The invention generally relates to joining tubular members.
When well fluid is produced from a subterranean formation, the fluid typically contains particulates, or “sand.” The production of sand from the well must be controlled in order to extend the life of the well. One technique to accomplish this involves routing the well fluid through a downhole filter formed from gravel that surrounds a sandscreen. More specifically, the sandscreen typically is a cylindrical mesh that is inserted into and is generally concentric with the borehole of the well where well fluid is produced. Gravel is packed in the annular area between the formation and the sandscreen, called the “annulus.” The well fluid being produced passes through the gravel, enters the sandscreen and is communicated uphole via tubing that is connected to the sandscreen.
The gravel that surrounds the sandscreen typically is introduced into the well via a gravel packing operation. In a conventional gravel packing operation, the gravel is communicated downhole via a slurry, which is a mixture of fluid and gravel. A gravel packing system in the well directs the slurry around the sandscreen so that when the fluid in the slurry disperses, gravel remains around the sandscreen.
In a conventional gravel packing operation, fluid may prematurely leave the slurry. When this occurs, a bridge forms in the slurry flow path, and this bridge forms a barrier that prevents slurry that is upstream of the bridge from being communicated downhole. Thus, the bridge disrupts and possibly prevents the application of gravel around some parts of the sandscreen.
For purposes of circumventing any possible bridges, a system for packing a well may include alternate path transport tubes, tubes that provide, as their names imply, alternative paths for communicating the slurry down into the well. In effect, the transport tubes serve as shunts in that should a bridge form, one of the transport tubes serves to bypass the bridge to permit slurry to be introduced into the well beyond the bridge.
The use of transport tubes may present various challenges. For example, a typical system for gravel packing a well may include a production tubing and one or more transport tubes that are located on the outside of the production tubing. The production tubing and transport tubes are assembled together on a section-by-section basis as these components are lowered downhole. Thus, a potential challenge in the use of transport tubes is that for each section of the system to be lowered downhole, both production tubing and transport tube sections must be joined together. This task is complicated because the transport tube sections (that are attached to the production tubing section) must be aligned with and sealed to adjacent transport tube sections.
Similar challenges may exist when assembling other types of downhole tubular members together, such as control line and production tubing sections.
Thus, there is a continuing need for an arrangement that addresses one or more of the problems set forth above as well as addresses one or more problems that are not set forth above.
In an embodiment of the invention, an apparatus includes a first connector and a member. The first connector connects a first tubing section and a second tubing section together. The member is adapted to be moved from a retracted to an extended position to form a sealed connection between the first tubular that is connected to the first tubing section and a second tubular member that is connected to the second tubing section.
In another embodiment of the invention, an apparatus includes a first connector and a member. The first connector forms a connection between a first tubing section and the second tubing section and leaves a gap between a first end of a first tubular member that is connected to the first tubing section and a second end of a second tubular member that is connected to the second tubing section. The member is inserted into the gap to seal the first tubular member and the second tubular member together.
In another embodiment of the invention, an apparatus includes a pin end that includes a first passageway in communication with a first tubular member and a second passageway in communication with a first production tubing section. The apparatus also includes a box end that is adapted to receive the pin end. The box end includes a third passageway that is in communication with a second tubular member and a fourth passageway that is in communication with a second tubing section. The apparatus includes a locking mechanism to secure the pin end and the box end together.
Advantages and other features of the invention will become apparent from the following description, drawing and claims.
Referring to
More particularly, in some embodiments of the invention, the box coupler 7 includes a box end 8 that is constructed to receive an end of the production tubing section 30 and an end of the production tubing section 40. As described below, the box end 8 sealably and mechanically connects the production tubing sections 30 and 40 together. The pin end 9 contains the sleeve 18 and is attached to the production tubing section 30. For purposes of establishing communication between the connected transport tube sections, the box end 8 includes a passageway 72, and the pin end 9 includes a passageway 70. After the production tubing section 30 is threaded into the box end 8 and the appropriate torque force is applied to the production tubing section 30, by design, a gap 17 exists between the passageway 72 of the box end 7 and the passageway of the pin end 9. This gap 17 establishes a tolerance range for securing the production tubing sections 30 and 40 together to ensure that the proper level of torque may be used when assembling the production tubing section 30 to the body 8.
