The present invention relates to a joining method.
MIG welding, laser welding, hybrid welding, and the like have been known as methods of forming a lap joint by welding an inner corner portion formed by overlapping metal members. MIG welding has an advantage of a wider margin for the clearance at the welding portion and misalignment of the target position because the welding is performed with a filler material being supplied. On the other hand, MIG welding has disadvantages of a slow welding speed and a shallow penetration depth. In MIG welding, there is a disadvantage that when the welding speed is set high, a deposited metal (throat thickness) shortage occurs at the inner corner portion, decreasing the joint strength.
Laser welding has an advantage that the welding speed is faster than that in arc welding such as MIG welding. On the other hand, laser welding has a disadvantage that the margin for the clearance in the welded portion is significantly small because no filler material is added.
Hybrid welding uses a hybrid welding machine including a preceding laser welding unit and a following MIG welding unit for welding (see Patent Literature 1).
Patent Literature 1: Japanese Patent Application Publication No. 2016-30289
The above-described hybrid welding provides welding compensating the disadvantages of the laser welding and the MIG welding. However, hybrid welding still has a problem that when the welding speed is set high, the phenomenon of a deposited metal (throat thickness) shortage still occurs at the inner corner portion, decreasing the joint strength of the lap joint and robustness for allowing a clearance and misalignment of the target position. In these days, a weld length is increased along with an increase in the size of a welding target, and therefore an increase in the welding speed and an improvement in the robustness are required.
In view of the above, an object of the present invention is to provide a joining method that achieves an increase of the welding speed and also improve the robustness for allowing the clearance between metal members and misalignment of the welding target position.
To solve the above problems, the present invention includes: an overlapping step of overlapping a first metal member and a second metal member such that a front surface of the first metal member is opposed to a back surface of the second metal member; and a welding step of performing a laser welding and a MIG welding by using a hybrid welding machine including a preceding laser welding unit for a preceding welding and a following MIG welding unit for a following welding, in which laser welding is performed by emitting a laser beam onto a front surface of the second metal member, MIG welding is performed on an inner corner portion formed by the front surface of the first metal member and an end surface of the second metal member, and the welding step includes setting a target position for the laser beam from the laser welding unit such in a way that the target position is located against the second metal member relative to a target position for a MIG arc by the MIG welding unit.
According to the joining method, by emitting the laser beam onto the front surface of the second metal member, a part of the second metal member melted by the preceding laser beam serves as deposited metal for the following MIG welding, and thus it is possible to increase the amount of the deposited metal (throat thickness) at the inner corner portion. Therefore, it achieves both an increase in the welding speed and an improvement in the joint strength. Additionally, with the amount of the deposited metal (throat thickness) increased, it improves the robustness for allowing the clearance between the metal members and misalignment of the welding target position.
In the welding step, it is preferable that a rotation angle, when viewed from above, between a reference line parallel to a direction of movement of the hybrid welding machine and an imaginary line connecting distal ends of the laser welding unit and the MIG welding unit, be set to 20° to 70°. In the welding step, it is preferable that a distance between the target position of the preceding laser beam and the target position of the following MIG arc is set to 2 to 5 mm. In the welding step, it is preferable that a target angle of the MIG arc is set to 40° to 80°. In the welding step, it is preferable that an angle of advance of the MIG arc is set to 5° to 50°. In the overlapping step, it is preferable that a clearance between the front surface of the first metal member and the back surface of the second metal member is set to 0 to 1.0 mm. In the welding step, it is preferable that the laser beam is emitted perpendicularly to the front surface of the second metal member.
The joining method according to the present invention increases the welding speed and improves the robustness for allowing the clearance between metal members and misalignment of the welding target position.
A joining method according to an embodiment of the present invention is described in detail with reference to drawings. As illustrated in
As illustrated in
In the overlapping step, the first metal member 1 and the second metal member 2 are overlapped such that the front surface 1b of the first metal member 1 is opposed to the back surface 2c of the second metal member 2. The front surface 1b of the first metal member 1 and an end surface 2a of the second metal member 2 form an inner corner portion. A point at which the front surface 1b of the first metal member 1 and the end surface 2a of the second metal member 2 intersect with each other is called a corner portion P.
The welding step is a step of welding the inner corner portion by using a hybrid welding machine 10 as illustrated in
The MIG welding unit 30 includes an arc torch 31 and is placed on the other end of the connecting portion 11. The arc torch 31 supplies a filler material 32 and also generates a MIG arc 33 (see
As illustrated in
As illustrated in
As illustrated in
As illustrated in
In the welding step, laser welding is performed by the laser beam LB emitted from the preceding laser head 21 as illustrated in
In the welding step, MIG welding is performed by the arc torch 31 following the laser head 21 as illustrated in
Note that, although the output of the laser beam LB is set as described above in the welding step, the output of the laser beam LB may be set to a depth at which the end portion of the second metal member 2 is not completely cut.
