This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2018-190169, filed on Oct. 5, 2018; the entire contents of which are incorporated herein by reference.
The present invention relates to a joint apparatus and a spout sealing machine.
A pouch with spout for enclosing a liquid or jelly beverage having fluidity or a detergent has been widely used conventionally. A consumer can discharge contents in the pouch through a spout part to the outside of the pouch. As an apparatus related to such a pouch with spout, a sealing apparatus that attaches an empty pouch to a spout, and seals a pouch mouth of the pouch.
JP4150610B discloses such a sealing apparatus. In the sealing apparatus disclosed in JP4150610B, a pouch mouth of a pouch is firstly opened by a predetermined size, the pouch is then elevated under this state to a predetermined height, and a lower cylindrical portion of a spout is inserted into the pouch. Thereafter, the pouch mouth is closed so that the pouch mouth covers the lower cylindrical portion of the spout. Then, the pouch is pressed from both sides thereof onto the cylindrical portion of the spout by temporal sealing heating plates. By melting an inside layer of the pouch, temporal sealing is performed.
When the lower cylindrical portion of the spout is inserted into the pouch, an end of the pouch mouth of the pouch is brought into contact with a flange part provided on the spout, so that the pouch is positioned with respect to the spout. The inventors' intensive studies on the positioning of the pouch with respect to the spout show the following problem.
For example, a spout 300 is held at a predetermined position, and a pouch body 310 with a pouch mouth 312 facing upward is elevated toward the spout 300. When an end 314 of the pouch mouth 312 is brought into contact with a flange part 302 provided on the spout 300, a vertical position of a central part 314a of a width direction Dw in the end 314 of the pouch mouth 312 is restricted by the flange part 302. On the other hand, a vertical position of a part of the end 314 of the pouch mouth 312, other than the central part 314a, is not restricted by the flange part 302 of the spout 300. Thus, as shown in
In order to solve this problem, the use of cameras and/or sensors for detecting positions of a pouch and a spout so as to control the position of the pouch could be considered. However, even if the elevation of the pouch or the spout is stopped based on a signal when the pouch or the spout is located at a correct position, it is difficult to stabilize the positions of the pouch and the spout because of time loss in a control unit that receives the signal. Namely, because of a time lug generated by the time when the elevation of the pouch or the spout is stopped, the pouch or the spout is displaced. In addition, when the positioning of the pouch and the spout is processed at a high speed, it is further difficult to stabilize the positioning.
The present invention has been made in view of the above circumstances. The object of the present invention is to provide a joint apparatus and a spout sealing machine that are capable of stably aligning a spout and a pouch body by means of a simple structure.
The joint apparatus according to the present invention is a joint apparatus that joins a pouch body to a spout, comprising:
a spout holding unit that holds the spout;
a positioning mechanism that positions the pouch body with respect to the spout; and
a joint mechanism that joins a pouch mouth of the pouch body to the spout;
wherein the positioning mechanism has a pouch-body moving unit that moves the pouch body toward the spout, a contact member having a contact part that comes into contact with an end of the pouch mouth, and an absorption mechanism that absorbs a part of a force acting on the pouch body when the end of the pouch mouth comes into contact with the spout 200 or the contact member.
In the joint apparatus according to the present invention, the pouch-body moving unit may position the pouch body with respect to the spout, while supporting a bottom of the pouch body.
In the joint apparatus according to the present invention, the contact member may have at least two contact parts that are positioned on one side and on the other side with respect to the spout holding unit.
In the joint apparatus according to the present invention, the contact part may be disposed to be positioned at the same height as a contact surface of the spout, which is in contact with the pouch body, or at a position lower than the contact surface.
In the joint apparatus according to the present invention, the contact part may be movable between a contact position at which the contact part is in contact with the end of the pouch mouth, and a retracted position retracted from the contact position.
In the joint apparatus according to the present invention, the positioning mechanism may further have a guide unit that guides a side edge part of the pouch body, and the guide unit may be movable between a guide position at which the guide unit is in contact with the side edge part and guides the side edge part, and a retracted position retracted from the guide position.