Thus, the box coupler 7 ensures that 1. the production tubing sections 30 and 40 are connected and sealed to the coupler 7 with the proper torque force; and 2. a seal is formed between the transport tube section passageways 70 and 72.
Although the arrangement described above connects production tubing sections, it is noted that the box couplers that are described herein may alternatively couple injection tubing sections together when used in an injection well. Thus, in some embodiments of the invention, the production tubing sections may be replaced by injection tubing sections. For purposes of simplifying the discussion herein, the box couplers are described as connecting production tubing sections, although it is understood that injection tubing sections may be substituted for the production tubing sections in other embodiments of the invention.
In some embodiments of the invention, the box end 8 includes a body 12 that, prior to the assembly of the box coupler 7, is threadably connected and sealed to the production tubing section 40 and a transport tube section (not shown). More specifically, in some embodiments of the invention, the body 12 has a tapered threaded opening 27 that is constructed to receive and form a seal with a mating tapered end of the production tubing section 40. On its opposite end, the body 12 includes a tapered threaded opening 25 that is constructed to receive and form a seal with a corresponding tapered threaded end of the production tubing section 30. The openings 25 and 27 are concentric with each other and are joined together by a longitudinal passageway 26. Therefore, when the production tubing sections 30 and 40 are threaded into the openings 25 and 27, the box coupler 7 forms a sealed connection that unites the two production tubing sections 30 and 40 to effectively form a continuous section of pipe from the two sections 30 and 40.
The transport tube passageway 72 is formed in the body 12 and is eccentric to and generally parallel with the central axis of the passageway 26. When the box coupler 7 is assembled, the passageway 72 is generally aligned with the passageway 70 that extends through a body 13 of the pin end 9 of the box coupler 7. Similar to the body 12, the body 13 is connected to another transport tube section (not depicted in
In some embodiments of the invention, a gap is formed between opposed annular faces 23 and 21 of the bodies 12 and 13, respectively. The sleeve 18, in some embodiments of the invention, generally circumscribes the exterior surface of the body 13 and has an end 29 that radially extends into the gap between the two annular faces 21 and 23. The end 29, in turn, includes an annular opening 20 that permits communication between the fluid passageways 70 and 72. In the sleeve's retracted position, the end 29 is closest to the annular face 21, to establish the tolerance gap 17 between the end 29 and the annular face 23.
After the production tubing sections 30 and 40 have been connected to the body 12, the sleeve 18 may be slid from its retracted position toward the annular face 23 to bridge the gap 17 and sealably connect the passageways 70 and 72 together. Referring to
For purposes of forming a seal between the pin end 9 and the sleeve 18, in some embodiments of the invention, the pin end 9 includes an O-ring 22 that resides in an annular groove that is formed in the exterior surface of the body 13 and contracts the underside of the sleeve 18.
As depicted in
Thus, referring both to
The end of the production tubing section 40 is threaded into the threaded opening 27 of the box end 8; and the associated transport tube section is connected to the box end 8 so that the transport tube section is in communication with the passageway 72. Subsequently, the end of the production tubing section 30 is threaded into the tapered opening 25 of the box end 8 and turned to the appropriate level of torque. Next, the sleeve 18 is moved into its fully extended position so that the extension 29 abuts the annular face 23 of the body 12 to form a sealed connection between the box end 8 and the pin end 9. The retaining device 11 is then used to fix the sleeve 18 in place.
Referring to
Similar to the box coupler 7, the pin end body 53 includes a transport tube passageway 70 that communicates fluid for an associated transport tube section (not shown); and the body 53 has a passageway 28 for receive an end of the production tubing section 30. Unlike the body 13 of the box coupler 7, the body 53 has a recessed region 55 on its exterior surface to receive a threaded extension component of the sleeve 54. More specifically, in some embodiments of the invention, the sleeve 54 generally circumscribes the exterior surface of body 53. Similar to the sleeve 18 of the box coupler 7, the sleeve 54 includes an annular extension 71 that radially extends into a gap created between opposing annular faces 21 and 23 of the bodies 12 and 53. The extension 71 includes an opening 73 that permits fluid communication between the passageways 70 and 72 when the box coupler 50 is assembled together.
