The exemplary and non-limiting embodiments of this invention relate generally to wireless communication systems, methods, devices and computer programs, and more specifically relate to testing synchronization of a radio channel.
The following abbreviations used in the specification and/or the drawings are defined as follows:
3 GPP third generation partnership project
DL downlink (network towards UE)
DPCCH dedicated physical control channel
DPDCH dedicated physical data channel
NodeB base station of a UTRAN system
F-DPCH fractional dedicated physical channel
PCI precoding information
PCICH precoding information channel
PDCCH physical downlink control channel
RNC radio network controller
SINR signal to interference plus noise ratio
TPC transmit power control
UE user equipment
UL uplink (UE towards network)
UTRAN universal terrestrial radio access network (3G)
Any radio systems require a certain level of synchronization between the network and the portable devices which access it. Synchronization tolerances are quite stringent for most radio systems, particularly cellular systems which are designed for highly efficient use of the radio spectrum. The UTRAN system uses the DPDCH for downlink data and the DPCCH for downlink control signaling. There is also a F-DPCH which is a special case of the DPCCH and for which is defined a TPC field in which is placed TPC bits that the network sets to signal the recipient user device (generally termed a UE) changes to the UE's transmit power. The term UTRAN refers to a number of different 3G systems, (including but not limited to): global system for mobile communication GSM; enhanced data rates for GSM evolution EDGE; high speed packet access HSPA; and wideband code division multiple access WCDMA.
A UE having a radio connection with a network will typically test its synchronization routinely to assure its timing relative to that of the network has not shifted beyond allowable tolerances. When first establishing a connection with the network the UE also has to test that proper synchronization has been acquired. Synchronization of the DPDCH, the DPCCH, and the F-DPCH is monitored by the DPCCH or TPC bit quality. Specifically, the quality monitoring procedure is described at section 4.2 of 3GPP TS 25.214 V10.1.0 (2011-03), and the related performance test is detailed at section 6.4.4 et seq. of 3GPP TS 25.101 V10.2.0 (2011-06). If an existing connection is falling out of synchronization or if synchronization is achieved on a new connection, the UE is specified to indicate to higher layers a synchronization status change using the physical layer control message in-synchronization indicator (CPHY-Sync-IND) and out-of-synchronization indicator (CPHY-Out-of-Sync-IND) primitives as described in TS 25.214 referenced above.
The exemplary embodiments of the invention as detailed below provide a more effective manner to test channel synchronization.
In a first exemplary embodiment of the invention there is an apparatus comprising a processing system comprising at least one processor, and a memory storing a set of computer instructions. In this exemplary embodiment the processing system is arranged to: determine a first quality value for a first radio channel and a second quality value for a second radio channel, in which the second radio channel carries precoding information; and test whether the first radio channel is synchronized by combining the first quality value with the second quality value.
In a second exemplary embodiment of the invention there is a method comprising: determining a first quality value for a first radio channel and a second quality value for a second radio channel, in which the second radio channel carries precoding information; and testing whether the first radio channel is synchronized by combining the first quality value with the second quality value.
In a third exemplary embodiment of the invention there is a computer readable memory storing a computer program, in which the computer program comprises: code for determining a first quality value for a first radio channel and a second quality value for a second radio channel, in which the second radio channel carries precoding information; and code for testing whether the first radio channel is synchronized by combining the first quality value with the second quality value.
These and other embodiments and aspects are detailed below with particularity.
For the HSPA flavor of UTRAN a work item has been recently initiated to introduce beamforming weights (termed precoding information or PCI) sent downlink to support uplink transmit diversity. See for example proposal 3 at page 19 of the Draft Report of 3GPP TSG RAN WG1 #65 v0.1.0 (9-13 May, 2011; Princesa Sofia Hotel, Barcelona, Spain) which tends to indicate that a channel similar to the F-DPCH will be used to carry possibly one or two bits of PCI which is/are to be channel encoded similarly as the TPC bit.