A spout sealing machine according to the present invention comprises the aforementioned joint apparatus and a sealing apparatus that seals the pouch mouth, wherein the joint mechanism is configured to temporally seal the pouch mouth of the pouch body to the spout.
According to the present invention, it is possible to provide a joint apparatus and a spout sealing machine that are capable of stably aligning a spout and a pouch body by means of a simple structure.
Herebelow, an embodiment of the present invention is described with reference to the drawings.
The spout sealing machine 10 comprises a spout supply apparatus 12, a pouch supply apparatus 14 and a pouch processing apparatus 20.
The spout supply apparatus 12 is an apparatus that supplies a spout 200 to a first station (spout supply unit) S1 of the pouch processing apparatus 20. In an example shown in
The pouch supply apparatus 14 is an apparatus that supplies a pouch body 210 to a second station (empty-pouch supply unit) S2 of the pouch processing apparatus 20. A plurality of pouch bodies 210 are stored in a stacked state in the pouch supply apparatus 14. Each pouch body 210 is a empty, and a pouch mouth 212 is closed, with opposed sidewalls (sheet members) forming the pouch mouth 212 being in contact with each other. The pouch bodies 210 stored in the pouch supply apparatus 14 are held one by one by a pouch taking-out unit 31 formed of a sucking disc, for example, and are delivered from the pouch taking-out unit 31 to the spout holding unit 26 positioned at the second station 52 of the pouch processing apparatus 20.
The pouch processing apparatus 20 in this embodiment comprises the joint apparatus 40. The joint apparatus 40 comprises the spout holding unit 26 that holds a spout 200, a positioning mechanism 70 that positions a pouch body 210 with respect to a spout 200, and a joint mechanism 65 that joins a pouch mouth 212 of a pouch body 210 to a spout 200. Herebelow, the pouch processing apparatus 20 is described in detail.
The pouch processing apparatus 20 shown in
In the first station (spout supply unit) S1, a spout 200 is delivered by the delivery mechanism 13 to the spout holding unit 26 (spout supply step). In the second station (empty-pouch supply unit) S2, a pouch 210 is supplied by the pouch taking-out unit 31 from the pouch supply apparatus 14, and a part of the spout 200 is covered with the pouch body 210 by a pouch covering mechanism (empty-pouch supply step). In a third station (temporal joint unit) S3, a pouch mouth 212 of the pouch body 210 is temporally joined to the spout 200 by the joint apparatus 40 (temporal joint step). In a fourth station (first sealing unit) S4 and a fifth station (second sealing unit) S5, the pouch mouth 212 of the pouch 210 is sealed by a first sealing apparatus 35 and a second sealing apparatus 37 (first sealing step and second sealing step). In a sixth station (cooling unit) S6, the heat-sealed pouch mouth 210 of the pouch 200 is cooled by a cooling apparatus (sealed-portion cooling step). In a seventh station (printing unit) S7, a production date, an expiration date and so on are printed on a surface of the pouch 200 by a printing apparatus, not shown (printing step). In an eighth station (inspection unit) S8, an attachment state between the spout 200 and the pouch body 210 is inspected (inspection step). In the inspection step, acceptance or unacceptable of the attachment state is judged based on an image taken by a camera, for example. In a ninth station (product discharge unit) S9, a product whose attachment state is judged as acceptable is discharged by a not-shown product discharge conveyor, for example. In a tenth station (reject-product discharge unit) S10, a product whose attachment state is judged as unacceptable is discharged.
Next, the joint apparatus 40 to be incorporated in the spout sealing machine 10 is described with reference to
The joint apparatus 40 in this embodiment comprises the spout holding unit 26 that is disposed on the transport table 24 and configured to hold a spout 200, a pouch-body holding mechanism 41 that holds a pouch body 210 and moves the pouch body 210 from the second station S2 to the third station S3 following the rotation of the transport table 24, i.e., the movement of the spout 200, the positioning mechanism 70 that positions the pouch body 210 with respect to the spout 200, and the joint mechanism 65 that temporally joins a pouch mouth 212 of the pouch body 210 to the spout 200. In the second station S2, the joint apparatus 40 receives a pouch body 210 from the pouch supply apparatus 14, and covers a part of a spout 200 with a pouch mouth 212 of the pouch body 210 by the pouch covering mechanism. Then, the joint apparatus 40 transports the pouch body 210 by the pouch-body holding mechanism 41 from the second station S2 to the third station S3. In the third station, the joint apparatus 40 positions the pouch body 210 with respect to the spout 200 by the positioning mechanism 70, and temporally joins the pouch body 210 to the spout 200 under this state by the joint mechanism 65.
