The present invention relates to a joint connector.
Japanese Unexamined Patent Publication No. 2009-176688 discloses an in-vehicle network called CAN installed in an automotive vehicle to communication with nodes (electronic control units) via a wiring harness constituting communication transmission paths.
A joint connector is used in Japanese Unexamined Patent Publication No. 2009-176688 to connect communication wires of a wiring harness. The joint connector has joint terminals, and each joint terminal has tabs projecting therefrom and mounted in upper and lower stages. Branch points of a main line are connected via female terminals or branch lines branched off from the main line are connected via the female terminals. Twisted pair cables are used as communication wires to be less affected by noise. One of these communication wires in each communication pair is connected to the joint terminal in one of the stages and the corresponding other communication wire is connected to the joint terminal in the other stage.
In the above-described joint connector, an interval between cavities for accommodating the respective terminals connected to the communication wires paired in the twisted pair cable is preferably as small as possible. If the interval is wide, an effect of noise reduction is impaired. As a countermeasure, it is thought to change the arrangement of locking lances formed in the cavities corresponding to the twisted pair cable such that a deflection direction (X direction) of the locking lances is perpendicular to an arrangement direction (Y direction) of the cavities. If these two directions are the same, a height of a deflection space for the locking lance is added to a height of an accommodation space of the cavity for the terminal and the interval between the cavities is increased by that much. Note that a resilient contact piece for connection to the corresponding tab terminal is formed in each female terminal, and a deflection direction thereof is the same as the deflection direction of the locking lance, i.e. X direction.
The respective tab terminals of the joint terminal are arranged in the X direction if the above-described countermeasure structure is adopted. Thus, each tab terminal contacts the resilient contact piece corresponding thereto in the arrangement direction thereof. Specifically, a fracture surface of each tab terminal formed when being cut out from a base material faces and contacts the resilient contact piece. However, this may cause the resilient contact piece to be damaged and the plating thereof to be peeled off when the terminals slide in contact with each other.
The present invention was completed based on the above situation and aims to provide a joint connector capable of protecting resilient contact pieces by preventing fracture surfaces of tab terminals from facing the resilient contact pieces even if a deflection direction of the resilient contact pieces is along an arrangement direction of the tab terminals.
The invention is directed to a joint connector with a joint terminal formed with a coupling piece and tab terminals projecting in parallel from the coupling piece. Female terminals are configured such that the respective tab terminals are insertable therein. Each female terminal has a terminal connecting portion internally formed with a deflectable resilient contact piece to resiliently contact the tab terminal. A housing is formed with a first terminal accommodating portion that is configured so that the joint terminal is mountable therein and is formed with tab entrance paths into which the respective tab terminals are to be inserted. The housing also has a second terminal accommodating portion including cavities that coaxially face the corresponding tab entrance path. Each cavity is configured such that the female terminal is insertable therein and is formed internally with a deflectable locking lance to be resiliently locked to the corresponding female terminal. A deflection direction of the resilient contact pieces is the same as an arrangement direction of the tab terminals. Each tab terminal in the joint terminal is twisted about an axis thereof and a plate surface direction of each tab terminal is substantially perpendicular to that of the coupling piece and substantially the same as the deflection direction of the resilient contact pieces.
According to the joint connector of the invention, the respective female terminals are joined by connecting the female terminals inserted into the second terminal accommodating portion to the respective tab terminals of the joint terminal mounted into the first terminal accommodating portion. If the housing is structured such that the resilient contact piece of the female terminal contacts the tab terminal in a direction perpendicular to the plate surface direction, i.e. in a direction to face a fracture surface of the tab terminal, the resilient contact piece may be damaged by the fracture surface in the process of connection. However, according to the invention, even with such a housing structure, each tab terminal of the joint terminal is twisted about the axis to be substantially perpendicular to plate surfaces of the coupling piece. Thus, each tab terminal can contact the resilient contact piece of the female terminal in the plate surface direction. Therefore, the resilient contact piece can be reliably protected from damage and the like due to the fracture surface of the tab terminal.
Each tab terminal may be formed with a protruding follower portion. A cam portion spiral about an axis of the tab entrance path may be formed to communicate with each tab entrance path, and the cam portion may be formed to guide the follower portion, twist and deform each tab terminal about the axis thereof and be able to contact the resilient contact piece in the plate surface direction thereof as the joint terminal is mounted into the first terminal accommodating portion.