The recessed region 55 includes threads 57 (on the exterior surface of the body 53) that mate with corresponding interior threads of the sleeve 54. Thus, to form the sealed connection between the passageways 70 and 72, the sleeve 54 is rotated about the longitudinal axis of the box coupler 50 so that the sleeve 54 moves from a retracted position to an extended position in which the extension 71 abuts the annular face 23 of the body 12. Similar to the box coupler 7, O-rings 22 and 24 form seals between the sleeve 54 and the pin 51 and box 52 ends. Additionally, the box coupler 50 may include a retaining device 11 to secure the sleeve 54 in its fully extended position.
Other variations are possible. For example, in some embodiments of the invention, instead of the sleeve forming a face seal with the annular face of the box body, the sleeve may instead, form a seal with the outer surface of the box body. Such an arrangement is depicted in
The sleeve 107 does not contain an extension into the gap between the bodies 52 and 103. Rather, the sleeve 101 includes a longitudinal extension 117 that bridges the gap between the adjacent annular faces 21 and 23 of the bodies 52 and 103, respectively. In its extended position, the extension 117 slides over at least a portion of the exterior of the body 103 to contact the O-ring 116 and form a seal with the box end 101. The sleeve 107 otherwise has a similar design to the sleeve 54 of the box coupler 50.
Referring to
A pin end 142 of the box coupler 140 includes the sleeve 154 that circumscribes a body 150 of the pin end 142. The body 150 is similar to the bodies of the previously-described pin ends, except that the body 150 is constructed to receive the sleeve 154 inside the passageway 70 and form seals between the wall of the passageway 70 and the sleeve 154. More specifically, in some embodiments of the invention, the sleeve 154 includes an outer section 156 that circumscribes the exterior of the body 150 and an interior section 160 that protrudes inside the passageway 70. The interior section 160 of the sleeve 154 resides inside an annular recessed region 161 (of the body 150) that circumscribes the passageway 70. The region 161 has a radial dimension that accommodates the thickness of the interior section 160 of the sleeve 154 so that the sleeve 154 does not obstruct the passageway 70. As depicted in
An end, or radial extension 158, of the sleeve 152 links the outer 156 and interior 160 sections of the sleeve 154 together. The interior section 160 of the sleeve 154 includes an opening 163 for purposes of allowing communication between the passageways 70 and 72.
More specifically, in some embodiments of the invention, the box coupler 200 includes a box end 201 that includes a body 202 that has a similar design to the body 103 of the box coupler 100 (
The box coupler 200 also includes a pin end 203 that includes a body 204 that has a similar design to the body 13 of the box coupler 7 (
The sleeve 210 is generally cylindrical and circumscribes the body 204 in both its extended and retracted positions to form a seal with body 204 (via the O-ring 22). In its extended position (depicted in
In other embodiments of the invention, a box coupler may use mechanisms other than a sleeve to secure and seal production tubing and/or transport tube sections together. For example,
When the production tubing section 284 is threaded into the box end 244 and an appropriate torque force is applied to the section 284, a gap exists between the pin body 242 and box body 244. Instead of closing this gap with a sleeve, the box coupler 240 fills in the gap with wedges. More particularly, in accordance with some embodiments of the invention, the end of the pin body 260 nearest the box end 244 has faces 265 and 267 that are inclined relative to a flat surface 268 of the adjacent end of the box body 262. More specifically, in accordance with some embodiments of the invention, the surface 268 has a surface normal that is parallel to the longitudinal axis of the box coupler 240; and the faces 265 and 267 each have a surface normal that is not parallel to the longitudinal axis but instead has a radial component. As depicted in the side view shown in
The box coupler 240 is constructed so that when the production tubing section 284 connects to the body 262 (via a timed thread, for example), a gap is formed between the faces 265 and 267 and the face 268. Due to this gap, two half-disk wedges 252 and 254 may be inserted into the gap between the opposing faces 265, 267 and 268 of the bodies 260 and 262. More specifically, the wedge 252 may be inserted between the inclined face 267 and the corresponding part of the face 268; and the wedge 254 may be inserted between the inclined face 265 and the corresponding portion of the face 268.