The pouch-body holding mechanism 41 is described with reference to
Herebelow, members constituting the pouch-body holding mechanism 41 are described, with reference numerals 42 to 62 being given to these members. In the rotation shaft 24a disposed on the transport table 24, a hollow shaft 42 is disposed coaxially to the rotation shaft 24a through a bearing 43. A lower part of the hollow shaft 42 is connected to a drive source, not shown. The hollow shaft 42 receives a drive force from the drive source so as to be reciprocally rotated within a predetermined angular range. A first swinging lever 44 that extends in the radial direction of the transport table 24 is disposed on the hollow shaft 42, so that the hollow shaft 42 and the first swinging lever 44 are integrally rotated. A slide-shaft support block 45 that slidably guides a below-described slide shaft 48 is disposed on a lower surface of the first swinging lever 44 at a position close to the rotation center. In addition, a slide rail 46 that slidably supports a below-described slide member 49 is disposed on a distal end side of the first swinging lever 44.
The reference numeral 47 depicts a movement plate. The slide shaft 48 is disposed on a rear end side of the movement plate 47. In addition, on an upper surface of the movement plate 47, the slide member 49 that is fitted in the aforementioned slide rail 46 so as to be slidable along the slide rail 46 is disposed. The slide rail 46 and the slide member 49 have a groove and a projection fitted with each other, whereby the slide member 49 is slidable and is supported by the slide rail 46. Thus, the movement plate 47 and the slide shaft 48 can be integrally slid with respect to the slide rail 46. A compression spring 50 is disposed between the movement plate 47 and the slide-shaft support block 45 so as to urge the movement plate 47 radially outward of the transport table 24.
A support block 51 is disposed on a lower surface of a distal end of the movement plate 47 such that the support block 51 is movably adjustable with respect to the movement plate 47. A sucking disc 52 is disposed on a distal end of the support block 51. The sucking disc 52 is used for sucking a pouch body 210 so as to hold the pouch body 210 in the temporal sealing step.
The reference numeral 55 depicts a movement cam. One end of the movement cam 55 is carried by a pivot shaft 56 so as to be swingable in a horizontal plane. A cam drive shaft 58 extends in a hollow stand 57. A lower end of the cam drive shaft 58 is connected to a drive source, not shown, so as to be reciprocally rotated within a predetermined angular range. A second swinging lever 58 is disposed on an upper end of the cam drive shaft 58 so as to be integrally rotated therewith. An outer end of the second swinging lever 59 is connected to the other end the movement cam 55 through a connection rod 60. The reference numeral 61 depicts a cam support plate. The movement cam 55 is supported slidably along an upper surface of the cam support plate 61. By the rotation of the movement-cam drive shaft 58, the movement cam 55 can take a forward position which is shown by solid lines in
The joint mechanism 65 comprises a heating plate 66 that is configured to be movable between a sealing position at which the heating plate 66 is in contact with a pouch mouth 212 of a pouch body 210 held by the pouch-body holding mechanism 41, and a retracted position retracted from the pouch mouth 212. A heating mechanism, not shown, is disposed inside the heating plate 66. For example, an electrically heated wire that is powered to generate heat can be used as the heating mechanism. In the temporal sealing step, the heating plate 66 head by the heating mechanism is brought into contact with a pouch mouth 212 of a pouch 210, so that a part of the pouch body 210 in the pouch mouth 212, i.e., a layer (inner layer) positioned inside the pouch body 210 is melted so as to fix (temporally seal) the pouch mouth 212 with respect to the spout 200.