According to this configuration, when the joint terminal is mounted into the first terminal accommodating portion of the housing, each tab terminal is inserted along the tab entrance path and the follower portion formed on the tab terminal moves forward while being guided by a spiral path of the cam portion formed on the tab entrance path. A twisting force about the axis is applied to the tab terminal in this process. When the mounting of the joint terminal is completed, the plate surface direction of each tab terminal is substantially perpendicular to that of the coupling piece. As a result, the tab terminal contacts the resilient contact piece of the female terminal in the plate surface direction thereof. Since the plate surface direction of the tab terminal can be changed in linkage with the mounting operation of the joint terminal as described above, manufacturing efficiency can be enhanced as compared to the case where the tab terminals are twisted in advance with respect to the female terminals.
The cam portion may be formed to be able to restrict a returning movement of the tab terminal in a direction opposite to a twisting direction by bringing a surface of the follower portion on a side opposite to the twisting direction into contact with an inner surface of the cam portion when the joint terminal is mounted properly into the first terminal accommodating portion According to this configuration, there is no springback after the tab terminal is twisted. Thus, a variation of a twisting angle due to the springback can be avoided effectively.
At least two of the first terminal accommodating portions may be provided in the housing, and the joint terminal may be mounted into each of the first terminal accommodating portions. Pairs of the female terminals to be connected to the respective tab terminals of a pair of the joint terminals may be connected to twisted pair cables. The pairs of female terminals may be mounted into pairs of the corresponding cavities in at least a pair of the second terminal accommodating portions provided in the housing, and the deflection direction of the respective locking lances may be set along the arrangement direction of the respective cavities constituting the respective second terminal accommodating portions.
According to this configuration, the pairs of cavities for accommodating the pairs of female terminals connected to the twisted pair cables respectively belong to the pair of second terminal accommodating portions. The deflection direction of the locking lances arranged in these cavities is set along the arrangement direction of the respective cavities constituting the second terminal accommodating portions. That is, since the locking lances are not arranged in the arrangement direction of the pairs of the cavities for accommodating the pairs of female terminals connected to the twisted pair cables, intervals between these pairs of cavities can be narrowed. Thus, the pairs of female terminals can be accommodated with short intervals of the twisted pair cables kept, wherefore an effect of noise removal is not impaired.
Next, a specific embodiment of a joint connector of the present invention is described with reference to the drawings.
(Summary of In-Vehicle Network)
The wiring harness WH is composed of a main line 1 and branch lines 2 branched off from this main line 1 at a plurality of branch points 3 and connected to each electronic control unit U at each branch destination. Further, the main line 1 and each branch line 2 are formed by twisted pair cables formed by pairing and twisting two wires W.
The main line 1 is formed with bypath paths 4 toward joint connectors CO at the respective branch paths 3. A forward path 4A and a return path 4B in each bypass path 4 are relayed in the joint connector CO and branched off to each electronic control unit U.
(Joint Terminal: See
Two joint terminals 5 shown in
A substantially rectangular follower portion 8 is formed to protrude on one side edge in a length direction of each tab terminal 6. A chamfered portion 8A with a curved surface is formed on a front edge part of each follower portion 8. The chamfered portion 8A makes entrance into a cam portion 27 to be described later smooth.
The joint terminal 5 is formed by being punched out from a base material in the form of a flat plate by a press. Thus, both side edges of the tab terminals 6 are fracture surfaces. When the tab terminals 6 are punched out by the press, plate surfaces (both sides shown in
(Female Terminals: See
The female terminals 9A, 9B used for the main line and the branch lines are identical. The female terminals 9A, 9B are also formed by being bent into a predetermined shape after a conductive metal plate material is punched out by a press. The female terminal 9A, 9B is composed of a terminal connecting portion 10 in the form of a rectangular tube into which the tab terminal 6 is insertable, and a wire connecting portion 11 arranged behind the terminal connecting portion 10. The wire connecting portion 11 is composed of a wire barrel 11A to be crimped to a core exposed at an end part of the wire (each wire constituting the twisted pair cable) and an insulation barrel 11B to be crimped to a coating part of the wire W.
The terminal connecting portion 10 is bent into a rectangular tube shape and a ceiling wall is a double wall. An outer surface side of the ceiling wall of the terminal connecting portion 10 is cut in a longitudinal middle part to have a single wall structure. A pair of protrusions 12A, 12B are formed to project at front and rear sides of this cut part on the outer surface side of the ceiling wall in the terminal connecting portion 10. The protrusions 12A, 12B function as stabilizers and the front protrusion 12A also functions to be locked to a locking lance 13 to be described later.