When fully inserted to fill in the gap, the two wedges form a disk, a top view of which is depicted in
More specifically, the box coupler 300 connects a transport tube section 318 to a transport tube section 335 and connects a production tubing section 314 to a production tubing section 332. The box coupler 300 includes a pin end that is connected to the transport tube section 318 and the production tubing section 314. The pin end includes a body 312 that includes a passageway 319 that receives an end of the transport tube section 318. Furthermore, the body 312 includes a passageway 315 to receive an end of the production tubing section 314 so that the production tubing section 314 extends to expose its end 316 for connection to the box end. In some embodiments of the invention, both the transport tube section 318 and the production tubing section 314 are attached (via a threaded or welded connection, as examples) to the pin end body 312.
In some embodiments of the invention, the box end of the box coupler 300 includes a body 330 that includes a passageway 331 to receive an end of the transport tube section 335. The end of the transport tube section 335 protrudes past an end of the passageway 331 into an opening that receives a sleeve of the box coupler 300, as further described below. Besides the passageway 331, the body 330 also includes a passageway 317 for receiving the end of a production tubing section 332. Inside the passageway 317, the end of the production tubing section 332 connects to a stab coupler 334. The stab coupler 334, in turn, provides an opening for receipt of the end 316 of the production tubing 314 when the box coupler 300 is assembled together.
Referring also to
In some embodiments of the invention, the end of the transport tube section 318 extends past the opening 319 in the body 312 into a passageway 324 of a sleeve 322 that generally circumscribes the production tubing section 314. The sleeve passageway 324 is generally eccentric with respect to the longitudinal axis of the passageway 315. The sleeve 322 slides with respect to the transport tube section 318 for purposes of forming a connection between the transport tube sections 318 and 335.
More specifically, in some embodiments of the invention, the box coupler 300 includes an O-ring seal 326 that resides in an annular groove that circumscribes the passageway 324 and provides a seal between the wall of the passageway 324 and the exterior surface of the transport tube section 318. The sleeve 322 is free to slide with respect to the transport tube section 318 when the box coupler 300 is unassembled. Thus, as depicted in
More specifically, in some embodiments of the invention, the box coupler 500 includes a box end that is generally formed from a body 502. The body 502 includes an opening 503 (a tapered opening, for example) to receive the tapered threaded end of a production tubing section 550. Furthermore, in some embodiments of the invention, the body 502 includes an opening 523 (a non-tapered opening, for example) to receive the end of a production tubing section 512. The openings 503 and 523 communicate through a passageway 522 of the body 502. Thus, in some embodiments of the invention, when the production tubing section 512 is threaded into the opening 523 and the production tubing section 550 is threaded into the opening 503, communication between a passageway 513 of the production tubing section 512 and a passageway 552 of the production tubing 550 occurs through the passageway 522.
In some embodiments of the invention, the pin end of the box coupler 500 includes a body 504 that includes a passageway 521 through which the production tubing section 512 extends. The body 504 may be attached (via threads or welding, for example) to the production tubing 512. In some embodiments of the invention, the body 504 and production tubing 512 may be attached via timed threads for purposes of aligning these two sections together. Other arrangements are possible in other embodiments of the invention.
When the production tubing sections 512 and 550 are threaded into the box end of the box coupler 500, a gap 524 exists between an annular face 511 of the body 504 and an opposing annular face 525 of the body 502. In accordance with some embodiments of the invention, this gap 524 is filled via the shims 501 to the appropriate thickness to form a seal between the transport tube passageways 530 and 540. More specifically, in some embodiments of the invention, an O-ring 507 resides in an annular groove that is located in the annular face 511 and circumscribes the longitudinal axis of the box coupler 500. The O-ring 507 forms a seal between the annular face 511 and the shims 501. Likewise, on the other side of the shims 501, an O-ring 506 resides in an annular groove that is located in the annular face 525 and circumscribes the longitudinal axis of the box coupler 500. The O-ring 506 forms a seal between the annular face 525 and the shims 501.