Document R1-111752 by Ericsson and ST-Ericsson entitled On the quality of PCI feedback in CLTD (3GPP TSG RAN WG1 Meeting #65; Barcelona, Spain, 9-13 May, 2011) suggests that the quality of this/these new PCI bits should also be monitored, the purpose being that the UE would apply the precoding weights it receives only if this monitoring proves the PCI bits are sufficiently reliable. This document also suggests that there should be additional PCI quality signaling in the UL physical layer using a TPC bit field in the S-DPCCH. The inventors do not consider that such UL signaling would be very reliable at least for those times the UE's monitoring found the PCI bits too unreliable to put into use. The exemplary embodiments of the invention detailed below put those PCI bits to a different use than is set forth at document R1-111752, namely for use in testing the UE's synchronization to the network. This method has the advantage of providing the reliability of the PCI bits without the additional signaling.
While the exemplary embodiments of the invention detailed below are in the context of the PCI bits of the PCICH and the TPC bits of the DPCCH which are UTRAN-specific terms, these are simply examples and not limiting to the broader teachings herein. Various other systems name antenna weights and power control bits differently. Similarly, the PCICH and the DPCCH are logical channels and so may be named differently in non-UTRAN systems. Regardless, the same principles detailed herein can also be used for those differently named parameters and channels in other wireless systems utilizing radio access technologies different from UTRAN. Such other systems are not limited to only cellular-type systems but also apply for wireless local area networks and other non-cellular radio access technologies since synchronization is an important part of nearly all modem wireless communications.
Exemplary embodiments of the invention are described below with reference to
The first two blocks of
Block 314 relates the terms of blocks 302 and 304 to the bit fields and logical channels noted above for a UTRAN-specific implementation: the first channel is a DPCCH or a F-DPCH and the first quality value is for power control bits received on the DPCCH or a F-DPCH; while the second channel is a DL PCICH and the second quality value is for the precoding information PCI (e.g., beamforming weight or weights) received on that PCICH.
Below are various exemplary embodiments for how the combining of block 304 might be implemented. In a first exemplary embodiment the quality information is hard-combined: a logical operation (for example a logical AND, NAND, OR and/or similar) is used to decide whether both channels (or the information fields on those two channels) have achieved synchronization. In the case of an AND or NAND operator the testing at block 304 yields a single result which is valid for both the first and second channels. This hard combining embodiment is particularly useful if this is how the UTRAN or other technology specifies that the PCI quality should be taken into account for testing/monitoring the status of the overall synchronization.
For example, if the controlling radio specifications mandate or make optional that both the DPCCH (or F-DPCH which is a special case of the DPCCH) and the PCICH should be taken into account while evaluating the UE's synchronization status, the hard combining of the per channel synchronization status can be accomplished by the functional blocks shown at
This hard-combining first embodiment is summarized at block 306 of
In a second exemplary embodiment the quality information is soft-combined. In these implementations there is soft information, such as for example SINR, on the quality of the two channels/fields which is combined. An advantage of this implementation is that it can take into account different quality target differences for those two channels. This soft combining embodiment is particularly useful if the target SINR differences between the channels are known and the PCI bits are used mainly to increase the reliability of the synchronization status reports.
In the
As an example of the soft combining done at combiner block 210 of
This implementation of the second embodiment is shown at block 308 of
Block 310 of
In an embodiment in which the UE does use the ΔQ, if the network signals the parameters Pb, PCI and Pb, TPC, the UE can extract the target quality difference ΔQ from a bit error rate curve of a BPSK signal. Such a bit error curve may be stored in the UE's local memory in various foul's; as an equation, as a lookup table, etc. By knowing both target error rates Pb, PCI and Pb, TPC the UE can enter the curve or lookup table and calculate the difference. For example it is known that the bit error probability of a BPSK signal Pb=Q(sqrt(2μ)). Therefore embodiments of these teachings can solve the SINR difference from the equation pair: Pb, TPC=Q(sqrt(2μTPC)) and Pb, PCI=Q(sqrt(2μPCI)).
As noted above for block 308, the weighting values w1 and w2 in the averaging process of block 310 can also be made equal for equal weighting or can vary to over-weight the more reliable quality value.