As shown in
(Housing of Connector: See Mainly
The housing 15 is made of synthetic resin and is formed internally with two first terminal accommodating portions 16 (accommodating portions located on a left side in the housing in
As shown in
As shown in
Each forwardly cantilevered locking lance 13 is arranged in a front part (part near the first terminal accommodating portion 16) in each cavity 18. Each locking lance 13 is formed to be deflectable along the X direction in
As shown in
Next, the first terminal accommodating portions 16 are described. As shown in
As shown in
As shown in
Spirally turning directions are opposite between the first terminal accommodating portions 16 paired in the Y direction. For example, in
In the process of inserting the joint terminal 5 into the first terminal accommodating portion 16 in this way, the follower portion 8 of each tab terminal 6 first moves forward along the straight portion 28 of the cam portion 27. Thus, the tab terminal 6 is not deformed. However, as shown in
Note that the follower portion 8 is located in a front end part of the spiral portion 29 and sandwiched in the plate thickness direction by facing inner wall surfaces of the spiral portion 29 in a state where the insertion of the joint terminal 5 is completed. Thus, a return from a state of twisting deformation (springback) is restricted.
Next, an example of the procedure of manufacturing the joint connector CO is described. First, the joint terminals 5 are accommodated into the first terminal accommodating portions 16. In that case, the respective follower portions 8 are inserted into the straight portions 28 of the corresponding cam portions 27 at the same time as the respective tab terminals 6 of the joint terminals 5 are inserted into the corresponding tab entrance paths 26 (see
When the joint terminal 5 is pushed directly, the front end part of the coupling piece 7 enters the entrance part of the coupling piece accommodating portion 25, as shown in
The insertion of the joint terminal 5 is completed when the front end of the coupling piece 7 is butted against the back wall of the first terminal accommodating portion 16. At this time, both longitudinal side edges of the coupling piece 7 are press-fit to somewhat bite into the facing walls in the coupling piece accommodating portion 25. Therefore the entire joint terminal 5 is retained and accommodated in the first terminal accommodating portion 16. On the other hand, the follower portion 8 has reached the front end part of the spiral portion 29 by this time and each tab terminal 6 is twisted by 90° about the axis thereof until the follower portion 8 reaches here. As a result, the plate surfaces of each tab terminal 6 are initially facing in the Y direction, which is the same as the plate surface direction of the coupling piece 7, but each tab terminal 6 is twisted by 90° to convert the facing direction thereof into the X-direction when the accommodation of the joint terminal 5 is completed
Next, connection of the main-line female terminals 9A and the branch-line female terminals 9B to the respective tab terminals of the joint terminal 5 is described.
As shown in
As shown in
The respective female terminals 9A, 9B are inserted into the corresponding cavities 18 in this way are locked primarily by the locking lances 13. The retainer 23 then is moved from the partial locking position to the full locking position so that the respective locking projections 24 of the retainer 23 are locked to the rear ends of the terminal connecting portions 10 of the corresponding female terminals 9A, 9B. As a result, the respective female terminals 9A, 9B are retained doubly by the locking lances 13 and the retainer 23.
When the respective female terminals 9A, 9B are inserted properly into the corresponding cavities 18, as described above, the tab terminals 6 of the corresponding joint terminals 5 are inserted into the terminal connecting portions of the respective female terminals 9A, 9B. In this process, the tab terminals 6 slide in contact with the resilient contact pieces 14 while deflecting the resilient contact pieces 14, thereby being electrically connected. Since the resilient contact pieces 14 are in contact with the plate surfaces of the tab terminals 6 rather than the fracture surfaces thereof during this time, they are not damaged by the fracture surfaces.
By relaying the joint terminals 5 and the main-line female terminals 9A for forward path and return path in the bypass paths 4, as described above, the branch points 3 of the main line 1 are connected. The entire main line 1 is configured by connecting the respective branch points 3 in this way. Further, each electronic control unit U is connected while being branched off from the main line 1, by connecting the joint terminals 5 and the branch-line female terminals 9B at each branch point 3. By establishing a connection at each branch point 3 in this way, the in-vehicle network is configured to enable communication between the electronic control units U.
As described above, the pairs of female terminals 9A, 9B connected to the respective twisted pair cables constituting the main line 1 and the branch line 2 can be close to each other in the housing 15, i.e. intervals (intervals in the Y direction) between the corresponding cavities 18 can be narrowed. Thus, a high noise removal effect of the twisted pair cables can be maintained as it is even at a connected part to the connector. Further, in employing such a configuration, even if the positions of the locking lances 13 are changed, the resilient contact pieces 14 of the female terminals 9A, 9B are not brought into contact with the fracture surfaces of the tab terminals 6 of the joint terminals 5 and can be protected from damage since the tab terminals 6 are twisted by approximately 90° about the axes. In addition, since the tab terminals 6 are not twisted in advance and are twisted as being inserted into the housing 15 of the joint connector CO, manufacturing efficiency of the joint connector CO can be enhanced since there is no machining in advance.
