The present disclosure relates to a joint and joining method for multilayer composite tubing and fittings having at least one middle layer of malleable metal. The joint and joining method prevent the middle layer from being exposed to liquid flow within the joined tubes and fittings and result in an inner surface that has almost no bead protrusion into the waterway so that the joint is acceptable for use in a high purity water system.
High purity water (water highly purified through filtering, deionization, reverse osmosis, distillation or some combination thereof) is extensively used in research as well as in the commercial manufacture of pharmaceutical products and electronic components. Once water has been purified, it must be run through pipes that are very stable, clean and smooth, or the water will tend to become contaminated through impurities it gains from the piping materials. Over the last forty years, it has become widely recognized that thermoplastic materials are the cleanest, most stable and smoothest materials that exist to convey high purity water. In the most extreme applications, where water is purified to the greatest extent possible (a condition referred to as 18.2 mega ohm, which is the theoretical maximum resistance achievable in ultrapure water), such as in pharmaceutical or semiconductor chip manufacturing, polypropylene (PP), polyvinylidene fluoride (PVDF), and perfluoroalkoxy (PFA) materials have become the established materials of choice. This is due to the fact that these materials can be produced without pigmentation or other additives, are highly crystalline thermoplastics which can be extruded into very smooth bores, and can be joined with techniques that minimize internal imperfections in the bore of the piping.
Joining methods which produce the least internal irregularities or intrusions are preferable as any internal formations or crevices that exist can lead to stagnant areas where bacteria or other microorganisms can grow. This is very undesirable in high purity water applications, and particularly in applications where microorganisms can lead to adverse effects on the finished products or affect test results. The best joint forming techniques that have been developed to date for thermoplastic materials include a technique known as bead and crevice free butt-welding, which results in a virtually undetectable joint in the piping material. This method consists of heating the plain ends of pipes against a heating surface, and then butting the materials together while simultaneously inflating a device, a solid plug, or introducing a gas that prevents the formation of an internal bead. The only drawbacks to this method is that it is very labor intensive, is typically performed on pipes with fixed lengths (e.g. 5 meter extruded lengths and separate fittings) which require a large number of welds, and it is not possible to perform this type of welding on 100% of the joints in the system. The joints that cannot be made using bead and crevice free butt-welding (such as where a valve is located) must be accomplished via flanged connections, union connections, or other mechanical attachments.
Another method which has proven useful in high purity applications, especially when PFA tubing is involved or where the expense of bead and crevice free joining is unacceptable, is a method referred to as infrared (IR) butt fusion that uses IR radiant heat to fuse pipes and fittings together. By using radiant heat, the pipe never touches a heating surface, thus offering a purer, non-contaminated end product. In addition, the equipment which has been developed to perform infrared butt fusion is typically CNC controlled so that very careful pressures are applied for a very tightly controlled period of time, resulting in butt weld internal and external beads of reduced size and a very uniform, well rounded geometry. By comparison with traditional contact butt fusion, this reduced and uniform bead result substantially reduces the possibility that bacteria can collect and thrive at the fusion weld seam.
In the 1990's multilayer composite tubing was introduced and comprises an inner layer of thermoplastic material (such as polyethylene (PE) or cross-linked polyethylene (PEX) or PP), a malleable metallic layer such as welded aluminum or copper, and an outer layer of thermoplastic material. The inner and outer layers are typically bonded to the aluminum by means of an adhesive layer to result in a gas tight construction. Such an assembly results in tubing which can be made with thin layers for economy, yet has reasonably high-pressure ratings. In addition, the tubing is flexible due to the malleable nature of the metallic products involved, and since the inner and outer layers are relatively thin, so that the tubing can be deliverable in coiled bundles and rolled out straight. In addition, elbows can be field formed in the flexible multilayer thermoplastic tubing.
It has been recognized by the author of the present disclosure that multilayer composite tubing could also work well for high purity water piping systems if suitable joining methods can be developed. For example, the inner layer can be extruded using an unpigmented, virgin resin, such as polypropylene, PVDF, a more flexible copolymer form of PVDF (a copolymer created from monomers of vinylidene fluoride and hexafluoropropylene, sometimes referred to as Kynar Flex®, which is a tradename of Arkema, Inc.), or PFA, materials which are already readily accepted into high purity water applications. The outer layer can be offered as a pigmented product with special additives such as UV inhibitors to protect against UV attack of the pipe (a problem inherent in PP materials without additives), since the outer layer is not a wetted component. Dissimilar systems such as PVDF-AL-PP combinations can even be offered where PVDF is needed for the wetted contact layer. Such a system could be delivered into a project in long coils (e.g. 100 meter coils) and rolled out into seamless and jointless straight lengths. Further, a certain number of consecutive bends can be field formed using forming and bending tools, and flexible inserts.
What is still desired is a new and improved joint and method for joining multilayer composite tubing having at least one middle layer of malleable metal. The joint and joining method will preferably prevent the middle metal layer from being exposed to liquid flow within coupled tubes. In addition the joining method will preferably provide a joint acceptable for use in a high purity water system.
The present disclosure provides exemplary embodiments of joints and joining methods for connecting multilayer composite tubing and fittings having at least one middle layer of malleable metal. The joint and joining method of the present disclosure prevent the middle layer of malleable metal from being exposed to liquid flow within the joined tubes and fittings and result in an inner surface that has almost no bead protrusion into the fluid flow path so that the joint is acceptable for use in a high purity water system.
According to one exemplary embodiment, a joining method according to the present disclosure comprises flaring out ends of multilayer composite tubing and/or fittings to be joined so that exposed ends of the middle layer of malleable metal are directed radially outward and away from the fluid flow path within the tubing and/or fittings, and then fusing the flared out ends using infrared butt welding so that the resulting bead protrusion into the fluid flow path is small enough to be acceptable for use in a high purity water system.