Next, the positioning mechanism 70 of the joint apparatus 40 is described with reference to
The positioning mechanism 70 has a underneath positioning mechanism (pouch-body moving unit) 95 that moves a pouch body 210 toward a spout 200, and a contact member 120 having a contact part 122 that comes into contact with an end 214 of a pouch mouth 212 of the pouch 210. Particularly in this embodiment, the positioning mechanism 70 includes a lateral positioning mechanism 73, the underneath positioning mechanism 95 functioning as a pouch-body moving unit, and a contact mechanism 110. Herebelow, these mechanisms are sequentially described.
The reference numeral 72 depicts a frame of the positioning mechanism 70. The frame 72 comprises a vertical plate part 72a, an upper plate part 72b that horizontally extends from an upper end of the vertical plate part 72a, and an attachment part 72c that extends from a lower end of the vertical plate part 72a oppositely to the upper plate part 72b. The attachment part 72c of the frame 72 is disposed on a stand 7 installed on a base 5.
Herebelow, members constituting the side positioning member 73 are described, with reference numerals 74 to 92 being given to these members. A movement air cylinder 74 is disposed on an upper surface of the upper plate part 72b of the frame 72. A bracket 75 is disposed on a distal end of a rod 74a of the movement air cylinder 74, and a movement block 76 is fixed on the bracket 75. Thus, the bracket 75 and the movement block 76 are moved forward and rearward by an operation of the movement air cylinder 74. Two guide shafts 77 and an adjustment screw shaft 78 that are normal to the movement direction of the movement block 76 are inserted through the movement block 76. Right and left adjustment block 79, 80 are disposed on both ends of the guide shaft 77 so as to be movable along the guide shaft 77. The center part of the adjustment screw shaft 78 is passed through the movement block 76. The adjustment screw shaft 78 can be rotated with respect to the movement block 76, but cannot be axially moved. Both ends thereof are screw-threaded oppositely, and are screw-engaged with internal screws threaded in the right and left adjustment blocks 79, 80. A handle 78a is disposed on one end of the adjustment screw shaft 78. By rotating the handle 78a in one direction, the right and left adjustment blocks 79, 80 come close to each other. By rotating the handle 78a in the other direction, the right and left adjustment blocks 79, 80 move away from each other.
On upper surfaces of the adjustment blocks 79, 80, right and left opening and closing levers 81, 82 are respectively carried by support shaft 81a, 82a so as to be rotatable in a horizontal plane. On inside surfaces of shaft fitting parts of the opening and closing levers 81, 82, right and left positioning-member attachment plates 83, 84 are respectively disposed so as to extend oppositely to the movement air cylinder 74. On distal ends of the positioning-member attachment plates 83, 84, side positioning members 85, 86 each having a V-shaped section are respectively disposed. The side positioning member 85, 86 constitutes a guide unit that guides a side edge part 216.
On distal ends of arm parts of the opening and closing levers 81, 82, which extend to come close to each other, right and left rotation rollers 87, 88 are respectively disposed so as to be rotatable in a horizontal plane. A drive rod 91 extending in the right and left direction, which is held by a rod holding member 90 disposed on a distal end or a rod of an opening and closing air cylinder 89 disposed on the movement block 76, is engaged with a groove formed in a circumferential direction of the rotation roller 87, 88. The reference numeral 92 depicts a tension spring acting on the right and left positioning-member attachment plates 83, 84. Thus, when the opening and closing air cylinder 89 is operated, the positioning-member attachment plates 83, 84 are rotated in directions opposed to each other, so that the side positioning members 85, 86 come close to each other or move away from each other. Thus, the side positioning member 85, 86 functioning as a guide unit can be moved between a guide position at which the side positioning member 85, 86 is in contact with a side edge part 216 of a pouch body 210 so as to guide the side edge part 216, and a retracted position retracted from the guide position.
According to the guide units (side positioning members) 85, 86, since a pouch body 210 can be positioned with respect to a spout 200 with a side edge part 216 of the pouch body 210 being guided, the positioning can be stably performed with a high positioning precision.