The number and/or thickness of the shims 501 are a function of the magnitude of the gap 524. As depicted in
Referring to
The pin end body 603 includes a passageway 630 for purposes of communicating fluid from a transport tube section (not shown in
The box coupler 600 sealably connects the transport tube passageways 625 and 630 together; and sealably connects the production tubing passageways 632 and 634 together in the following manner. The pin end body 603 includes a longitudinal extension 612 that generally extends into an annular groove 614 of the box end body 604 when the box coupler 600 is assembled together. The annular groove 614 circumscribes the longitudinal axis of the passageway 632. The transport tube passageway 630 is routed through the extension 612 so that when the box coupler 600 is assembled, the transport tube passageways 630 and 625 align, as depicted in
The box coupler 600 includes seals to seal off its passageways. More specifically, in some embodiments of the invention, the O-ring 620 may be located in an annular groove that is located inside a wall of the annular groove 614 and generally circumscribes the longitudinal axis of the passageway 632. The O-ring 620 seals off the production tubing passageways 632 and 634; and forms a seal between the production tubing passageways 632 and the 634 and the transport tube passageways 625 and 630.
The box coupler 600 also includes O-rings 616 and 619 to form seals between the transport tube passageways 625 and 630 and the outside of the box coupler 600. The O-rings 616 and 619 reside in respective annular grooves that are formed in the exterior surface of a generally cylindrical seal sleeve 618; and these grooves (and O-rings 616 and 619) generally circumscribe the longitudinal axis of the sleeve 618. As depicted in
For purposes of mechanically connecting the box and pin ends of the box coupler 600 together, the pin end body 603 includes an extension 642 that circumscribes the seal sleeve 618, and the box end body 604 includes an extension 640 that also circumscribes the seal sleeve 628. In some embodiments of the invention, the extensions 640 and 642 meet to mechanically connect the pin and box ends of the box coupler 600 together. More specifically, in some embodiments of the invention, the extensions 640 and 642 meet at a junction to form a “snap-fit” connection, as described below, for purposes of attaching the extensions 640 and 642 together.
More specifically, in some embodiments of the invention, this snap-fit connection is formed between female connectors (that are located in the extension 640, for example) that mate with male connectors (that are located in the extension 642, for example). As an example, the male-female connector pairs may be uniformly spaced around the ends of the extensions 640 and 642.
An exemplary male-female pair of connectors is depicted in
In some embodiments of the invention, the box coupler may use other mechanisms to mechanically connect the box and pin ends of the box coupler. For example, referring to
The pin end 652 and box end 653 bodies have annular faces 657 and 658 that meet when a extension 656 of the pin end body 652 stabs into a mating opening 660 of the box end body 653. As depicted in
In some embodiments of the invention, a T-shaped recess 670 is formed in the exterior surface of the pin end body 652, and a T-shaped recess 671 is formed in the exterior surface of the box end body 653. The recesses 670 and 671 are oriented 180 degrees with respect to each other so that collectively, the recesses 670 and 671 form an I-shaped recess, or “dog bone” recess, for receiving a corresponding I-shaped coupling member 673.
Thus, when the pin end body 652 is stabbed into the box end body 653, the recesses 670 and 671 align so that the coupling member 673 may be inserted into the I-shaped formed recess to lock the pin end 652 and box end 653 bodies together. Furthermore, screws 672 may be used to secure the coupling member 673 to the pin end 652 and box end 653 bodies. The coupling member 673 sustains tensile and torsions loading on the box coupler 650.
In some embodiments of the invention, the box coupler 650 may include multiple coupling members, such as the two coupling members 673 that are depicted in
Referring to
The box coupler 700 includes a pin end body 702 that is similar to the pin end body 652 except that the body 702 does not include the recess 670. Instead, the body 702 includes a stabbing extension 710 (in place of the extension 656) that has an inclined notch, or recess 727, for receiving an inclined face 724 of a dog 722 after the extension 710 has been inserted into the opening 660. The recess 727 aligns with a recess 720 in a box end body 704 of the box coupler 700.