According to one aspect, the ends are flared outwardly such that a small radius at the wetted base of the flare is achieved so that fusion weld beads occupy the space created by the radius, and thereby result in an inner surface that has almost no bead protrusion into the waterway. The flared ends, therefore, make the resulting joint even more acceptable than standard infrared butt fusion welds, which are already widely accepted by the industry.
The middle layer of malleable metal incorporated into a flared end formed in accordance with the present disclosure would act to reinforce the joint, as well as provide a heat sink to allow the wetted surfaces to be thoroughly and uniformly fused together. The middle layer of malleable metal will also act to prevent problems associated with creep of the thermoplastics, thereby minimizing future potential failures due to creep at the joints.
Unlike contact butt fusion, and in traditional infrared butt fusion, fusion in accordance with the present disclosure does not occur at the ends of the pipe surface, but rather is being made at flat flange faces that are at a right angle to the flow. Since these small flat faces are produced by flaring material that originates from the inside diameter of the pipe, the material is clean, and will be highly regular in surface shape, and will not need to be subjected to shaving or planning using a rotating cutting or planning tool (a standard step in contact or normal infrared butt fusion). This means that another major potential source of impurity is eliminated whereby metal fragments can be introduced or imbedded into the pipe due to contact with the cutting tools. This feature also serves to make the joints produced from the modified infrared method in this disclosure even cleaner and even more desirable than those produced by traditional infrared butt fusion.
It is apparent that the joining methods and the resulting joints provided in accordance with the present disclosure have many advantages over previous high purity systems. For example, the presently disclosed joint and joining method makes multilayer composite tubing more practical so that the use of coiled tubes in long lengths that can be rolled out in rigid fashion, together with the field formability of many of the elbows, will eliminate 70 to 90 percent of the joints found in previous high purity systems. Where fusion joints are required, the presently disclosed joint and joining method provides joints having smaller beads joint and less potential for contamination.
Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only exemplary embodiments of the present disclosure are shown and described, simply by way of illustration of the best mode contemplated for carrying out the present disclosure. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
Reference is made to the attached drawings, wherein elements having the same reference character designations represent like elements throughout, and wherein:
The present disclosure overcomes many of the prior art problems with joints and joining of high purity water tubing and piping systems. In general, the joints and joining methods are used to create extensive yet highly sanitary plumbing networks. Among other features and benefits, the disclosed joints and joining methods facilitate high quality and strong joints and can create complex networks of piping. The advantages and other features disclosed herein, will become more readily apparent to those having ordinary skills in the art from the following detailed description of exemplary embodiments taken in conjunction with the drawings which set forth representative embodiments of the present disclosure and wherein like reference numerals identify similar structural elements.
All relative descriptions herein such as upward, downward, left, right, up, down, length height, width, thickness, and the like with reference to the Figures are not meant in a limiting sense. Additionally, the illustrated embodiments can be understood as providing exemplary features of varying detail of certain embodiments, and therefore, features, components, modules, elements, and/or aspects of the illustrations can be otherwise combined, intersected, sequenced, separated, interchanged, positioned, and/or rearranged without materially departing from the disclosed joints or joining methods. Additionally, the shapes or sizes of certain components are also exemplary and can be altered without materially affecting or limiting the disclosed joint and joining method. Referring first to
Although not viewable in
The outer fifth layer 101 is also an extruded thermoplastic, which can be from among one of the same resins described above. The outer layer 101 may be a pigmented material which has additives that protect or inhibit against the harmful effects of ultraviolet light, which is particularly important when using a material such as PP, HDPE, PE100 or PEX, each of which are affected to some degree by UV light. The resin used to manufacture the outer layer 101 may also have any number of additional additives such as flame retardants, smoke suppressants, impact modifiers or other additives to achieve fire resistance or other desirable performance characteristics such as impact resistance, etc. In this manner, the inner layer 103 has the best form of the material to maintain purity, while the outer layer 101 has the best protection of the multilayer pipe 100 against external ambient effects. Also, the inner layer 103 can be one material and the outer layer 101 can be a dissimilar material. In this manner, an expensive material such as PFA or PVDF can be used as the inner layer 103 and the outer layer 101 can be a less expensive material such as PP or HDPE, thereby making the entire assembly 100 an economical overall combination while preserving the performance characteristics of the inner most layer 103. As a result, the entire assembly 100 can be less expensive than a solid pipe of extruded thermoplastic material of typical thicknesses produced to handle the same class of service for a comparable diameter size.
Referring now to
In
Referring now to
In
Referring now to
Referring now to
Thus, the present disclosure provides a new and improved joint and method of joining multilayer composite tubing. It should be understood, however, that the exemplary embodiments described in this specification have been presented by way of illustration rather than limitation, and various modifications, combinations and substitutions may be effected by those skilled in the art without departure either in spirit or scope from this disclosure in its broader aspects and as set forth in the appended claims. Accordingly, other embodiments are within the scope of the following claims. In addition, the improved joint and method of joining disclosed herein, and all elements thereof, are contained within the scope of at least one of the following claims. No elements of the presently disclosed joint and method of joining are meant to be disclaimed.
This application claims priority to U.S. Provisional Patent Application No. 60/980,583, filed Oct. 17, 2007, which is incorporated herein by reference. This application is related to International Application No. PCT/US2007/007686 (Atty. Docket No. 65978PCT), which claims priority to U.S. Provisional Patent Application No. 60/744,212, filed Apr. 4, 2006, both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60980583 | Oct 2007 | US |