Next, members constituting the underneath positioning mechanism (pouch-body moving unit) 95 are described, with reference numerals 96 to 104 being given to these members. The underneath positioning mechanism (pouch-body moving unit) 95 is a mechanism that positions a pouch-body 210 with respect to a spout 200, while supporting a bottom of the pouch body 210. In particular, the underneath positioning mechanism 95 positions a pouch body 210 with respect to a spout 200 along an insertion direction of the spout 200 into the pouch body 210 (in this embodiment, vertical direction). The reference numeral 96 depicts an elevation shaft that is inserted to the stand 7, and is connected to a not-shown drive source, such as an air cylinder. A horizontal part 97a of an elevation bracket 97 is disposed on an upper end of the elevation shaft 96. When the drive source is operated, the elevation shaft 96 and the elevation bracket 97 are moved upward and downward. A guide shaft 98, which is disposed upright on an upper surface of an extension part 7a disposed on an upper end of the stand 7 to extend horizontally, is inserted through a distal end of the horizontal part 97a through a bush 99. The guide shaft 98 prevents rotation of the elevation bracket 97 and guides the same upward and downward.
On a vertical part 97b of the elevation bracket 97, a bottom-positioning-member attachment plate 100 is disposed such that its height is adjustable. In addition, on a support block 101 fixed on the bottom-positioning-member attachment plate 100, a bottom positioning member 102 having a V-shaped depression on an upper part thereof is disposed so as to be rotatable about a horizontal shaft 104. The reference numeral 103 depicts a compression spring disposed between the support block 101 and the bottom positioning member 102. In
Next, members constituting the contact mechanism 110 are described, with reference numerals 111 to 122 being given to these members. The reference numeral 111 depicts a stand installed on the base 5. An elevation shaft 113 is inserted in the stand 111, and the elevation shaft 113 is supported by the stand 111 through a bearing 112. A lower end of the elevation shaft 113 is connected to a not-shown drive source, such as an air cylinder. An arm unit 114 is disposed on an upper end of the elevation shaft 113. One end of the arm unit 114 is connected to the upper end of the elevation shaft 113, and the other end thereof is connected to an attachment member 115.
The contact member 120 is disposed on a lower surface of the attachment member 115. A lower surface of the contact member 120 constitutes the contact part 122 that comes into contact with an end 214 of a pouch mouth 212 of a pouch body 210. The end 214 of the pouch mouth 212 includes a central part 214a and side parts 214b, 214c along a width direction Dw. In this embodiment, by bringing the central part 214a into contact with a contact surface 204 of a spout 200, the pouch body 210 is positioned with respect to the spout 200. When the pouch body 210 is positioned with respect to the spout 200, the contact part 122 comes into contact with the side parts 214b, 214c in the width direction Dw in the end 214 of the pouch mouth 212. The contact member 120 has a function for preventing deformation of the end 214, and for preventing separation of the end 214 of the pouch mouth 212 from the spout 200 at the central part 214a of the end 214.
In this embodiment, as well shown in
The contact part 122 is disposed to be located at the same height as the contact surface 204 of the spout 200, which is in contact with the pouch body 210, or at a position lower than the contact surface 204. In the illustrated example, a lower surface of a flange part 202 of the spout 200 is used as the contact surface 204. Thus, at least when the pouch body 210 is positioned with respect to the spout 200, the contact part 122 is disposed to be located at the same height as the lower surface of the flange part 202 in the state where the spout 200 is held by the spout holding unit 26, or at a position lower than the contact surface 204. Thus, when the pouch body 210 is positioned with respect to the spout 200, it is possible to further effectively prevent deformation of the end 214 of the pouch mouth 212, and to further effectively prevent separation at the central part 214a of the pouch mouth 212.
When the not-shown drive source is operated, the elevation shaft 113 is moved upward and downward. Thus, the elevation shaft 113, the arm unit 114, the attachment member 115 and the contact member 120 are integrally moved upward and downward. Thus, the contact part 122 can be moved between a contact position at which the contact part 122 is in contact with an end 214 of a pouch mouth 212, and a retracted position retracted from the contact position. For example, when the elevation shaft 113 is in the lowermost position, the contact part 122 of the contact member 120 may be located, as the contact position, at the same height as a contact surface 204 of a spout 200, which is in contact with a pouch body 210, or at a position lower than the contact surface 204. In addition, when the elevation shaft 113 is in the uppermost position, the contact part 122 may be located, as the retracted position, at a height at which the contact member 120 does not interfere with a spout 200 held by the spout holding unit 26.