Note that averaging is used between the TPC and PCI bit information instead of other combining techniques used in signal processing such as for example maximal ratio combining MRC combining This is because the information itself from which the SINRs are obtained is different in kind, and so cannot be combined together as in conventional reception and still yield a valid result.
There is also a third embodiment in which there is no combining as in block 304. In truth this is a fallback condition for the case in which the PCI is not available to the UE to use in its combining. Occasions may arise in which the PCI based reporting needs to be temporarily disabled/turned off. Such a case may arise for example where the closed loop transmit diversity is turned off, meaning there is no PCI the network needs to send DL. In this case there is no combining in block 304 and the testing is done using only the DPCCH/F-DPCH information. Since one can reasonably assume that PCI was available prior to the PCI based reporting being turned off (or will be available again once the PCI-based reporting is turned back on), then the first or second exemplary embodiments noted above may be considered a first instance of a UE testing for synchronization and the no combining of this third embodiment may be considered a second instance of that same UE testing for synchronization. In this case first and second instance are not necessarily chronological but merely used to distinguish the two instances from one another.
Such blocks and the functions they represent are non-limiting examples, and may be practiced in various components such as integrated circuit chips and modules, and that the exemplary embodiments of this invention may be realized in an apparatus that is embodied as an integrated circuit. The integrated circuit, or circuits, may comprise circuitry (as well as possibly firmware) for embodying at least one or more of a data processor or data processors, a digital signal processor or processors, baseband circuitry and radio frequency circuitry that are configurable so as to operate in accordance with the exemplary embodiments of this invention.
In various embodiments the apparatus executing the process described at
Reference is now made to
The UE 10 includes processing means such as at least one data processor (DP) 10A, storing means such as at least one computer-readable memory (MEM) 10B storing at least one computer program (PROG) 1 OC, and also communicating means such as a transmitter TX 10D and a receiver RX 10E for bidirectional wireless communications with the network access node 12 via one or more antennas 10F. The UE 10 stores at block 10G the rules for combining the different channel qualities, such as for example according to one or more of the exemplary embodiments and implementations that are detailed above.
The network access node 12 similarly includes processing means such as at least one data processor (DP) 12A, storing means such as at least one computer-readable memory (MEM) 12B storing at least one computer program (PROG) 12C, and communicating means such as a transmitter TX 12D and a receiver RX 12E for bidirectional wireless communications with the UE 10 via one or more antennas 12F. There is a data and/or control path, termed at
Similarly, the RNC 14 includes processing means such as at least one data processor (DP) 14A, storing means such as at least one computer-readable memory (MEM) 14B storing at least one computer program (PROG) 14C, and communicating means such as a modem 14H for bidirectional communication with the network access node 12 via the control link. While not particularly illustrated for the UE 10 or network access node 12, those devices are also assumed to include as part of their wireless communicating means a modem which may be inbuilt on a radiofrequency RF front end chip within those devices 10, 12 and which chip also carries the TX 10D/12D and the RX 10E/12E.
At least one of the PROGs 10C in the UE 10 is assumed to include program instructions that, when executed by the associated DP 10A, enable the device to operate in accordance with the exemplary embodiments of this invention, as detailed above. The network access node 12 and the RNC 14 also have software stored in their respective MEMs to implement certain aspects of these teachings. In these regards the exemplary embodiments of this invention may be implemented at least in part by computer software stored on the MEM 10B, 12B, 14B which is executable by the DP 10A of the UE 10 and/or by the DP 12A/14A of the respective network access node 12 and the RNC 14, or by hardware, or by a combination of tangibly stored software and hardware (and tangibly stored firmware). Electronic devices implementing these aspects of the invention need not be the entire devices as depicted at
Various embodiments of the computer readable MEMs 10B, 12B and 14B include any data storage technology type which is suitable to the local technical environment, including but not limited to semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory, removable memory, disc memory, flash memory, DRAM, SRAM, EEPROM and the like. Various embodiments of the DPs 10A, 12A and 14A include but are not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and multi-core processors.
Further, some of the various features of the above non-limiting embodiments may be used to advantage without the corresponding use of other described features. The foregoing description should therefore be considered as merely illustrative of the principles, teachings and exemplary embodiments of this invention, and not in limitation thereof.