantly optimal. The marginal conditions in this case can be materials or, also, ambient marginal conditions. It can be the case that the surfaces to be fused do not become fused over the full surface area, such that inadequate weld joints are produced.
To solve this problem, there are a number of approaches, for example welding with magnetic arc deflection. In this case, an electromagnetic field is applied to the region of the joining zone while the arc is burning, in order to deflect, or guide, the arc in a particular manner. This method, however, is comparatively resource-intensive.
It is therefore the object of the invention to specify an improved joining component and an improved fastening arrangement, in which component and arrangement the attainable or attained weld joints are realized more uniformly, as viewed over the welding surface.
The above object is achieved, in the case of the joining component mentioned at the outset, in that there is realized in the joining surface at least one recess that extends transversely relative to the circumference and that divides the joining surface into at least two partial surfaces.
Further, the above object is achieved by a fastening arrangement having a flat workpiece onto which such a joining component is joined.
The division of the welding surface into at least two partial surfaces enables a more uniform weld distribution to be achieved. In particular, unexpectedly, it is possible to achieve a situation wherein the arc does not burn fixedly at one location. Rather, the arc can burn simultaneously at a plurality of locations (corresponding to the partial surfaces), and can also jump back and forth between the individual partial surfaces. An overall greater strength of the weld joint can thereby be realized. The joining components can be joined without, or also with, magnetic arc deflection.
The above object is thus achieved in full.
It is particularly advantageous if the recess is realized as an elongate groove. Such a groove can be easily made in a joining component, being so made either retroactively or directly during production of the joining component.
According to a further preferred embodiment, the joining component is a welding component that is rotationally symmetrical about a longitudinal axis, such as a welding stud. It is particularly advantageous in this case if the joining surface is realized to be annular. Such a joining surface is used, in particular, in the case of so-termed annular-flange studs, or welding nuts. It is particularly advantageous in this case if the recess is aligned radially in relation to the longitudinal axis. The welding surface is thereby divided into a plurality of circular or ring sectors.
According to an alternative embodiment, the joining component is a flat component having an end face, on which the welding surface is realized. The welding surface in the case of this embodiment is normally polygonal, being realized, in the simplest case, to be approximately rectangular. In this case, preferably, the at least one recess extends transversely relative to the longest side of the polygon form (consequently, transversely in the case of a rectangle, preferably perpendicular relative to the longitudinal side).
Overall, it is advantageous if the recess has a depth of at least 0.5 mm, in particular, in the range from 0.5 mm to 3 mm. It has been found that particularly good weld results are rendered achievable by recesses of such depths.
In the case of all embodiments, the joining surface is realized, either as a planar surface that is placed flatly onto the surface of the workpiece, or, as an alternative thereto, the welding surface can also be realized to taper conically. Further, the joining component according to the invention can be used not only in combination with the drawn arc ignition process, mentioned at the outset, in the case of stud welding. Use in the case of the so-termed tip ignition process is also possible (in the case of the latter, there is provided at the welding surface a welding tip that is placed onto the workpiece, the welding current is then being switched on immediately, such that the welding tip substantially vaporizes).
Particularly preferably, the joining component is realized as a welding stud having an annular flange, the welding stud being made of aluminium. The welding of aluminium annular-flange studs onto aluminium workpieces has hitherto always caused great difficulty. Owing to the design of the joining component according to the invention, significant increases in the strength of the weld joints can be achieved.
It is understood that the above-mentioned features and those to be explained in the following can be applied, not only in the respectively specified combination, but also in other combinations or singly, without departure from the scope of the present invention.
Exemplary embodiments of the invention are represented in the drawing and explained more fully in the following description, wherein:
In
The joining component 14 comprises a joining portion 20, in the form of a flange, and a fastening portion 22, in the form of a shank. A further structural element, in the form of a plastic clip 24, is fastened to the fastening portion 22, for example by being clipped-on. For this purpose, the fastening portion 22 can have a corresponding locking contour, for example in the form of a thread (not represented in
A receiving portion 26, for receiving a line (electrical line or brake line, etc.) can be realized on the structural element 24. Consequently, such a line (or another object) can be fastened to the workpiece 12 by means of the fastening arrangement 10.
The joining portion 20 has a circular joining or welding surface 30, via which the joining component 14 is welded onto a surface 32 of the workpiece 12, for example by means of the stud welding process mentioned at the outset. A thereby constituted joining zone, in the form of a cooled melt, which effects a materially bonded connection between the joining component 14 and the flat workpiece 12, is shown at reference 34 in
In the case of the fastening arrangement 10 shown on the left in
The fastening arrangements 10 shown in
Such joining components 14 are shown in the following
Shown in
A modified embodiment of the joining component 14 of
The joining portion 20 is realized as a flange portion, and has a height H1. The cavity 36 has a depth H2, and the recess 40 has a depth H3. The depth H3 of the recess 40 is less than the depth H2 of the cavity 36. Further, the depth H2 of the cavity 36 is less than the height H1 of the joining portion 20.
In
In the case of the above embodiments, there are shown in each case one or two elongate recesses 40, in the form of grooves, which divide the joining surface 30. As an alternative thereto, it is also possible to provide a multiplicity of such recesses 40, such that the joining surface as a whole is fluted. Overall, it is advantageous if the recess has a depth of at least 0.5 mm, in particular, in the range from 0.5 mm to 3 mm. It has been found that particularly good weld results are rendered achievable by recesses of such depths.
Further, the recesses 40 are each realized to be continuous from one peripheral portion to an opposing peripheral portion of the joining surface. As an alternative thereto, the recesses can also be interrupted, in such a way that the welding surface is substantially divided into partial surfaces.
Although exemplary embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes may be made to these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 020 080.0 | May 2009 | DE | national |