Next, an operation of the joint apparatus 40 is described with reference to
(Pouch Covering Step)
In the second station S2, a lower cylindrical portion (portion lower than flange part 202) is covered with a pouch body 210 by the pouch covering mechanism. At this time, the movement plate 47 of the pouch-body holding mechanism 41 is positioned in the second station S2. The movement cam 55 is located at the retracted position, so that the movement plate 47 is also located at a retracted position. When the spout 200 is covered with the pouch body 210 by the pouch covering mechanism, the movement-cam drive shaft 58 is rotated at a predetermined angle in a predetermined direction, so that the movement cam 55 is rotated about the pivot shaft 56 so as to move to the forward position. Thus, the movement plate 47 is urged by the compression spring 50 so that the movement plate 47 moves forward. Thus, the sucking disc 52 disposed on the movement plate 47 through the support block 51 sucks the pouch body 210 so as to hold the pouch body 210 (see
(Contact-Member Moving Step)
After the transport table 24 has been stopped, the pouch body 210 is positioned with respect to the spout 200 by the positioning mechanism 70. To be specific, the contact part 122 of the contact member 120 is moved form the retracted position to the contact position. Namely, the elevation shaft 113 of the contact mechanism 110 is lowered and the contact member 120 is also lowered in accordance therewith. Thus, the contact part 122 is lowered so as to move to the contact position. Then, the side positioning members 85, 86 of the lateral positioning mechanism 73 of the positioning mechanism 70 are moved forward, while they are away from each other (see
(Pouch-Body Positioning Step)
Then, the movement cam 55 is moved to the retracted position so that the sucking disc 52 is retracted. In accordance therewith, the side positioning members 85, 86 come close to each other so as to hold and position the side edge part 216 of the ouch body 210. Simultaneously therewith, the bottom position member 102 of the underneath positioning mechanism 95 moves upward so as to support and position the bottom of the pouch body 210 (see
At this time, since the contact part 122 of the contact member 120 is located at the contact position, when the pouch body 210 is positioned with respect to the spout 200, as shown in
When the end 214 of the pouch mouth 212 of the pouch body 210 comes into contact with a spout 200 or the contact member 120, there is a possibility that an excessive force acts on the pouch body 210 in a direction in which the pouch body 210 is pressed against the spout 200 or the contact member 120. Since the underneath positioning mechanism 95 in this embodiment has the compression mechanism (absorption mechanism) 103 that absorbs a part of the excessive force acting on the pouch body 210, the compression spring 103 is further compressed so that a part of the force is absorbed.
(Joint Step)
After the pouch body 210 has been positioned with respect to the spout 200, the waiting heating plate 66 of the joint mechanism 65 moves toward the pouch mouth 212 of the pouch body 210, and temporally joins the spout 200 and the pouch body 210 (see
The joint apparatus 40 in this embodiment is the joint apparatus 40 that joins a pouch body 210 to a spout 200, comprising: the spout holding unit 26 that holds the spout 200; the positioning mechanism 70 that positions the pouch body 210 with respect to the spout 200; and the joint mechanism 65 that joins a pouch mouth 212 of the pouch body 210 to the spout 200; wherein the positioning mechanism 70 has the pouch-body moving unit 95 that moves the pouch body 210 toward the spout 200, the contact member 120 having the contact part 122 that comes into contact with an end 214 of the pouch mouth 212, and the absorption mechanism 103 that absorbs a part of a force acting on the pouch body 210 when the end 214 of the pouch mouth 212 comes into contact with the spout 200 or the contact member 120.
According to such a joint apparatus 40, when the pouch body 210 is positioned with respect to the spout 200, since the contact part 122 of the contact member 120 comes into contact with the side part 214b, 214c of the width direction Dw in the end 214 of the pouch mouth 212 (see
In the joint apparatus 40 in this embodiment, the pouch-body moving unit 95 positions the pouch body 210 with respect to the spout 200, while supporting a bottom of the pouch body 210.