Before the extension 710 is inserted into the opening 660, the dog 722 resides in the recess 720 in the box end body 704. After the extension 710 is inserted into the opening 660, a screw 730, or other mechanism, is used to force the dog 722 in a radial inward direction so that the dog 722 enters the recess 727 and presses against the extension 710. The pin and box ends of the box coupler 700 at this stage cannot be separated because of the force exerted on an upper edge 721 of the dog 722 by the wall of the recess 720. This force is attributable to the angled contact of the dog 722 with the extension 710.
In some embodiments of the invention, the box coupler 700 may include multiple dogs 722 that are equally spaced around the longitudinal axis of the box coupler 700.
Referring to
The pin end 756 and box end 760 bodies are mechanically held together by a tension sleeve 794 that circumscribes the pin end 756 and box end 760 bodies. More specifically, to assemble the box coupler 750, the tension sleeve 794 is slid across the junction between the pin end 756 and box end 760 bodies so that inner threads of the tension sleeve 794 engage outer threads 795 on the box end body 760. The tension sleeve 794 is then rotated to force the pin end 756 and box end 760 bodies together and energize the face seals between them. In some embodiments of the invention, the box coupler 750 includes dowel pins 751 (one dowel pin 751 depicted in
Box couplers that are described above may be concentric with respect to the production tubing sections. However, box couplers in accordance with some embodiments of the invention may be eccentric with respect to the production tubing sections. For example, referring to
The longitudinal axis 830 of the box coupler 800, however, is eccentric with respect to the production tubing longitudinal axis 832. Thus, an eccentricity offset (labeled “O” in
Referring to
The box coupler 850 includes stabbing projections 857 that are radially and uniformly spaced around the box coupler 850. Each projection 857 is constructed to stab into a corresponding recess pocket 880 formed in the box housing 870. The projection 857 includes two fingers 863 that are separated by a space 853. The span of the space 853 increases along a direction from the top to the bottom of the space 853. The space 853 is constructed to receive a translating wedge 890 that is slidably connected to the box housing 870. More specifically, the translating wedge 890 is constructed to slide in a longitudinal direction along a longitudinal slot 889 in the housing 870. When the projection 857 is inserted into the pocket 880, upward movement of the wedge 890 causes the fingers 863 to spread apart.
The spreading of the fingers 863 causes upper inclined shoulders 869 of the fingers 863 to contact corresponding inclined surfaces 891 of the pocket 880. This contact, in turn, draws the stabbing projections 857 into the pockets 880 and thus, joins the pin 852 and box 870 housings together. When joined together, an annular face 893 of the pin housing 852 contacts an annular face 895 of the box housing 870.
A top view of the annular face 895 of the box housing 870 is depicted in
In the embodiments of the box coupler described above, the box coupler connects transport tube and production tubing sections together. However, the invention is not limited to production tubings and transport tubes. Rather, the box couplers that are described herein may be used to connect any base pipe sections (production tubing sections, as a more specific example) and auxiliary tube sections (control line sections or transport tube sections, as more specific examples) together.
For example,
At its other end, the box housing 924 has an opening 936 that is concentric with the base pipe 912 and receives a stabbing extension 938 of the pin housing 922. The extension 938 has a passageway to communicate fluid with a base pipe 910 that is connected to the pin housing 922. The box housing 924 includes a passageway 951 that is concentric to and permits communication between the extension 938 and the base pipe 912.
The opening 936 has a narrower seal region 936b located closer to the end of extension 938. The region 936b of the opening 936 provides a surface to contact O-rings 950 of the extension 938 for purposes of forming a seal between the extension 938 and the box housing 924 and thus, seal the base pipes 910 and 912 together.
Farther from its end, the opening 936 has a wider region 936a to receive the extension 938 and a ratchet sleeve 940 that circumscribes the extension 938 when the extension 938 is inserted into the opening 936, as depicted in
The ratchet sleeve 940 includes ratchet teeth 941 on the interior surface of the sleeve 940. These ratchet teeth 941 engage ratchet teeth 942 that are formed on the exterior surface of the extension 938 when the extension is inserted into the opening 936. The ratchet teeth 940 and 941 interact to restrict the movement of the extension 938 so that the extension 938 only moves further into the opening 936. Thus, the ratchet teeth 940 and 941 form a locking mechanism to secure the pin housing 922 to the box housing 924.