Further, according to this embodiment, the follower portions 8 are located in the front end parts of the spiral portions 29 and sandwiched in the plate thickness direction by the facing inner wall surfaces of the spiral portions 29 in a state where the insertion of the joint terminal 5 is completed. Thus, each tab terminal 6 does not return from a twisted and deformed state (springback). Therefore, there also is obtained an effect that the tab terminals 6 can be held stably in contact with the plate surfaces of the resilient contact pieces 14 of the corresponding female terminals 9A, 9B.
The present invention is not limited to the above described and illustrated embodiment. For example, the following embodiments are also included in the technical scope of the present invention.
Although the tab terminals are twisted in the process of mounting the joint terminal into the first terminal accommodating portion in the above embodiment, the tab terminals may be, instead, twisted before being mounted into the first terminal accommodating portion.
Although the joint connector is applied to the in-vehicle network in the above embodiment, use applications should not be limited.
Number | Date | Country | Kind |
---|---|---|---|
2014-262172 | Dec 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/084321 | 12/7/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/104130 | 6/30/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5061196 | Weston | Oct 1991 | A |
5433628 | Sadaishi | Jul 1995 | A |
5769650 | Aoyama | Jun 1998 | A |
5788519 | Stern | Aug 1998 | A |
6193549 | Suzuki | Feb 2001 | B1 |
6383035 | Kasai | May 2002 | B1 |
6431880 | Davis | Aug 2002 | B1 |
6447331 | Fukatsu | Sep 2002 | B1 |
6840820 | Oda | Jan 2005 | B2 |
7172472 | Fujii | Feb 2007 | B2 |
7175489 | Fujii | Feb 2007 | B2 |
7241168 | Sakurai | Jul 2007 | B2 |
7435132 | Fong | Oct 2008 | B1 |
7476113 | Tamagawa | Jan 2009 | B2 |
7806720 | Omori | Oct 2010 | B2 |
7883362 | Ichio | Feb 2011 | B2 |
7990738 | Urrea | Aug 2011 | B2 |
8025538 | Hara | Sep 2011 | B2 |
8100730 | Hara | Jan 2012 | B2 |
8105103 | Nishio | Jan 2012 | B2 |
8257111 | Smutny | Sep 2012 | B1 |
8277258 | Huang | Oct 2012 | B1 |
8388364 | Kikuchi | Mar 2013 | B2 |
8454378 | Osterhart | Jun 2013 | B2 |
8690607 | Tsukamoto | Apr 2014 | B2 |
8992251 | Smutny | Mar 2015 | B2 |
9083094 | Teramoto | Jul 2015 | B2 |
9099803 | Omori | Aug 2015 | B2 |
9172193 | Sakamoto | Oct 2015 | B2 |
9211852 | Omori | Dec 2015 | B2 |
9318827 | Osada | Apr 2016 | B2 |
9356362 | Miyawaki | May 2016 | B2 |
9362665 | Omori | Jun 2016 | B2 |
9379493 | Aizawa | Jun 2016 | B2 |
9379496 | Hashimoto | Jun 2016 | B2 |
9653858 | Hanke | May 2017 | B2 |
9692183 | Phillips | Jun 2017 | B2 |
9761978 | Kim | Sep 2017 | B2 |
20060128185 | Nakazawa | Jun 2006 | A1 |
20060205270 | Sakurai | Sep 2006 | A1 |
20070246241 | Peterson | Oct 2007 | A1 |
20100071953 | Ichio | Mar 2010 | A1 |
20110111639 | Hara | May 2011 | A1 |
20120129392 | Fujisaki | May 2012 | A1 |
20130303016 | Shimizu | Nov 2013 | A1 |
20130303023 | Miwa | Nov 2013 | A1 |
20130309913 | Shimizu | Nov 2013 | A1 |
20130316593 | Shimizu | Nov 2013 | A1 |
20130330956 | Shimizu | Dec 2013 | A1 |
20140134869 | Hamai | May 2014 | A1 |
20140187081 | Teramoto | Jul 2014 | A1 |
20140220823 | Ando | Aug 2014 | A1 |
20140235090 | Omori | Aug 2014 | A1 |
20140315410 | Omori | Oct 2014 | A1 |
20140364009 | Kondo | Dec 2014 | A1 |
20150004841 | Fujiwara | Jan 2015 | A1 |
20150113803 | Omori | Apr 2015 | A1 |
20150214658 | Nishiyama | Jul 2015 | A1 |
20150340790 | Hamai | Nov 2015 | A1 |
20170040731 | Nishiyama | Feb 2017 | A1 |
20170250504 | Bang | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
59-43671 | Dec 1984 | JP |
60-31187 | Sep 1985 | JP |
2009-176688 | Aug 2009 | JP |
2014-82009 | May 2014 | JP |
Entry |
---|
International Search Report dated Mar. 1, 2016. |
Number | Date | Country | |
---|---|---|---|
20170345531 A1 | Nov 2017 | US |