According to such a joint apparatus 40, a support apparatus for supporting the bottom of the pouch body 210 can function as a positioning means that moves and positions the pouch body 210. Thus, as compared with a case in which the support apparatus for a pouch body 210 and the positioning means for a pouch body 210 are constructed as separate apparatuses, the structure of the positioning mechanism 70 is simple.
In the joint apparatus 40 in this embodiment, the contact member 120 has at least two contact parts 122 that are positioned on one side and on the other side with respect to the spout holding unit 26.
According to such a joint apparatus 40, when the end 214 of the pouch mouth 212 is in contact with the respective contact parts 122, the height of the side part 214b and the height of the side part 214c can be made uniform. Thus, it can be prevented that the pouch body 210 which is being inclined is positioned with respect to the spout 200.
In the joint apparatus 40 in this embodiment, the contact part 122 is disposed to be located at the same height as the contact surface 204 of the spout 200, which is in contact with the pouch body 210, or at a position lower than the contact surface 204.
In a case where the contact part 122 is located at the same height as the contact surface 204 of the spout 200, which is in contact with the pouch body 210, when the end 214 of the pouch mouth 212 is in contact with the respective contact parts 122, the contact surface 204 of the spout 200 and the central part 214a of the end 214 of the pouch mouth 212 are precisely aligned and in contact with each other. Alternatively, in a case where the contact part 122 is located at a position lower than the contact surface 204 of the spout 200, which is in contact with the pouch body 210, when the end 214 of the pouch mouth 212 is in contact with the respective contact parts 122, the pouch body 210 is positioned with respect to the spout 200 with a small gap being defined between the contact surface 204 of the spout 200 and the central pat 214a of the end 214 of the pouch mouth 212. Thus, separation of the central part 214a of the end 214 of the pouch mouth 212 can be further effectively prevented.
In the joint apparatus 40 in this embodiment, the contact part 122 is movable between the contact position at which the contact part 122 is in contact with the end 214 of the pouch mouth 212, and the retracted position retracted from the contact position.
According to such a joint apparatus 40, when the spout 200 and the pouch body 210 are transported along the transport direction D1, the contact member 120 (contact part 122) can be retracted to a position at which the contact member 120 (contact part 122) does not interfere with transport trajectories of the spout holding unit 26, the spout 200 and the pouch body 210 and the like. Thus, a pair of contact members 120 can perform positioning of all the pouch bodies 210 that are joined to the spouts 200 in the joint apparatus 40. Thus, as compared with a case in which a plurality of pairs of contact members 120 the number of which is the same as the spout holding units 26 are provided for the respective spout holding units 26, installation costs of the contact members 120 can be reduced. In addition, when the position of the contact part 122 at the contact position is desired to be adjusted because types of a spout and/or a pouch body are changed, for example, only one set of contact members 120 is adjusted, which decreases a time required for adjustment.
In the joint apparatus 40 in this embodiment, the positioning mechanism 70 further has a guide unit 85, 86 that guides the side edge part 216 of the pouch body 210, and the guide unit 85, 86 is movable between the guide position at which the guide unit 85, 86 is in contact with the side edge part 216 so as to guide the side edge part 216, and the retracted position retracted from the guide position.
According to such a joint apparatus 40, since a pouch body 210 can be positioned with respect to a spout 200 with a side edge part 216 of the pouch body 210 being guided, the positioning can be stably performed with a high positioning precision.
The spout sealing machine 10 in this embodiment comprises the aforementioned joint apparatus 40, and the sealing apparatus 35, 37 that seals the pouch mouth 212, wherein the joint mechanism 65 is configured to temporally seals the pouch mouth 212 of the pouch body 210 to the spout 200.
According to such a spout sealing machine, after the pouch body 210 has been positioned with respect to the spout 200 and the pouch body 210 has been temporally sealed to the spout 200 by the joint apparatus, the pouch mouth 212 can be sealed (finally sealed) by the seal apparatus 35, 37. Thus, it is not necessary to position the spout 200 and the pouch body 210 in the sealing apparatus 35, 37, and the sealing step can be performed by means of the sealing apparatus 35, 37 of a simple structure.
Number | Date | Country | Kind |
---|---|---|---|
2018-190169 | Oct 2018 | JP | national |