The pin housing 922 includes a tapered opening 954 that is concentric to the extension 938 and is constructed to receive the tapered end of a base pipe 910. The tapered opening 954 is in communication with the passageway of the extension 938. Therefore, when the box coupler 920 is assembled together, communication is established between the base pipes 910 and 912.
The pin housing 922 also connects to control lines 925, each of which is associated with one of the control lines 926 that are connected to the box housing 924. The pin housing 922 includes a passageway 928 to communicate fluid with each of the control lines 925. Each passageway 928, in turn, is associated with a passageway 930 of the box housing 924.
For purposes of connecting the passageways 928 and 930 together, the box coupler 920 includes the following structure for each connection. This structure includes a tube 932 that has a first end that is inserted into the passageway 928 of the pin housing 922. The other end of the tube 932 protrudes outside of the pin housing 922 so that when the pin housing 922 is inserted into the box housing 924 (as depicted in
Other embodiments are within the scope of the appended claims. For example, the tubular members that are depicted in the various figures mostly have circular cross-sections. However, in other embodiments of the invention, these tubular members may have non-circular cross-sections. For example, the shunt tubes may have round, oval, kidney-shaped or another geometric cross-section, according to the particular embodiment of the invention.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Number | Name | Date | Kind |
---|---|---|---|
942436 | Caney | Dec 1909 | A |
3780802 | Phipps et al. | Dec 1973 | A |
4148495 | van Zon | Apr 1979 | A |
4676563 | Curlett et al. | Jun 1987 | A |
4732414 | Inaba | Mar 1988 | A |
4865359 | Roberts | Sep 1989 | A |
4945991 | Jones | Aug 1990 | A |
5082052 | Jones et al. | Jan 1992 | A |
5113935 | Jones et al. | May 1992 | A |
5161613 | Jones | Nov 1992 | A |
5161618 | Jones et al. | Nov 1992 | A |
5163714 | Issenmann | Nov 1992 | A |
5333688 | Jones et al. | Aug 1994 | A |
5333689 | Jones et al. | Aug 1994 | A |
5341880 | Thorstensen et al. | Aug 1994 | A |
5390966 | Cox et al. | Feb 1995 | A |
5417284 | Jones | May 1995 | A |
5419394 | Jones | May 1995 | A |
5435391 | Jones | Jul 1995 | A |
5515915 | Jones et al. | May 1996 | A |
5560427 | Jones | Oct 1996 | A |
5588487 | Bryant | Dec 1996 | A |
5690175 | Jones | Nov 1997 | A |
5842516 | Jones | Dec 1998 | A |
5848645 | Jones | Dec 1998 | A |
5862866 | Springer | Jan 1999 | A |
5868200 | Bryant et al. | Feb 1999 | A |
5890533 | Jones | Apr 1999 | A |
5971443 | Noel et al. | Oct 1999 | A |
6059032 | Jones | May 2000 | A |
6220345 | Jones et al. | Apr 2001 | B1 |
6227303 | Jones | May 2001 | B1 |
6231086 | Tierling | May 2001 | B1 |
6298916 | Tibbles et al. | Oct 2001 | B1 |
6325144 | Turley et al. | Dec 2001 | B1 |
6464007 | Jones | Oct 2002 | B1 |
6520254 | Hurst et al. | Feb 2003 | B2 |
6530433 | Smith et al. | Mar 2003 | B2 |
6588506 | Jones | Jul 2003 | B2 |
20020053439 | Danos | May 2002 | A1 |
20020079099 | Hurst et al. | Jun 2002 | A1 |
20020174984 | Jones | Nov 2002 | A1 |
20020189808 | Nguyen et al. | Dec 2002 | A1 |
20020189809 | Nguyen et al. | Dec 2002 | A1 |
20030000700 | Hailey, Jr. | Jan 2003 | A1 |
20030010496 | McGregor et al. | Jan 2003 | A1 |
20030029613 | Danos et al. | Feb 2003 | A1 |
20030034160 | Nguyen et al. | Feb 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050200127 A1 | Sep 2005 | US |