According to conventional hybrid welding, the target position of the laser beam LB and the target position of the MIG arc 33 are both at the corner portion P as illustrated in
In contrast, in the joining method according to this embodiment, the laser beam LB is emitted to the front surface 2b from above the second metal member 2, and thereby a part of the second metal member 2 melted by the preceding laser beam LB serves as a deposited metal of the following MIG welding. Thus, it is possible to increase the amount of the deposited metal in the inner corner portion (throat thickness Wd: see
Moreover, like the welding step in this embodiment, it is preferable to set the rotation angle of the reference line M2 that is parallel to the direction of movement of the hybrid welding machine 10 and the imaginary line M1 connecting the distal ends of the laser welding unit 20 and the MIG welding unit 30 to 20° to 70°, when viewed from above. Furthermore, like the welding step in this embodiment, it is preferable to set the distance L2 between the target position Q1 of the preceding laser beam LB and the target position Q2 of the following MIG arc 33 to 2 to 5 mm. If the distance L2 is shorter than 2 mm, the distance between the laser head 21 and the arc torch 31 is too close, and it is difficult to make proper joining. If the distance L2 exceeds 5 mm, the cathode spot of the laser welding does not induce the MIG arc 33, which results in that the deposited beads (deposited metal W) may meander.
Additionally, in the overlapping step, it is preferable to set a clearance between the front surface 1b of the first metal member 1 and the back surface 2c of the second metal member 2 to 0 to 1.0 mm. If the clearance exceeds 1.0 mm, there is a possibility of a decrease in the joining strength. Moreover, in the welding step, it is preferable to set the target angle θ4 of the MIG arc 33 to 40° to 80°. Furthermore, in the above-described welding step, it is preferable to set the angle of advance θ2 of the MIG arc 33 to 5° to 50°.
Next, examples according to this embodiment are described. Here, the first metal member 1 was joined with the second metal member 2 by using the hybrid welding machine 10 to form a lap joint, and a tensile test was conducted for the lap joint. The first metal member 1 of an aluminum alloy A5052-H34 with a thickness of t=2.0 mm was used for both a group of comparative examples and a group of examples. The second metal member 2 of an aluminum alloy A6061-T6 with a thickness of t=3.0 mm was used for both the group of comparative examples and the group of examples.
As indicated in
As indicated in
In the comparative examples, the target positions Q1 of the laser beam LB and the target positions Q2 of the MIG arc 33 were both set to be at the corner portion P of the inner corner portion. The distances L2 in the comparative examples were set to 3.0 mm.
Unlike the above setting, the target positions Q1 of the laser beams LB in the examples were set to three kinds of positions: a position 2.0 mm away from the end surface 2a of the second metal member 2 which is used as a reference position (offset distance 0 mm), a position −0.5 mm which is placed toward the end surface 2a from the reference (offset distance −0.5 mm), and a position+0.5 mm which is placed away from the end surface 2a (offset distance 0.5 mm). The target positions Q2 of the MIG arc 33 in the examples were set to be at the corner portion P of the inner corner portion. The rotation angles θ5 in the examples were set to 40°, and the distances L2 therein were set to 3.0 mm.
Additionally, the clearances between the first metal member 1 and the second metal member 2 in both the group of comparative examples and the group of examples were set to three kinds, 0 mm, 0.5 mm, and 1.0 mm, for each of the above-described offset distances. Consequently, Nos. 1 to 9 test specimens were obtained as the comparative examples, and Nos. 10 to 18 test specimens were obtained as the examples.
For both the group of comparative examples and the group of examples, a tensile test was performed on each specimen, and the joint efficiency (%) was calculated according to the following formula (1). Joint efficiencies having over 70% were regarded as “favorable” results.
FJ: the tensile shear strength (N/mm) of the joint
FBM: the lower-limit strength (N/mm2) in the JIS standard of the second metal member 2 (thin-plate side base material)
t: the plate thickness (mm) of the second metal member 2 (thin-plate side base material)
w: the width (mm) of the tensile test specimen
As indicated in
In contrast, as indicated in
It was found that the joint strengths and the joint efficiencies in the examples are high even if the clearances between the front surface 2b of the first metal member 1 and the back surface 2c of the second metal member 2 are 0 to 1.0 mm. Additionally, it was found that the joint strengths and the joint efficiencies in the examples are high even if the positions of the laser beam LB are shifted from the target position by ±0.5 mm. That is to say, according to the examples, a thickness of the deposited metal W became large even under a situation of a fast welding speed, resulting in improvement of the robustness for allowing a clearance between metal members and misalignment of the welding target position.
It was also found that, according to the examples, the smaller the clearances between the front surface 1b of the first metal member 1 and the back surface 2c of the second metal member 2 are, the higher both the joint strengths and the joint efficiencies are.
Number | Date | Country | Kind |
---|---|---|---|
2018-226398 | Dec 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/029187 | 7/25/2019 | WO | 00 |